
Makoto Kanazawa, Hosei University

Learning Context-Free
Grammars from Positive Data
and Membership Queries
(based on joint work with Ryo Yoshinaka)

• Algorithmic Learning Theory

✴Grammatical Inference

‣ Finite automata

→ satisfactory learning algorithms

‣ Context-free grammars/pushdown automata

→ special subclasses

- deterministic one-counter machines
- context-deterministic grammars

Background
There is a satisfactory learning
algorithm for the regular languages.

How much can a similar learning
algorithm be made to work for
context-free languages?

The goal is not (necessarily) to
present an algorithm for the entire
class of context-free languages.
(Both positive and negative results
are valuable.)

Learning from Positive Data and Membership Queries

t1 t2 t3 ti… …

G1 G2 G3 Gi… …

enumeration of L*

Learner
Oracle
for L*

output grammars

w ∈ L*?

Yes/Nopolynomial time in the
size of (t1, t2, t3, …, ti)

• There exists such that and .

• No “delaying trick”.

l Gl = Gl+1 = ⋯ L(Gl) = L*

You have to specify the “learning
paradigm”.

I write L_* for the target language.

You might wonder why you need
positive data when you have access
to the membership oracle.

Positive data is the input; queries
are part of your work.

The “update time” is supposed to
be polynomial in the size of the
input positive data.

There is a cheap way of achieving
polynomial update time by

processing only an initial segment
of the positive data. This is not
allowed. (It’s difficult to make this
requirement precise, though.)

•Left quotient of a language by a string :

•A language is regular if and only if is finite.

•Every regular language has a canonical minimal DFA.

L ⊆ Σ* u ∈ Σ*

u\L = { x ∈ Σ* ∣ ux ∈ L }

L { u\L ∣ u ∈ Σ* }

Regular Languages

ε\L* u\L* ua\L*

u
a

states = left quotients

We first look at a learning algorithm
for the regular languages under this
learning paradigm.

We start with a review of some
basic facts about regular languages.

There is a canonical minimal DFA
for every regular language.

The states of this DFA correspond
to the (nonempty) left quotients of
the language.

Example

L* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ε\L* = L*
a\L* = ba* ∪ a(a* ∪ b*)
b\L* = b*

aa\L* = a* ∪ b*
ab\L* = a*

bb\L* = b* = b\L*
aaa\L* = a* = ab\L*
aab\L* = b* = b\L*
aba\L* = a* = ab\L*

ε\L* u\L* ua\L*

u
a

states = left quotients

aa

ab

a

b
b

a

b

b

a
a

a

b

There is one more left quotient,
namely the empty set, which would
correspond to a dead state. We
consider minimal DFAs without
dead states.

•Right-linear CFG corresponding to a minimal DFA for :G* L*

G* = (N*, Σ, P*, S)
N* = { u\L* ∣ u ∈ Σ* }
P* = { u\L* → a (ua\L*) ∣ u ∈ Σ*, a ∈ Σ } ∪ { u\L* → ε ∣ u ∈ L* }
S = L* (= ε\L*)

Right-Linear Grammars

ε\L* u\L* ua\L*

u
a

states = nonterminals = left quotients

Just an alternative notation.

Inference of Regular Languages

G = (N, Σ, P, ⟨⟨ε⟩⟩)

Learner
Oracle
for L*

w ∈ L*?

Yes/No

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T) ∧ ∀v ∈ Pref(T) (v ≺ u →
({ε} ∪ Σ) Suff(T) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T) ∩ (u\L*) }

T = {t1, …, ti}

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T) ∩ (ua\L*) = Suff(T) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* length-lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

Pref(T) = { u ∣ uv ∈ T }
Suff(T) = { v ∣ uv ∈ T }

This is basically Angluin’s algorithm.
The order of the presentation of the
positive data doesn’t matter, so I’m
treating it as a set T.

The algorithm outputs right-linear
grammars.

Use <<u>> as the representation of
u \ L_*.

Different strings may correspond to
the same left quotient. Try to use
the lexicographically least one.

