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• Algorithmic Learning Theory

✴Grammatical Inference 

‣ Finite automata

→ satisfactory learning algorithms

‣ Context-free grammars/pushdown automata

→ special subclasses

- deterministic one-counter machines
- context-deterministic grammars

Background
There is a satisfactory learning 
algorithm for the regular languages.

How much can a similar learning 
algorithm be made to work for 
context-free languages?

The goal is not (necessarily) to 
present an algorithm for the entire 
class of context-free languages. 
(Both positive and negative results 
are valuable.)

Learning from Positive Data and Membership Queries

t1 t2 t3 ti… …

G1 G2 G3 Gi… …

enumeration of L*

Learner
Oracle 
for L*

output grammars

w ∈ L*?

Yes/Nopolynomial time in the 
size of (t1, t2, t3, …, ti)

• There exists  such that  and .

• No “delaying trick”.

l Gl = Gl+1 = ⋯ L(Gl) = L*

You have to specify the “learning 
paradigm”.

I write L_* for the target language.

You might wonder why you need 
positive data when you have access 
to the membership oracle.

Positive data is the input; queries 
are part of your work.

The “update time” is supposed to 
be polynomial in the size of the 
input positive data.

There is a cheap way of achieving 
polynomial update time by 



processing only an initial segment 
of the positive data. This is not 
allowed. (It’s difficult to make this 
requirement precise, though.)

•Left quotient of a language  by a string : 

•A language  is regular if and only if  is finite.

•Every regular language has a canonical minimal DFA.

L ⊆ Σ* u ∈ Σ*

u\L = { x ∈ Σ* ∣ ux ∈ L }

L { u\L ∣ u ∈ Σ* }

Regular Languages

ε\L* u\L* ua\L*

u
a

states = left quotients

We first look at a learning algorithm 
for the regular languages under this 
learning paradigm.

We start with a review of some 
basic facts about regular languages.

There is a canonical minimal DFA 
for every regular language.

The states of this DFA correspond 
to the (nonempty) left quotients of 
the language.

Example

L* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ε\L* = L*
a\L* = ba* ∪ a(a* ∪ b*)
b\L* = b*

aa\L* = a* ∪ b*
ab\L* = a*

bb\L* = b* = b\L*
aaa\L* = a* = ab\L*
aab\L* = b* = b\L*
aba\L* = a* = ab\L*

ε\L* u\L* ua\L*

u
a

states = left quotients

aa

ab

a

b
b

a

b

b

a
a

a

b

There is one more left quotient, 
namely the empty set, which would 
correspond to a dead state. We 
consider minimal DFAs without 
dead states.



•Right-linear CFG  corresponding to a minimal DFA for :G* L*

G* = (N*, Σ, P*, S)
N* = { u\L* ∣ u ∈ Σ* }
P* = { u\L* → a (ua\L*) ∣ u ∈ Σ*, a ∈ Σ } ∪ { u\L* → ε ∣ u ∈ L* }
S = L* (= ε\L*)

Right-Linear Grammars

ε\L* u\L* ua\L*

u
a

states = nonterminals = left quotients

Just an alternative notation.

Inference of Regular Languages

G = (N, Σ, P, ⟨⟨ε⟩⟩)

Learner
Oracle 
for L*

w ∈ L*?

Yes/No

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T ) ∧ ∀v ∈ Pref(T ) (v ≺ u →
({ε} ∪ Σ) Suff(T ) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T ) ∩ (u\L*) }

T = {t1, …, ti}

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T ) ∩ (ua\L*) = Suff(T ) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* length-lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

Pref(T ) = { u ∣ uv ∈ T }
Suff(T ) = { v ∣ uv ∈ T }

This is basically Angluin’s algorithm. 
The order of the presentation of the 
positive data doesn’t matter, so I’m 
treating it as a set T.

The algorithm outputs right-linear 
grammars.

Use <<u>> as the representation of 
u \ L_*.

Different strings may correspond to 
the same left quotient. Try to use 
the lexicographically least one.

