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Multiple context-free grammars

yield = tuple of strings

derivation tree
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MCFGs have the same kind of derivation tree as CFGs, but the object produced by a 
derivation tree is a tuple of strings, rather than a string.
A nonterminal is like a predicate on strings.
A rule is a Horn clause.

•  

•  

• Each xi,j occurs at most once in t1…tr

m-multiple context-free grammars
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X is the set of variables appearing in the right-hand side.
Use logic programming terminology.

An infinite hierarchy
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MCFGs were introduced in the context of comp. ling., but natural.
Each level of the hierarchy is equivalently defined by various other formalisms, e.g., HR and 
yT_{fc}(REG).
Containment in LOGCFL, Parikh image semilinear.



• A string z!L is k-pumpable in L if

• Theorem (Seki et al. 1991). If L is an infinite m-MCFL, 
then there is a string z!L that is 2m-pumpable.

• Myth (Radzinski 1991, Groenink 1997, Kracht 2003). If L is 
an m-MCFL, all but finitely many strings z!L are 2m-
pumpable.

Chinese number names (Radzinski)
crossed dependencies + coordination (Groenink)

z = u0v1u1v2u2 . . . uk−1vkuk
v1v2 . . . vk "= ε
u0v

i
1u1v

i
2u2 . . . uk−1v

i
kuk ∈ L for every i ≥ 0

“universal pumping lemma”

The pumping lemma for MCFL
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Seki et al.’s result is existential.
The Myth was appealed to in their attempts to show that these constructions go beyond the 
power of MCFGs.
Michaelis & Kracht (1997) showed the set of Chinese number names is not semilinear.

Pumping

A

A
x

v1xv2CFG:

“pump”

“pump”

All but finitely many
derivation trees contain
a pump.

x

v1v1xv2v2
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Let’s see why it’s not easy to prove the pumping lemma for MCFL.

Difficulty with pumping

A

A

2-MCFG:

(x1, x2)

(v1x1v2, v3x2v4)

“pump”

“pump”

even pump

All but finitely many
derivation trees contain
a pump.

(x1, x2)

(v1v1x1v2v2, v3v3x2v4v4)
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Call such a pump an “even” pump because the components of an input tuple are evenly 
distributed among the components of the output tuple.
Not all pumps are even.

Difficulty with pumping

A

A

2-MCFG:

(x1, x2)

“pump”

“pump”

uneven pump

All but finitely many
derivation trees contain
a pump.

(v1x1v2x2v3, v4)

(x1, x2)

(v1v1x1v2x2v3v2v4v3, v4)
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π1 : S(x1x2) :− A(x1, x2).
π2 : A(ax1bx2c, d) :− A(x1, x2).
π3 : A(ε, ε).

S(ε)
π1

A(ε, ε)
π3

S(abcd)
π1

A(abc, d)
π2

π3

A(ε, ε)

S(aabcbdcd)

A(aabcbdc, d)

A(abc, d)

A(ε, ε)

π1

π2

π2

π3

S(aaabcbdcbdcd)

A(aaabcbdcbdc, d)

A(aabcbdc, d)

A(abc, d)

A(ε, ε)

π1

π2

π2

π2

π3

¬(All but finitely many derivation trees contain an even pump)

ai−1abc(bdc)i−1d

¬4-pumpable 2-pumpable

Example
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A concrete example of a grammar that gives rise to uneven pumps.
It almost seems as if aabcbdcd is 2-pumpable by accident.

• remains open for m-MCFGs

• holds for the subclass consisting of well-
nested m-MCFGs

The universal pumping lemma
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Well-nested MCFGs
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Cf. Kuhlmann 2007
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• An MCFG rule 

is well-nested iff for every i, i’, j, j’, k, k’ (i!i’), it holds that

• The well-nested (m-)MCFGs are the same as coupled-
context-free grammars (Hotz & Pitsch 1995) (of rank m).

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn).

t1 . . . tr !∈ (Σ ∪ X)∗xi,j(Σ ∪ X)∗xi ′,j ′(Σ ∪ X)∗xi,k(Σ ∪ X∗)xi ′,k ′(Σ ∪ X)∗

Well-nested MCFGs
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Coupled-context-free grammars take a top-down view of rules as rewriting instructions.



• Universal recognition problem (Kaji et al. 1992, Satta 1992, 
Hotz & Pitsch 1995)

• Theorem (new).  Well-nested (m-)MCFGs are equivalent 
to non-duplicating macro grammars (Fischer 1968) (of rank 
m!1).

m-MCFGwn P-complete

m-MCFG NP-complete (m"2)

Well-nested vs. general MCFGs
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m-MCFL vs. m-MCFLwn
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MCFL vs. MCFLwn

• Theorem (Seki and Kato 2008).  For all m"2,               

m-MCFLwn!m-MCFL.

• Theorem (Staudacher 1993, Michaelis 2005).  

MCFLwn!MCFL. 
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There’s just one example in the literature that purportedly shows the inclusion to be strict.

The pumping lemma for m-MCFGwn

If G is a w.n. m-MCFG (m!2),

{ T | T is a derivation tree of G without even pumps }

may not be finite.

But there is a w.n. (m-1)-MCFG generating

{ yield(T) | T is a derivation tree of G without even 
m-pumps }.

(x1, . . . , xm)

(v1x1v2, . . . , v2m−1xmv2m)

even m-pump
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If the derivation tree contains an even m-pump, the string is 2m-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-
pumpable.
Proof by induction on m.



The pumping lemma for PDA

|Q|2
q1

q1

q2

q2

stack
height

time

¬(All but finitely many accepting computations reach 
stack height |Q| )

{ w | w has an accepting computation that doesn’t 
reach stack height |Q|  } is regular.

