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Reduction of second-order ACGs to to Datalog
Extension to “almost linear” second-order ACGs



CFG recognition/parsing

S → NP VP
VP → V NP
NP → Det N
NP → John
V → found
Det → a
N → unicorn

John found a unicorn ∈ L(G) ?

To give an idea of what the reduction looks like
Well-known case of CFGs



Datalog query evaluation

S(i, k) :- NP(i, j), VP(j, k).
VP(i, k) :- V(i, j), NP(j, k).
NP(i, k) :- Det(i, j), N(j, k).
NP(i, j) :- John(i, j).
V(i, j) :- found(i, j).
Det(i, j) :- a(i, j).
N(i, j) :- unicorn(i, j).

John(0, 1).
found(1, 2).
a(2, 3).
unicorn(3, 4).

?- S(0, 4).
program

database

query

Definite clause grammar representation
Executable as Prolog code



0 1John found 2 a 3 unicorn 4

John(0, 1) found(1, 2) a(2, 3) unicorn(3, 4)

i jNP VP k

S(i, k) :- NP(i, j), VP(j, k).

?- S(0, 4).

The conversion is very straightforward
String -> string graph



CFG recognition/parsing ≈ Datalog query evaluation

CFG derivation tree and Datalog derivation tree isomorphic to each other
Finding one amounts to finding the other



Recognition/
Parsing

almost linear
second-order 

ACGs

Parsing and generation as 
Datalog query evaluation

Recognition/
Parsing

Generation

CFG
MCFG
RTG

MRTG
CFTGIO

…

CFG, etc. + 
Montague 
semantics†

† when almost linear

Kanazawa 2007

Datalog query
evaluation

The Datalog representation extends to various grammars through (almost linear) second-
order ACGs
Need non-linear terms to represent logical formulas



Parsing and generation as 
Datalog query evaluation

• Algorithms

- Seminaive bottom-up ≈ CYK

- Magic-sets rewriting ≈ Earley

• Computational complexity

- Fixed grammar recognition

- Uniform recognition

- Parsing

Allows a uniform approach to parsing and generation
Sophisticated evaluation methods for Datalog apply to parsing/generation



Polynomial-time algorithm

facts that immediately follow 
from one fact in agenda[i] plus 

some facts in chart

holds facts with 
derivation tree of 
minimal height i

≈ well-formed 
substring table

Works for Datalog programs in general



Outputting shared forest

instances of rules with 
right-hand side consisting of 

one fact in agenda[i] and 
some facts in chart

holds instances of 
rules that can be 
used in derivation 

trees

shared parse forest

facts that immediately follow 
from one fact in agenda[i] plus 

some facts in chart

Parsing algorithms are often not explicitly stated in textbooks.



Computational complexity

• CFG

Fixed grammar recognition

Uniform recognition

ε-free uniform recognition

LOGCFL-complete

P-complete

LOGCFL-complete

Same holds for classes of grammars that can be represented by Datalog programs of 
bounded degree 



Computational complexity

• Almost linear second-order ACGs with 
bounded width and rank

Fixed grammar recognition

Uniform recognition

ε-free uniform recognition

LOGCFL-complete

P-complete

LOGCFL-complete

width = |σ(B)| = arity of B in Datalog
rank = number of subgoals

ε-rule = Datalog rule with empty right-hand side
ε-rule = rule whose right-hand side is empty and whose left-hand side argument is a pure λ-
term



LOGCFL

• The class of problems that reduce to some 
context-free language in logarithmic space

• The smallest computational complexity 
class that includes the context-free 
languages

 AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP

A very important complexity class
Implies the existence of efficient parallel algorithm



Datalog in computational 
linguistics

• Definite Clause Grammar

• Deduction system

• Uninstantiated parsing system

Pereira and Warren 1980

Shieber et al. 1997

Sikkel 1997

[NP, i, j]    [VP, j, k]
[S, i, k]

The idea of using Datalog is not new.
DCG is too powerful.
Datalog notation is more convenient.



