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2 This talk will have a difference
Plan emphasis than my paper in the
proceedings.

* What is ACG?

* How to obtain syntactic features expressing regular
constraints

* Gapping

AIEDIUS d

Program

Tuesday September 18th Wednesday September 19th

[10:00 [Welcome and opening l0g:40|Makoto " [[Almost Linear Abstract Categorial Grammars and

Reinhard Kanazawa |Attribute Grammars (slides)

1020 utiskens [Fnglish a2 2 formal system {slkdas} o[ Michael _[Lexical and derivational semantics for Lambek-Grishin
10:20

11:00 Broak “|Moortgat _|calculus

... [Giad Ben- [11:00 Break

1130 |aviryoad winter A-s0und progedure 50|Carl The Logics of Overt and Coverl Moverment in
11:30

Philippe de Pollard |aRelational Type-Theoretic Grammar (slides)

12:10 [Yet another dynamic logic (slides) o Grammar and Incrementalprocassing of Dutch

12:50 [Lunch lorder (slides)

14:30 Seastien [Compositional approaches to discourse [12:50] Lunch

: .
[~ lHinderer __lrepresentation struclures construction (sldes) | 14,45 SYvaln g analyses of Lambek grammars (slides)
[15:10|Christina Unger |F8lure-driven movement as delimited control [Salvati
8 98T | slides) 15:25|0 [On two extensions of Abstract Categorial Grammars

15:50 Broak [Yoshinaka |(slides)
16:05] Closin

116:20 Chris Barker ey about contexts in Lambek Grammars ']




“Why is it called abstract categorial grammar?”

—Anna Chernilovskaya

Abstract Categorial Grammar (de Groote 2001,
Muskens 2001)

not a new kind of categorial grammar

represents basic building blocks of the grammar as well as

grammatical operations on them with typed linear A-terms

a general formalism meant to be restricted in various ways to

produce more constrained grammars

generalizes

— CFG (context-free grammar)

— TAG (tree-adjoining grammar)

— MCFG (multiple context-free grammar) (or LCFRS
(linear context-free rewriting system))

— but not Lambek categorial grammar

is like categorial grammar in that semantic composition is a

homomorphic image of syntactic derivation

treats form and meaning symmetrically

This slide is from a talk | gave in 2005.
The title of my talk was “Abstract
Categorial Grammar and Linear
Logic”.

Mitsuhiro Okada introduced me
saying | was going to talk about the
latest exciting developments in
categorial grammar.

ACG is not a categorial grammar.

The connection of ACGs with
context-free/tree-adjoining grammars
and mainstream formal language
theory is more important than the
aspects of ACGs inherited from the
categorial grammar tradition.
“Abstract context-free grammar” or
“abstract tree-adjoining grammar”
would have been at least as
appropriate.
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An ACG need not be lexicalized.

One important respect in which ACG
is not a categorial grammar.



ACG is a generalization of TAG.
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Building Blocks

syntactic type
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14 Another important respect in which
ACG is not a categorial grammar.
The complexity of the substitution is
SA > Str — str an important parameter according to
which ACGs form a hierarchy.
An atomic syntactic type can be mapped to a
complex “prosodic” type.
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np — S4 — SA
A2t 288 51 25 (21 o (thinks o (that o 2))) ‘ Az§zitat 2o (think @ 2;)

np SA
Robin | Robin® | | Aoz | Aat.a

A constituent with a gap may have an atomic
syntactic type.

An arbitrarily complex A-term can be
derived from an atomic-typed
subterm of a derivation.
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16 This illustrates a TAG-analysis of wh-
movement originally due to Anthony
Kroch.
One could easily imagine a TAG-
inspired analysis of Right Node
Raising in an ACG.
Gapping may be handled by a simple
context-free grammar of rank > 2.

Abstract Syntactic Types

CFG-style TAG-style “Lambek-style”
unsaturated
standard atomic functional functional
constituents
modifiers atomic atomic functional
continuous
non-standard functional
constituents
discon_tinuous funct\onal/ functional
constituents atomic
constituents atomic (GPSG) atomic functional

with gaps

17 You can classify various styles of
analyses possible in ACGs in terms of
atomic/functional distinction.

The ACG formalism supports many styles of
linguistic analysis.