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T ) ∧ ∀v ∈ Pref(T ) (v ≺ u →
({ε} ∪ Σ) Suff(T ) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T ) ∩ (u\L*) }

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T ) ∩ (ua\L*) = Suff(T ) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

ε\L* u\L* ua\L*

u
a

N* = { u\L* ∣ u ∈ Σ* }

P* = { u\L* → a (ua\L*) ∣ u ∈ Σ*, a ∈ Σ } ∪ { u\L* → ε ∣ u ∈ L* }
= { u\L* → a (v\L*) ∣ ua\L* = v\L* } ∪ { u\L* → ε ∣ u ∈ L* }

Compare the learner’s output with 
the canonical right-linear CFG 
(minimal DFA) of the target regular 
language.



Example

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

T = {b, aa, ab}
Pref(T ) = {ε, a, b, aa, ab}
Suff(T ) = {ε, a, b, aa, ab}

{ε, a, b} Suff(T ) ∩ (ε\L*) = {b, aa, ab, bb, aaa, aab}
{ε, a, b} Suff(T ) ∩ (a\L*) = {a, b, aa, ab, ba, aaa, baa}
{ε, a, b} Suff(T ) ∩ (b\L*) = {ε, b, bb}

{ε, a, b} Suff(T ) ∩ (aa\L*) = {ε, a, b, aa, aaa, bb}
{ε, a, b} Suff(T ) ∩ (ab\L*) = {ε, a, aa, aaa}

The prefixes of the strings in T are 
distinguishable from each other.

This positive data is enough to 
make the learner arrive at the 
correct hypothesis.

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T ) ∧ ∀v ∈ Pref(T ) (v ≺ u →
({ε} ∪ Σ) Suff(T ) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T ) ∩ (u\L*) }

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T ) ∩ (ua\L*) = Suff(T ) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

x ∈ ({ε} ∪ Σ) Suff(T ) ∩ (u\L*) ⟺ x ∈ ({ε} ∪ Σ) Suff(T ) ∧ ux ∈ L*

•  and  are determined by .

•  queries to the oracle for  suffice.

N P Pref(T ) ({ε} ∪ Σ) Suff(T ) ∩ L*

O(n2) L*

To compute N and P, you have to 
decide equality between various 
finite sets.

This is done by queries to the 
membership oracle.


• What do nonterminals correspond to?

• The set of terminal strings derived from a nonterminal is 
included in some quotient of the language of the grammar:

• It seems there’s nothing further that can be said in general.

left quotients
regular languages

=
??

context-free languages

S ⇒*G uAv implies LG(A) ⊆ u\L(G)/v = { x ∈ Σ* ∣ uxv ∈ L(G) }

Context-Free Grammars

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }
L(G) = LG(S)

G = (N, Σ, P, S)

How can a similar approach work 
for context-free languages?

Left quotients played an important 
role in the case of regular 
languages.

A left quotient corresponds to a 
state of the minimal DFA, and 
membership in it can be determined 
by a membership query.



Simple Case: Grammars with Just One Nonterminal

S → ε
S → aSbS

D1 = { x ∈ {a, b}* ∣ |x |a = |x |b ∧ ∀uv(uv = x → |u |a ≥ |u |b ) }

π : S → w0 S w1 … S wk (wi ∈ Σ*)

When should  be in the hypothesized grammar?π

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

Why is this reasonable?

Dyck language

Let’s bypass the problem of how to 
deal with nonterminals and consider 
the special class of CFGs whose 
start symbol is the only nonterminal.

An example of such a CFG is a 
grammar for the Dyck language.

ε denotes the empty string.


π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If  is not valid,  can’t be in a correct grammar for .
If , and , then

• If all productions in  are valid, then .

• All productions in  are valid.

π π L*

x1, …, xk ∈ L*, w0x1w1…xkwk ∉ L* L* ⊆ L(G)
S ⇒ w0 S w1 … S wk

⇒* w0 x1 w1 … xk wk

G L(G) ⊆ L*

G*

The first bullet point is easy to see. 
If all strings in L_* are in L_G(S), the 
presence of an invalid production 
implies that L_G(S) - L_* ≠ ∅. (This 
need not be so if G has more than 
one nonterminal, though.)

In order to understand the second 
and third bullet points, it is useful to 
understand some basic facts about 
context-free grammars in general.

