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• Context-sensitive languages are computationally very 
complex.


• There is a huge gap between context-free and context-
sensitive.


• Many intermediate classes of languages have been 
considered in formal language theory.


• In particular, “mildly context-sensitive” grammars have 
been investigated by computational linguists.
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push items onto, pop items from, and copy the stack. What we end up 
with now is no longer equivalent to the CF-PSGs but is significantly more 
powerful, namely the indexed grammars (Aho, 1968). This class of 
grammars has been alluded to a number of times in the recent linguistic 
literature: by Klein (1981) in connection with nested comparative 
constructions, by Dahl (1982) in connection with topicalised pronouns, by 
Engdahl (1982) and Gazdar (1982) in connection with Scandinavian 
unbounded dependencies, by Huybregts (1984) ilDd Pulman and Ritchie 
(1984) in connection with Dutch, by Marsh and Partee (1984) in 
connection with variable binding, and doubtless elsewhere as well. 

Indexed grammars fall in between CF-PSGs and context-sensitive 
grammars in their generative capacity. Every context-free language (CPL) 
is an indexed language (IL), but not conversely. Thus anbnen is an IL, for 
example, but it is not a CPL. And every IL is a context-sensitive language, 
but not conversely. Until recently, there were no good arguments to 
suggest that the natural languages (NLs) fell outside the CFLs (see 
Pullum and Gazdar, 1982, for defense of this claim), but work by Culy 
(1985), Huybregts (1984) and Shieber (1985) does now indicate rather 
strongly that they do. However, no NL phenomena are known which 
would imply that NLs exist which fall outside the indexed class (see 
Gazdar and Pullum, 1985, for a survey). 

Hopcroft and Ullman write that "of the many generalizations of 
context -free grammars that have been proposed, a class called 'indexed' 
appears the most natural, in that it arises in a wide variety of contexts" 
(1979:389). One purpose of the present paper is to make indexed 
grammars more accessible to linguists and computational linguists, and 
more directly relevant to their concerns. It assumes some passive 
competence in mathematical linguistics, but not very much. In accord with 
the purpose just mentioned, I shall present grammars informally as sets of 
rules, rather than as the official n-tuples. The start symbol will always be 
"S" or and the relevant sets of terminals, indices, and nonterminals can 
simply be inferred from looking at what appears in the rules. 

2. THE FORM OF RULES: A STACK-ORIENTED NOTATION 

In exhibiting schematic rules and trees below, I shall maintain a number 
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of orthographic conventions: nonterminal symbols are indicated by upper 
case letters (A, B, C), terminal symbols by lower case letters (a, b, e), 
possibly empty strings of terminals and nonterminals by W, W1, W2, etc., 
indices by lower case italic letters k), and stacks of indices by square 
brackets and periods ([], [ .. ], [i, .. ]) where [i, .. ] is a stack whose topmost 
index is i, [] is an empty, and [ .. ] is a possibly empty stack of indices. As for 
the rules themselves, Aho (1968) uses one notation, and Hopcroft and 
Ullman (1979) use another. The notation used below is essentially just a 
redundant, and intendedly more perspicuous, variant of that employed by 
Hopcroft and Ullman. 

In the standard formulations, an indexed grammar can contain rules of 
three different sorts: 

(1) 1. A[ .. ] -> W[ .. ] 
i 1. A[ .. ] -> B[i, .. ] 
i i.i. A[i, .. ] -> W[ .. ] 

