
Makoto Kanazawa, Hosei University

Membership Queries
and Context-Free
Languages
(Based on Joint Work with Ryo Yoshinaka)

1

regular language

DFA

states

left quotients

CFL

CFG

nonterminals

???

2 This talk is about a new way of
classifying context-free languages
motivated by learning from (positive
data and) membership queries.
There are several different answers
you can put in place of “???” in this
chart, and this gives rise to several
distinct classes of context-free
languages.

•Every regular language has a canonical minimal DFA.

•Left quotient of a language by a string :

•A language is regular if and only if is finite.

L ⊆ Σ* u ∈ Σ*

u\L = { x ∈ Σ* ∣ ux ∈ L }

L { u\L ∣ u ∈ Σ* }

Regular Languages

qI q
u

states = left quotients

u\L

3 In the case of regular languages,
everything is very clear-cut and
well-understood.

There is a canonical minimal DFA
for every regular language L.

The states of this DFA correspond
to the (nonempty) left quotients of L.

If a string u takes you from the initial
state to a state q, then the “future”
of q (the set of strings that take you
from q to some final state) is the left
quotient of L by u.

(If L is represented by a regular
expression r, then the regular
expression for u \ L is sometimes
called the derivative of r by u.)

Example

L = aba* ∪ bb* ∪ aa(a* ∪ b*)

ε\L = L
a\L = ba* ∪ a(a* ∪ b*)
b\L = b*

aa\L = a* ∪ b*
ab\L = a*

bb\L = b* = b\L
aaa\L = a* = ab\L
aab\L = b* = b\L
aba\L = a* = ab\L

u v
a

aa

ab

a

b
b

a

b

b

a
a

a

b

⟺ ua\L = v\L
⟺ (u\L) ∩ aΣ* = a(v\L)

v ⟺ v ∈ L
⟺ ε ∈ v\L
⟺ (v\L) ∩ {ε} = {ε}

4 The minimal DFA for L has five
states, each corresponding to a
distinct left quotient.

A state is final iff ε (the empty string)
is in the left quotient associated
with that state.

There is an arrow labeled a from a
state corresponding to a left
quotient u \ L and a state
corresponding to ua \ L.

There is one more left quotient,
namely the empty set, which would
correspond to a dead state. We
consider minimal DFAs without
dead states.

• Use one state for each element of
Each state is represented by for some .

•

• .

•

{ Suff(T) ∩ (u\L*) ∣ u ∈ Pref(T) } .
⟨⟨u⟩⟩ u ∈ Pref(T)

qI = ⟨⟨ε⟩⟩

F = { ⟨⟨u⟩⟩ ∈ Q ∣ u ∈ L* } .

Inference of Regular Languages

u v
a

⟺ Suff(T) ∩ (ua\L*) = Suff(T) ∩ (v\L*) .

M = (Q, Σ, δ, qI, F)

Learner
Oracle
for L*

w ∈ L*?

Yes/No

T = {t1, …, ti} ⊆ L*

Pref(T) = { u ∣ uv ∈ T }
Suff(T) = { v ∣ uv ∈ T }

positive data

target language

approximates ua\L* = v\L*

5 In learning from positive data and
membership queries, the learner
receives positive examples one by
one, and each time makes a
polynomial number of membership
queries before outputting a
hypothesis.

When the target language L* is
regular, the task of the learner is to
find the minimal DFA for L*.

A left quotient is approximated by a
subset of Suff(T), the set of suffixes
of the strings in T.

Equations involving left quotients
are approximated using these finite
sets, and decided by making
appropriate membership queries.

• What do nonterminals correspond to?

• When should a production be included in the hypothesis?

left quotients
regular languages

=
??

context-free languages

A → w0 B1 w1 … Bk wk ⟺ ??

What about Context-Free Languages?

u v
a

⟺ ua\L* = v\L*

6 What would a similar picture be in
the case of context-free languages?

Two questions have to be
answered.