Context-Free Grammars

 is the least fixed point of the 
operator :
(LG(S), LG(D1), LG(A), LG(U))

ΦG : (𝒫({a, b}*))4 → (𝒫({a, b}*))4

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

abbreviates three productions: 
S → aD1bS, S → aA, S → bU

ΦG

XS

XD1

XA
XU

=

aXD1
bXS ∪ aXA ∪ bXU

ε ∪ aXD1
bXD1

ε ∪ aXD1
bXA ∪ aXA

ε ∪ XUa ∪ XUb

Let’s look at context-free grammars 
in general.

Productions with the same left-hand 
side nonterminal are often collected 
together. Nonterminals are 
interpreted as sets, and the vertical 
bar is interpreted as union.

We’ll look at this grammar in more 
detail later.



•  is a pre-fixed point of   

•  is the least pre-fixed point of .

•  is a pre-fixed point of  if and only if for every 
production  in ,

.

(XB)B∈N ΦG
def
⟺

ΦG((XB)B∈N) ⊆ (XB)B∈N

(LG(B))B∈N ΦG

(XB)B∈N ΦG
A → w0 B1 w1 … Bk wk P

XA ⊇ w0 XB1
w1 … XBk

wk

Pre-fixed Points of Context-Free Grammars

: associated operator
G = (N, Σ, P, S)

ΦG

componentwise inclusion

Least fixed points coincide with 
least pre-fixed points.

The advantage of pre-fixed points is 
that you can look at individual 
productions in isolation.

Fixed Points

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

  

XS = aXD1
bXS ∪ aXA ∪ bXU

XD1
= ε ∪ aXD1

bXD1

XA = ε ∪ aXD1
bXA ∪ aXA

XU = ε ∪ XUa ∪ XUb

Pre-fixed Points

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

  

XS ⊇ aXD1
bXS ∪ aXA ∪ bXU

XD1
⊇ ε ∪ aXD1

bXD1

XA ⊇ ε ∪ aXD1
bXA ∪ aXA

XU ⊇ ε ∪ XUa ∪ XUb



Pre-fixed Points

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

  

S → aD1bS
S → aA
S → bU

D1 → ε
D1 → aD1bD1
A → ε
A → aD1bA
A → aA
U → ε
U → Ua
U → Ub

  

XS ⊇ aXD1
bXS

XS ⊇ aXA

XS ⊇ bXU

XD1
⊇ ε

XD1
⊇ aXD1

bXD1

XA ⊇ ε
XA ⊇ aXD1

bXA

XA ⊇ aXA
XU ⊇ ε
XU ⊇ XUa
XU ⊇ XUb

Simple Case: Grammars with Just One Nonterminal

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If  is not valid,  can’t be in a correct grammar for .

• If all productions in  are valid, then .
  is a pre-fixed point of .

• All productions in  are valid.
  is the least pre-fixed point of .

π π L*

G L(G) ⊆ L*

∵ L* G

G*

∵ L* = L(G*) G*

L(G) is the S-component of the least 
pre-fixed point of G.

L_* is the S-component of the least 
pre-fixed point of G_*.

If G has enough many productions 
that all productions in G_* are in G, 
then L_* ⊆ L(G).

Inference of Context-Free Grammars with Just One 
Nonterminal

G = ({S}, Σ, P, S)

Learner
Oracle 
for L*

w ∈ L*?

Yes/No

T = {t1, …, ti}

P = { S → w0 S w1 … S wk ∣ L* ⊇ w0 T w1 … T wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

• Need a constant bound  on , since deciding  
requires  queries to the oracle for .

• Placing a constant bound  on  makes the set of possible 
productions finite.

r k L* ⊇ w0 T w1 … T wk
|T |k L*

s |wi |

approximates

L* ⊇ w0 L* w1 … L* wk

Need to place some bound on |w_i| 
to make P finite. Using a constant 
bound is the easiest, but then the 
class of grammars becomes finite.

It is possible to use a non-constant 
bound, but you can’t generate all 
regular languages with just one 
nonterminal, so this class is too 
restrictive to be interesting anyway.



• A hypothesized nonterminal  “denotes” a set  relative to the 
target language , independently of the rest of the hypothesized 
grammar.

