The Copying Power of
VVell-Nested Multiple
Context-Free Grammars

Makoto Kanazawa, NI, Tokyo, Japan
Sylvain Salvati, LaBRI, Bordeaux, France

Mlelge
/

MCFGwn
.

CFL

{Lo|{whHw|welo}e L} copyingpower

This talk is about multiple context-free grammars.
More specifically, about a restricted subclass consisting of “well-nested” MCFGs.

We want to understand the effect of the restriction on the class of generated languages.
We characterize the “copying power” of MCFGwn.

First introduce MCFG, then motivate well-nestedness.

Context-Free Grammar

A = BC
BAYy=BBCy

L(G)={we2*|S=Fw}

MCFG is a natural extension of CFG.
The standard interpretation of CFG rules: rewriting instructions.

Nonterminals as
Predicates

A — BC
A(xy) < B(x), C(y) Horn clause

nonterminals = unary predicates on strings

L(G) ={weZ*|GF Sw))

This rule says “if B derives x and C derives y, then A derives xy”.
Nonterminals can be interpreted as unary predicates on strings.

Nonterminals as
Predicates

A(xiyi, x2y2) < B(xi,x2), C(y1,y2) Horn clause

nonterminals = k-ary predicates on strings

L(G) ={weZ*|GF Sw))

In MCFG, nonterminals are k-ary predicates on strings.

S(XI#XZ)%A(XI,XZ) {W#W‘WEDl*}
A(E, €)

Axy; X,Y,) < B(x;, X,), Aly,»¥,) S(aababb#aababb)
B(aXIb’aXZb) S A(XI’XZ) |

A(aabab, aabab)
= /\
yRulel e B(aababb,aababb) A(g, €)
|
A(abab,abab)
/\
B(ab,ab) A(ab, ab)
| /\
A(g,€) B(ab,ab) A(g,e)
|
A(g, €)

This is an example of a 2-MCFG.

An m-MCFG allows nonterminals to take up to m arguments.
An example of a derivation tree.

Multiple Context-Free
Grammar

A(Xi,..., &m) < B(xi,..., xp),..., D(z1,..., Zr)

® FEach variable occurs at most once in Xj...0m

® nonterminal X = dim(X)-ary predicate on strings

e dim(S) = |

LG) ={weZ*|GF Sw))

restricted type of elementary formal systems (Smullyan 1961)

MCFGs are a natural extension of the Horn clause program view of CFGs.

Multiple Context-Free
Grammar

® |ntroduced by Seki, Matsumura, Fujii, and
Kasami (1987-1991)

® |ndependently by Vijay-Shanker, Weir, and
Joshi (1987)

® Generalization of TAG (Joshi, Levy, and
Takahashi 1977)

Vijay-Shanker et al. called an MCFG an “LCRFS”.
TAG = Tree Adjoining Grammar.

{whw |w e D’} { a"b"c"d" | m,n = 0}

S(x1#x2) « A(xi, x2) S(x1x2) < A(xi, x2)

A(x1y1, x2y2) A(axi, cx2) + A(xi, x2)
— B(x1,x2), A(y1,y2) A(xib, x2d) < A(xi, x2)

B(axib, axab) < A(xi,x2) A(E, €) +

A(E, €) «

2-MCFG 2-MCFG

“non-branching”

The previous example and a new example.
The new example is “non-branching”.

{a’...a] |n=20}

S(X1...xm) + A(x1, ...,.Xm)
A(GIXIGZ,..., GZm—IXmGZm) S A(XI,..., Xm)
A(E,...,E) <

m-MCFG

non-branching

Another non-branching MCFG.

MCFL Hierarchy

MCFL = | Jm-MCFL

m2>|

{al”...a;(mH) 'n=>0)}

{w™! | w e {a,b}*}

This is an infinite hierarchy.
TAL is the class of languages generated by Tree Adjoining Grammars.

Complexity of
Recognition

fixed language recognition | universal recognition

CFG LOGCFL-complete P-complete
TAG LOGCFL-complete P-complete
m-MCFG LOGCFL-complete NP-complete (m=2)

PSACE-complete/

MCFG LOGCFL-complete EXPTIME-complete

Satta 1992, Kaji, Nakanishi, Seki, and Kasami 1992

Tabular recognition algorithms similar to CYK are easy to devise.

Mildly Context-Sensitive
Grammar Formalism

® Properly extends CFG
® Polynomial-time parsable

® Semilinear

{YPWw) |wel} Parikh image
W) = (|Wla,....|wl2)

Al

Aravind K. Joshi

® Exhibits limited cross-serial
dependencies

An informally defined notion of a “mildly context-sensitive grammar formalism”.
The notion of “cross-serial dependency” comes from linguistics.

Cross-Serial
Dependencies

that Charles lets Mary help Peter

dal3 der Karl die Maria dem Peter schwimmen helfen lal3t

dat Karel Marie Piet Jan laat helpen zwemmen

dass de Karl d’'Maria em Peter laat halfe schwume H

Dependencies between verbs and objects are nested in English and German, but are cross-
serial in Dutch and Swiss German.