Let’s focus on the second question
first. We can avoid answering the
first question by restricting
ourselves to CFGs with just one
nonterminal.

Easy Case: Grammars with Just One Nonterminal

S → ε
S → aSbS

D1 = { x ∈ {a, b}* ∣ |x |a = |x |b ∧ ∀uv(uv = x → |u |a ≥ |u |b) }

π : S → w0 S w1 … S wk (wi ∈ Σ*)

When should be in the hypothesized grammar?π

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

Why is this reasonable?

Dyck language

number of occurrences of in a x

approximated by
L* ⊇ w0 (Sub(T) ∩ L*) w1 … (Sub(T) ∩ L*) wk

Sub(T) = { x ∣ uxv ∈ T }

7 Let’s bypass the problem of how to
deal with nonterminals and consider
the special class of CFGs whose
start symbol is the only nonterminal.

An example of such a CFG is a
grammar for the Dyck language
(over a single pair of parentheses).

Suppose that the learner is
contemplating a candidate
production S → w₀ S w₁ … S wₖ.

It should be included in the
hypothesis grammar when it is valid.

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If is not valid, can’t be in a correct grammar for .
If , and is in , then

.

• If all productions in are valid, then .

π π L*

x1, …, xk ∈ L*, w0x1w1…xkwk ∉ L* π G
L* ⊈ L(G)

S ⇒ w0 S w1 … S wk

⇒* w0 x1 w1 … xk wk

G L(G) ⊆ L*

8 In order to understand the second
bullet point, it is useful to recall
some basic facts about context-free
grammars in general.

Context-Free Grammars as Monotone Operators

 is the least fixed point of the
operator :
(LG(S), LG(D1), LG(A), LG(U))

ΦG : (𝒫({a, b}*))4 → (𝒫({a, b}*))4

LG(B) = { x ∈ Σ* ∣ B ⇒*G x }

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

abbreviates three productions:
S → aD1bS, S → aA, S → bU

ΦG

XS

XD1

XA
XU

=

aXD1
bXS ∪ aXA ∪ bXU

ε ∪ aXD1
bXD1

ε ∪ aXD1
bXA ∪ aXA

ε ∪ XUa ∪ XUb

9 Let’s look at context-free grammars
with more than one nonterminal, for
example, this grammar for the
complement of the Dyck language.

Productions with the same left-hand
side nonterminal are often collected
together.

A CFG is associated with an
operator on tuples of string sets.

Nonterminals are interpreted as
sets, and the vertical bar is
interpreted as union.

The languages of the nonterminals
are the components of the least
fixed point of this operator.

• is a pre-fixed point of

• is the least pre-fixed point of .

• is a pre-fixed point of if and only if for every
production in ,

.

• If has a pre-fixed point with , then
.

(XB)B∈N ΦG
def
⟺ ΦG((XB)B∈N) ⊆ (XB)B∈N

(LG(B))B∈N ΦG

(XB)B∈N ΦG
A → w0 B1 w1 … Bk wk P

XA ⊇ w0 XB1
w1 … XBk

wk

G (XB)B∈N XS = L*
L(G) ⊆ L*

Pre-fixed Points of Context-Free Grammars

: associated operator
G = (N, Σ, P, S)

ΦG

componentwise inclusion

10 The validity of the productions
corresponds to pre-fixed points.

Least fixed points coincide with
least pre-fixed points.

The advantage of pre-fixed points is
that you can look at individual
productions in isolation.

Easy Case: Grammars with Just One Nonterminal

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• All productions of are valid is a pre-fixed point of .

• If all productions in are valid, then .
 is a pre-fixed point of .

• If , all productions in are valid.
 is the least pre-fixed point of .

G ⟺ L* ΦG

G L(G) ⊆ L*

∵ L* G

L(G) = L* G
∵ L* = L(G) G*

11

• Each nonterminal hypothesized by the learner should
“denote” a set relative to the target language ,
independently of the rest of the hypothesized grammar.