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T) ∧ ∀v ∈ Pref(T) (v ≺ u →
({ε} ∪ Σ) Suff(T) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T) ∩ (u\L*) }

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T) ∩ (ua\L*) = Suff(T) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

ε\L* u\L* ua\L*

u
a

N* = { u\L* ∣ u ∈ Σ* }

P* = { u\L* → a (ua\L*) ∣ u ∈ Σ*, a ∈ Σ } ∪ { u\L* → ε ∣ u ∈ L* }
= { u\L* → a (v\L*) ∣ ua\L* = v\L* } ∪ { u\L* → ε ∣ u ∈ L* }

Compare the learner’s output with
the canonical right-linear CFG
(minimal DFA) of the target regular
language.

Example

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

T = {b, aa, ab}
Pref(T) = {ε, a, b, aa, ab}
Suff(T) = {ε, a, b, aa, ab}

{ε, a, b} Suff(T) ∩ (ε\L*) = {b, aa, ab, bb, aaa, aab}
{ε, a, b} Suff(T) ∩ (a\L*) = {a, b, aa, ab, ba, aaa, baa}
{ε, a, b} Suff(T) ∩ (b\L*) = {ε, b, bb}

{ε, a, b} Suff(T) ∩ (aa\L*) = {ε, a, b, aa, aaa, bb}
{ε, a, b} Suff(T) ∩ (ab\L*) = {ε, a, aa, aaa}

The prefixes of the strings in T are
distinguishable from each other.

This positive data is enough to
make the learner arrive at the
correct hypothesis.

N = { ⟨⟨u⟩⟩ ∣ u ∈ Pref(T) ∧ ∀v ∈ Pref(T) (v ≺ u →
({ε} ∪ Σ) Suff(T) ∩ (v\L*) ≠ ({ε} ∪ Σ) Suff(T) ∩ (u\L*) }

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ Suff(T) ∩ (ua\L*) = Suff(T) ∩ (v\L*) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* }

represents u\L* lexicographic order on Σ*

approximates v\L* ≠ u\L*

approximates ua\L* = v\L*

x ∈ ({ε} ∪ Σ) Suff(T) ∩ (u\L*) ⟺ x ∈ ({ε} ∪ Σ) Suff(T) ∧ ux ∈ L*

• and are determined by .

• queries to the oracle for suffice.

N P Pref(T) ({ε} ∪ Σ) Suff(T) ∩ L*

O(n2) L*

To compute N and P, you have to
decide equality between various
finite sets.

This is done by queries to the
membership oracle.

• What do nonterminals correspond to?

• The set of terminal strings derived from a nonterminal is
included in some quotient of the language of the grammar:

• It seems there’s nothing further that can be said in general.

left quotients
regular languages

=
??

context-free languages

S ⇒*G uAv implies LG(A) ⊆ u\L(G)/v = { x ∈ Σ* ∣ uxv ∈ L(G) }

Context-Free Grammars

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }
L(G) = LG(S)

G = (N, Σ, P, S)

How can a similar approach work
for context-free languages?

Left quotients played an important
role in the case of regular
languages.

A left quotient corresponds to a
state of the minimal DFA, and
membership in it can be determined
by a membership query.

Simple Case: Grammars with Just One Nonterminal

S → ε
S → aSbS

D1 = { x ∈ {a, b}* ∣ |x |a = |x |b ∧ ∀uv(uv = x → |u |a ≥ |u |b) }

π : S → w0 S w1 … S wk (wi ∈ Σ*)

When should be in the hypothesized grammar?π

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

Why is this reasonable?

Dyck language

Let’s bypass the problem of how to
deal with nonterminals and consider
the special class of CFGs whose
start symbol is the only nonterminal.

An example of such a CFG is a
grammar for the Dyck language.

ε denotes the empty string.

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If is not valid, can’t be in a correct grammar for .
If , and , then

• If all productions in are valid, then .

• All productions in are valid.

π π L*

x1, …, xk ∈ L*, w0x1w1…xkwk ∉ L* L* ⊆ L(G)
S ⇒ w0 S w1 … S wk

⇒* w0 x1 w1 … xk wk

G L(G) ⊆ L*

G*

The first bullet point is easy to see.
If all strings in L_* are in L_G(S), the
presence of an invalid production
implies that L_G(S) - L_* ≠ ∅. (This
need not be so if G has more than
one nonterminal, though.)