• In particular, it is not necessarily the case that  (even in 
the limit).

• Membership in  reduces in polynomial time to membership in 
.

• This reduction is uniform across different target languages.

B [[B]]L*

L*

LG(B) = [[B]]L*

[[B]]L*

L*

Learning Context-Free Grammars (with More Than One 
Nonterminal)

π : A → w0 B1 w1 … Bk wk

 is valid  π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

The general case of context-free 
grammars with more than one 
nonterminal.

In the case of the regular languages, 
we used nonterminals that denote 
left quotients of the target language.

In the case of CFGs with just one 
nonterminal, we used a nonterminal 
that denotes the target language.

We use certain representations as 
nonterminals that denote sets 
relative to L_*.

It is often the case that L_G(B) = 
[[B]]^{L_*} when the output 
grammar has converged to a 
correct grammar for L_*, but even 
then it does not always hold.

You’re supposed to be able to tell 
whether a particular string belongs 
to the denotation of a nonterminal 
by making queries to the oracle for 
L_*.

Since you don’t know the identity of 
L_*, this reduction must be 
independent of L_*.

• The learner uses pairs of strings as nonterminals.

•  has infinitely many quotients unless it is regular, so the 
learner must stop creating new nonterminals.

[[⟨⟨u, v⟩⟩]]L* = u\L*/v
= { x ∈ Σ* ∣ uxv ∈ L* }

P = { A → w0 B1 w1 … Bk wk ∣
[[A]]L* ⊇ w0 (Sub(T ) ∩ [[B1]]L*) w1 … (Sub(T ) ∩ [[Bk]]L*) wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

S = ⟨⟨ε, ε⟩⟩

L*

Simplest Class: Nonterminals Denote Quotients

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

Sub(T ) = { x ∣ uxv ∈ T }

We start with a very simple 
instantiation of this idea, where 
nonterminals denote quotients of 
L_*.

The strings u, v used to represent 
nonterminals are drawn from 
positive data, similarly to the case 
of the regular languages.



for  do

if  then

else 

end 

 

output 
end

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({⟨⟨ε, ε⟩⟩}, Σ, ∅, ⟨⟨ε, ε⟩⟩);
i = 1, 2, 3, …
Ti := Ti−1 ∪ {ti};

Ti ⊆ L(Gi−1)
Ji := Ji−1;

Ji := Con(Ti);

Ni := { ⟨⟨u, v⟩⟩ ∣ (u, v) ∈ Ji ∧
∀(u′￼, v′￼) ∈ Ji ((u′￼, v′￼) ≺2 (u, v) → E ∩ (u′￼\L*/v′￼) ≠ E ∩ (u\L*/v) };

Pi := { A → w0 B1 w1 … Bk wk ∣ A, B1, …, Bk ∈ Ni,
[[A]]L* ⊇ w0 (Sub(Ti) ∩ [[B1]]L*) w1 … (Sub(Ti) ∩ [[Bk]]L*) wk,
k ≤ r, |wj | ≤ s (1 ≤ j ≤ k) }
Gi := (Ni, Σ, Pi, ⟨⟨ε, ε⟩⟩);

Algorithm 1

Con(T ) = { (u, v) ∣ uwv ∈ T }

expand  only when Ji Ti ⊈ L(Gi−1)

E = Σ≤s (Sub(Ti) Σ≤s)≤r
lexicographic product of 

with itself

≺

Do not pay too much attention to 
the details of the algorithm.

The important points are:

- nonterminals are pairs of strings 

and denote quotients of the target 
language


- these pairs of strings are drawn 
from positive data


- the learner creates new 
nonterminals only when the 
positive data is inconsistent with 
the previous hypothesis


- the learner tries to include only 

•  has the quotient property

  has a pre-fixed point  with  such that 
 for all .

Theorem. 

• Algorithm 1 successfully learns  if and only if  has a 
grammar with the quotient property.

• If Algorithm 1 converges to , then  has the quotient 
property.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB ∈ 𝒬(L(G)) B ∈ N

L* L*

G G

CFGs with the Quotient Property

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

• CFGs with just one nonterminal.

• Right-linear grammars corresponding to minimal DFAs of 
regular languages.