• .

• Membership in should reduce in polynomial time to
membership in .

• This reduction must be uniform across different target
languages.

B
[[B]]L* L*

[[S]]L* = L*

[[B]]L*

L*

Validity in the General Case
π : A → w0 B1 w1 … Bk wk

 is valid π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

12 We defined validity for productions
involving the start nonterminal only,
which should “denote” the target
language. In the general case, each
nonterminal has a denotation
determined by the target language.

When you test a candidate
production for validity, you don’t
know what other productions are in
the grammar you hypothesize. So
you don’t know what strings are
derived from each nonterminal.

Validity
π : A → w0 B1 w1 … Bk wk

 is valid π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

All productions of are validG = (N, Σ, P, S)

 is a pre-fixed point of ⟺ ([[B]]L*)B∈N G

 ⟹ L(G) ⊆ L*

13 When all productions in your
hypothesis grammar are valid, you
never overgenerate, because the
denotations of the nonterminals
form a pre-fixed point.

• The set of terminal strings derived from a nonterminal is
included in some quotient of the language of the grammar:

• Is there anything further that can be said in general??

left quotients
regular languages

=
??

context-free languages

u\L/v = { x ∣ uxv ∈ L }

S ⇒*G uAv implies LG(A) ⊆ u\L(G)/v

What Should Nonterminals Denote?

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }
L(G) = LG(S)

G = (N, Σ, P, S)

14 Left quotients played an important
role in the case of regular
languages.

A left quotient corresponds to a
state of the minimal DFA, and
membership in it can be determined
by a membership query.

Can you use quotients instead of
left quotients for context-free
languages?

• The learner uses pairs of strings as nonterminals.

• .

• Hypothesize production iff

.

• has infinitely many quotients unless it is regular, so the
learner must stop creating new nonterminals.

[[⟨⟨u, v⟩⟩]]L* = u\L*/v
= { x ∈ Σ* ∣ uxv ∈ L* }

S = ⟨⟨ε, ε⟩⟩

A → w0 B1 w1 … Bk wk

[[A]]L* ⊇ w0 (Sub(T) ∩ [[B1]]L*) w1 … (Sub(T) ∩ [[Bk]]L*) wk

L*

Simplest Class: Nonterminals Denote Quotients

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

Sub(T) = { x ∣ uxv ∈ T }

15 We start with a very simple
instantiation of this idea, where
nonterminals denote quotients of L*.

The strings u, v used to represent
nonterminals are drawn from
positive data, similarly to the case
of the regular languages.

• has the quotient property

 has a pre-fixed point with such that
 for all .

• “usually” coincides with , but doesn’t have to be.

• CFGs with the quotient property (with a bound on the length
of the right-hand side of productions) can be learned from
positive data and membership queries.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB ∈ 𝒬(L(G)) B ∈ N

XB LG(B)

CFGs with the Quotient Property

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

16 When using quotients as
denotations of nonterminals,
learning is successful if the target
language has the quotient property.

• CFGs with just one nonterminal.

• Right-linear grammars corresponding to minimal DFAs of
regular languages.

• .

XS = L(S) = ε\L(G)/ε

D′￼1 = aD1b

S → aD1b
D1 → ε ∣ SD1

S = ε\D′￼1/ε (= D′￼1),
D1 = a\D′￼1/b

Examples of CFGs with the Quotient Property

the set of Dyck primes

17 Left quotients are quotients.

You need at least two nonterminals
to generate the set of Dyck primes.

Here I’m writing B for the set of
strings derived from B.

