{-# OPTIONS --without-K --safe #-}
module Relation.Nullary where
open import Agda.Builtin.Equality
open import Relation.Nullary.Negation.Core public using
( ¬_; _¬-⊎_
; contradiction; contradiction₂; contraposition
)
open import Relation.Nullary.Reflects public using
( Reflects; ofʸ; ofⁿ
; _×-reflects_; _⊎-reflects_; _→-reflects_
)
open import Relation.Nullary.Decidable.Core public using
( Dec; does; proof; yes; no; _because_; recompute
; ¬?; _×-dec_; _⊎-dec_; _→-dec_
)
Irrelevant : ∀ {p} → Set p → Set p
Irrelevant P = ∀ (p₁ p₂ : P) → p₁ ≡ p₂