
MIX Is Not a Tree-
Adjoining Language

Makoto Kanazawa
NII, Tokyo

Sylvain Salvati
LaBRI/INRIA Bordeaux

1

MIX = { w ∈ {a,b,c}* | |w|a = |w|b = |w|c }

2

This talk is about one little language called MIX.
It consists of all strings over {a,b,c} that contain the same number of occurrences of each
letter.

CFL

TAL

anbn

anbncn

anbncndn

anbncndnen

MIX

MIX ∉ TAL

3

We prove that MIX is not a tree-adjoining language.

“TAGs cannot generate this language, although
for TAGs the proof is not in hand yet.”

Joshi 1985

Joshi’s Conjecture

4

The non-membership of MIX in TAL was conjectured by Joshi almost 30 years ago.
He was confident at the time.

“It is not known whether TAG … can generate
MIX. This has turned out to be a very difficult
problem.”
 Joshi, Vijay-Shanker, and Weir 1991

Multiple Context-free Grammars

Mildly context sensitive formalism and Multiple Context Free Languages

Joshi’s notion of mildly context sensitivity

Further formalization of limited cross-serial
dependencies

I Joshi, Vijay Shanker, Weir (1991)

5

Six years later, the confidence seemed to have faded.

MIX ∩ a*b*c* = { anbncn | n ≥ 0 } ∉ CFL

Pumping Lemma

MIX ∩ R = ? ∉ TAL

Pumping Lemma for TAL×
TAL

anbncn

anbncndn

anbncndnen

MIX

6

Of course, the interest in the question comes from the fact that it was not obvious how to
prove it.
The pumping lemma for TAL almost certainly cannot be used to prove that MIX is not in TAL.

“[No human language] has … complete
freedom for order.” Bach 1981

“[MIX represents] an extremely case of the
degree of free word order permitted in a
language … which is linguistically not
relevant.” Joshi 1985

“… it seems rather unlikely that any
natural language will turn out to have a
MIX-like characteristic.” Gazdar 1985

MIX and Free Word Order

7

A couple of respects in which MIX is not like a natural language.
1. Completely free word order.

MIX = { w ∈ {a,b,c}* | |w|a = |w|b = |w|c }

MIXk = { w ∈ {a1,…,ak}* | |w|a1 = ⋯ = |w|ak }

∀k(MIXk ∈ TAL) ⇒ ∀L(L ∈ TAL ⇒ Pem(L) ∈ TAL)

permutation closure

8

Generalization of MIX.
For TAL, the premise is of course false, but any family of languages that is a “rational cone” or
“full trio” and is included in the class of semilinear languages has this property.

“MCSGs capture only certain kinds of
dependencies, such as nested dependencies and
certain limited kinds of crossing dependencies
(for example, in subordinate clause constructions
in Dutch or some variations of them, but perhaps
not in the so-called MIX … language …)”

Joshi, Vijay-Shanker, and Weir 1991

MIX Is Not Mildly CS?

Multiple Context-free Grammars

Mildly context sensitive formalism and Multiple Context Free Languages

Joshi’s notion of mildly context sensitivity

Further formalization of limited cross-serial
dependencies

I Joshi, Vijay Shanker, Weir (1991)

9

2. Exhibits “unlimited (?) cross-serial dependencies”.
Joshi et al. 1991 suggested MIX should be excluded from the class of mildly context-
sensitive languages because of this property.

Mildly Context-Sensitive
Languages

• Polynomial-time recognition

• Semilinearity/constant growth

• Exhibits limited cross-serial dependencies

Joshi 1985

10

Three defining conditions of mild context-sensitivity.

MIX ∈ 2-MCFL

CFL

TAL

anbn

anbncn

anbncndn

anbncndnen

MIX

2-MCFL

Sylvain Salvati 2011

11

Surprisingly, MIX is the language of a 2-multiple context-free grammar or linear context-free
rewriting system of fanout 2.
Very difficult proof using algebraic topology.

