A Generalization of Linear Indexed
Grammars Equivalent to Simple
Context-Free Tree Grammars

Makoto Kanazawa
National Institute of Informatics, Tokyo, Japan

Convergence of well-nested mildly
context-sensitive grammar formalisms

MCTAG = MCFG = HR

= OUT(DTWT)
yDT#(REGT) = LUSCG
= MG = ACG4)

= CCFG

yCFTsp = ACG(2,3) = MCFGuwn

TAG = yCFTsp(1) = HG = LIG

This was the topic of my invited
talk at FG 2009.

All formalisms for the intermediate
level are essentially the same.

An analogue of LIG equivalent to

yCFT_(m)?

=CCG
We will define a new type of
indexed grammars that is
indexed = Ol context-free Fischer 1968
oremmare ree gremmars equivalent to simple context-free
simple context- grammars Of rank m.
free tree
? = grammars of
rank m
CFT
tree-adjoining
linear indexed — (mO%r:g?:;: e Vijay-Shanker
grammars - P and Weir 1994

context-free tree
grammars)

4 We want to stop in the middle of a
o journey from indexed grammars to
Indexed ‘
ndexed grammars . .
S . linear indexed grammars, but there
/) .
;oA is no clear path from the former to
\ \
\
the latter.
\ . *\
N AN
T~ 3. ,
Linear indexed grammars £
S This is a normal form of indexed
Indexed grammars .
grammars that is more general than
G=(N,3, 1, P,S) . ”
! reduced form” of Aho 1968.
Productions
Al— a (aeZufe}) (TERM)
All = Bi] ... Byl (n=1) (DIST)
All = B[] (PUSH)
Alll = B[] (POP)
o 6 In derivation trees, a nonterminal
Derivation trees of IG _ o
TERV) A AL occurs with stack of indices
! attached to it.
(DIST) A[] = Bil] ... Bdl Al ivati i
1 L Each node of a derivation tree is
b i sanctioned by a production.
(PUSH) A[] = B[/] AlX]
|
B[7x]
(POP) Alf]l = B[] AlX]

S[] = TIf] S

T[] = T[9] T[If]

T = LI ClI R [

L[f] = A[] T[?f]

Llo] = L] Tloof]

L~ A LT L m f

R[] = A[l P P v

Rlg] = R] iy c Al

RT] =~ LI RI] AT L9 LG Rlof]

R[] = R[] [[[|

Miwe 4 W

Cll—c Al L Al L LA ORI
| | | [| |
a AI[] a AI[] AI[] AI[]

a a a a

L(G)={acam|n>1,1<m<n(n-1)/2+1}

Example of an indexed grammar.

Context-free tree grammar

G=(N,3, P, S)

ranked
alphabet
A
X1 Xn

A

Tree rewriting system.
A rank n nonterminal labels a node

with n children.

A
X1 Xn
B . B Example of a derivation. The red
1 S " §= a/\a
a a 5 portion is where the tree grew.
B g 4 f/\f n m
RPN T~ PPN =
M i IOYR y(LG) ={a ca |n=1,1<m=<
B
B B — — +
o A A $ i nin=1)/2 + 1}
X X X . .
b ’ EE PN Note that production 4 duplicates
a X1 a a a a a a
B B] X, .
4 "N o0 A Ty 1
X1 X f f a/\f f/\f
N N PN

Guessarian’s transformation

10

Nonterminals and indices are both

of the form (i,p), where i is a

. S—ot S = (.9
/3 ‘ (o)1 = (oD ... (el production number and p is the
120) .
address of a node in the right-hand
fi (iL,p)] — a
f side tree of the i-th production.
4
- i A=y (P ()R]
it
{;) ‘ .
% G.al.p)] = (iL,p.K)]
B 1 Can build derivation tree in
S = "
accordance with derivation in
CFTG.
e A
PN
4,2)[(1.2)]
/\ /\
4 1.1[(1e)] (41.2)[(1e)] @2ND(1.e)] (4,2.2)[(1.e)]
a (1,00 (1,00 (1,20
! ! !
s 12
» g |
> 7T (e
NN (4,5)[|(Is:j)]

2,e)[(4.e)1,e)]

@ N4e)1e)] (2214e)(1e)] (2,2)[(4.e)1,)]