English/German

that Charles lets Mary help Peter to swim

schwimmen helfen laf3t

15
Dependencies between verbs and objects are like pairs of (nested) parentheses in English and
German.
This type of dependency is adequately handled by CFGs.

Dutch/Swiss German

dat Karel Marie Piet Jan laat helpen zwemmen

dass de Karl d’'Maria em Peter laat halfe schwume H

16

Dependencies between verbs and objects are not like pairs of (nested) parentheses in Dutch
and Swiss German.

Swiss German

dass de Karl d’'Maria em Peter laat halfe schwume H

Acc.

fambrend | mn=>1}eCFL
Shieber 1985

The pairing of verbs and objects can be clearly seen in Swiss German.
em Peter is dative, de Hans is accusative

Intersection with a regular set + homomorphism takes Swiss German to a non-CFL.

Limited Cross-Serial
Dependencies

“MCSGs capture only certain kinds of
dependencies, such as nested dependencies and
certain limited kinds of crossing dependencies (for
example, in subordinate clause constructions in
Dutch or some variations of them, but perhaps not
in the so-called MIX ... language ...)”

Joshi,Vijay-Shanker, and Weir 1991

MIX ={w e {a,b,c}* | IW|a = |W|p = |W|c }

The language MIX was supposed to be outside of the class mildly context-sensitive
languages.

Convergence of Mildly Context-
Sensitive Grammar Formalisms

MCFG=MCTAG=HR

= OUT(DTWT)
LOGCFL
= yDTfC(REGT) = LUSCG
=MG= ACG2
CFL

T TAG=CCG=LIG=HG

Joshi,Vijay-Shanker, and Weir 1991

19

The “convergence of mildly context-sensitive ...” originally referred to TAG, CCG, LIG, HG, but

in retrospect, the convergence at the level of MCFL is more robust.
A greater number of equivalent formalisms, more diverse.

MCFG = “mildly context-sensitive™!

“The class of mildly context-sensitive languages

seems to be most adequately approached by

[MCFGs].”
Groenink 1997

A near-consensus has emerged, identifying “mildly context-sensitive” with MCFG.
But this consensus has recently been called into question.

Yet another point of convergence

MCFG = MCTAG = HR

= OUT(DTWT)
LOGCFL
= yDT _(REGT) =LUSCG
=M (C= ACG(“)
«— MCFG = CCFG=Macro
CFL = ACG

T P S R T 1 T T2

Well-nested MCFGs are equivalent to coupled-context-free grammars, non-duplicating
macro grammars, and a subclass of second-order abstract categorial grammars

Well-nested MCFGs

S(X|y|X2y2) A A(X|’X2)’B(y|’y2)
|

S(xlyll’yzx2) A(xI X,), B(yI Y,)

C(T'yﬁ P R WL I VAR ARY,

C(zx,x,z,yy,z,) < A(x,x,),B(y,y,).C(z,2,,2,)
s i

Cf. Kuhlmann 2007

Assume all rules are “non-permuting” (xi appears before xj if i < j).

{wiw |w e D }

S(x1#x2) « A(xi, x2)

A(x1y1, x2y2)
— B(x1, x2), A(y1,y2)

B(axib, ax2b) « A(xi, x2)
A(E, €) «

2-MCFG

non-well-nested

The first example is not well-nested.
The second example is.

{ a"b"c"d" | m,n = 0}

S(x1x2) < A(x1, x2)
A(axi, cx2) < A(xi, x2)
A(x1b, x2d) < A(x1, x2)
A(E, €) «

2-MCFG

“non-branching”

well-nested

{a’...a] |n=20}

S(X1...xm) + A(x1, ...,.Xm)
A(GIXIGZ,..., GZm—IXmGZm) S A(XI,..., Xm)
A(E,...,E) <

m-MCFG

non-branching

well-nested

The third example is well-nested.

Two infinite hierarchies

@AL @AL

MCFL = | Jm-MCFL MCFL = Jm-MCFL

m2>l| m2>|

2-MCFLwn coincides with TAL.

m-MCFL vs. m-MCFLw,

RESP, = {aa.b’bla,a.blb! |i,j 20} Weir 1989

| 271 2 3 4 3 4

RESP, € 2-MCFL —2-MCFL__ Seki et al. 1991

RESPe=dagblh ag bl bloliiz0l

[e2ailias) v i) k| ss i m = 2ing

RESPm c m-MCFL — m-MCFLWn form=2
Seki and Kato 2008

RESP € 2m-MCFL__

m-MCFL and m-MCFLwn have many languages in common, but are of course different.
Separation is easy at each level.

