{-# OPTIONS --without-K --safe #-}
module Data.Product where
open import Function.Base
open import Level
open import Relation.Nullary.Negation.Core
private
variable
a b c ℓ : Level
A B : Set a
open import Data.Product.Base public
∃ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃ = Σ _
∄ : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∄ P = ¬ ∃ P
∃₂ : ∀ {A : Set a} {B : A → Set b}
(C : (x : A) → B x → Set c) → Set (a ⊔ b ⊔ c)
∃₂ C = ∃ λ a → ∃ λ b → C a b
∃! : {A : Set a} → (A → A → Set ℓ) → (A → Set b) → Set (a ⊔ b ⊔ ℓ)
∃! _≈_ B = ∃ λ x → B x × (∀ {y} → B y → x ≈ y)
infix 2 ∃-syntax
∃-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
infix 2 ∄-syntax
∄-syntax : ∀ {A : Set a} → (A → Set b) → Set (a ⊔ b)
∄-syntax = ∄
syntax ∄-syntax (λ x → B) = ∄[ x ] B