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2 This talk is about a new way of 
classifying context-free languages 
motivated by learning from (positive 
data and) membership queries. 
There are several different answers 
you can put in place of “???” in this 
chart, and this gives rise to several 
distinct classes of context-free 
languages.



•Every regular language has a canonical minimal DFA.

•Left quotient of a language  by a string : 

•A language  is regular if and only if  is finite.

L ⊆ Σ* u ∈ Σ*

u\L = { x ∈ Σ* ∣ ux ∈ L }

L { u\L ∣ u ∈ Σ* }

Regular Languages

qI q
u

states = left quotients

u\L

3 In the case of regular languages, 
everything is very clear-cut and 
well-understood.

There is a canonical minimal DFA 
for every regular language L.

The states of this DFA correspond 
to the (nonempty) left quotients of L.

If a string u takes you from the initial 
state to a state q, then the “future” 
of q (the set of strings that take you 
from q to some final state) is the left 
quotient of L by u.

(If L is represented by a regular 
expression r, then the regular 
expression for u \ L is sometimes 
called the derivative of r by u.)

Example

L = aba* ∪ bb* ∪ aa(a* ∪ b*)

ε\L = L
a\L = ba* ∪ a(a* ∪ b*)
b\L = b*

aa\L = a* ∪ b*
ab\L = a*

bb\L = b* = b\L
aaa\L = a* = ab\L
aab\L = b* = b\L
aba\L = a* = ab\L

u v
a

aa

ab

a

b
b

a

b

b

a
a

a

b

⟺ ua\L = v\L
⟺ (u\L) ∩ aΣ* = a(v\L)

v ⟺ v ∈ L
⟺ ε ∈ v\L
⟺ (v\L) ∩ {ε} = {ε}

4 The minimal DFA for L has five 
states, each corresponding to a 
distinct left quotient.

A state is final iff ε (the empty string) 
is in the left quotient associated 
with that state.

There is an arrow labeled a from a 
state corresponding to a left 
quotient u \ L and a state 
corresponding to ua \ L.

There is one more left quotient, 
namely the empty set, which would 
correspond to a dead state. We 
consider minimal DFAs without 
dead states.



• Use one state for each element of  
Each state is represented by  for some .

•  

• .

•

{ Suff(T ) ∩ (u\L*) ∣ u ∈ Pref(T ) } .
⟨⟨u⟩⟩ u ∈ Pref(T )

qI = ⟨⟨ε⟩⟩

F = { ⟨⟨u⟩⟩ ∈ Q ∣ u ∈ L* } .

Inference of Regular Languages

u v
a

⟺ Suff(T ) ∩ (ua\L*) = Suff(T ) ∩ (v\L*) .

M = (Q, Σ, δ, qI, F)

Learner
Oracle 
for L*

w ∈ L*?

Yes/No

T = {t1, …, ti} ⊆ L*

Pref(T ) = { u ∣ uv ∈ T }
Suff(T ) = { v ∣ uv ∈ T }

positive data

target language

approximates ua\L* = v\L*

5 In learning from positive data and 
membership queries, the learner 
receives positive examples one by 
one, and each time makes a 
polynomial number of membership 
queries  before outputting a 
hypothesis.

When the target language L* is 
regular, the task of the learner is to 
find the minimal DFA for L*.

A left quotient is approximated by a 
subset of Suff(T), the set of suffixes 
of the strings in T.

Equations involving left quotients 
are approximated using these finite 
sets, and decided by making 
appropriate membership queries.

• What do nonterminals correspond to?

• When should a production be included in the hypothesis?

left quotients
regular languages

=
??

context-free languages

A → w0 B1 w1 … Bk wk ⟺ ??

What about Context-Free Languages?

u v
a

⟺ ua\L* = v\L*

6 What would a similar picture be in 
the case of context-free languages?

Two questions have to be 
answered.

Let’s focus on the second question 
first. We can avoid answering the 
first question by restricting 
ourselves to CFGs with just one 
nonterminal.



Easy Case: Grammars with Just One Nonterminal

S → ε
S → aSbS

D1 = { x ∈ {a, b}* ∣ |x |a = |x |b ∧ ∀uv(uv = x → |u |a ≥ |u |b ) }

π : S → w0 S w1 … S wk (wi ∈ Σ*)

When should  be in the hypothesized grammar?π

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

Why is this reasonable?

