------------------------------------------------------------------------
-- The Agda standard library
--
-- Exponentiation defined over a semiring as repeated multiplication
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra
open import Data.Nat.Base as  using (; zero; suc)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Data.Nat.Properties as 

module Algebra.Properties.Semiring.Exp
  {a } (S : Semiring a ) where

open Semiring S renaming (zero to *-zero)
open import Relation.Binary.Reasoning.Setoid setoid
import Algebra.Properties.Monoid.Mult *-monoid as Mult

------------------------------------------------------------------------
-- Definition

open import Algebra.Definitions.RawSemiring rawSemiring public
  using (_^_)

------------------------------------------------------------------------
-- Properties

^-congˡ :  n  (_^ n) Preserves _≈_  _≈_
^-congˡ = Mult.×-congʳ

^-cong : _^_ Preserves₂ _≈_  _≡_  _≈_
^-cong x≈y u≡v = Mult.×-cong u≡v x≈y

-- xᵐ⁺ⁿ ≈ xᵐxⁿ
^-homo-* :  x m n  x ^ (m ℕ.+ n)  (x ^ m) * (x ^ n)
^-homo-* = Mult.×-homo-+

-- (xᵐ)ⁿ≈xᵐ*ⁿ
^-assocʳ :  x m n  (x ^ m) ^ n  x ^ (m ℕ.* n)
^-assocʳ x m n rewrite ℕ.*-comm m n = Mult.×-assocˡ x n m