{-# OPTIONS --without-K --safe #-}
module Effect.Functor where
open import Data.Unit.Polymorphic.Base using (⊤)
open import Function.Base using (const; flip)
open import Level
open import Relation.Binary.PropositionalEquality.Core using (_≡_)
private
variable
ℓ ℓ′ ℓ″ : Level
A B X Y : Set ℓ
record RawFunctor (F : Set ℓ → Set ℓ′) : Set (suc ℓ ⊔ ℓ′) where
infixl 4 _<$>_ _<$_
infixl 1 _<&>_
field
_<$>_ : (A → B) → F A → F B
_<$_ : A → F B → F A
x <$ y = const x <$> y
_<&>_ : F A → (A → B) → F B
_<&>_ = flip _<$>_
ignore : F A → F ⊤
ignore = _ <$_
record Morphism {F₁ : Set ℓ → Set ℓ′} {F₂ : Set ℓ → Set ℓ″}
(fun₁ : RawFunctor F₁)
(fun₂ : RawFunctor F₂) : Set (suc ℓ ⊔ ℓ′ ⊔ ℓ″) where
open RawFunctor
field
op : F₁ X → F₂ X
op-<$> : (f : X → Y) (x : F₁ X) →
op (fun₁ ._<$>_ f x) ≡ fun₂ ._<$>_ f (op x)