
A Generalization of Linear Indexed 
Grammars Equivalent to Simple 

Context-Free Tree Grammars

Makoto Kanazawa 
National Institute of Informatics, Tokyo, Japan

1

Convergence of well-nested mildly 
context-sensitive grammar formalisms

LOGCFL

CFL

MCTAG ≡ MCFG ≡ HR 
≡ OUT(DTWT)  
≡ yDTfc(REGT) ≡ LUSCG 
≡ MG ≡ ACG(2,4)

yCFTsp ≡ ACG(2,3) ≡ MCFGwn 

≡ CCFG

TAG ≡ yCFTsp(1) ≡ HG ≡ LIG 
≡ CCG

2 This was the topic of my invited 
talk at FG 2009. 
All formalisms for the intermediate 
level are essentially the same. 
An analogue of LIG equivalent to 
yCFTsp(m)?

indexed 
grammars ≡ OI context-free 

tree grammars Fischer 1968

? ≡
simple context-

free tree 
grammars of 

rank m 
CFT

linear indexed 
grammars ≡

tree-adjoining 
grammars 

(monadic simple 
context-free tree 

grammars)

Vijay-Shanker 
and Weir 1994

3 We will define a new type of 
indexed grammars that is 
equivalent to simple context-free 
grammars of rank m.



Indexed grammars

Linear indexed grammars

4 We want to stop in the middle of a 
journey from indexed grammars to 
linear indexed grammars, but there 
is no clear path from the former to 
the latter.

Indexed grammars
G = (N, Σ, I, P, S )

indices

Productions
A[] → a
A[] → B1[] … Bn[]
A[] → B[f ]
A[f] → B[]

(TERM)
(DIST)
(PUSH)
(POP)

(a ∈ Σ ∪ {ε})
(n ≥ 1)

5 This is a normal form of indexed 
grammars that is more general than 
“reduced form” of Aho 1968.

Derivation trees of IG
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[χ]

a

A[χ]

B1[χ] Bn[χ]
…

A[χ]

B[fχ]

A[fχ]

B[χ]

(TERM)

(DIST)

(PUSH)

(POP)

6 In derivation trees, a nonterminal 
occurs with stack of indices 
attached to it. 
Each node of a derivation tree is 
sanctioned by a production.



S[] → T[f] 
T[] → T[g] 
T[] → L[] C[] R[] 
L[f] → A[] 
L[g] → Lʹ[] 
Lʹ[] → A[] L[] 
R[f] → A[] 
R[g] → Rʹ[] 
Rʹ[] → L[] R[] 
Rʹ[] → R[] 
A[] → a 
C[] → c

S[]

T[f]

T[gf]

T[ggf]

C[ggf]L[ggf] R[ggf]

cLʹ[gf] Rʹ[gf]

L[gf]A[gf]

a Lʹ[f]

L[f]A[f]

a A[]

a

Lʹ[f]

L[f]A[f]

a

L[gf]

A[]

a

Rʹ[f]

R[f]

R[gf]

A[]

a

L[f]

A[]

a

L(G) = { ancam | n ≥ 1, 1 ≤ m ≤ n(n−1)/2+1 }

7 Example of an indexed grammar.

Context-free tree grammar
G = (N, Σ, P, S )

ranked 
alphabet

A
x1 xn

… →
x1 xn…

A
…

t1 tn

⇒

…
t1 tn

8 Tree rewriting system. 
A rank n nonterminal labels a node 
with n children. 

B

a a
S →

B

x1 x2
→

g

x1 x2c

B

x1 x2
→

B

x1

x2f

a
B

x1 x2
→

B

x1

f

a

1.

2.

3.

4.

x2

f

x1

B

a a
S ⇒

B

a

f

a a

f

a
B

f

a

f

a

f

a a

f

a a

f

a

g

f

a

f

a

f

a a

f

a a

f

a

c

⇒

⇒

⇒

1

4

4

2

9 Example of a derivation. The red 
portion is where the tree grew. 
y(L(G)) = { a

n
 c a

m
 | n ≥ 1, 1 ≤ m ≤ 

n(n−1)/2 + 1 } 
Note that production 4 duplicates 
x1.