In order to understand the second
and third bullet points, it is useful to
understand some basic facts about
context-free grammars in general.

Context-Free Grammars

 is the least fixed point of the
operator :
(LG(S), LG(D1), LG(A), LG(U))

ΦG : (𝒫({a, b}*))4 → (𝒫({a, b}*))4

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

abbreviates three productions:
S → aD1bS, S → aA, S → bU

ΦG

XS

XD1

XA
XU

=

aXD1
bXS ∪ aXA ∪ bXU

ε ∪ aXD1
bXD1

ε ∪ aXD1
bXA ∪ aXA

ε ∪ XUa ∪ XUb

Let’s look at context-free grammars
in general.

Productions with the same left-hand
side nonterminal are often collected
together. Nonterminals are
interpreted as sets, and the vertical
bar is interpreted as union.

We’ll look at this grammar in more
detail later.

• is a pre-fixed point of

• is the least pre-fixed point of .

• is a pre-fixed point of if and only if for every
production in ,

.

(XB)B∈N ΦG
def
⟺

ΦG((XB)B∈N) ⊆ (XB)B∈N

(LG(B))B∈N ΦG

(XB)B∈N ΦG
A → w0 B1 w1 … Bk wk P

XA ⊇ w0 XB1
w1 … XBk

wk

Pre-fixed Points of Context-Free Grammars

: associated operator
G = (N, Σ, P, S)

ΦG

componentwise inclusion

Least fixed points coincide with
least pre-fixed points.

The advantage of pre-fixed points is
that you can look at individual
productions in isolation.

Fixed Points

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

XS = aXD1
bXS ∪ aXA ∪ bXU

XD1
= ε ∪ aXD1

bXD1

XA = ε ∪ aXD1
bXA ∪ aXA

XU = ε ∪ XUa ∪ XUb

Pre-fixed Points

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

XS ⊇ aXD1
bXS ∪ aXA ∪ bXU

XD1
⊇ ε ∪ aXD1

bXD1

XA ⊇ ε ∪ aXD1
bXA ∪ aXA

XU ⊇ ε ∪ XUa ∪ XUb

Pre-fixed Points

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

S → aD1bS
S → aA
S → bU

D1 → ε
D1 → aD1bD1
A → ε
A → aD1bA
A → aA
U → ε
U → Ua
U → Ub

XS ⊇ aXD1
bXS

XS ⊇ aXA

XS ⊇ bXU

XD1
⊇ ε

XD1
⊇ aXD1

bXD1

XA ⊇ ε
XA ⊇ aXD1

bXA

XA ⊇ aXA
XU ⊇ ε
XU ⊇ XUa
XU ⊇ XUb

Simple Case: Grammars with Just One Nonterminal

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If is not valid, can’t be in a correct grammar for .

• If all productions in are valid, then .
 is a pre-fixed point of .

• All productions in are valid.
 is the least pre-fixed point of .

π π L*

G L(G) ⊆ L*

∵ L* G

G*

∵ L* = L(G*) G*

L(G) is the S-component of the least
pre-fixed point of G.

L_* is the S-component of the least
pre-fixed point of G_*.

If G has enough many productions
that all productions in G_* are in G,
then L_* ⊆ L(G).

Inference of Context-Free Grammars with Just One
Nonterminal

G = ({S}, Σ, P, S)

Learner
Oracle
for L*

w ∈ L*?

Yes/No

T = {t1, …, ti}

P = { S → w0 S w1 … S wk ∣ L* ⊇ w0 T w1 … T wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

• Need a constant bound on , since deciding
requires queries to the oracle for .

• Placing a constant bound on makes the set of possible
productions finite.

r k L* ⊇ w0 T w1 … T wk
|T |k L*

s |wi |

approximates

L* ⊇ w0 L* w1 … L* wk

Need to place some bound on |w_i|
to make P finite. Using a constant
bound is the easiest, but then the
class of grammars becomes finite.