Dyck language

number of occurrences of  in a x

approximated by 
L* ⊇ w0 (Sub(T ) ∩ L*) w1 … (Sub(T ) ∩ L*) wk

Sub(T ) = { x ∣ uxv ∈ T }

7 Let’s bypass the problem of how to 
deal with nonterminals and consider 
the special class of CFGs whose 
start symbol is the only nonterminal.

An example of such a CFG is a 
grammar for the Dyck language 
(over a single pair of parentheses).

Suppose that the learner is 
contemplating a candidate 
production S → w₀ S w₁ … S wₖ.

It should be included in the 
hypothesis grammar when it is valid.


π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• If  is not valid,  can’t be in a correct grammar for .
If , and  is in , then 

.

• If all productions in  are valid, then .

π π L*

x1, …, xk ∈ L*, w0x1w1…xkwk ∉ L* π G
L* ⊈ L(G)

S ⇒ w0 S w1 … S wk

⇒* w0 x1 w1 … xk wk

G L(G) ⊆ L*

8 In order to understand the second 
bullet point, it is useful to recall 
some basic facts about context-free 
grammars in general.



Context-Free Grammars as Monotone Operators

 is the least fixed point of the 
operator :
(LG(S), LG(D1), LG(A), LG(U))

ΦG : (𝒫({a, b}*))4 → (𝒫({a, b}*))4

LG(B) = { x ∈ Σ* ∣ B ⇒*G x }

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

abbreviates three productions: 
S → aD1bS, S → aA, S → bU

ΦG

XS

XD1

XA
XU

=

aXD1
bXS ∪ aXA ∪ bXU

ε ∪ aXD1
bXD1

ε ∪ aXD1
bXA ∪ aXA

ε ∪ XUa ∪ XUb

9 Let’s look at context-free grammars 
with more than one nonterminal, for 
example, this grammar for the 
complement of the Dyck language.

Productions with the same left-hand 
side nonterminal are often collected 
together.

A CFG is associated with an 
operator on tuples of string sets.

Nonterminals are interpreted as 
sets, and the vertical bar is 
interpreted as union.

The languages of the nonterminals 
are the components of the least 
fixed point of this operator.

•  is a pre-fixed point of   

•  is the least pre-fixed point of .

•  is a pre-fixed point of  if and only if for every 
production  in ,

.

• If  has a pre-fixed point  with , then 
.

(XB)B∈N ΦG
def
⟺ ΦG((XB)B∈N) ⊆ (XB)B∈N

(LG(B))B∈N ΦG

(XB)B∈N ΦG
A → w0 B1 w1 … Bk wk P

XA ⊇ w0 XB1
w1 … XBk

wk

G (XB)B∈N XS = L*
L(G) ⊆ L*

Pre-fixed Points of Context-Free Grammars

: associated operator
G = (N, Σ, P, S)

ΦG

componentwise inclusion

10 The validity of the productions 
corresponds to pre-fixed points.

Least fixed points coincide with 
least pre-fixed points.

The advantage of pre-fixed points is 
that you can look at individual 
productions in isolation.



Easy Case: Grammars with Just One Nonterminal

π : S → w0 S w1 … S wk (wi ∈ Σ*)

 is validπ
def
⟺ L* ⊇ w0 L* w1 … L* wk

• All productions of  are valid   is a pre-fixed point of .

• If all productions in  are valid, then .
  is a pre-fixed point of .

• If , all productions in  are valid.
  is the least pre-fixed point of .

G ⟺ L* ΦG

G L(G) ⊆ L*

∵ L* G

L(G) = L* G
∵ L* = L(G) G*

11

• Each nonterminal  hypothesized by the learner should 
“denote” a set  relative to the target language , 
independently of the rest of the hypothesized grammar.

• .

• Membership in  should reduce in polynomial time to 
membership in .

• This reduction must be uniform across different target 
languages.

B
[[B]]L* L*

[[S]]L* = L*

[[B]]L*

L*

Validity in the General Case
π : A → w0 B1 w1 … Bk wk

 is valid  π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

12 We defined validity for productions 
involving the start nonterminal only, 
which should “denote” the target 
language. In the general case, each 
nonterminal has a denotation 
determined by the target language.

When you test a candidate 
production for validity, you don’t 
know what other productions are in 
the grammar you hypothesize. So 
you don’t know what strings are 
derived from each nonterminal.