I shall refer to rules that have one or other of these three forms as 
H& U rules. The first type of rule simply copies the stack to all 
nonterminal daughters. The second type of rule pushes a new index onto 
the stack handed down to its unique nonterminal daughter. And the third 
type of rule pops an index off the stack and distributes what is left to its 
nonterminal daughters. In the rules, A and B are nonterminal symbols 
(not necessarily distinct) and W is a string ofterminal and/or nonterminal 
symbols. A compound symbol of the form A[ .. ] means that the 
nonterminalA bears the stack [ .. ]. A compound symbol of the form W[ .• ] 
stands for a string of terminal and/or nonterminal symbols each 
nonterminal symbol-of which bears the stack [ .. ]. Terminal symbols cannot 
bear Thus, if W = BcDe, then W[ •. ] = B[ .. ]e D[ .. ]e. Stacks of 
indices are ,;thus associated with nonterminals and transmitted by rules. 
Indeed, the iLs are exactly characterised by a class of automata known as 
(one-way nondeterministic) nested stack automata (Aho, 1969). The 
indices that make up stacks are drawn from some finite vocabulary though 
the stacks themselves are not bounded in size. Any upper bound on the 
size of stacks restricts the class of grammars to the context-free class. 

The types of.rule shown in (1) are just those permitted in Hopcroft and 
Ullman's defInition of the class of grammars--what I shall refer to as the 
standard definition. Notice that this defInition (a) copies all or most of the 
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stack to all nonterminal . daughters in all rule types, and (b) restricts 
additions to the stack to cases where the mother category has but a single 
daughter. Neither aspect of the definition appears to be essential, and 
things are probably only done that way in order to facilitate doing proofs. 
Suppose we allow the rule types shown in (2) in addition to those listed in 
(1): 

(2) i. 
ii. 
iii. 

A[ .. ] -> WiD B[ .. ] W2D 
A[) -> WiD B[i, .. ] WZp 
A[l, .. ] -> W1[]E[ .. ] W2U 

Rules of type (2.i) would allow the stack to be carried down onto a 
single nonterminal designated daughter, and rules of type (2.ii) and (2.iii) 
would also allow such a designated daughter to have its stack incremented 
or decremented, respectively. As shown in the appendix, permitting such 
additional rule types has no consequences for the class of languages such 
grammars can generate. 

3. SOME EXAMPLE GRAMMARS 

The best way to see how indexed grammars work is to look at an 
example, such as (3), which shows a grammar for aDbD. 

(3) S[ .• ] -> aA[z, .• ] 
A[ .. ] -> aA[a, .. ] 
A[ .. ] -> B[ .. ] 
B[a, .. ] -> bB[ .. ] 
B[z, .. ] -> b 

This looks more complicated than it actually is. All it does is generate 
trees such as that shown in (4): 

I 
I 

.J ... 
":"<'? 
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(4) 51] 

8 

B[z] 
b 

b 

As we go down the tree, nonterminal as are produced, and index as are 
loaded onto the stack. WheD we get to the middle, signalled by the change 
of category from A to B, then nonterminal bs are produced, and index as 
are removed from the stack. The stack thus records how many 
nonterminal as were originally produced, and this record can then be used 
to produce exactly as many nonterminal bs. One slight complication is the 
use of the end-marker index z. This is necessary because the standard 
formulations of index grammars allow a non-empty stack to simply 
disappear if the category the· stack appears on only has terminal 
daughters. We could avoid the need for end-marker indices of this kind by 
requiring that the stack distributed over daughters must be empty when 
every daughter is nonterminal. As shown in the appendix, such a 
constraint would not affect the class of languages generated, but it does 
simplify the formulation of certain kinds of grammar. Thus we could 
simplify the grammar in (3) above by replacing each occurrence of z with 
Q. When I come to discuss certain abstract tree configurations later in the 
paper, I shall simply ignore end-marker indices. 

Notice that (4) is a right-linear (and hence finite state) tree, and that 
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The productions in an Indexed Grammar can be written as (refer [Gazdar 85a], the 

original definition of Indexed Grammars appears in [Aho 68]) 
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nontenninals during derivations. [ .. ] is used to represent the present stack associated 

with a nonterminal. In the first production the parent (th.s of the production) distributes 

copies of its stack to its children after pushing the symbol i at the top of the stack. Thus, 

we can see how the stack information is shared by all the symbols in me right-hand 

of the production. 