It is possible to use a non-constant
bound, but you can’t generate all
regular languages with just one
nonterminal, so this class is too
restrictive to be interesting anyway.

• A hypothesized nonterminal “denotes” a set relative to the
target language , independently of the rest of the hypothesized
grammar.

• In particular, it is not necessarily the case that (even in
the limit).

• Membership in reduces in polynomial time to membership in
.

• This reduction is uniform across different target languages.

B [[B]]L*

L*

LG(B) = [[B]]L*

[[B]]L*

L*

Learning Context-Free Grammars (with More Than One
Nonterminal)

π : A → w0 B1 w1 … Bk wk

 is valid π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

The general case of context-free
grammars with more than one
nonterminal.

In the case of the regular languages,
we used nonterminals that denote
left quotients of the target language.

In the case of CFGs with just one
nonterminal, we used a nonterminal
that denotes the target language.

We use certain representations as
nonterminals that denote sets
relative to L_*.

It is often the case that L_G(B) =
[[B]]^{L_*} when the output
grammar has converged to a
correct grammar for L_*, but even
then it does not always hold.

You’re supposed to be able to tell
whether a particular string belongs
to the denotation of a nonterminal
by making queries to the oracle for
L_*.

Since you don’t know the identity of
L_*, this reduction must be
independent of L_*.

• The learner uses pairs of strings as nonterminals.

• has infinitely many quotients unless it is regular, so the
learner must stop creating new nonterminals.

[[⟨⟨u, v⟩⟩]]L* = u\L*/v
= { x ∈ Σ* ∣ uxv ∈ L* }

P = { A → w0 B1 w1 … Bk wk ∣
[[A]]L* ⊇ w0 (Sub(T) ∩ [[B1]]L*) w1 … (Sub(T) ∩ [[Bk]]L*) wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

S = ⟨⟨ε, ε⟩⟩

L*

Simplest Class: Nonterminals Denote Quotients

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

Sub(T) = { x ∣ uxv ∈ T }

We start with a very simple
instantiation of this idea, where
nonterminals denote quotients of
L_*.

The strings u, v used to represent
nonterminals are drawn from
positive data, similarly to the case
of the regular languages.

for do

if then

else

end

output
end

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({⟨⟨ε, ε⟩⟩}, Σ, ∅, ⟨⟨ε, ε⟩⟩);
i = 1, 2, 3, …
Ti := Ti−1 ∪ {ti};

Ti ⊆ L(Gi−1)
Ji := Ji−1;

Ji := Con(Ti);

Ni := { ⟨⟨u, v⟩⟩ ∣ (u, v) ∈ Ji ∧
∀(u′￼, v′￼) ∈ Ji ((u′￼, v′￼) ≺2 (u, v) → E ∩ (u′￼\L*/v′￼) ≠ E ∩ (u\L*/v) };

Pi := { A → w0 B1 w1 … Bk wk ∣ A, B1, …, Bk ∈ Ni,
[[A]]L* ⊇ w0 (Sub(Ti) ∩ [[B1]]L*) w1 … (Sub(Ti) ∩ [[Bk]]L*) wk,
k ≤ r, |wj | ≤ s (1 ≤ j ≤ k) }
Gi := (Ni, Σ, Pi, ⟨⟨ε, ε⟩⟩);

Algorithm 1

Con(T) = { (u, v) ∣ uwv ∈ T }

expand only when Ji Ti ⊈ L(Gi−1)

E = Σ≤s (Sub(Ti) Σ≤s)≤r
lexicographic product of

with itself

≺

Do not pay too much attention to
the details of the algorithm.

The important points are:

- nonterminals are pairs of strings

and denote quotients of the target
language

- these pairs of strings are drawn
from positive data

- the learner creates new
nonterminals only when the
positive data is inconsistent with
the previous hypothesis

- the learner tries to include only

• has the quotient property

 has a pre-fixed point with such that
 for all .

Theorem.

• Algorithm 1 successfully learns if and only if has a
grammar with the quotient property.

• If Algorithm 1 converges to , then has the quotient
property.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB ∈ 𝒬(L(G)) B ∈ N

L* L*

G G

CFGs with the Quotient Property

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

• CFGs with just one nonterminal.