Validity
π : A → w0 B1 w1 … Bk wk

 is valid  π
def
⟺ [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

All productions of  are validG = (N, Σ, P, S)

   is a pre-fixed point of ⟺ ([[B]]L*)B∈N G

  ⟹ L(G) ⊆ L*

13 When all productions in your 
hypothesis grammar are valid, you 
never overgenerate, because the 
denotations of the nonterminals 
form a pre-fixed point.

• The set of terminal strings derived from a nonterminal is 
included in some quotient of the language of the grammar:

• Is there anything further that can be said in general??

left quotients
regular languages

=
??

context-free languages

u\L/v = { x ∣ uxv ∈ L }

S ⇒*G uAv implies LG(A) ⊆ u\L(G)/v

What Should Nonterminals Denote?

LG(A) = { x ∈ Σ* ∣ A ⇒*G x }
L(G) = LG(S)

G = (N, Σ, P, S)

14 Left quotients played an important 
role in the case of regular 
languages.

A left quotient corresponds to a 
state of the minimal DFA, and 
membership in it can be determined 
by a membership query.

Can you use quotients instead of 
left quotients for context-free 
languages?



• The learner uses pairs of strings as nonterminals.

• .

• Hypothesize production  iff

.

•  has infinitely many quotients unless it is regular, so the 
learner must stop creating new nonterminals.

[[⟨⟨u, v⟩⟩]]L* = u\L*/v
= { x ∈ Σ* ∣ uxv ∈ L* }

S = ⟨⟨ε, ε⟩⟩

A → w0 B1 w1 … Bk wk

[[A]]L* ⊇ w0 (Sub(T ) ∩ [[B1]]L*) w1 … (Sub(T ) ∩ [[Bk]]L*) wk

L*

Simplest Class: Nonterminals Denote Quotients

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

Sub(T ) = { x ∣ uxv ∈ T }

15 We start with a very simple 
instantiation of this idea, where 
nonterminals denote quotients of L*.

The strings u, v used to represent 
nonterminals are drawn from 
positive data, similarly to the case 
of the regular languages.

•  has the quotient property

  has a pre-fixed point  with  such that 
 for all .

•  “usually” coincides with , but doesn’t have to be.

• CFGs with the quotient property (with a bound on the length 
of the right-hand side of productions) can be learned from 
positive data and membership queries.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB ∈ 𝒬(L(G)) B ∈ N

XB LG(B)

CFGs with the Quotient Property

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

16 When using quotients as 
denotations of nonterminals, 
learning is successful if the target 
language has the quotient property.



• CFGs with just one nonterminal.



• Right-linear grammars corresponding to minimal DFAs of 
regular languages.

• .

XS = L(S) = ε\L(G)/ε

D′￼1 = aD1b

S → aD1b
D1 → ε ∣ SD1

S = ε\D′￼1/ε (= D′￼1),
D1 = a\D′￼1/b

Examples of CFGs with the Quotient Property

the set of Dyck primes

17 Left quotients are quotients.

You need at least two nonterminals 
to generate the set of Dyck primes.

Here I’m writing B for the set of 
strings derived from B.

Right-Linear Grammars

⟨⟨b⟩⟩ → ε
⟨⟨aa⟩⟩ → ε
⟨⟨ab⟩⟩ → ε

⟨⟨ε⟩⟩ → a ⟨⟨a⟩⟩
⟨⟨ε⟩⟩ → b ⟨⟨b⟩⟩
⟨⟨a⟩⟩ → a ⟨⟨aa⟩⟩
⟨⟨a⟩⟩ → b ⟨⟨ab⟩⟩
⟨⟨ε⟩⟩ → a ⟨⟨a⟩⟩
⟨⟨b⟩⟩ → b ⟨⟨b⟩⟩