18 To take advantage of the full potential
of ACGs, different styles of analyses
should be explored.



Second-Order vs. Higher-Order Abstract Syntax
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connections with
computer
science

“building language

derivations block” A-terms complexity

(almost) linear | LOGCFL  formal language
second-order trees , theory,
A (= BCIW) | decidable program schemes

(almost) linear ?
higher-order | linear A-term BVASS
Al (= BCIW) ?

Higher-order ACGs are problematic.

Linearity is overrated.
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Second-order ACGs have almost no
resemblance with categorial
grammars.

Problems that KLM pointed out have
to do with higher-order ACGs.
Higher-order ACGs are problematic in
other ways.

Symmetry
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. 22 Two of the most important problems
Parsing

.

L/\zl‘" JpT—

concerning grammars are parsing and
e T ) surface realization (generation).
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Surface Realization
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. 24 The problem boils down to finding the
Parsing

derivation from the input string.
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. 25 The semantic component of the
Parsing .
grammar Is irrelevant.
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27 In a fairly broad, interesting class of

Parsing = Surface Realization

Leslie wonders who Robin wonder? 7" (who(* 7974 (A\z° think' 7~

thinks that Terry hates (hate®”*" z Terry®) Robin®)) Leslie®

cases, the problems of parsing and
surface realization have been solved.



Tabular Parsing

7— s(0-8).

s(x1) :— s_int(24), np(x3), sa(x1, w2), 0(w2, T3, 4), o(24, 5, T6), wonders(zs).

s_int(z1) :— np(as), wh(xs), sa(xs, 4), o(x1, 22, x3), o(24, T5, 26), o(x6, T7, 23), hates(z7), e(zg).
sa(x1,xs) :— np(x3), sa(x1,22), 0(x2, T3, 24), 0(24, T5, T6), o(26, T7, T8), thinks(z;), that(az7).
sa(xy, @) i— .

np(x1) :— Terry(zy).

np(z1) :— Robin(zy).

np(xy1) :— Leslie(xy).

wh(zy) :— who(zy).

Leslie(0—1). wonders(1—2). who(2—3). Robin(3—4). thinks(4—5). that(5—6). Terry(6—7). hates(7—8).
o(i—k,i—j,j—k).
e(i—i).
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Tabular Realization

7— s(1).

np(zy) :— Leslie(z).

wh(zy, o, 23

s(x1) :— s_int(xs), np(x4), sa(z1, x2), wonder(ws, T3, T4).
s_int(z1) :— np(xs), wh(xy, 2, 24), sa(x1, 2), hate(zs, T4, z5).
sa(@1,x3) :— np(x4), sa(@1, x2), think(zs, T3, 74).
sa(wy, 1) i—
np(xy) :— Terry(z,).
np(z1) :— Robin(z,).
)
)

:— who(z1, zo, z3).

wonder(1,2,8). who(2, 3,5). think(3,4,5). hate(4, 5,6). Terry(6). Robin(7). Leslie(8).

29

Symmetry between form and meaning is at the
heart of ACG.

30



KLM

31

Right Node Raising

Lambek
((s/np)\(s/np))/(s/np) : and : X2{7* 2570 AP (21 ) (22 2)

ACG

(np—s)— (np—s)—np—s
Nftr st Sttt (2 ) o (and o (21 2))) 0 @ ‘ A2l A (2 1) (2 1)
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(np—s) = (np— s) > np— 5
N (z22) o (and o (m €))) o | AS o Tt AT (o)

$7t 22 2525 2y 0 29 | A2f2§ 72021
IETRT Ty
*t 52102 | Maf25 Terry | Terry* O T P W
np v
likes \ Ayeae like"*"“’w Leslie | Leslie” hates | Ayeat hate” ' y

A2 (1ike* ¢! Leslie® Robin®)
(hate®” ' Robin® Terry®)
‘Terry hates Robin and Robin likes Leslie

((Terry o (hateso¢)) o (and
o (g o (likes o Leslie)))) o Robin

33

Right Node Raising.