CFL

TAG ≡ HG

anbn

anbncn

anbncndn

anbncndnen

MIX

MIX ∉ TAL

Vijay-Shanker and Weir 1994
12

We use the formalism of head grammar, known to be equivalent to TAG.

Head Grammar

A(x1x2y1, y2) ← B(x1, x2), C(y1, y2)

A(x1, x2y1y2) ← B(x1, x2), C(y1, y2)

A(x1y1, y2x2) ← B(x1, x2), C(y1, y2)

A(w1, w2) ← (wi ∈ Σ∪{ε})

left concatenation

right concatenation

wrapping

L(G) = { w1w2 | ⊢G S(w1, w2) }

Pollard 1984

special kind of 2-MCFG or LCFRS(2)

13

Introduced by Pollard, modified by Roach.
Nonterminals stand for binary relations on strings.
A grammar is a kind of logic program on strings.
Just three operations on pairs of strings.

7(\\\�]]]�,]]]�\\\�)← ((\\\�, \\\�),'(]]]�,]]]�)
'(ε,#)←
((ε, ε)←
((\\\�]]]�,]]]�\\\�)← *(\\\�, \\\�),((]]]�,]]]�)
*(\\\�]]]�,]]]�\\\�)← %(\\\�, \\\�),)(]]]�,]]]�)
%(E, E)←
)(\\\�]]]�,]]]�\\\�)← ((\\\�, \\\�),%′(]]]�,]]]�)
%′(Ē, Ē)←

7(EEĒĒEĒ,#ĒEĒĒEE)
((EEĒĒEĒ, ĒEĒĒEE)

*(EEĒĒ, ĒĒEE)
%(E, E))(EĒĒ, ĒĒE)

((EĒ, ĒE)
*(EĒ, ĒE)

%(E, E))(Ē, Ē)
((ε, ε) %′(Ē, Ē)

((ε, ε)
%′(Ē, Ē)

((EĒ, ĒE)
*(EĒ, ĒE)

%(E, E))(Ē, Ē)
((ε, ε) %′(Ē, Ē)

((ε, ε)

'(ε,#)

{[#[6 ∣ [∈ (� }

14

An example of a head grammar (kind of synchronous CFG).
All non-terminating rules are wrapping rules.

7(\\\�]]]�,]]]�\\\�)← ((\\\�, \\\�),'(]]]�,]]]�)
'(ε,#)←
((ε, ε)←
((\\\�]]]�,]]]�\\\�)← *(\\\�, \\\�),((]]]�,]]]�)
*(\\\�]]]�,]]]�\\\�)← %(\\\�, \\\�),)(]]]�,]]]�)
%(E, E)←
)(\\\�]]]�,]]]�\\\�)← ((\\\�, \\\�),%′(]]]�,]]]�)
%′(Ē, Ē)←

{[#[6 ∣ [∈ (� }

HG ≡ well-nested 2-MCFG

7(\\\�]]]�, \\\�]]]�)← ((\\\�, \\\�),'(]]]�,]]]�)
'(ε,#)←
((ε, ε)←
((\\\�]]]�, \\\�]]]�)← *(\\\�, \\\�),((]]]�,]]]�)
*(\\\�]]]�, \\\�]]]�)← %(\\\�, \\\�),)(]]]�,]]]�)
%(E, E)←
)(\\\�]]]�, \\\�]]]�)← ((\\\�, \\\�),%′(]]]�,]]]�)
%′(Ē, Ē)←

{[#[∣ [∈ (� }

non-well-nested 2-MCFG

15

String operations used in HG are “well-nested”.

∃G ∈ HG(L(G) = MIX)

∃n∀w ∈ MIX(w has n-decomposition)

∀w ∈ MIX(w has 2-decomposition)

a5b14a19c29b15a5 has no 2-decomposition.