⟨⟨aa⟩⟩ → a ⟨⟨ab⟩⟩
⟨⟨aa⟩⟩ → b ⟨⟨b⟩⟩
⟨⟨ab⟩⟩ → a ⟨⟨ab⟩⟩

v ⟨⟨v⟩⟩ → ε

u v
a

⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩

ab

aa a

b
b

a

b

b

a
a

b

a

[[⟨⟨u⟩⟩]]L* = u\L*

18



A Learning Algorithm for Regular Languages Based on 
Validity

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T ) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

u v
a

⟺ ua\L* = v\L*
⟺ (u\L*) ∩ aΣ* = a(v\L*)

in the case of minimal DFA

19 Instead of a condition that 
approximates a certain identity, use 
a condition that approximates an 
inclusion.

A Learning Algorithm for Regular Languages Based on 
Validity

ab

aa a

b
b

a

b

b

a
a

b

aL* = aba* ∪ bb* ∪ aa(a* ∪ b*)

ab

aa a

b
b

a

b

b

a

a

b

a

a

a
ab

a

b

b

b

a

a

b
a

a

P = { ⟨⟨u⟩⟩ → a ⟨⟨v⟩⟩ ∣ u\L* ⊇ a (Suff(T ) ∩ (v\L*)) } ∪
{ ⟨⟨u⟩⟩ → ε ∣ u ∈ L* } approximates u\L* ⊇ a (v\L*) (⟺ ua\L* ⊇ v\L*)

b, aa, ab, … b, aba, …

20 Hypothesized right-linear grammars 
correspond to NFA.



•  has the intersection closure property

  has a pre-fixed point  with  such that 
 is in the intersection closure of  for all .

• CFGs with the intersection closure property (with a bound on 
some global parameters) can be learned from positive data 
and membership queries.

G = (N, Σ, P, S)
def
⟺ G (XB)B∈N XS = L(G)
XB 𝒬(L(G)) B ∈ N

[[⟨⟨u1, v1⟩⟩ ∩ … ∩ ⟨⟨ul, vl⟩⟩]]L* = (u1\L*/v1) ∩ … ∩ (ul\L*/vl)

A Larger Class: Nonterminals Denote Finite Intersections of 
Quotients

𝒬(L) = { u\L /v ∣ u, v ∈ Σ* }

21 CFGs with the quotient property 
cover a very small subclass of the 
context-free languages.

The intersection closure property is 
also known as the (very weak) 
finite context property (Kanazawa 
and Yoshinaka 2017).

.

•  does not have a grammar with the quotient property.

• CFGs with the intersection closure property cover only a small 
subclass of the CFLs.

L = { anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }
S → T ∣ U
T → ε ∣ aTb
U → ε ∣ aUbb

S = ε\L/ε ( = L)
T = ε\L/ε ∩ a\L/b
U = ε\L/ε ∩ a\L/bb

L

CFGs with the Intersection Closure Property
22



• : finite set of operations on  (of variable arity)

• For ,

• Sets in  can be represented by expressions built 

from  and symbols for operations in .

Γ 𝒫(Σ*)

ℒ ⊆ 𝒫(Σ*)
Γ(ℒ) = { f(L1, …, Lm) ∣ f : (𝒫(Σ*))m → 𝒫(Σ*), f ∈ Γ, L1, …, Lm ∈ ℒ }

Γ0(ℒ) = ℒ
Γn+1(ℒ) = ℒ ∪ Γ(Γn(ℒ))

⋃
t≥0

Γt(𝒬(L))

⟨⟨u, v⟩⟩ Γ

Γ-closure

-closure of Γ 𝒬(L) “ -expression” over query atomsΓ

query atoms

23 Now let’s look at more general 
classes of representations (used as 
nonterminals).


• A CFG  has the Γt-property   has a pre-
fixed point  with  such that 

 for all .

•  has the Γ-closure property   has the -property for 
some .

G = (N, Σ, P, S)
def
⟺ G

(XB)B∈N XS = L(G)
XB ∈ Γt(𝒬(L(G))) B ∈ N

G
def
⟺ G Γt

t

Γ-closure Property
24



• The learner uses -expressions over query atoms as 
nonterminals.

• .

• Hypothesize production  iff

.

• The algorithm works when Γ-expressions translate into 
polynomial-time reductions.

