{-# OPTIONS --cubical-compatible --safe #-}
module Data.Sign.Properties where
open import Algebra.Bundles
open import Data.Empty
open import Data.Sign.Base
open import Data.Product using (_,_)
open import Function
open import Level using (0ℓ)
open import Relation.Binary using (Decidable; Setoid; DecSetoid)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Algebra.Structures {A = Sign} _≡_
open import Algebra.Definitions {A = Sign} _≡_
infix 4 _≟_
_≟_ : Decidable {A = Sign} _≡_
- ≟ - = yes refl
- ≟ + = no λ()
+ ≟ - = no λ()
+ ≟ + = yes refl
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid Sign
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
s≢opposite[s] : ∀ s → s ≢ opposite s
s≢opposite[s] - ()
s≢opposite[s] + ()
opposite-injective : ∀ {s t} → opposite s ≡ opposite t → s ≡ t
opposite-injective { - } { - } refl = refl
opposite-injective { + } { + } refl = refl
*-identityˡ : LeftIdentity + _*_
*-identityˡ _ = refl
*-identityʳ : RightIdentity + _*_
*-identityʳ - = refl
*-identityʳ + = refl
*-identity : Identity + _*_
*-identity = *-identityˡ , *-identityʳ
*-comm : Commutative _*_
*-comm + + = refl
*-comm + - = refl
*-comm - + = refl
*-comm - - = refl
*-assoc : Associative _*_
*-assoc + + _ = refl
*-assoc + - _ = refl
*-assoc - + _ = refl
*-assoc - - + = refl
*-assoc - - - = refl
*-cancelʳ-≡ : RightCancellative _*_
*-cancelʳ-≡ - - _ = refl
*-cancelʳ-≡ - + eq = ⊥-elim (s≢opposite[s] _ $ sym eq)
*-cancelʳ-≡ + - eq = ⊥-elim (s≢opposite[s] _ eq)
*-cancelʳ-≡ + + _ = refl
*-cancelˡ-≡ : LeftCancellative _*_
*-cancelˡ-≡ - eq = opposite-injective eq
*-cancelˡ-≡ + eq = eq
*-cancel-≡ : Cancellative _*_
*-cancel-≡ = *-cancelˡ-≡ , *-cancelʳ-≡
*-isMagma : IsMagma _*_
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _*_
}
*-magma : Magma 0ℓ 0ℓ
*-magma = record
{ isMagma = *-isMagma
}
*-isSemigroup : IsSemigroup _*_
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
{ isSemigroup = *-isSemigroup
}
*-isMonoid : IsMonoid _*_ +
*-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-monoid : Monoid 0ℓ 0ℓ
*-monoid = record
{ isMonoid = *-isMonoid
}
s*s≡+ : ∀ s → s * s ≡ +
s*s≡+ + = refl
s*s≡+ - = refl
s*opposite[s]≡- : ∀ s → s * opposite s ≡ -
s*opposite[s]≡- + = refl
s*opposite[s]≡- - = refl
opposite[s]*s≡- : ∀ s → opposite s * s ≡ -
opposite[s]*s≡- + = refl
opposite[s]*s≡- - = refl
opposite-not-equal = s≢opposite[s]
{-# WARNING_ON_USAGE opposite-not-equal
"Warning: opposite-not-equal was deprecated in v0.15.
Please use s≢opposite[s] instead."
#-}
opposite-cong = opposite-injective
{-# WARNING_ON_USAGE opposite-cong
"Warning: opposite-cong was deprecated in v0.15.
Please use opposite-injective instead."
#-}
cancel-*-left = *-cancelˡ-≡
{-# WARNING_ON_USAGE cancel-*-left
"Warning: cancel-*-left was deprecated in v0.15.
Please use *-cancelˡ-≡ instead."
#-}
cancel-*-right = *-cancelʳ-≡
{-# WARNING_ON_USAGE cancel-*-right
"Warning: cancel-*-right was deprecated in v0.15.
Please use *-cancelʳ-≡ instead."
#-}
*-cancellative = *-cancel-≡
{-# WARNING_ON_USAGE *-cancellative
"Warning: *-cancellative was deprecated in v0.15.
Please use *-cancel-≡ instead."
#-}