(1.0)]
/\)
(41.0)[(1e)] (4.1.2)[(1)]
I I I I
a (.00 (.00 (120
I I |

a a

indexed =

Guessarian 1983

Ol context-free Fischer 1968

13 Guessarian'’s transformation: Ol
CFT = Ind

S rec oremmers Can apply the same transformation
simple context to CFTsp(m).
? = grammars of "
k
Jfankm What do we get?
tree-adjoining
linear indexed — gra(rjr}ma_rs | Vijay-Shanker
grammars - E:mog?;d-lfr:ént‘rzg and Weir 1994
grammars)
14 “Simple” means no variable is
Simple CFTG .
B o5 deleted or duplicated by any
1 S = " s = a/\a
a a , B production.
B g = f/\a
2. N o T PN
X1 X2 X1 C Xo a aB
B B 5 f/\a
3. 7N - N PN
X1 Xo f X2 a f
N
a X1 @ 5
T~
2 f c a
7y
¢ N
a a
15 We call a derivation tree where

Guessarian’s transformation applied to a
simple CFTG of rank m

» Each (PUSH) node is matched by at most m (POP)

nodes.

m-adic derivation tree

(.a)l(L.p)] = (i.p-K)(]

each (PUSH) node is matched by at
most m (POP) nodes an m-adic
derivation tree.

(“m-copying derivation tree” might

be better?)

16 nu _ H n H N
Guessarian’s transformation applied to a non-copying derivation tree.

monadic simple CFTG

» Each (PUSH) node is matched by at most one

POP) node.
() monadic derivation tree

ti
i A1) = g (i,p)1 = G.&)li.p)]

%
A
|
{; . ‘)
% G.all,p)] = (.p- DI

X1

1

17 Every derivation tree of Ind(H) is m-
Output of Guessarian’s transformation on CFTSp(m)
adic.
H € CFTep(m) = D(Ind(H)) = Dr(Ind(H))
set of m-adic
derivation trees
, 18 Transformation from indexed
Converse transformation for CFTg,(m)
grammars to simple context-tree
grammars of rank m.
G elnd = 3H e CFTep(m) (L(H) = { strip(T) | T € Dm(G) }) _ _
Generalizes the construction used
siipring rees by Vijay-Shanker and Weir.

H = CFTspm(G)

H = CFTsm(G)

19

<AB1...Bk> is a nonterminal of rank

k <m.
{ABj...By
T =>H* t[X1,...Xk] = Strlp(
X1 Lo Xk
Bi[] ... B[]
m-adic
derivation tree
fragment of G
20
G H = CFTspm(G)
All - a A — A
|
a
All = C4[] ... Call
A
(AB1...Biy —
T <C1B1...Bk1> <Cann,1+1...Bk>
X1 ... Xk — T
X1 . Xki Xkn-1+1 ... Xk
O0<ki<...<kno1<k
21
All = CI[f]
DA[f] = E4[]
Dn[f] = En[]
A
(AB1...Bx) — |
X1 o0 Xk
D1 Dn

(E1B1...Bk) ...
T

X1 oo Xkt

O<ki<...

|
(EnBrnrs1...Bi
T

Xkn-141 .. Xk

Skn_ﬂ gk

Guessarian’s |G

H e CFTsp(m) = D(Ind(H)) = Dm(Ind(H))

set of m-adic
derivation trees
converse
transformation

G € Ind = L(CFTsp™(@G)) = { strip(1) | T € Dm(G) }

result of
stripping indices

22

Simple context-free tree grammars
of rank m are equivalent to a
special class of indexed grammars
whose derivation trees are all m-
adic.

Also, they correspond to indexed
grammars coupled with a “global”
restriction on derivation trees.

We can change how the

productions of indexed grammars

. 23 How can one capture the “m-
Standard conception of 1G o P o
TERM) Al 4 AL copying” property by restricting
. possible applications of
(DIST) Al = Bil] ... Bd] AL fane?
L productions?
i i The standard conception of IG is
(PUSH) All = B[] AlX
B top-down: the stack of a parent
(POP) Al1] = B[] A[lfx] plus the production being applied
B4 determines the stacks of the
children.
(TERM) empties the stack.
24

Bottom-up conception of |G

(TERM) Al — a All
|
a
(DIST) All = B[] ... Bil] Alxl]
/.”\
Bilx] Brlx]
X Xx compatible, / = argmax; |xj
(PUSH) A[] = B[] AlX] All
| or |
Blfx] B(]
(POP) Alfl = H[] AliX]

|
BlX]

Need to switch to bottom-up view.
(TERM) requires the stack of the
parent node to be empty.

(DIST) merges the stacks of the
children nodes.

(PUSH) pops an index when the

stack is not empty.

Standard, top-down derivation tree
ST
(Mla)[]
(4,9)['[1 e)]
(216)[«"‘-'5)‘1‘ el
T @A @A)
(4,1)[|H €)] l (4,2)['{«;:]
(4,1.1)mr e)] (421>@[m e)]
L (1,|1)[] (1,|1
) !