• L = { anbn ∣ n ≥ 0 }{ anbn ∣ n ≥ 0 }
S → AA
A → ε ∣ aAb

S = ε\L/ε (= L),
A = a\L/bab

Examples of CFGs with the Quotient Property
L_G(S) = ε \ L(G) / ε.

Left quotients are quotients.

You need at least two nonterminals 
for the third example.



An Analogous Algorithm for Regular Languages

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ab

aa a

b
b

a

b

b

a

a

b

a

a

a
ab

a

b

b

b

a

a

b
a

a

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T ) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

b, aa, ab, … b, aba, …

To see how reasonable Algorithm 1 
is, let’s look at how its analogue for 
the regular languages behaves.

Before, you had a condition that 
approximates a certain identity.

Here, you have a condition that 
approximates an inclusion.

• : finite set of operations on  (of variable arity)

• For ,

• Sets in  can be represented by expressions built 

from  and symbols for operations in .

Γ 𝒫(Σ*)

ℒ ⊆ 𝒫(Σ*)
Γ(ℒ) = { f(L1, …, Lm) ∣ f : (𝒫(Σ*))m → 𝒫(Σ*), f ∈ Γ, L1, …, Lm ∈ ℒ }

Γ0(ℒ) = ℒ
Γn+1(ℒ) = ℒ ∪ Γ(Γn(ℒ))

⋃
t≥0

Γt(𝒬(L))

⟨⟨u, v⟩⟩ Γ

Γ-closure

-closure of Γ 𝒬(L)

Now let’s look at more general 
classes of representations (used as 
nonterminals).


Extended Regular Closure

[[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

= (aa\L/bb) ∩ ({a, b}* − ((a\L/b)({a, b}* − ∅))({a} ∪ {b}))
= (aa\L/bb) ∩ ({a, b}* − (a\L/b){a, b}*{a, b})
= { x ∣ x ∈ aa\L/bb ∧ no proper prefix of x is in a\L/b }

• If  is an extended regular expression over query atoms, then 
 reduces in polynomial time to .

e
[[e]]L L

Γ = {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

extended regular expression over query atoms

[[e]]L ≤P
tt L

The algorithm works when Γ-
expressions (expressions that stand 
for sets belonging to the Γ-closure) 
translate into polynomial-time 
reductions.

When Γ consists of the Boolean and 
regular operations, we get 
polynomial-time truth-table 
reduction.



AND

��(��)�� ∈ � NOT

OR

AND

�, ��

OR

AND

�, �

��� ∈ �

AND AND

NOT

AND AND

⊥

OR

⊥ ⊥

AND

�, �

OR

�, �

NOT

⊥

�, �

��� ∈ �

AND

OR

⊥ ⊤

AND

��, �

OR

�, ��

NOT

⊥

�, �

NOT

⊥

��, �

�(��)� ∈ �

OR

⊥ ⊥

ab ∈ [[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

The Boolean circuit for the truth 
function the reduction uses for this 
particular input. The circuit for x ∈ 
[[e]]^L depends on e and x, but not 
on L.

• A CFG  has the Γt-property   has a pre-
fixed point  with  such that 

 for all .

•  has the Γ-closure property   has the -property for 
some .

G = (N, Σ, P, S)
def
⟺ G

(XB)B∈N XS = L(G)
XB ∈ Γt(𝒬(L(G))) B ∈ N

G
def
⟺ G Γt

t

Γ-closure Property

• The learner uses extended regular expressions over query 
atoms as nonterminals.

P = { A → w0 B1 w1 … Bk wk ∣
[[A]]L* ⊇ w0 (Sub(T ) ∩ [[B1]]L*) w1 … (Sub(T ) ∩ [[Bk]]L*) wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

S = ⟨⟨ε, ε⟩⟩

Learning CFGs with the Extended Regular Closure Property

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk



for  do

if  then

else 

end 

the set of -expressions over 

output 
end

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({⟨⟨ε, ε⟩⟩}, Σ, ∅, ⟨⟨ε, ε⟩⟩);
i = 1, 2, 3, …
Ti := Ti−1 ∪ {ti};