Guessarian’s transformation
i.  S → ti Sʹ[] → (i,ε)[]

(i,p)[] → (i,p.1)[] … (i,p.n)[]
a1 n

p
ti

a

p
ti (i,p)[] → a

(i,p)[] → (j,ε)[(i,p)]
A1 n

p
ti

j.  A(x1,…,xn) → tj

xk

q
tj

(j,q)[(i,p)] → (i,p.k)[]

10 Nonterminals and indices are both 
of the form (i,p), where i is a 
production number and p is the 
address of a node in the right-hand 
side tree of the i-th production.

B

a a
S ⇒

B

a

f

a a

f

a

⇒

1

4

Sʹ[]

(1,ε)[]

(1,1)[] (1,2)[]

a a

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε)]

(4,1)[(1,ε)]

(4,1.1)[(1,ε)] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

11 Can build derivation tree in 
accordance with derivation in 
CFTG.

(4,1)[(1,ε)]

(4,1.1)[(1,ε)] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε)]

(2,ε)[(4,ε)(1,ε)]

(2,1)[(4,ε)(1,ε)] (2,2)[(4,ε)(1,ε)](2,2)[(4,ε)(1,ε)]

c

g

a

f

a a

f

a

⇒
2

c

12



indexed 
grammars ≡ OI context-free 

tree grammars Fischer 1968

? ≡
simple context-

free tree 
grammars of 

rank m 
CFT

linear indexed 
grammars ≡

tree-adjoining 
grammars 

(monadic simple 
context-free tree 

grammars)

Vijay-Shanker 
and Weir 1994

Guessarian 1983
13 Guessarian’s transformation: OI 

CFT → Ind 
Can apply the same transformation 
to CFTsp(m). 
What do we get?

Simple CFTG
B

a a
S →

B

x1 x2
→

g

x1 x2c

B

x1 x2
→

B

x1

x2f

a

1.

2.

3.

B

a a
S ⇒

B

a

f

a

a
⇒

⇒

1

3

3

B

f

a

a

a

f

a

⇒
2

g

f

a

a

a

f

a

c

14 “Simple” means no variable is 
deleted or duplicated by any 
production.

Guessarian’s transformation applied to a 
simple CFTG of rank m

• Each (PUSH) node is matched by at most m (POP) 
nodes.

(i,p)[] → (j,ε)[(i,p)]
A1 n

p
ti

j.  A(x1,…,xn) → tj

xk

q
tj

(j,q)[(i,p)] → (i,p.k)[]

m-adic derivation tree

15 We call a derivation tree where 
each (PUSH) node is matched by at 
most m (POP) nodes an m-adic 
derivation tree. 
(“m-copying derivation tree” might 
be better?)



Guessarian’s transformation applied to a 
monadic simple CFTG

• Each (PUSH) node is matched by at most one 
(POP) node.

(i,p)[] → (j,ε)[(i,p)]
A

1

p
ti

j.  A(x1) → tj

x1

q
tj

(j,q)[(i,p)] → (i,p.1)[]

monadic derivation tree

16 “non-copying” derivation tree.

Output of Guessarian’s transformation on CFTsp(m)

H ∈ CFTsp(m) ⇒ D(Ind(H)) = Dm(Ind(H))

Guessarian’s IG

set of m-adic 
derivation trees

17 Every derivation tree of Ind(H) is m-
adic.

Converse transformation for CFTsp(m)

G ∈ Ind ⇒ ∃ H ∈ CFTsp(m) (L(H) = { strip(τ) | τ ∈ Dm(G) })

H = CFTspm(G)

result of 
stripping indices

18 Transformation from indexed 
grammars to simple context-tree 
grammars of rank m. 
Generalizes the construction used 
by Vijay-Shanker and Weir.



