
What Was Wrong with
the Chomsky Hierarchy?

Makoto Kanazawa

Hosei University

context-
free

Chomsky Hierarchy of Formal
Languages

regular

context-
sensitive

recursively
enumerable

Hopcroft and Ullman 1979

Enduring impact of Chomsky’s work
on theoretical computer science.

15 pages devoted to the Chomsky
hierarchy.

450 INDEX

Carmichael, R. D., 444
Cartesian product, 6, 46
CD-ROM, 349
Certificate, 293
CFG, see Context-free grammar
CFL, see Context-free language
Chaitin, Gregory J., 264
Chandra, Ashok, 444
Characteristic sequence, 206
Checkers, game of, 348
Chernoff bound, 398
Chess, game of, 348
Chinese remainder theorem, 401
Chomsky normal form, 108–111, 158,

198, 291
Chomsky, Noam, 444
Church, Alonzo, 3, 183, 255
Church–Turing thesis, 183–184, 281
CIRCUIT-SAT , 386
Circuit-satisfiability problem, 386
CIRCUIT-VALUE, 432
Circular definition, 65
Clause, 302
Clique, 28, 296
CLIQUE, 296
Closed under, 45
Closure under complementation

context-free languages, non-, 154
deterministic context-free

languages, 133
P, 322
regular languages, 85

Closure under concatenation
context-free languages, 158
NP, 322
P, 322
regular languages, 47, 60

Closure under intersection
context-free languages, non-, 154
regular languages, 46

Closure under star
context-free languages, 158
NP, 327
P, 327
regular languages, 62

Closure under union
context-free languages, 158
NP, 322
P, 322
regular languages, 45, 59

CNF-formula, 302
Co-Turing-recognizable language, 209
Cobham, Alan, 444
Coefficient, 183
Coin-flip step, 396
Complement operation, 4
Completed rule, 140
Complexity class

ASPACE(f(n)), 410
ATIME(t(n)), 410
BPP, 397
coNL, 354
coNP, 297
EXPSPACE, 368
EXPTIME, 336
IP, 417
L, 349
NC, 430
NL, 349
NP, 292–298
NPSPACE, 336
NSPACE(f(n)), 332
NTIME(f(n)), 295
P, 284–291, 297–298
PH, 414
PSPACE, 336
RP, 403
SPACE(f(n)), 332
TIME(f(n)), 279
ZPP, 439

Complexity theory, 2
Composite number, 293, 399
Compositeness witness, 401
COMPOSITES, 293
Compressible string, 267
Computability theory, 3

decidability and undecidability,
193–210

recursion theorem, 245–252
reducibility, 215–239
Turing machines, 165–182

Computable function, 234
Computation history

context-free languages, 225–226
defined, 220
linear bounded automata,

221–225
Post Correspondence Problem,

227–233
reducibility, 220–233

Sipser 2013

No mention of the Chomsky hierarchy.

The same with the latest edition of
Hopcroft, Motwani, and Ullman (2006).

Semi-Thue System/String Rewriting
System

α → βProduction

γαδ ⇒ γβδOne-step rewriting

L(G) = { w ∈ Σ* ∣ S ⇒* w }

Type 0 unrestricted

Type 1 |α| ≤ |β|

Type 2 α ∈ N

Type 3 α ∈ N, β ∈ Σ N

α, β ∈ (N ∪ Σ)*

Language

N: finite alphabet of nonterminal
symbols

Σ: finite alphabet of terminal symbols

context-
free

regular

context-
sensitive

recursively
enumerable

type 0

type 1

type 2

type 3

Turing machines

LBA

PDA

FA

rewriting
systems

machine
models

LBA: linear-bounded automata =
NSPACE(n) Turing machines

PDA: pushdown automata

FA: finite automata

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

PSPACE-complete

Context-sensitive languages are
computationally very complex.

Some context-sensitive languages are
PSPACE-complete.

• Context-sensitive languages are computationally very
complex.

• There is a huge gap between context-free and context-
sensitive.

• Many intermediate classes of languages have been
considered in formal language theory.

• In particular, “mildly context-sensitive” grammars have
been investigated by computational linguists.

Indexed Grammars
Hopcroft and Ullman 1979

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

indexed??

What type of rewriting system is an
indexed grammar??