Ti ⊆ L(Gi−1)
Ji := Ji−1;

Ji := Con(Ti);

Qi := { ⟨⟨u, v⟩⟩ ∣ (u, v) ∈ Ji ∧
∀(u′￼, v′￼) ∈ Ji ((u′￼, v′￼) ≺2 (u, v) → E ∩ (u′￼\L*/v′￼) ≠ E ∩ (u\L*/v) };

Ni := Γt Qi;
Pi := { A → w0 B1 w1 … Bk wk ∣ A, B1, …, Bk ∈ Ni,

[[A]]L* ⊇ w0 (Sub(Ti) ∩ [[B1]]L*) w1 … (Sub(Ti) ∩ [[Bk]]L*) wk,
k ≤ r, |wj | ≤ s (1 ≤ j ≤ k) }
Gi := (Ni, Σ, Pi, ⟨⟨ε, ε⟩⟩);

Algorithm 2

Con(T ) = { (u, v) ∣ uwv ∈ T }

expand  only when Ji Ti ⊈ L(Gi−1)

E = Σ≤s (Sub(Ti) Σ≤s)≤r
lexicographic product of 

with itself

≺

Algorithm 1 used Q_i as N_i.

That’s the only difference from 
Algorithm 1.

Theorem. 

• Algorithm 2 successfully learns  if and only if  has a 
grammar with the -property.

• If Algorithm 2 converges to , then  has the -property.

L* L*
Γt

G G Γt

{ ∩ } ⊆ Γ ⊆ {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

Extended Regular Closure Property

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

= { x ∈ {a, b}* ∣
|x |a > |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ no prefix of x is in D1b }
= D1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]D1

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

Our example grammar has the 
extended regular closure property.



Boolean Closure Property

D1 = { x ∈ {a, b}* ∣ ∃mn(m + n > 0 ∧ nf(x) = bman) }

  
S → D1bD1 ∣ D1aD1 ∣ D1bS ∣ SaD1

D1 → ε ∣ aD1bD1

normal form of  under the rewriting x ab → ε

S ⇒* D1 b … D1 b D1 a D1 … a D1

⇒* x1 b … xm b y a z1 … a zn

D1 = [[⟨⟨ε, ε⟩⟩]]D1

In fact, the same language has a 
grammar with the “Boolean closure 
property”.

Extended Regular Closure Property

  

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b ) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

D1 = A ∩ O1

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)* ∩ ⟨⟨ε, ε⟩⟩]]O1

Theorem.  does not have a grammar with the Boolean 
closure property.

The pumping lemma applied to a long string  gives

O1

ap

S ⇒* al1Aar1

A ⇒* al2Aar2 (l2 + r2 > 0)
A ⇒* am

If  is a pre-fixed point with , then

It follows that  is both infinite and co-infinite.

But  is a co-
finite set.

(XB)B∈N XS = O1

{ anl2+m+nr2 ∣ n ≥ 0 } ⊆ XA ⊆ ⋂
n≥0

al1+nl2\O1 /anr2+r1

{ |x |a − |x |b ∣ x ∈ XA }

{ |x |a − |x |b ∣ x ∈ u\O1 /v } = ℤ − { − ( |uv |a − |uv |b )}



•  is inherently ambiguous.

•  does not have a grammar with the extended regular closure 
property.

Question. Are there any CFLs that are not inherently 
ambiguous that have no grammar with the extended regular 
closure property?

L

L

CFLs That Have No Grammar with the Extended Regular 
Closure Property

L = { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

Star-Free Closure Property

  

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b ) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

= [[⟨⟨ε, ε⟩⟩ b ∅]]O1

star-free expression over query atoms

A star-free expression is an 
extended regular expression that 
does not contain Kleene star (*).

Question. Are there any CFLs that have a grammar with the 
extended regular closure property but have no grammar with 
the star-free closure property?

L = { anbmcl ∣ (n is odd ∧ n > m) ∨ (n is even ∧ n > l) }

Extended Regular Closure vs. Star-Free Closure
L has a grammar with the extended 
regular closure property, but we do 
not know whether it has a grammar 
with the Boolean closure property.

Note that (aa)* is not a star-free 
regular language (it has no star-free 
expression).