• Right-linear grammars corresponding to minimal DFAs of
regular languages.

• L = { anbn ∣ n ≥ 0 }{ anbn ∣ n ≥ 0 }
S → AA
A → ε ∣ aAb

S = ε\L/ε (= L),
A = a\L/bab

Examples of CFGs with the Quotient Property
L_G(S) = ε \ L(G) / ε.

Left quotients are quotients.

You need at least two nonterminals
for the third example.

An Analogous Algorithm for Regular Languages

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ab

aa a

b
b

a

b

b

a

a

b

a

a

a
ab

a

b

b

b

a

a

b
a

a

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

b, aa, ab, … b, aba, …

To see how reasonable Algorithm 1
is, let’s look at how its analogue for
the regular languages behaves.

Before, you had a condition that
approximates a certain identity.

Here, you have a condition that
approximates an inclusion.

• : finite set of operations on (of variable arity)

• For ,

• Sets in can be represented by expressions built

from and symbols for operations in .

Γ 𝒫(Σ*)

ℒ ⊆ 𝒫(Σ*)
Γ(ℒ) = { f(L1, …, Lm) ∣ f : (𝒫(Σ*))m → 𝒫(Σ*), f ∈ Γ, L1, …, Lm ∈ ℒ }

Γ0(ℒ) = ℒ
Γn+1(ℒ) = ℒ ∪ Γ(Γn(ℒ))

⋃
t≥0

Γt(𝒬(L))

⟨⟨u, v⟩⟩ Γ

Γ-closure

-closure of Γ 𝒬(L)

Now let’s look at more general
classes of representations (used as
nonterminals).

Extended Regular Closure

[[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

= (aa\L/bb) ∩ ({a, b}* − ((a\L/b)({a, b}* − ∅))({a} ∪ {b}))
= (aa\L/bb) ∩ ({a, b}* − (a\L/b){a, b}*{a, b})
= { x ∣ x ∈ aa\L/bb ∧ no proper prefix of x is in a\L/b }

• If is an extended regular expression over query atoms, then
 reduces in polynomial time to .

e
[[e]]L L

Γ = {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

extended regular expression over query atoms

[[e]]L ≤P
tt L

The algorithm works when Γ-
expressions (expressions that stand
for sets belonging to the Γ-closure)
translate into polynomial-time
reductions.

When Γ consists of the Boolean and
regular operations, we get
polynomial-time truth-table
reduction.

AND

��(��)�� ∈ � NOT

OR

AND

�, ��

OR

AND

�, �

��� ∈ �

AND AND

NOT

AND AND

⊥

OR

⊥ ⊥

AND

�, �

OR

�, �

NOT

⊥

�, �

��� ∈ �

AND

OR

⊥ ⊤

AND

��, �

OR

�, ��

NOT

⊥

�, �

NOT

⊥

��, �

�(��)� ∈ �

OR

⊥ ⊥

ab ∈ [[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

The Boolean circuit for the truth
function the reduction uses for this
particular input. The circuit for x ∈
[[e]]^L depends on e and x, but not
on L.

• A CFG has the Γt-property has a pre-
fixed point with such that

 for all .

• has the Γ-closure property has the -property for
some .

G = (N, Σ, P, S)
def
⟺ G

(XB)B∈N XS = L(G)
XB ∈ Γt(𝒬(L(G))) B ∈ N

G
def
⟺ G Γt

t

Γ-closure Property

• The learner uses extended regular expressions over query
atoms as nonterminals.

P = { A → w0 B1 w1 … Bk wk ∣
[[A]]L* ⊇ w0 (Sub(T) ∩ [[B1]]L*) w1 … (Sub(T) ∩ [[Bk]]L*) wk,
k ≤ r, |wi | ≤ s (0 ≤ i ≤ k) }

S = ⟨⟨ε, ε⟩⟩

Learning CFGs with the Extended Regular Closure Property

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

for do

if then

else

end

the set of -expressions over

output
end

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({⟨⟨ε, ε⟩⟩}, Σ, ∅, ⟨⟨ε, ε⟩⟩);
i = 1, 2, 3, …
Ti := Ti−1 ∪ {ti};

