{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Properties.Preorder
  {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open import Function.Base
open import Data.Product as Prod
import Relation.Binary.Construct.Converse as Converse
open Preorder P
converse-isPreorder : IsPreorder _≈_ (flip _∼_)
converse-isPreorder = Converse.isPreorder isPreorder
converse-preorder : Preorder p₁ p₂ p₃
converse-preorder = Converse.preorder P
InducedEquivalence : Setoid _ _
InducedEquivalence = record
  { _≈_           = λ x y → x ∼ y × y ∼ x
  ; isEquivalence = record
    { refl  = (refl , refl)
    ; sym   = swap
    ; trans = Prod.zip trans (flip trans)
    }
  }
invIsPreorder = converse-isPreorder
{-# WARNING_ON_USAGE invIsPreorder
"Warning: invIsPreorder was deprecated in v2.0.
Please use converse-isPreorder instead."
#-}
invPreorder = converse-preorder
{-# WARNING_ON_USAGE invPreorder
"Warning: invPreorder was deprecated in v2.0.
Please use converse-preorder instead."
#-}