Γ

S = ⟨⟨ε, ε⟩⟩

A → w0 B1 w1 … Bk wk

[[A]]L* ⊇ w0 (Sub(T ) ∩ [[B1]]L*) w1 … (Sub(T ) ∩ [[Bk]]L*) wk

Learning CFGs with the Γ-Closure Property

approximates [[A]]L* ⊇ w0 [[B1]]L* w1 … [[Bk]]L* wk

25

Extended Regular Closure

[[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

= (aa\L/bb) ∩ ({a, b}* − ((a\L/b)({a, b}* − ∅))({a} ∪ {b}))
= (aa\L/bb) ∩ ({a, b}* − (a\L/b){a, b}*{a, b})
= { x ∣ x ∈ aa\L/bb ∧ no proper prefix of x is in a\L/b }

• If  is an extended regular expression over query atoms, then 
 reduces in polynomial time to .

e
[[e]]L L

Γ = {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

extended regular expression over query atoms

[[e]]L ≤P
tt L

26 The learning algorithm using Γ-
expressions (expressions that stand 
for sets belonging to the Γ-closure) 
as nonterminals works when Γ-
expressions translate into 
polynomial-time reductions.

When Γ consists of the Boolean and 
regular operations, we get 
polynomial-time truth-table 
reduction.



AND

��(��)�� ∈ � NOT

OR

AND

�, ��

OR

AND

�, �

��� ∈ �

AND AND

NOT

AND AND

⊥

OR

⊥ ⊥

AND

�, �

OR

�, �

NOT

⊥

�, �

��� ∈ �

AND

OR

⊥ ⊤

AND

��, �

OR

�, ��

NOT

⊥

�, �

NOT

⊥

��, �

�(��)� ∈ �

OR

⊥ ⊥

ab ∈ [[⟨⟨aa, bb⟩⟩ ∩ (⟨⟨a, b⟩⟩ ∅) (a ∪ b)]]L

27 The Boolean circuit for the truth 
function the reduction uses for this 
particular input. The circuit for “x ∈ 
[[e]]ᴸ” depends on e and x, but not 
on L.

• What context-free languages can be targeted by learning 
algorithms using Γ-expressions as nonterminals for various 
choices of ?Γ ⊆ {∩ , ⋅ , ∪ } ∪ {∅, ε} ∪ Σ ∪ {concatenation, * }

CFLs having Grammars with the Γ-Closure Property
28



A Grammar with the Extended Regular Closure Property

D1 = { x ∈ {a, b}* ∣
|x |a ≠ |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

= { x ∈ {a, b}* ∣
|x |a > |x |b ∨ ∃uv(uv = x ∧ |u |a < |u |b ) }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ no prefix of x is in D1b }
= D1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]D1

  

S → aD1bS ∣ aA ∣ bU
D1 → ε ∣ aD1bD1

A → ε ∣ aD1bA ∣ aA
U → ε ∣ Ua ∣ Ub

29 Our example grammar has the 
extended regular closure property.

Boolean Closure Property

D1 = { x ∈ {a, b}* ∣ ∃mn(m + n > 0 ∧ nf(x) = bman) }

  
S → D1bD1 ∣ D1aD1 ∣ D1bS ∣ SaD1

D1 → ε ∣ aD1bD1

normal form of  under the rewriting x ab → ε

S ⇒* D1 b … D1 b D1 a D1 … a D1

⇒* x1 b … xm b y a z1 … a zn

D1 = [[⟨⟨ε, ε⟩⟩]]D1

= [[⟨⟨ε, ε⟩⟩ ∩ ⟨⟨b, ε⟩⟩]]D1

30 In fact, the same language has a 
grammar with the Γ-closure 
property with Γ = {¬}.

For technical reasons, the learner 
needs a positive occurrence of a 
query atom.



Theorem.  does not have a grammar with the intersection 
closure property.

Suppose . Applying Ogden’s (1968) theorem to 

with sufficiently large , with the last  positions marked, we 
get a derivation tree

with  and  and .

D1

D1 = L(G)

ap!+p

p p

uakblwbmy = ap!+pbp k ≥ l + m m > 0

-closure property with Γ Γ = { ∩ }

bp

S

A

A

akbl bmw yu

31

S

A

A

akbl bmw yu

Since , any pre-fixed point  of  with 
 must have

 for all .

Let  and . Then  for all . This 
means that

 is infinite.

But for any strings  and , it holds that 
 is finite. So  cannot be a finite 

intersection of quotients of .

S ⇒* u(akbl)nA(bm)ny (XB)B∈N G
XS = D1

u(akbl)nXA(bm)ny ⊆ D1 n ≥ 0

aj = u br = y bj+n(k−l)anm+r ∉ XA n ≥ 0

b*a* − XA

s t
b*a* − (s\D1 /t) = b*a* ∩ (s\D1/t) XA

D1

32



regular

quotient 
property

D1

O1

D1intersection 
closure 
property

boolean closure property

extended regular closure property

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }

33

A Grammar with the Extended Regular Closure Property

  

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b ) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

D1 = A ∩ O1

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)* ∩ ⟨⟨ε, ε⟩⟩]]O1
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Theorem.  does not have a grammar with the Boolean closure 
property.