16

Outline of the proof

A(u1v1, v2u2)

B(u1, u2) C(v1, v2)

S(w1, w2)

(u1v1, v2u2)

(u1, u2) (v1, v2)

(w1, w2)

derivation of w1w2 decomposition of w1w2

17

A decomposition is similar to an HG derivation but independent of any grammar.
Any HG derivation can be turned into a decomposition by stripping off nonterminals.

(u1v1, v2u2)

(u1, u2) (v1, v2)

(w1, w2)

decomposition of w

w1w2 = w

left concatenation/
right concatenation/

wrapping

(s1, s2) s1s2 ∈ {a,b}*∪{a,c}*∪{b,c}*

18

Formally, a decomposition is a binary tree whose nodes are labeled by pairs of strings.
Every HG derivation of w gives a decomposition of w.

(v1, v2)

n-decomposition of w

ψ(v1v2) ∈ [–n, n]×[–n, n]

ψ1(v) = |v|a – |v|c

ψ2(v) = |v|b – |v|c

ψ(v) = (ψ1(v), ψ2(v))

n

n–n

–n

O

19

The parameter n measures how unbalanced the occurrence counts of the three letters can be
at any node in a decomposition.

ψ1(v) = |v|a – |v|c

ψ2(v) = |v|b – |v|c

ψ(v) = (ψ1(v), ψ2(v))

w ∈ MIX ⇔ ψ(w) = (0, 0)

u0v1u1v2u2, u0v1ʹu1v2ʹu2 ∈ MIX ⇒ ψ(v1v2) = ψ(v1ʹv2ʹ)

20

Properties of the function ψ

∃G ∈ HG(L(G) = MIX)

∃n∀w ∈ MIX(w has n-decomposition)

∀w ∈ MIX(w has 2-decomposition)

a5b14a19c29b15a5 has no 2-decomposition.

21

Prove the first implication.

S(w1, w2) S(w1ʹ, w2ʹ)

A(v1, v2) A(v1ʹ, v2ʹ)

⊢G A(v1, v2), ⊢G A(v1ʹ, v2ʹ) ⇒ ψ(v1v2) = ψ(v1ʹv2ʹ)

Suppose L(G) = MIX.

22

Whenever the same nonterminal holds of two pairs of strings, their ψ value is the same.

A(v1, v2)

S(w1, w2)

(v1, v2)

(w1, w2)

Let n = max{ ‖ψ(v1v2)‖∞ | ⊢G A(v1, v2) for some A }.

{ ψ(v1v2) | ⊢G A(v1, v2) for some A } ⊆ [–n, n]×[–n, n]

ψ(v1v2) ∈ [–n, n]×[–n, n]
23

A head grammar G determines the value of n.
Every decomposition that comes from a derivation according to G is an n-decomposition.

∃G ∈ HG(L(G) = MIX)

∃n∀w ∈ MIX(w has n-decomposition)

∀w ∈ MIX(w has 2-decomposition)

a5b14a19c29b15a5 has no 2-decomposition.

✓

24

The first implication done.
Now prove the second implication.

γn(a) = an

γn(b) = bn

γn(c) = cn

homomorphism

a bw =

m=|w|

a a b bγn(w) =
n n n

1 2 m
m blocks of size n

25

The proof uses a homomorphism that repeats each letter n times.

n-decomposition of γn(w)

(u1v1, v2u2)

(u1, u2) (v1, v2)

2n-decomposition of γn(w)

(u1ʹv1ʹ, v2ʹu2ʹ)

(u1ʹ, u2ʹ) (v1ʹ, v2ʹ)

a a c c c cb b b bγn(w)

u1 v1

a a c c c cb b b bγn(w)

u1ʹ v1ʹ
26

The goal is to show that w ∈ MIX has a 2-decomposition.
Start with an n-decomposition of γn(w).
Turn it into a “neat” decomposition.
Primed strings start and end at block boundaries.

a a a a

b b b b

c c c c

a a a a

b b b b

c c c c

(+,0)

(0,+)

(–,0)

(0,–)

u1

(+,+) (–,–)

a a a a

b b b b

c c c c

a a a a

b b b b

c c c c

(+,0)

(0,+)

(–,0)

(0,–)

u2

(+,+) (–,–)

ψi(u1ʹ)–ψi(u1) ∈ [–n+1, n–1] ψi(u2ʹ)–ψi(u2) ∈ [–n+1, n–1]

27

The “unbalancedness” may increase after the transformation.