2

2

v2v1 u3u1u0
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The proof generalizes to linear indexed grammars (CL_2) and to CL_k.

• Lemma.  Let G be a w.n. m-MCFG, and let D be the set of 
derivation trees of G without even m-pumps.  There is a w.n. 
m-MCFG G’ without even m-pumps that generates   
{ yield(T) | T ! D }.

• Lemma.  Any w.n. m-MCFG G without even m-pumps has 
an equivalent w.n. (m!1)-MCFG.

D

derivation trees of G’ derivation trees of G

nonterminal
relabeling

Proof of the pumping lemma
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h is extended to h: T_P -> T_P’.
G’ is well-nested if G is.
Implies yield(T) = yield(h(T))

w.n. m-MCFG with no even m-pumps

no m-proper rules

total m-degree = 0

w.n. (m!1)-MCFG

Proof of the theorem
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π is m-proper on the i-th subgoal if

Any even m-pump has the form

m-proper rules
π : B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn).

(x1, . . . , xm)

(v1x1v2, . . . , v2m−1xmv2m)

π1

...

πk

π1, . . . ,πk m-proper

ri = r = m,

tj ∈ (Σ ∪ X)∗xi,j(Σ ∪ X)∗ for j = 1, . . . , m.
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Elimination of m-proper rules

Lemma.  Any (w.n.) m-MCFG without even m-pumps 
has an equivalent (w.n.) m-MCFG that has no m-
proper rules.

π1 : S(x1x2) :− B(x1, x2).
π2 ◦ π3 : B(aax1bx2c1b, cdd) :− A(x1, x2).
π2 ◦ π4 : B(ab, cd).

π3 : A(ax1bx2c, d) :− A(x1, x2).
π4 : A(ε, ε).

π1 : S(x1x2) :− B(x1, x2).
π2 : B(ax1b, cx2d) :− A(x1, x2).
π3 : A(ax1bx2c, d) :− A(x1, x2).
π4 : A(ε, ε).

unfolding

m-proper rule
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Unfolding

Lemma.

is equivalent to P.

unfolding at the first subgoal

π : B(t1, . . . , tr) :− C(y1, . . . , ys), Γ
π′ : C(u1, . . . , us) :− ∆

π ◦1 π′ : B(t1, . . . , tr)[yi : = ui ] :− ∆, Γ

π : B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn).

P ′ = (P − {π})
∪ {π ◦i π′ | the head nonterminal of π′ is Bi }
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The operation of unfolding is familiar from logic programming.

w.n. m-MCFG with no even m-pumps

no m-proper rules

total m-degree = 0

w.n. (m!1)-MCFG

unfolding
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The m-degree of π = 

Reduction of m-degrees
π : B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn).

{
0 if r != m,

|{ i | ri = m }| if r = m.

Lemma.  If                                                    is 
well-nested and not m-proper, then π can be 
replaced with

where D is a new nonterminal of arity p<m and

π : B(t1, . . . , tm) :− C(y1, . . . , ym), Γ

π1 : B(t
′
1, . . . , t

′
m) :− D(z1, . . . , zp), Γ1

π2 : D(u1, . . . , up) :− C(y1, . . . , ym), Γ2

Γ = Γ1, Γ2,

π = π1 ◦1 π2.
m-degree("1) < m-degree(")
m-degree("2) = 0

24



Reduction of m-degrees

π : B(x1,1y1x2,1, x2,2y2ay3b, cx1,2d) :−
C(y1, y2, y3), A1(x1,1, x1,2), A2(x2,1, x2,2).

π1 : B(x1,1z1, z2b, cx1,2d) :− D(z1, z2), A1(x1,1, x1,2).
π2 : D(y1x2,1, x2,2y2ay3) :− C(y1, y2, y3), A2(x2,1, x2,2).

π : B(x1,1ax1,2y1x2,1, bx2,2c, y2y3dx1,2) :−
C(y1, y2, y3), A1(x1,1, x1,2), A2(x2,1, x2,2).

π1 : B(z1x2,1, bx2,2c, z2) :− D(z1, z2), A2(x2,1, x2,2).
π2 : D(x1,1ax1,2y1, y2y3dx1,2) :− C(y1, y2, y3), A1(x1,1, x1,2).
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The 3-degree of # is 1.

D has arity < 3 because # is not 3-proper.
The converse of unfolding.
Well-nestedness is crucial here.

w.n. m-MCFG with no even m-pumps

no m-proper rules

total m-degree = 0

w.n. (m!1)-MCFG

unfolding

unfolding!1
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Elimination of nonterminals of arity m

π : B(t1, . . . , tr) :− C(y1, . . . , ym), Γ.
π′ : C(u1, . . . , um) :− ∆.

π ◦1 π′ : B(t1, . . . , tr)[yi := ui ] :− ∆, Γ.
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$ contains no arity-m nonterminal.

w.n. m-MCFG with no even m-pumps

no m-proper rules

total m-degree = 0

w.n. (m!1)-MCFG

unfolding

unfolding!1

unfolding

28



• Theorem.  If L is a well-nested m-MCFL, all but finitely 
many z!L are 2m-pumpable.

z = u0v1u1v2u2 . . . u2m−1v2mu2m
v1v2 . . . vk "= ε
u0v

i
1u1v

i
2u2 . . . u2m−1v

i
2mu2m ∈ L for every i ≥ 0

Conclusion
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• Theorem.  If L is a 2-MCFL, all but finitely many z!L are 
4-pumpable.

• Open question.  Does every m-MCFG without even m-
pumps have an equivalent (m!1)-MCFG?

Conclusion
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