〈AB1…Bk〉

x1 xk…
⇒H* t[x1,…xk] = strip(                              )

H = CFTspm(G)

A[]

B1[] Bk[]

m-adic 
derivation tree 
fragment of G

…

19 <AB1…Bk> is a nonterminal of rank 
k ≤ m.

G H = CFTspm(G)

A[] → a 〈A〉→ A

a

A[] → C1[] … Cn[]

〈AB1…Bk〉→ 
x1 xk…

〈C1B1…Bk1〉 
x1 xk1…

〈CnBkn−1+1…Bk〉 
xkn−1+1 xk…

A

…

0 ≤ k1 ≤ … ≤ kn−1 ≤ k

20

A[] → C[f] 
D1[f] → E1[] 
… 
Dn[f] → En[]

〈AB1…Bk〉→ 
x1 xk…

〈E1B1…Bk1〉 
x1 xk1…

〈EnBkn−1+1…Bk〉 
xkn−1+1 xk…

A

…

〈CD1…Dn〉 

D1 Dn

0 ≤ k1 ≤ … ≤ kn−1 ≤ k

21



H ∈ CFTsp(m) ⇒ D(Ind(H)) = Dm(Ind(H))

G ∈ Ind ⇒ L(CFTspm(G)) = { strip(τ) | τ ∈ Dm(G) }

Guessarian’s IG

set of m-adic 
derivation treesconverse 

transformation

result of 
stripping indices

22 Simple context-free tree grammars 
of rank m are equivalent to a 
special class of indexed grammars 
whose derivation trees are all m-
adic. 
Also, they correspond to indexed 
grammars coupled with a “global” 
restriction on derivation trees. 
We can change how the 
productions of indexed grammars 

Standard conception of IG
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[χ]

a

A[χ]

B1[χ] Bn[χ]
…

A[χ]

B[fχ]

A[fχ]

B[χ]

(TERM)

(DIST)

(PUSH)

(POP)

23 How can one capture the “m-
copying” property by restricting 
possible applications of 
productions? 
The standard conception of IG is 
top-down: the stack of a parent 
plus the production being applied 
determines the stacks of the 
children. 
(TERM) empties the stack. 

Bottom-up conception of IG
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[]

a

A[χi]

B1[χ1] Bn[χn]
…

A[χ]

B[fχ]

A[fχ]

B[χ]

(TERM)

(DIST)

(PUSH)

(POP)

A[]

B[]
or

χj, χk compatible, i = argmaxj |χj|

24 Need to switch to bottom-up view. 
(TERM) requires the stack of the 
parent node to be empty. 
(DIST) merges the stacks of the 
children nodes. 
(PUSH) pops an index when the 
stack is not empty.



Standard, top-down derivation tree

(4,1)[(1,ε)]

(4,1.1)[(1,ε)] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε)]

(2,ε)[(4,ε)(1,ε)]

(2,1)[(4,ε)(1,ε)] (2,2)[(4,ε)(1,ε)](2,2)[(4,ε)(1,ε)]

c

25

Bottom-up derivation tree

(4,1)[(1,ε)]

(4,1.1)[] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε)]

(2,ε)[(4,ε)(1,ε)]

(2,1)[(4,ε)(1,ε)] (2,2)[(4,ε)(1,ε)]

c

(2,2)[]

26

Monadic indexed grammar
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[]

a

A[χi]

B1[χ1] Bn[χn]
…

A[χ]

B[fχ]

A[fχ]

B[χ]

(TERM)

(DIST)

(PUSH)

(POP)

A[]

B[]
or

χj = ε for j ≠ i

27 Under the bottom-up conception, 
the restriction on how (DIST) 
productions may be used precisely 
carves out monadic derivation 
trees.



D1(G) = D(Gmon)

G interpreted as 
monadic IG

monadic IG ≈ linear IG

28 Monadic indexed grammars are 
very close to linear indexed 
grammars. 
The difference is that in linear 
indexed grammars, a (DIST) 
production specifies which child 
inherits the stack of the parent.

Dm(G) = D(G(m)) ?