Right-Linear Grammars

⟨⟨b⟩⟩ → ε
⟨⟨aa⟩⟩ → ε
⟨⟨ab⟩⟩ → ε

⟨⟨ε⟩⟩ → a ⟨⟨a⟩⟩
⟨⟨ε⟩⟩ → b ⟨⟨b⟩⟩
⟨⟨a⟩⟩ → a ⟨⟨aa⟩⟩
⟨⟨a⟩⟩ → b ⟨⟨ab⟩⟩
⟨⟨ε⟩⟩ → a ⟨⟨a⟩⟩
⟨⟨b⟩⟩ → b ⟨⟨b⟩⟩

⟨⟨aa⟩⟩ → a ⟨⟨ab⟩⟩
⟨⟨aa⟩⟩ → b ⟨⟨b⟩⟩
⟨⟨ab⟩⟩ → a ⟨⟨ab⟩⟩

v ⟨⟨v⟩⟩ → ε

u v
a

⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩

ab

aa a

b
b

a

b

b

a
a

b

a

[[⟨⟨u⟩⟩]]L* = u\L*

18

A Learning Algorithm for Regular Languages Based on
Validity

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

u v
a

⟺ ua\L* = v\L*
⟺ (u\L*) ∩ aΣ* = a(v\L*)

in the case of minimal DFA

19 Instead of a condition that
approximates a certain identity, use
a condition that approximates an
inclusion.

A Learning Algorithm for Regular Languages Based on
Validity

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ab

aa a

b
b

a

b

b

a

a

b

a

a

a
ab

a

b

b

b

a

a

b
a

a

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

b, aa, ab, … b, aba, …

20 Hypothesized right-linear grammars
correspond to NFA.

• has the intersection closure property

 has a pre-fixed point with such that
 is in the intersection closure of for all .

• CFGs with the intersection closure property (with a bound on
some global parameters) can be learned from positive data
and membership queries.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB 𝒬(L(G)) B ∈ N

[[⟨⟨u1, v1⟩⟩ ∩ … ∩ ⟨⟨ul, vl⟩⟩]]L* = (u1\L*/v1) ∩ … ∩ (ul\L*/vl)

A Larger Class: Nonterminals Denote Finite Intersections of
Quotients

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

21 CFGs with the quotient property
cover a very small subclass of the
context-free languages.

The intersection closure property is
also known as the (very weak)
finite context property (Kanazawa
and Yoshinaka 2017).

.

• does not have a grammar with the quotient property.

• CFGs with the intersection closure property cover only a small
subclass of the CFLs.

L = { anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }
S → T ∣ U
T → ε ∣ aTb
U → ε ∣ aUbb

S = ε\L/ε (= L)
T = ε\L/ε ∩ a\L/b
U = ε\L/ε ∩ a\L/bb

L

CFGs with the Intersection Closure Property
22

• : finite set of operations on (of variable arity)

• For ,

• Sets in can be represented by expressions built

from and symbols for operations in .

Γ 𝒫(Σ*)

ℒ ⊆ 𝒫(Σ*)
Γ(ℒ) = { f(L1, …, Lm) ∣ f : (𝒫(Σ*))m → 𝒫(Σ*), f ∈ Γ, L1, …, Lm ∈ ℒ }

Γ0(ℒ) = ℒ
Γn+1(ℒ) = ℒ ∪ Γ(Γn(ℒ))

⋃
t≥0

Γt(𝒬(L))

⟨⟨u, v⟩⟩ Γ

Γ-closure

-closure of Γ 𝒬(L) “ -expression” over query atomsΓ

query atoms

23 Now let’s look at more general
classes of representations (used as
nonterminals).

• A CFG has the Γt-property has a pre-
fixed point with such that

 for all .

• has the Γ-closure property has the -property for
some .

G = (N, Σ, P, S)
def
⟺ G

(XB)B∈N XS = L(G)
XB ∈ Γt(𝒬(L(G))) B ∈ N

G
def
⟺ G Γt

t

Γ-closure Property
24

• The learner uses -expressions over query atoms as
nonterminals.

• .

• Hypothesize production iff

.

• The algorithm works when Γ-expressions translate into
polynomial-time reductions.