CFG + Montague semantics
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NP(λu.u Johne )→ John

V(finde→e→t )→ found

V(catche→e→t )→ caught

Conj(∧ t→t→t )→ and

Det(λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy )))→ a

N(unicorne→t )→ unicorn

   λuv .∃y(u(y )∧ v(y ))

One way of writing Montague semantics with CFG



    (λu.u John)(λx .(λuv .∃(λy .∧(uy )(vy ))unicorn(λy .find y x ))

    ∃(λy .∧(unicorn y )(find y John))↠β

   ∃y(unicorn(y )∧ find(John, y ))≈
logical form

Grammar rules associates a lambda-term to each node
Must reduce to normal form to get the desired representation



Surface realization

John found a unicorn

   ∃y(unicorn(y )∧ find(John, y )) input logical form

output surface form

derivation tree

Tactical generation or surface realization



Parsing of input logical form

   ∃y(unicorn(y )∧ find(John, y )) input logical form

derivation tree

Can concentrate on the semantic half of the grammar



Recognition of surface 
realizability

   ∃y(unicorn(y )∧ find(John, y )) input logical form

yes/no

surface realizable?

Solving this problem almost amounts to solving surface realization



Context-free grammar on λ-terms
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Det(λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))).

N(unicorne→t ).

CFG + Montague - CFG = CFLG
Generates a set of lambda-terms



Context-free grammar on λ-terms
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Det(λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))).

N(unicorne→t ).

  

σ (S) = t

σ (VP) = e → t

σ (NP) = (e → t)→ t

σ (V) = e → e → t

σ (Conj) = t → t → t

σ (Det) = (e → t)→ (e → t)→ t

σ (N) = e → t

A nonterminal is associated with a type.
Arguments are λ-terms of that type.



Context-free grammars on λ-terms 
= second-order non-linear ACGs
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V(λz.found z).

V(λz.caught z).

Conj(λz.and z).

Det(λz.a z).

N(λz.unicorn z).

 / John found a unicorn /     ∃(λy .∧(unicorn y )(find y John))

A pair of second-order (non-linear) ACGs as a “synchronous” grammar



From second-order ACG recognition 
to Datalog query evaluation
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Det(λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))).

N(unicorne→t ).

    ∃(λy .∧(unicorn y )(find y John))∈L(G )?



From second-order ACG recognition 
to Datalog query evaluation
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∃(1,2,4).

∧(2,5,3).

unicorn(3,4).

find(5,6,4).

John(6).

 ?− S(1).

Given conversion to Datalog, can use general Datalog techniques.



0 1John found 2 a 3 unicorn 4

John(0, 1) found(1, 2) a(2, 3) unicorn(3, 4)

i jNP VP k

S(i, k) :- NP(i, j), VP(j, k).

?- S(0, 4).

The way the program, the database, and the query are obtained is similar to the CFG case.
Objects derived by the grammar are represented by (hyper)graphs.
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λ-terms can also be represented by hypergraphs (when almost linear).
A hypergraph is a “term graph” when each node is the “result node” of a unique hyperedge.
A hyperedge is “directed”: the nodes it attaches to are ordered.



   Det(λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))).
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How a rule is converted to a Datalog rule.
External nodes become arguments of the head.
Edges labeled by constants become subgoals.
Edges labeled by free variables (none in this example) become subgoals.
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    ∃(λy .∧(unicorn y )(find y John))

  

∃(1,2,4).

∧(2,5,3).

unicorn(3,4).

find(5,6,4).

John(6).

 ?− S(1).

1

How the input λ-term is converted to database and query.
Edges labeled by constants constitute the database.
External nodes become arguments of the query.



From ACG recognition to 
Datalog query evaluation
• The reduction is correct when all λ-terms 

in the grammar are almost linear.

λIalmost affine

Vacuous abstraction is not allowed.
If a variable occurs twice in a subterm, it must have an atomic type.



Context-free grammar on λ-terms
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All λ-terms almost linear.
Generates β-normal forms of almost linear λ-terms.



Almost linear λ-terms

• The class of almost linear λ-terms is not 
closed under β-reduction.

  (λxe .y e→e→t xx )(ze→ewe )→β y(zw )(zw )



A formal definition of 
graph(M)

   λy exe .∧ t→t→t (X
1
e→e→t yx )(X

3
yx )

A formal definition of the hypergraph associated with an almost linear λ-term.
The input may have to be β-expanded first.
The graph of a constant or variable of type α has |α| nodes, all of which are external.



For Mα→βNα, the last |α| external nodes of graph(M) are identified with the external nodes of 
graph(N).
The new external nodes are the remaining external nodes of graph(M).