An example of overgeneration.

The other entry considered by KLM
gives “Terry hates and Robin likes
Leslie”.



likes  Leslie

The gap in each conjunct of RNR must be on the right
periphery.

34

If you have a good specification, the grammar
will write itself.

35

likes  Leslie

The gap in each conjunct of RNR must be on the right
periphery.

36



37 A conjunct of RNR may contain two
gaps.

Who did [Max entice _to read _] and [Ted ask _ to summarize
_] the latest paper by Chomsky?

38
]
AN
o Robin
/\
o~ °
\ N
° and OF
N \
Terry o o
P VAN
hates ¢ft &R o
likes  Leslie
ef must be the rightmost leaf of a subtree whose root label
is OF.
39 Cf. model-theoretic syntax of Jim
Good specification = regular set = finite tree automaton
P 0 Rogers.
o Robin o [RGAPO)
of o [RGAP 0] o
\ N \
3 and OF [ReAP1] [Raar0] OF
VN \ S \
Terry o ° [RGAPO]  [RGAPI] o *
hates ¢ e o [RGAPO] [RGAP1] [RGAP1] [RGAPO]
N
likes Leslie [RGAPO]  [RGAPO)
e 5 [Reap1],
a — [RGAP(] for each terminal symbol a,
[RGAP 0] o [RGAP 0] — [RGAP O],
[RGAP 0] o [RGAP 1] — [RGAP 1],
0 [RaaP 1] — [RGAPO].




derivations

surface forms

e

regular constraint

40

A generalization of the classic result
that the class of context-free
languages are closed under
intersection with regular sets.

Building block A-terms must be
almost linear.

(np—s)—=(np—s)—np—s

Azjtrstrzgir=strgstr (25 €) o (and o (21 €))) o @ ‘ Az§ st A (2 1) (22 @)

* add markers

(np—s)—(np—s)—=np—s

Azftr st gtr=strgste (OF (2 7)o (and 0 0% (21 7)) 0 & | Azf 1257, A (21 @)(22 @)

* intersect with regular set

(np[RGAP 1] = s[RGAP 1]) = (np[RGAP 1] = s[RGAP 1]) = np[RGAP 7] = S[RGAP 7]

Azgtrostr ystr=rstrgpstr (QF(z, eR) o (and 0 0% (2 eF))) oz ‘ A6 2E gl A (2 1) (29 )

* remove markers

(np[RGAP 1] = s[RGAP 1]) = (np[RGAP 1] — s[RCGAP 1]) — np[RGAP 7] — s[RGAPT]

Aftrstrzsir=sirgsit (25 ¢) o (and o (21 €))) o ‘ A5 e NI (2 1) (29 @)
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(np—s)—= (np—s)—=np—s

AZfN'Aatv'zétrAnt?'l,stv_(OR(Z2 E‘L‘) o(and o ()R(z1 El{))) ox ‘ Az{'”tzgqﬁx". Attt (21 %) (22 2)

* intersect with regular set

(np[RGAP 1] — $[RGAPT2]) — (np[RGAP 5] — S[RGAP 74]) — np[RGAP 5] — S[RGAP 7]

/\Z;tr Ntrzétr PStr g str .(OR(ZZ ER) o (and ° OR(Z1 ER))) ox

A2gotag e A (2 1) (20 @)

o 21 [RGAP 1] — [RGAP 19,

/N 29 [RGAP 3] — [RGAP 14,

/.\I T — [RGAP T3,
o~ °

| PN el = [Rear1],
a — [RGAP 0

]

| for each terminal symbol a,
‘R \ [RGAP 0] o [RGAP 0] — [RGAP 0]
]
]

| [RGAP 0] o [RGAP 1] — [RGAP 1],
R 0" [RaAP 1] — [RGAPO).
(np[RGAP 1] — s[RGAP 1]) — (np[RGAP 1] — S[RGAP 1]) — np[RGAP 7| — S[RGAPT]