The pumping lemma applied to a long string  gives

O1

ap

with . If  is a pre-fixed point with , then

It follows that  is both infinite and co-infinite.

But  is a co-finite 
set.

l2 + r2 > 0 (XB)B∈N XS = O1

{ anl2+m+nr2 ∣ n ≥ 0 } ⊆ XA ⊆ ⋂
n≥0

al1+nl2\O1 /anr2+r1

{ |x |a − |x |b ∣ x ∈ XA }

{ |x |a − |x |b ∣ x ∈ u\O1 /v } = ℤ − { − ( |uv |a − |uv |b )}

S

A

A

al2 ar2am amal1
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•  is inherently ambiguous.

•  does not have a grammar with the extended regular closure 
property.

Question. Are there any CFLs that are not inherently 
ambiguous that have no grammar with the extended regular 
closure property?

L

L

A CFL That Has No Grammar with the Extended Regular 
Closure Property

L = { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }
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regular

quotient 
property

D1

O1

D1intersection 
closure 
property

boolean closure property
O1

extended regular closure property { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }
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Star-Free Closure Property

  

S → aA ∣ aD1bS ∣ bB ∣ bDR
1 aS

A → ε ∣ aA ∣ aD1bA
D1 → ε ∣ aD1bD1

B → ε ∣ bB ∣ bDR
1 aB

DR
1 → ε ∣ bDR

1 aDR
1

O1 = { x ∈ {a, b}* ∣ |x |a ≠ |x |b }

A = { x ∈ {a, b}* ∣ ∀uv(x = uv → |u |a ≥ |u |b ) }
= { x ∈ {a, b}* ∣ ¬∃uv(x = uv ∧ |u |a + 1 = |u |b ) }

= O1b{a, b}*

= [[⟨⟨ε, ε⟩⟩ b (a ∪ b)*]]O1

= [[⟨⟨ε, ε⟩⟩ b ∅]]O1

star-free expression over query atoms

38 There is an interesting intermediate 
class between the CFLs having 
grammars with the extended 
closure property and the CFLs 
having grammars with the Boolean 
closure property.

A star-free expression is an 
extended regular expression that 
does not contain Kleene star (*).



Question. Are there any CFLs that have a grammar with the 
extended regular closure property but have no grammar with 
the star-free closure property?

L = { anbmcl ∣ (n is odd ∧ n > m) ∨ (n is even ∧ n > l) }

Extended Regular Closure vs. Star-Free Closure
39 L has a grammar with the extended 

regular closure property, but we do 
not know whether it has a grammar 
with the star-free closure property.

Note that (aa)* is not a star-free 
regular language (it has no star-free 
expression).

regular

quotient 
property

D1

O1

D1intersection 
closure 
property

boolean closure property

star-free closure property

O1

extended regular closure property { albmanbq ∣ l, m, n, q > 0 ∧ (l = n ∨ m > q) }

D′￼1

{ anbn ∣ n ≥ 0 } ∪ { anb2n ∣ n ≥ 0 }
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• A CFG  in Greibach normal form is simple 

deterministic   implies .

• Theorem (Ishizaka 1990). If  and , then 

where  is the shortest suffix of  such that .

• Simple deterministic grammars have the star-free closure 
property.

• What about larger classes like ?

G = (N, Σ, P, S)
def
⟺ {A → a β, A → a γ} ⊆ P β = γ

S ⇒* v A y A ⇒* x

LG(A) = (v\L(G)/y′￼) ∩ (v\L(G)/y′￼)Σ+

= [[⟨⟨v, y′￼⟩⟩ ∩ ⟨⟨v, y′￼⟩⟩ε]]L(G)

y′￼ y vxy′￼∈ L(G)

LL(k)

Simple Deterministic Grammars
41 Simple deterministic grammars are 

almost the same as what Aho and 
Ullman (1972) called “simple LL(1)”.

Ishizaka (1990) showed that simple 
deterministic grammars are 
learnable from “extended” 
equivalence queries and 
membership queries.
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