Complexity of

Recognition

fixed language recognition | universal recognition

CFG LOGCFL-complete P-complete

m-MCFGwn LOGCFL-complete P-complete
m-MCFG LOGCFL-complete NP-complete (m=2)

MCFGwn LOGCFL-complete 4
PSACE-complete/

MCFG LOGCFL-complete EXPTIME-complete

The complexity of universal recognition doesn’t go up for well-nested m-MCFGs.

An m-MCFLwn is 2m-iterative

L € m-MCFLwn

\

For all but finitely many z € L,
Z = Uoviui...vamUam
IVi...vam| = |

uovl’ul...v' plaagacals

2m 2m

Kanazawa 2009

A natural generalization of the Pumping Lemma for CFL.
It is not known whether every m-MCFL is 2m-iterative.

An m-MCFL is weakly 2m-iterative.

MCFGwn = “mildly context-sensitive™?

2-MCFL
 —MIX

Salvati, in preparation

2-MCFLwx

MIX ={w e {a,b,c}* | IW|a = |W|p = |W|c }

MIX was supposed to be not mildly context-sensitive.
There is a simple 2-MCFG for MIX (not at all obvious).

Probably not a 2-MCFLwn, but not known.

MCFL vs. MCFLwx

MIX?

{a’...a 'n=>0}

{w™! | w e {a,b}*}

RESP, Staudacher 1993
Michaelis 2005

R R
{W...WZWZ D ZWZ W ... W ‘
I n n n R P By n

n—| °

n & N,W’. = {C’d}+’zn°°°zo < D|*}

MCFL - MCFLwn was not well-understood before.
Only one example in the literature shown to be in MCFL - MCFLwn.

MCFL vs. MCFLwx

{wiwiw |w € D'}

MIX? /

Engelfriet and Skyum 1976

{a’...a 'n=>0}

{w™! | w e {a,b}*}

®
RESPr, Staudacher 1993
Michaelis 2005
{w..wzwz ..zwzw ..w|

n & N,W’. = {C’d}+’zn°°°zo < D|*}

One more example, using Engelfriet and Skyum’s theorem.
These languages are in 3-MCFL.

Copying Theorem for Ol

Engelfriet and Skyum 1976
{wiwiw |w € Lo } € OI

L]

{whwitw | w e Lo } € EDTOL

L]

Lo € EDTOL

Di* ¢ EDTOL == { wiw#w | w € D* } Ol 5> MCFLun
Rozoy 1987

Ol = Ol macro languages = indexed languages
MCFLwn = non-duplicating macro ¢ 10 n Ol

EDTOL = output languages of certain type of string-to-string transducers

Copying power of
MCFG

For every k=1,

Lo € m-MCFL = { w(#w)<! | w € Lo } € km-MCFL

{ whwhw | w € Di* } € 3-MCFL — MCFLuwn

Copying power of
MCFG

For every k=1,

Lo € m-MCFL = { w(#w)<! | w € Lo } € km-MCFL

{ whwhw | w € Di* } € 3-MCFL — MCFLuwn

?
{ whw | w € D* } € 2-MCFL — MCFLwn

{ whwhw | w e Lo} € Ol

L]

{whwitw | w e Lo } € EDTOL

L]

Lo € EDTOL

Engelfriet and Skyum’s “Triple Copying Theorem” for Ol

{wiw |we Lo} e Ol

| o X

{whw |we Lo} € EDTOL

t ¥

Lo € EDTOL

“Double Copying Theorem” for OI?

Double Copying
Theorem for MCFLwn

{ whw | w € Lo} € MCFLwn

L]

{whw |w e Lo } € EDTOLRN

L]

Lo € EDTOLAN

Double Copying
Theorem for MCFLwn

{ whw | w € Lo} € MCFLwn

L]

{whw |we Lo} e MCFL(I)

L]

Lo € MCFL(1)

EDTOLHN = MCFL(|)

non-branching

SC u w H x v)

A()
B() C()

A derivation tree with an instance of a branching rule.
The blue regions and the green regions can vary independently.

S(C u wH x v)

e mhitas

B(,) i) Al s

I j—I =
nj j+H
rt's #r t''s
J fucsap ikl j+
n. n
j+2 q+l
rj+2t S]+2’ ’rq+lt Sq+l)

b 2
uw = Xxverts

Whenever A(...) is derived using this branching rule, it has one of these special forms.
Can easily write a non-branching MCFG deriving these.

Double Copying
Theorem for MCFLwn

{ whw | w € Lo} € MCFLwn

L]

{whw |we Lo} e MCFL(I)

L]

Lo € MCFL(1)

EDTOLHN = MCFL(|)

non-branching

MCFL vs. MCFLwx

{whw |w e D}
{wiwiw |w € D'}

Engelfriet and Skyum 1976

{a’...a 'n=>0}

{w™! | w e {a,b}*}

®
RESPr, Staudacher 1993
Michaelis 2005
{w..wzwz ..zwzw ..w|

neN,w e{cd},z ...z, €D}

With our theorem, we can see 2-MCFL - MCFLwn # @.
Improves known results.