Azjtrostrosirsirgsir (QF (2, eR) o (and 0 OF (21 7)) o 2 ‘ Az{s e AV (2 2) (20 @)

42



Hybrid

Gapping

(((np\s)/np) = 5) = (((np\s)/np) = ) = ((ap\s)/np) = s

Azfirstr ostr=ysir sir (220) o (and o (21 €))

)\Z(Ezﬂt)ﬂtz(ezﬂt)ﬂtz‘ez%tA

2
AT (2 (Aytat zgye) (z2(Ay°a® zaye))

ACG

((np —np —s) =)= ((np—np—s)—>s) = (np—>np—s)—s

str?—str)—sstr_(str®—str)—str
)\z§ ) P )

2
Z;" —rstr

(22N st w0 ((232€) 0))) o (and o (21 (Ay*¥" 2"z o (e 0 y))))
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((np— np— 5) > 5) = ((np— np = 5) = 5) = (np > np = 3) > 5

A
(22N

2T AT (2 (g 20)) (22 (Wt 2yya)

)otr_ate® st
atriosst

€)ey))) o (ande (21" 2" e (e 0y)))

> < <>
T T <>

.

{_Robin

wp N w w Y ( wp N ( np o mp s
| R,obin") LLeine [ Lestie* Terry | Terry‘) LRnbin [ Robin* LAJ;% 230 (ikes 0 21) | Ay“a* likes™ 'y

(Robin

(and o (Leslie o (£ o Robin)))

o((eo(likesoe))oTerry)) o A7 (like® 7 Leslie® Robin®)
(like®*”! Robin® Terry®)

“Terry likes Robin and Robin likes Leslie

44

o
/\
) o
PN AN
Robin o and o

likes e
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((np[0,71] = np[l1,0] = s[l1,r1]) — s[0,7]) —
((np[0, 73] = nplla, 0] = s[la, m2]) — s[1,0]) —
(np[0,1] = np[1,0] = s[1,1]) = s[l,7]

str—str—sstr)—str _(str—str—str)—str_g S
/\ZE ) A ) str—str—sstr

(220" 2"z 0 (07 (0 (236" ")) 0 y))) 0 (and o (21 (Ay* &z 0 (¢ 09))))




0,0] — np[0,0] = s[0,0]) —+ 5[0,0]) = (

(np[0.0] = np[0, 0] = 5[0.0]) — 5[0, 0]) = (np[0, 1] — np[1, 0] — s[1.1])
(str® —>str). ot

~ | 46

> 5(0,0]

Shstr

57T A (5 (et ) (22t zaye)

G <>

(w0 ) (w0 ) [ w0 ) (w0 ) ([

np[0,1] = np[1,0] = s[1,1]

{_Robin [ Robin" | | Leslie [ Leslie” ]

(Robin o ((¢ o (likes o €)) o Terry)) o
(and o (Leslie o (¢ o Robin)))

Terry [ Terry” | Robin | Robin® | b;;'v 247 23 0 (lkes o 21) | Ayeac likes® 'y o

A7 (1ike® ¢! Leslie® Robin®)

(like®7*”" Robin® Terry®)

“Terry likes Robin and Robin likes Leslie

The right- or left-peripherality of a gap can be
enforced by a syntactic feature.

47

Reverse Word Order

Tom cooked the beans, and Bill, the potatoes.

Tom cooked the beans, and the potatoes, Bill.

48



49 The first remnant can be a Focus.

A. Gee, the beans and the potatoes are good! Did Tom cook them
again?

B1. No. Today, Tom cooked the beans, and Bill, the potatoes.

B2. No. Today, Tom cooked the beans, and the potatoes, Bill.

. i ) _ 50 The last two based on Hankamer’s
Topicalization + Gapping (1979) examples.

Tom cooked the beans, and Bill, the potatoes.

Tom cooked the beans, and the potatoes, Bill.

The beans, Tom cooked, and the potatoes, Bill.