A[] → B1[] … Bn[] A[χi]

B1[χ1] Bn[χn]
…

(DIST)

|{ j | χj ≠ ε }| ≤ m

G interpreted as 
m-adic IG

29 How can one define “m-adic 
indexed grammars” by restricting 
how productions may be used in 
the bottom-up conception of IG? 
Simply restricting (DIST) will not do.

Arboreal indexed grammars

• The stack stores a tuple of trees [s1,…,sn]. 

• A (PUSH) production pops the same index from all 
trees in the tuple.

30 We need yet another conception of 
indexed grammars. 
Viewed from the top down, (PUSH) 
pushes k copies of an index.



Arboreal indexed grammar
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[]

a

A[σ1…σn]

B1[σ1] Bn[σn]
…

A[σ1…σk]

B[f (σ1),…,f (σk)]

A[f (σ )]

B[σ ]

(TERM)

(DIST)

(PUSH)

(POP)

31 σ, σi are possibly empty tuples of 
trees. 
Interpretation of productions 
bottom-up deterministic. 
Viewed from the top down, a 
(PUSH) node anticipates how many 
(POP) nodes match it, and push 
that many copies of the same index 
onto the stack. 
With no restriction on (PUSH), 

Bottom-up derivation tree

(4,1)[(1,ε)]

(4,1.1)[] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε)]

(2,ε)[(4,ε)(1,ε)]

(2,1)[(4,ε)(1,ε)] (2,2)[(4,ε)(1,ε)]

c

(2,2)[]

32 Viewed bottom-up, (DIST) merges 
indices.

Arboreal derivation tree

(4,1)[(1,ε)]

(4,1.1)[] (4,1.2)[(1,ε)]

a (1,1)[]

a

(4,2)[(1,ε), (1,ε)]

(4,2.1)[(1,ε)] (4,2.2)[(1,ε)]

(1,1)[] (1,2)[]

aa

Sʹ[]

(1,ε)[]

(4,ε)[(1,ε), (1,ε), (1,ε)]

(2,ε)[(4,ε)((1,ε)), (4,ε)((1,ε),(1,ε))]

(2,1)[(4,ε)((1,ε))] (2,2)[(4,ε)((1,ε),(1,ε))](2,2)[]

c

33 There is no merging of indices in 
arboreal derivation trees. 
Taking the longest path in tuple of 
trees gives bottom-up linear 
derivation tree.



m-adic arboreal indexed grammar
A[] → a

A[] → B1[] … Bn[]

A[] → B[f ]

A[f ] → B[]

A[]

a

A[σ1…σn]

B1[σ1] Bn[σn]
…

A[σ1…σk]

B[f (σ1),…,f (σk)]

A[f (σ )]

B[σ ]

(TERM)

(DIST)

(PUSH)

(POP)
k ≤ m

34 (PUSH) may pop (or push, viewed 
top-down) at most m copies of an 
index.

indexed 
grammars ≡ OI context-free 

tree grammars Fischer 1968

m-adic 
arboreal 
indexed 

grammars

≡
simple context-

free tree 
grammars of 

rank m

linear indexed 
grammars ≡

tree-adjoining 
grammars 

(monadic simple 
context-free tree 

grammars)

Vijay-Shanker 
and Weir 1994

35

arboreal indexed 
grammars ≡ OI context-free 

tree grammars Fischer 1968

m-adic 
arboreal 
indexed 

grammars

≡
simple context-

free tree 
grammars of 

rank m

monadic 
indexed 

grammars
≡

tree-adjoining 
grammars 

(monadic simple 
context-free tree 

grammars)

Vijay-Shanker 
and Weir 1994

36 Alternative conception of indexed 
grammar: arboreal. 
Monadic indexed grammars are 
monadic arboreal indexed 
grammars if we view monadic trees 
as strings.



Indexed grammars 
(top-down)

Linear indexed grammars

Indexed grammars 
(bottom-up)

Monadic indexed grammars

Indexed grammars 
(arboreal)

m-adic indexed grammars

≡≡

≡

37