In an LIG the productions have the fonn 

.. "'( [ i, .. ] --+ ."'( 1 [] • • •. ,:r j [ .. ] . . .• "'( n [] (pop) or 

LIG differs from IG in that the stack is passed on to only one of the children. [] corre-

sponds to a new but empty stack. The productions of LIG' s can be generalized [0 be of 

the form 
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“Convergence” of Mildly Context-
Sensitive Grammar Formalisms

TAG ≡ LIG ≡ HG

Vijay-Shanker and Weir 1994

TAG: tree-adjoining grammar; LIG: 
linear indexed grammar; HG: head 
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Thue→Post→Chomsky

§    1.    GENERATIVE GRAMMARS AND LINGUISTIC COMPETENCE 9 

ments may provide useful, in fact, compelling evidence for 
such a theory. 

To avoid what has been a continuing misunderstanding, it is 
perhaps worth while to reiterate that a generative grammar is 
not a model for a speaker or a hearer. It attempts to characterize 
in the most neutral possible terms the knowledge of the language 
that provides the basis for actual use of language by a speaker- 
hearer. When we speak of a grammar as generating a sentence 
with a certain structural description, we mean simply that the 
grammar assigns this structural description to the sentence. 
When we say that a sentence has a certain derivation with respect 
to a particular generative grammar, we say nothing about how 
the speaker or hearer might proceed, in some practical or 
efficient way, to construct such a derivation. These questions 
belong to the theory of language use — the theory of per- 
formance. No doubt, a reasonable model of language use will 
incorporate, as a basic component, the generative grammar that 
expresses the speaker-hearer's knowledge of the language; but 
this generative grammar does not, in itself, prescribe the char- 
acter or functioning of a perceptual model or a model of speech 
production. For various attempts to clarify this point, see 
Chomsky (1957), Gleason (1961), Miller and Chomsky (1963), and 
many other publications. 

Confusion over this matter has been sufficiently persistent to 
suggest that a terminological change might be in order. Never- 
theless, I think that the term "generative grammar" is completely 
appropriate, and have therefore continued to use it. The term 
"generate" is familiar in the sense intended here in logic, 
particularly in Post's theory of combinatorial systems. Further- 
more, "generate" seems to be the most appropriate translation 
for Humboldt's term erzeugcn, which he frequently uses, it seems, 
in essentially the sense here intended. Since this use of the term 
"generate" is well established both in logic and in the tradition 
of linguistic theory, I can see no reason for a revision of 
terminology. 

Chomsky 1965

 Tan JouHNL ow SmBouc LOGIC
 Volume 12, Number 1, March 1947

 RECURSIVE UNSOLVABILITY OF A PROBLEM OF THUE

 EMIL L. POST

 Alonzo Church suggested to the writer that a certain problem of Thue [6]'
 might be proved unsolvable by the methods of [5]. We proceed to prove the
 problem recursively unsolvable, that is, unsolvable in the sense of Church [1],
 but by a method meeting the special needs of the problem.

 Thue's (general) problem is the following. Given a finite set of symbols al,

 a2, ... , a, , we consider arbitrary strings (Zeichenreihen) on those symbols,
 that is, rows of symbols each of which is in the given set. Null strings are in-
 cluded. We further have given a finite set of pairs of corresponding strings on

 the ai's, (Al , B1), (A2 , B2), , I (An , B,). A string R is said to be a substring
 of a string S if S can be written in the form URV, that is, S consists of the letters,

 in order of occurrence, of some string U, followed by the letters of R, followed by
 the letters of some string V. Strings P and Q are then said to be similar if Q
 can be obtained from P by replacing a substring Ai or Bi of P by its correspond-
 ent Bi, Ai. Clearly, if P and Q are similar, Q and P are similar. Finally, P
 and Q are said to be equivalent if there is a finite set R1 , R2, * * *, R, of strings on
 a,, * * *, a, such that in the sequence of strings P, R1, R2, ... , RX Q each
 string except the last is similar to the following string. It is readily seen that
 this relation between strings on a,, * * *, a, ,is indeed an equivalence relation.
 Thue's problem is then the problem of determining for arbitrarily given strings