ψ(u1u2) ∈ [–n, n]×[–n, n]

ψ(u1ʹu2ʹ) ∈ [–3n+2, 3n–2]× [–3n+2, 3n–2]

u1ʹ u2ʹ

ψ(u1ʹu2ʹ) ∈ [–2n, 2n]× [–2n, 2n]

ψ(u1ʹu2ʹ) = (pn, qn)

ψi(u1ʹu2ʹ)–ψi(u1u2) ∈ [–2n+2, 2n–2]

28

2n-decomposition of γn(w) 2-decomposition of w

(u1ʹv1ʹ, v2ʹu2ʹ)

(u1ʹ, u2ʹ) (v1ʹ, v2ʹ)

γn
–1

29

Invert the homomorphism γn and obatin a 2-decomposition of w.

∃G ∈ HG(L(G) = MIX)

∃n∀w ∈ MIX(w has n-decomposition)

∀w ∈ MIX(w has 2-decomposition)

a5b14a19c29b15a5 has no 2-decomposition.

✓
✓

30

a5b14a19c29b15a5 has no 2-decomposition.

a5

b14

a19

c29

b15

a5

ba c

•computer verification

•mathematical proof

31

Can show this in two ways.
Computer program is available from my web site.
There’s no easy way to explain the mathematical proof.

a5b14a18c28b14a5 has a 2-decomposition.

a5

b14

a19

c29

b15

a5

c28

a18

b14

32

We believe our counterexample is minimal.
A slight modification leads to a 2-decomposable string.

a5b14a18c28b14a5 has a 2-decomposition.

a5

b14

a19

c29

b15

a5

c28

a18

b14

(a5b14a18c28, b14a5)

(a3b14a18c28, b14a5)

(a3b14a18c26, b10a5)

(a2, ε)

(c2, b4)

(ab14a18c26, b10a5)(a2, ε)

(c2, b2)(ab14a18c24, b6a5)

(b14a18c24, b6a4)(a, a)

(b14a18c22, b4a4) (c2, b2)

(c6, b4a4)(b14a18, c16)
left concatenation

33

The “slope” too close to the corner to the right of the origin.

a5b13a18c28b15a5 has a 2-decomposition.

a5

b14

a19

c29

b15

a5

a18

b13

c28

34

Another simplification.

a5b14a18c28b14a4 has a 2-decomposition.

a5

b14

a19

c29

b15

a5

a4 c28

b14

35

Yet another simplification.

1985

1991

2011
2012

Kanazawa and Salvati
MIX is not a tree-adjoining language.

Sylvain Salvati
MIX is a 2-MCFL.
a
a

Joshi, Vijay-Shanker, and Weir
This has turned out to be a very difficult
problem.

Multiple Context-free Grammars

Mildly context sensitive formalism and Multiple Context Free Languages

Joshi’s notion of mildly context sensitivity

Further formalization of limited cross-serial
dependencies

I Joshi, Vijay Shanker, Weir (1991)

Aravind K. Joshi
TAGs cannot generate this language,
although for TAGs the proof is not in
hand yet.

36

Now we know much more about MIX than before.

CFL

TAL

anbn

anbncn

anbncndn

anbncndnen

{w#w|w∈D1}

2-MCFL
MCFLwn = yCFTsp

MCFL

RESP

MIX?6)74 = { EQ� EQ� FR�FR�EQ� EQ� FR�FR� ∣ Q, R ≥ �}
37

MIX belongs to 2-MCFL – TAL.
There are two other such languages.
RESP belongs to MCFLwn.
What about MIX?