The edges labeled by the same variable (and the nodes they attach to) are also merged.
Such a variable is atomic-typed.



The nodes that the abstracted variable attaches to are appended to the list of external nodes.



   M = λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))
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principal typing

The construction of the graph gives a principal typing (i.e., most general typing).



Typed λ-calculus

• If M is typable, M has a unique principal 
typing.

• Subject Reduction:

General facts of importance.
All other typings are instantiations of the principal typing.



Pure linear λ-terms

• The principal typing of an affine λ-term is 
balanced.

• If M has a balanced typing, it is affine.

Belnap 1976

Hirokawa 1992

Many properties of linear λ-terms carry over to almost linear.
Linear = affine + λI
“Balanced” means that there is at most one positive and at most one negative occurrence of 
any atomic type.



Pure linear λ-terms

• Coherence Theorem.  All inhabitants 
of a balanced typing are βη-equal.

Babaev and Solov’ev 1979



Pure linear λ-terms

• Subject Expansion Theorem. 

non-erasing
non-duplicating Hindley

β



Pure almost linear λ-terms

• The principal typing of an almost affine λ-
term is negatively non-duplicated.

• If M has a negatively non-duplicated typing, 
it is βη-equal to an almost affine λ-term.

Aoto 1999

   M = λuv .∃(e→t )→t (λy .∧ t→t→t (uy )(vy ))

Almost linear = almost affine + λI
“Negatively non-duplicated” means that there is at most one negative occurrence of any 
atomic type.



Pure almost linear λ-terms

• Coherence Theorem.  All inhabitants 
of a negatively non-duplicated typing are 
βη-equal.

Aoto and Ono 1994



Pure almost linear λ-terms

• Subject Expansion Theorem. 

• The leftmost reduction from an almost 
affine λ-term is almost non-duplicating.

non-erasing
almost non-duplicating

  (λw .(λx .yxx )(wz))(λv .v )

  (λw .y(wz)(wz))(λv .v )  (λx .yxx )((λv .v )z)
ββ

A reduction is “almost non-duplicating” if any duplicating contraction involves λ binding an 
atomic typed variable.



yes!



no!

A tricky case.



yes!



• Given an input λ-term, find the most compact 
term graph (≈ fully collapsed form) representing 
it.

• This graph represents a pure almost linear λ-term.

Reduction to Datalog

The two occurrences of John are identified, but not the two occurrences of ∧.



• (database(M′), query(M′)) represents a set of λ-terms.

• All elements of L are βη-equal by Aoto and Ono’s 
Coherence Theorem.

• This set contains all almost linear λ-terms that β-reduce to 
|M′|β by the Subject Expansion Theorem.

• But this is not enough!

Reduction to Datalog

    

L = { ′N | ∃ : (4 → 2)→1,∧
1
: 3→ 5→ 2,unicorn : 4 → 3,

∧
2

: 6 → 8 → 5, find : 6 → 7 → 5, John : 7 |− ′N :1}

  

∃(1,2,4).

∧(2,5,3).

unicorn(3,4).

∧(5,8,6).

find(6,7,4).

John(7).

catch(8,7,4).

 ?− S(1).



• (database(M′), query(M′)) represents a set of λ-terms.

• Since M′ is the most compact almost linear λ-term such 
that M′θ ↠β M (where θ is the substitution that gives back 
the original constants), for every almost linear N such that 
N ↠β M, there is an N′∈ L such that N′θ = N.

Reduction to Datalog

    

L = { ′N | ∃ : (4 → 2)→1,∧
1
: 3→ 5→ 2,unicorn : 4 → 3,

∧
2

: 6 → 8 → 5, find : 6 → 7 → 5, John : 7 |− ′N :1}

  

∃(1,2,4).

∧(2,5,3).

unicorn(3,4).

∧(5,8,6).

find(6,7,4).

John(7).

catch(8,7,4).

 ?− S(1).





A Datalog derivation tree determines a grammar derivation plus a typing of the associated λ-
term.





Limitations



Regular sets as input

• For a linear grammar G, (database(A), 
query(A)) representing a finite (string or 
tree) automaton can be used with 
program(G).



Regular sets as input

• For a tree generating almost linear 
grammar G, (database(A), query(A)) 
representing a deterministic bottom-up 
finite tree automaton A can be used with 
program(G).

- PMCFG recognition via PMRTG

- generation from regular sets as 
underspecified representations