 A, B on al, * * *, a;, whether, or no, A and B are equivalent.
 This problem, at least for the writer, is more readily placed if it is restated

 in terms of a special form of the canonical systems of [3]. In that notation,
 strings C and D are similar if D can be obtained from C by applying to C one
 of the following operations:

 PAiQ produces PBQ, PBQ produces PAQ, i = 1, 2, * , n. (1)

 In these operations the operational variables P, Q represent arbitrary strings
 Strings A and B will then be equivalent if B can be obtained from A by starting
 with A, and applying in turn a finite sequence of operations (1). That is, A
 and B are equivalent if B is an assertion in the "canonical system"2 with primi-
 tive assertion A and operations (1). Thue's general problem thus becomes the
 decision problem for the class of all canonical systems of this "Thue type."

 This general problem could easily be proved recursively unsolvable if, instead
 of the pair of operations for each i of (1), we merely had the first operation of
 each pair.3 In fact, by direct methods such as those of [31, we easily reduce the
 decision problem of an arbitrary "normal system" [3] to the decision problem
 of such a system of "semi-Thue type," the known recursive unsolvability of the

 Received October 26, 1946. Presented to the American Mathematical Society November
 2, 1946.

 1 Numbers in brackets refer to the bibliography at the end of the paper.
 2 Null assertions, however, now being allowed.
 J That is, using the language of propositions instead of operations, if we merely had an

 implication where (1) has an equivalence.
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How did Chomsky come to use semi-
Thue systems as the most general 
type of grammars?

I believe Post (1947) coined the term 
“semi-Thue system”.

Post Canonical Systems
 FORMAL REDUCTIONS OF THE GENERAL COMBINATORIAL

 DECISION PROBLEM.*

 By EMIL L. POST.

 1. Introduction. It is not new to the literature that the usual form of

 a symbolic logic with its parenthesis notation and infinite set of variables can

 be transformed into one in which the enunciations, i. e., formulas of the

 system, are finite sequences of letters,' the different letters constituting a

 once-and-for-all given finite set. If the primitive letters of such a system are

 represented by a,, a2, , ap, an arbitrary enunciation of the system will take
 the form ai, a2* a,, i - 1, 2, 3, , ij 1, 2, , 1. In describing the
 basis of such a system it is convenient to use new letters to represent finite

 sequences of the above primitive letters. If then A, B, * , E represent

 the sequences ai, a 2 . . . a,, aj, aj2 ... aj , * * *, a)t1 a,2 * a., respectively,
 ABR E will represent the sequence ail a 2 **aO aj, aj2 aj.- a,1 am2
 * .* am,,.

 We shall say that such a system is in canonical form if its basis has the

 following structure.2 The primitive assertions of the system are a specified

 finite set of enunciations of the above form. The operations of the system are a
 specified finite set of productionts, each of the following form:

 gllPi'l g12PVt2 91M gmPi'.1 91 ('M+1)

 g2lPi"i g22PV'2 . .2m2Pi"m_2 g2(m2+1)

 P(o) d (e) gkmkP,' (k) ghk

 produce

 gqlPil gXi2P . . . ,q'Mpim ,QM+l'

 * Received November 14, 1941; Revised April 11, 1942.
 'More exactly, "strings" of "marks," to use terms of C. I. Lewis (A Survey of

 Symbolic Logic, Berkeley, 1918: chapter VI, sec. III).