Ti ⊆ L(Gi−1)
Ji := Ji−1;

Ji := Con(Ti);

Qi := { ⟨⟨u, v⟩⟩ ∣ (u, v) ∈ Ji ∧
∀(u′￼, v′￼) ∈ Ji ((u′￼, v′￼) ≺2 (u, v) → E ∩ (u′￼\L*/v′￼) ≠ E ∩ (u\L*/v) };

Ni := Γt Qi;
Pi := { A → w0 B1 w1 … Bk wk ∣ A, B1, …, Bk ∈ Ni,

[[A]]L* ⊇ w0 (Sub(Ti) ∩ [[B1]]L*) w1 … (Sub(Ti) ∩ [[Bk]]L*) wk,
k ≤ r, |wj | ≤ s (1 ≤ j ≤ k) }
Gi := (Ni, Σ, Pi, ⟨⟨ε, ε⟩⟩);

Algorithm 2

Con(T) = { (u, v) ∣ uwv ∈ T }

expand only when Ji Ti ⊈ L(Gi−1)

E = Σ≤s (Sub(Ti) Σ≤s)≤r
lexicographic product of

with itself

≺

Algorithm 1 used Q_i as N_i.

That’s the only difference from
Algorithm 1.

Theorem.

• Algorithm 2 successfully learns if and only if has a
grammar with the -property.

• If Algorithm 2 converges to , then has the -property.

L* L*
Γt

G G Γt

{ ∩ } ⊆ Γ ⊆ {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

Extended Regular Closure Property

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

= { x ∈ {a, b}* ∣
|x |a > |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ no prefix of x is in D1b }
= D1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]D1

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

Our example grammar has the
extended regular closure property.

Boolean Closure Property

D1 = { x ∈ {a, b}* ∣ ∃mn(m + n > 0 ∧ nf(x) = bman) }

S → D1bD1 ∣ D1aD1 ∣ D1bS ∣ SaD1

D1 → ε ∣ aD1bD1

normal form of under the rewriting x ab → ε

S ⇒* D1 b … D1 b D1 a D1 … a D1

⇒* x1 b … xm b y a z1 … a zn

D1 = [[⟨⟨ε, ε⟩⟩]]D1

In fact, the same language has a
grammar with the “Boolean closure
property”.

Extended Regular Closure Property

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

D1 = A ∩ O1

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)* ∩ ⟨⟨ε, ε⟩⟩]]O1

Theorem. does not have a grammar with the Boolean
closure property.

The pumping lemma applied to a long string gives

O1

ap

S ⇒* al1Aar1

A ⇒* al2Aar2 (l2 + r2 > 0)
A ⇒* am

If is a pre-fixed point with , then

It follows that is both infinite and co-infinite.

But is a co-
finite set.

(XB)B∈N XS = O1

{ anl2+m+nr2 ∣ n ≥ 0 } ⊆ XA ⊆ ⋂
n≥0

al1+nl2\O1 /anr2+r1

{ |x |a − |x |b ∣ x ∈ XA }

{ |x |a − |x |b ∣ x ∈ u\O1 /v } = ℤ − { − (|uv |a − |uv |b)}

• is inherently ambiguous.

• does not have a grammar with the extended regular closure
property.

Question. Are there any CFLs that are not inherently
ambiguous that have no grammar with the extended regular
closure property?

L

L

CFLs That Have No Grammar with the Extended Regular
Closure Property

L = { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

Star-Free Closure Property

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

= [[⟨⟨ε, ε⟩⟩ b ∅]]O1

star-free expression over query atoms

A star-free expression is an
extended regular expression that
does not contain Kleene star (*).

Question. Are there any CFLs that have a grammar with the
extended regular closure property but have no grammar with
the star-free closure property?

L = { anbmcl ∣ (n is odd ∧ n > m) ∨ (n is even ∧ n > l) }

Extended Regular Closure vs. Star-Free Closure
L has a grammar with the extended
regular closure property, but we do
not know whether it has a grammar
with the Boolean closure property.

Note that (aa)* is not a star-free
regular language (it has no star-free
expression).