Γ

S = ⟨⟨ε, ε⟩⟩

A → w0 B1 w1 … Bk wk

[[A]]L* ⊇ w0 (Sub(T) ∩ [[B1]]L*) w1 … (Sub(T) ∩ [[Bk]]L*) wk

Learning CFGs with the Γ-Closure Property

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

25

Extended Regular Closure

[[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

= (aa\L/bb) ∩ ({a, b}* − ((a\L/b)({a, b}* − ∅))({a} ∪ {b}))
= (aa\L/bb) ∩ ({a, b}* − (a\L/b){a, b}*{a, b})
= { x ∣ x ∈ aa\L/bb ∧ no proper prefix of x is in a\L/b }

• If is an extended regular expression over query atoms, then
 reduces in polynomial time to .

e
[[e]]L L

Γ = {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

extended regular expression over query atoms

[[e]]L ≤P
tt L

26 The learning algorithm using Γ-
expressions (expressions that stand
for sets belonging to the Γ-closure)
as nonterminals works when Γ-
expressions translate into
polynomial-time reductions.

When Γ consists of the Boolean and
regular operations, we get
polynomial-time truth-table
reduction.

AND

��(��)�� ∈ � NOT

OR

AND

�, ��

OR

AND

�, �

��� ∈ �

AND AND

NOT

AND AND

⊥

OR

⊥ ⊥

AND

�, �

OR

�, �

NOT

⊥

�, �

��� ∈ �

AND

OR

⊥ ⊤

AND

��, �

OR

�, ��

NOT

⊥

�, �

NOT

⊥

��, �

�(��)� ∈ �

OR

⊥ ⊥

ab ∈ [[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

27 The Boolean circuit for the truth
function the reduction uses for this
particular input. The circuit for “x ∈
[[e]]ᴸ” depends on e and x, but not
on L.

• What context-free languages can be targeted by learning
algorithms using Γ-expressions as nonterminals for various
choices of ?Γ ⊆ {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

CFLs having Grammars with the Γ-Closure Property
28

A Grammar with the Extended Regular Closure Property

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

= { x ∈ {a, b}* ∣
|x |a > |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b) }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ no prefix of x is in D1b }
= D1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]D1

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

29 Our example grammar has the
extended regular closure property.

Boolean Closure Property

D1 = { x ∈ {a, b}* ∣ ∃mn(m + n > 0 ∧ nf(x) = bman) }

S → D1bD1 ∣ D1aD1 ∣ D1bS ∣ SaD1

D1 → ε ∣ aD1bD1

normal form of under the rewriting x ab → ε

S ⇒* D1 b … D1 b D1 a D1 … a D1

⇒* x1 b … xm b y a z1 … a zn

D1 = [[⟨⟨ε, ε⟩⟩]]D1

= [[⟨⟨ε, ε⟩⟩ ∩ ⟨⟨b, ε⟩⟩]]D1

30 In fact, the same language has a
grammar with the Γ-closure
property with Γ = {¬}.

For technical reasons, the learner
needs a positive occurrence of a
query atom.

Theorem. does not have a grammar with the intersection
closure property.

Suppose . Applying Ogden’s (1968) theorem to

with sufficiently large , with the last positions marked, we
get a derivation tree

with and and .

D1

D1 = L(G)

ap!+p

p p

uakblwbmy = ap!+pbp k ≥ l + m m > 0

-closure property with Γ Γ = { ∩ }

bp

S

A

A

akbl bmw yu

31

S

A

A

akbl bmw yu

Since , any pre-fixed point of with
 must have

 for all .

Let and . Then for all . This
means that

 is infinite.

But for any strings and , it holds that
 is finite. So cannot be a finite

intersection of quotients of .

S ⇒* u(akbl)nA(bm)ny (XB)B∈N G
XS = D1

u(akbl)nXA(bm)ny ⊆ D1 n ≥ 0

aj = u br = y bj+n(k−l)anm+r ∉ XA n ≥ 0

b*a* − XA

s t
b*a* − (s\D1 /t) = b*a* ∩ (s\D1/t) XA

D1

32

regular

quotient
property

D1

O1

D1intersection
closure
property

boolean closure property

extended regular closure property

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }

33

A Grammar with the Extended Regular Closure Property

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

D1 = A ∩ O1

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)* ∩ ⟨⟨ε, ε⟩⟩]]O1

34

Theorem. does not have a grammar with the Boolean closure
property.