 2 This formulation stems from the "Generalization by Postulation" of the writer's

 "Introduction to a general theory of elementary propositions," American Journal of
 Mathematics, vol. 43 (1921), pp. 163-185 (see p. 176). We take this opportunity to

 make the following Emendation: Lemma 1 thereof (pp. 177-178) requires the added

 condition that the expressions replacing the r's do not involve any letter upon which a

 substitution is made in the given deductive process. This necessitates several minor

 changes in the proof of the theorem there following. Actually, both Lemma 1 and its

 companion Lemma 2 admit of further simplification, with the proof of the theorem then

 being valid as it stands.
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An indexed grammar is an instance of a Post canonical system.



Why Didn’t Chomsky Use Post 
Canonical Systems?

 REDUCTIONS OF TI-IE COMIBINATORIAL DECISION PROBLEM. 199

 the production whenever it contains the enuniciations represelnted by the several
 premises of the prodluction.

 A very special case of the canonical form is what we term the normal

 form. A system in canonical form will be said to be in normal form if it has

 but one primitive assertion, and, ea el of its productions is in the form

 gP

 produces

 Pg'.

 The main purpose of the presenit paper is to demonstrate that every system
 in canonical form can formally be reduced to a system in normal form. The

 two forms may therefore in fact be said to be equipotent.- More precisely, we
 prove the following

 THEOREM. Giver a system in canonical form with primitive letters

 a1, a2 < * , , ap, a system in1 normal form with primitive letters a, a2, , aiu,
 a 1, a'2, * , a' can be set utp such that the assertions of the system in canonical

 form are exactly those assertions of the system in normal formn which involve

 no other letters than al, a2, , ap.

 As a result of this theorem the decision problem for a system in canonical

 form is reduced to the decision problenm for the corresponding systemi in normial

 form. For an enunciation of the former system is an assertion when and only
 when it is an assertion of the latter system. Hence any procedure whiclh could

 effectively determine for an arbitrary enunciation of the system in normal form
 whether it is or is not an assertion thereof would automatically do the same
 for the system in canonical form. Now by methocls such as those referred

 to in the opening sentence of this introduction, it can be shown that the
 problem of determining for an arbitrary well-formed formula in the X-calculus

 of Church whether it has or has not a normnal form (Church) ) can be reduced

 to the decision problem for a particular system in our canonical form. While
 Church has proved the above problenm unsolvable in a certaini technical sense,
 in the interest of economy we invoke his identification of X-definability with

 effective calculability to conclude that as a resuilt the decision problem for that

 particular system in canonical form, and hence for the class of systems in
 canonical form, is unsolvable. We are thus led to the more surprising result

 5 Alonzo Church, " An unsolvable problem of elementary number theory," American
 Journal of Mathematics, vol. 58 (1936), pp. 345-363.
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Post 1947

Perhaps because of this striking 
result?

recursively 
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

linear 
indexed

indexed

Should Context-Free Grammars Be 
Thought of as String Rewriting Systems?

S

NP VP

V NPKim

saw Sandy

S ⇒ NP VP ⇒ Kim VP ⇒ Kim V NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ Kim VP ⇒ Kim V NP ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ Kim V NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP saw NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP V Sandy ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ Kim V NP ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP saw NP ⇒ NP saw Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP V Sandy ⇒ NP saw Sandy ⇒ Kim saw Sandy

It is silly to define well-formed 
sentences in terms of derivations if 
what we really want is to assign tree 
structures to sentences.



Bottom-up Interpretation of Context-
Free Rules

Bi ⇒G* vi (i = 1,…,n)     A → w0 B1 w1 … Bn wn ∈ P
A ⇒G* w0 v1 w1 … vn wn

L(G) = { w ∈ Σ* | S ⇒G* w }

All we need is the subrelation of ⇒G* 

restricted to N × Σ*.

Just a general type of inductive 
definition.

Inductive Definition = CFG Interpreted 
Bottom-up

CFGs as Logic Programs on Strings

A → w0 B1 w1 … Bn wn

A(w0 x1 w1 … xn wn) ← B1(x1),…,Bn(xn)

Horn clause

L(G) = { w ∈ Σ* | G ⊢ S(w) }



Derivation = Proof Tree

S(Kim saw Sandy)

NP(Kim) VP(saw Sandy)

V(saw) NP(Sandy)

G ⊢ S(Kim saw Sandy)

It’s a small step to use n-ary predicates 
for n ≥ 2.