Tom cooked the beans, and the potatoes, Bill.

51
Discontinuous Gapping

While the canonical cases of gapping have medial gaps, the gap can also be discontinuous, e.g.

Should I call you, or ghoy1q YOU a1y me?

Will Jimmy greet Jill first, or yjjy Jill greer Jimmy grg?

He believes her to know the answer, and she pejieyves him (o know the answer-
Texpect you to help, and you expece Me (o pelp-

-Wikepedia, Gapping




Discontinuous Gapping

(16) Max seemed to be trying to force Ted to leave the room, and Walt [seemed—+to

be-tryingtoforee] Ira [todeavetheroom| (Jackendoff, 1971, p. 25)
(17) Arizona elected Goldwater Senator, and Pennsylvania [eleeted] Schweiker
[Serater] (Jackendoff, 1971, p. 24)

(18) Jack begged Elsie to get married, and Wilfred [begged] Phoebe [to-get-martied|
(Jackendoff, 1971, p. 24)

(19) Max wanted Ted to persuade Alex to get lost and [Max—wanted] Walt [to
persaade| Ira [to-getdost| (Hankamer, 1973, pp. 26-27)

(20) John took Harry to the movies, and Bill [teek] Mike [to-the-mevies| (Sag, 1976,
p. 218)

(21) John persuaded Dr. Thomas to examine Mary, and Bill [persuaded] Dr. Jones
[to-examine Mary] (Sag, 1976, p. 225)

(22) Joe covered the floor with red paint, and Alice [eovered] the walls [withred-paint|
(Neijt, 1980, p. 79)

(23) Joe painted his boat red, and Alice [painted] her car [red] (Neijt, 1980, p. 79)

(24) Some people want all doors to open to the left and others [wesnt] all windows [te

epen—to-theleft| (Neijt, 1980, p. 160)
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Discontinuous Gapping

(((np\s)/np) = s) = (((np\s)/np) = s) = ((np\s)/np) — s

(25) Max ordered Ted to persuade Alex to get lost and [Mex—erdered] Walt [to
perstade] Tra [to-get-lost]
(26) T asked Peter to take Susan home, and [Fasked] John [te-teke] Wendy [herse]

(27) Rarely does John call Mary at home, and [razely-does] Mary [eal}] John [at-heme]

The type of thegap =np = np = s

((np—np—5s)—=s)—=((np—=np—s)—s)—=((np—=np—s)—s N

) )
)\zf" ’“"2:}" »ﬁtrz§f7"(z‘223) o (ando (2 E)) /\Z§F At)atzge ~>t)~>tz§2 »t
A (2 (Ayfal.zzy)) (zQ()\y"ar‘“'.zwzr))/

‘| asked Peter to take Susan home and | asked Wendy to take John home.”
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((np—mnp—3s)—=s)=((np—=np—3s)—=s)—=((np—onp—s)—s N

Nagtrostr pstrostr st (20 24) o (and o (21 €)) /\ZY‘ZAt)Atzéf‘zﬂf)%tz&:zar_
A (2 (AyCal . z3yT)) (z;()\yeze.Z3yz))/

In the first conjunct of Gapping, the correspondent of the first
remnant must precede the correspondent of the second remnant.

((np—np—35)—s)—=((np—=np—35)—s)—=(np—=np—s)—s

str—str—str)—str _(str—str—str)—str
)\Z( ) Z‘( ) Z;trﬁstrﬂstr'

(z2(Ay* 2. O (23(C29)(Cy )))) o (and o (21 (A\y*" 2.z 0 (e 0 9))))

If, as has often been argued (Kuno, 1976; Neijt, 1980; Coppock, 2001;
Johnson, 2014), the relative positions of the correspondents/remnants
obey some (but perhaps not all) of the island constraints governing
wh-extraction, those constraints can also be captured by the syntactic
feature, as long as they are regular.
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Conclusion

* ACG supports non-categorial-style analyses.

* In a Lambek-style analysis, any regular constraint
on positions of gaps can be captured by syntactic
features.
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