The pumping lemma applied to a long string gives

O1

ap

with . If is a pre-fixed point with , then

It follows that is both infinite and co-infinite.

But is a co-finite
set.

l2 + r2 > 0 (XB)B∈N XS = O1

{ anl2+m+nr2 ∣ n ≥ 0 } ⊆ XA ⊆ ⋂
n≥0

al1+nl2\O1 /anr2+r1

{ |x |a − |x |b ∣ x ∈ XA }

{ |x |a − |x |b ∣ x ∈ u\O1 /v } = ℤ − { − (|uv |a − |uv |b)}

S

A

A

al2 ar2am amal1

35

• is inherently ambiguous.

• does not have a grammar with the extended regular closure
property.

Question. Are there any CFLs that are not inherently
ambiguous that have no grammar with the extended regular
closure property?

L

L

A CFL That Has No Grammar with the Extended Regular
Closure Property

L = { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

36

regular

quotient
property

D1

O1

D1intersection
closure
property

boolean closure property
O1

extended regular closure property { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }

37

Star-Free Closure Property

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

= [[⟨⟨ε, ε⟩⟩ b ∅]]O1

star-free expression over query atoms

38 There is an interesting intermediate
class between the CFLs having
grammars with the extended
closure property and the CFLs
having grammars with the Boolean
closure property.

A star-free expression is an
extended regular expression that
does not contain Kleene star (*).

Question. Are there any CFLs that have a grammar with the
extended regular closure property but have no grammar with
the star-free closure property?

L = { anbmcl ∣ (n is odd ∧ n > m) ∨ (n is even ∧ n > l) }

Extended Regular Closure vs. Star-Free Closure
39 L has a grammar with the extended

regular closure property, but we do
not know whether it has a grammar
with the star-free closure property.

Note that (aa)* is not a star-free
regular language (it has no star-free
expression).

regular

quotient
property

D1

O1

D1intersection
closure
property

boolean closure property

star-free closure property

O1

extended regular closure property { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }

40

• A CFG in Greibach normal form is simple

deterministic implies .

• Theorem (Ishizaka 1990). If and , then

where is the shortest suffix of such that .

• Simple deterministic grammars have the star-free closure
property.

• What about larger classes like ?

G = (N, Σ, P, S)
def
⟺ {A → a β, A → a γ} ⊆ P β = γ

S ⇒* v A y A ⇒* x

LG(A) = (v\L(G)/y′￼) ∩ (v\L(G)/y′￼)Σ+

= [[⟨⟨v, y′￼⟩⟩ ∩ ⟨⟨v, y′￼⟩⟩ε]]L(G)

y′￼ y vxy′￼∈ L(G)

LL(k)

Simple Deterministic Grammars
41 Simple deterministic grammars are

almost the same as what Aho and
Ullman (1972) called “simple LL(1)”.

Ishizaka (1990) showed that simple
deterministic grammars are
learnable from “extended”
equivalence queries and
membership queries.

Hiroki Ishizaka. 1990. Polynomial time learnability of simple
deterministic languages. Machine Learning 5, 151–164.

Makoto Kanazawa and Ryo Yoshinaka. 2017. The strong, weak, and
very weak finite context and kernel properties. LATA 2017.

Makoto Kanazawa and Ryo Yoshinaka. 2021. A hierarchy of context-
free languages learnable from positive data and membership queries.
ICGI 2021.

Makoto Kanazawa and Ryo Yoshinaka. 2023. Extending distributional
learning from positive data and membership queries. ICGI 2023.

Makoto Kanazawa. 2023. Learning context-free grammars from
positive data and membership queries. WoLLIC 2023.

References
42