25

26
Bottom-up derivation tree
STl
|
(1.9
|
(4.e)(1.2)]
(2,5)[\r"-|g,u")]
@ N[(4e)1e)] (2,2)[(4,e)(1,2)]
(4,1)[|f1 €)] [¢ (4,2)9[1&1]
/\
@ @121 @21 e)] @29(1.0)]
| | |
a (1,00 (1,10 (1,2)[1
| | |
a a a
27

Monadic indexed grammar

(TERM) Al > a Al
[
a
(DIST) All = Bil] ... Bl Alx]

/_”\
Bilx] Brlx]
xi=cforj=i

(PUSH) Al] = B[] A[lx] Al[]
or
Bl7x] B[]
(POP) Al1] = B[] AllX]

|
BlX]

Under the bottom-up conception,

the restriction on how (DIST)

productions may be used precisely
carves out monadic derivation

trees.

monadic IG = linear I1G

D+1(G) = D(Gmon)

G interpreted as
monadic |G

28

Monadic indexed grammars are
very close to linear indexed
grammars.

The difference is that in linear
indexed grammars, a (DIST)
production specifies which child

inherits the stack of the parent.

29 How can one define “m-adic
. indexed grammars” by restricting
how productions may be used in
16
the bottom-up conception of IG?
Simply restricting (DIST) will not do.
(DIST) All = Bil] ... Bil] Alx]
Bilxi] Brlxi]
(ilx=ell<m
30

Arboreal indexed grammars

» The stack stores a tuple of trees [s1,...,5/].

* A (PUSH) production pops the same index from all
trees in the tuple.

We need yet another conception of
indexed grammars.
Viewed from the top down, (PUSH)

pushes k copies of an index.

Arboreal indexed grammar

(TERM) A[] = a Al
|
a
(DIST) Al = B[] ... Bl Alo:...01]
Bi[o] Bioi]

(PUSH) A[l = B[]

(POP) Alf] = B[] Alf(o)]

31

g, 0, are possibly empty tuples of
trees.

Interpretation of productions
bottom-up deterministic.

Viewed from the top down, a
(PUSH) node anticipates how many
(POP) nodes match it, and push
that many copies of the same index
onto the stack.

With no restriction on (PUSH),

Bottom-up derivation tree

ST

_—
@, N(4.e)1e)] (2,2)[] 2,2)[(4.e)(1,2)]
(4,1)[|(1)]] (4,2)[|: 1,)]

/\ /\
@100 @120 @2 0{1e)] (4.22)[(1)]

32

Viewed bottom-up, (DIST) merges

indices.

Arboreal derivation tree
Si[]
(1.)]

4,e)(1e) IM €), (1,e)]
.eN(4)(1,8)), (4.8)((1,8),(1,)]
@104 me).(1.e)]
4e)] l (4,2)(1 ! (1,€)]

/\ /\
411 @1.2)[(1e)] (4.2.1)[(1.e)] (42.2)](1.e)]

| | | |
a (1|1)[] (1,;)[] (1,|2)[]

a a a

33

There is no merging of indices in
arboreal derivation trees.

Taking the longest path in tuple of
trees gives bottom-up linear

derivation tree.

m-adic arboreal indexed grammar

(TERM) A[ll— a All
|
a
(DIST) All = B[] ... Bil] Aloi...on]
Bi[o1] Brlor]
(PUSH) A[] = B[1] Alor...ox]
|
Blf(o1),...,1(0x)]
k=m
(POP) A[f] = B[] Alf(0)]
|
Blo]

34

(PUSH) may pop (or push, viewed
top-down) at most m copies of an

index.

35
indexed = Ol context-free Fischer 1968
grammars tree grammars
m-adic simple context-
arboreal _ free tree
indexed - grammars of
rank m
grammars
tree-adjoining
linear indexed — (grag_wma_rs e Viiay-Shanker
grammars - Cr:)z?;d_'ﬁ:ggs and Weir 1994
grammars)
36 Alternative conception of indexed
grammar: arboreal.
arboreal indexed = Ol context-free .
grammars - tree grammars Fischer 1968 . e
Monadic indexed grammars are
m-adic simple context monadic arboreal indexed
arboreal _ free tree
i - grammars of . . .
ndexed rank m grammars if we view monadic trees
grammars
tree-adjoining 1
monadic grammars Vilay-Shank as stri ngs'
indexed = (monadic simple ‘ij\/“\/ a?ggzl
grammars context-free tree an er

grammars)

Indexed grammars
(top-down) -

\ 4
Indexed grammars
(arboreal)

Y
.

A

N
N
.
S

Yk m-adic indexed grammars

Indexed grammars
(bottom-up)

*

N
S

Monadic indexed grammars

A\l
Linear indexed grammars

37