Multiple Context-Free Grammars

A(α1,…,αq) ← B1(x1,1,…,x1,q1),…,Bn(xn,1,…,xn,qn)

n ≥ 0, q, qi ≥ 1,

αk ∈ (Σ ∪ { xi,j | i ∈ [1,n], j ∈ [1,qi] })*

each xi,j occurs exactly once in (α1,…,αq)

• q = dim(A) (dimension of A)

• dim(S) = 1

• L(G) = { w ∈ Σ* | G ⊢ S(w) }

It’s best to think of an MCFG as a kind 
of logic program.

Each rule is a definite clause.

Nonterminals are predicates on strings.

S(x1#x2) ← D(x1, x2)
D(ε, ε) ← 

D(x1y1, y2x2) ← E(x1,x2), D(y1,y2)
E(ax1ā, āx2a) ← D(x1,x2)

{ w#wR | w ∈ D1* }

S(aaāāaā#āaāāaa)

D(aaāāaā, āaāāaa)

E(aaāā, āāaa)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

2-MCFG

2-ary branching

derivation tree



S(x1…xm) ← A(x1,…,xm)
A(ε,…,ε) ← 

A(a1 x1 a2,…,a2m−1 xm a2m) ← A(x1,…,xm)

non-branching m-MCFG

{ a1n a2n … a2m−1n a2mn | n ≥ 0 }m-MCFL
(m−1)-MCFL

2-MCFL

=

CFL

1-MCFL

Seki et al. 1991

MCFGs as Logic Programs on Strings

Annius Groenink
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word order and tractability issues in natural language analysis

Surface without Structure



Elementary Formal Systems

Smullyan 1961

Elementary Formal Systems

“Elementary Formal Systems can be looked at as variants of 
the canonical languages of Post …. The reason for our choice 
of elementary formal systems, in lieu of Post’s canonical 
systems, is that their structure is more simply described, and 
their techniques are more easily applied. The general notion 
of “production” used in Post systems is replaced by the 
simpler logistic rules of substitution and detachment (modus 
ponens), which are more easily formalized.”

Smullyan 1961

Chomsky Hierarchy
Rewriting 
Systems Machines Logic Programs on Strings Languages

Type 0 Turing Elementary Formal Systems 
(Smullyan 1961) r.e.

Type 1 LBA Length-Bounded EFS (Arikawa 
et al. 1989)

CSL = 
NSPACE(n)

Poly-time 
Turing

Simple LMG (Groenink 1997) / 
Hereditary EFS (Ikeda and 

Arimura 1997)
P

MCFG MCFL
Type 2 PDA Simple EFS (Arikawa 1970) CFL
Type 3 FA Reg
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head

Chomsky on Mathematical 
Linguistics (1979)

Chomsky (2004): Generative Enterprise Revisited

. . .  

. . .  

A long quote, from an interview 
held in the year when Hopcroft and 
Ullman’s textbook was published.

Chomsky on Mathematical 
Linguistics (1979)

Chomsky (2004): Generative Enterprise Revisited

. . .  



Summary
• The four levels of the Chomsky hierarchy are not of equal 

importance.


• The choice of semi-Thue systems as the most general form 
of grammar hampered investigation of some important 
language classes.


• Smullyan’s elementary formal system provides the right 
level of generality and simplicity.


• Bottom-up semantics of rules is basic. 


• Natural generalization of “inductive definitions”.

What is the Significance of Grammar 
Formalisms?

• Abstract conception of grammars.


• Makes possible investigation of algorithmic properties of 
grammars.


• Should have good formal properties (like familiar closure 
properties).


• The choice of a grammar formalism should not be thought 
of as a tight characterization of possible human grammars.


• A grammar formalism does not have explanatory power.