T → ABC

Tfg ⇒ AfgBfgCfg

Production

One-step rewriting

α → βProduction

γαδ ⇒ γβδOne-step rewriting

Type 0

Indexed

An indexed grammar is not an instance of a type 0 grammar.

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

indexed

NP-complete

Indexed languages are also sort of
complex.

70 GERALD GAZDAR

push items onto, pop items from, and copy the stack. What we end up
with now is no longer equivalent to the CF-PSGs but is significantly more
powerful, namely the indexed grammars (Aho, 1968). This class of
grammars has been alluded to a number of times in the recent linguistic
literature: by Klein (1981) in connection with nested comparative
constructions, by Dahl (1982) in connection with topicalised pronouns, by
Engdahl (1982) and Gazdar (1982) in connection with Scandinavian
unbounded dependencies, by Huybregts (1984) ilDd Pulman and Ritchie
(1984) in connection with Dutch, by Marsh and Partee (1984) in
connection with variable binding, and doubtless elsewhere as well.

Indexed grammars fall in between CF-PSGs and context-sensitive
grammars in their generative capacity. Every context-free language (CPL)
is an indexed language (IL), but not conversely. Thus anbnen is an IL, for
example, but it is not a CPL. And every IL is a context-sensitive language,
but not conversely. Until recently, there were no good arguments to
suggest that the natural languages (NLs) fell outside the CFLs (see
Pullum and Gazdar, 1982, for defense of this claim), but work by Culy
(1985), Huybregts (1984) and Shieber (1985) does now indicate rather
strongly that they do. However, no NL phenomena are known which
would imply that NLs exist which fall outside the indexed class (see
Gazdar and Pullum, 1985, for a survey).

Hopcroft and Ullman write that "of the many generalizations of
context -free grammars that have been proposed, a class called 'indexed'
appears the most natural, in that it arises in a wide variety of contexts"
(1979:389). One purpose of the present paper is to make indexed
grammars more accessible to linguists and computational linguists, and
more directly relevant to their concerns. It assumes some passive
competence in mathematical linguistics, but not very much. In accord with
the purpose just mentioned, I shall present grammars informally as sets of
rules, rather than as the official n-tuples. The start symbol will always be
"S" or and the relevant sets of terminals, indices, and nonterminals can
simply be inferred from looking at what appears in the rules.

2. THE FORM OF RULES: A STACK-ORIENTED NOTATION

In exhibiting schematic rules and trees below, I shall maintain a number

APPLICABILITY OF INDEXED GRAMMARS 71

of orthographic conventions: nonterminal symbols are indicated by upper
case letters (A, B, C), terminal symbols by lower case letters (a, b, e),
possibly empty strings of terminals and nonterminals by W, W1, W2, etc.,
indices by lower case italic letters k), and stacks of indices by square
brackets and periods ([], [..], [i, ..]) where [i, ..] is a stack whose topmost
index is i, [] is an empty, and [..] is a possibly empty stack of indices. As for
the rules themselves, Aho (1968) uses one notation, and Hopcroft and
Ullman (1979) use another. The notation used below is essentially just a
redundant, and intendedly more perspicuous, variant of that employed by
Hopcroft and Ullman.

In the standard formulations, an indexed grammar can contain rules of
three different sorts:

(1) 1. A[..] -> W[..]
i 1. A[..] -> B[i, ..]
i i.i. A[i, ..] -> W[..]

I shall refer to rules that have one or other of these three forms as
H& U rules. The first type of rule simply copies the stack to all
nonterminal daughters. The second type of rule pushes a new index onto
the stack handed down to its unique nonterminal daughter. And the third
type of rule pops an index off the stack and distributes what is left to its
nonterminal daughters. In the rules, A and B are nonterminal symbols
(not necessarily distinct) and W is a string ofterminal and/or nonterminal
symbols. A compound symbol of the form A[..] means that the
nonterminalA bears the stack [..]. A compound symbol of the form W[.•]
stands for a string of terminal and/or nonterminal symbols each
nonterminal symbol-of which bears the stack [..]. Terminal symbols cannot
bear Thus, if W = BcDe, then W[•.] = B[..]e D[..]e. Stacks of
indices are ,;thus associated with nonterminals and transmitted by rules.
Indeed, the iLs are exactly characterised by a class of automata known as
(one-way nondeterministic) nested stack automata (Aho, 1969). The
indices that make up stacks are drawn from some finite vocabulary though
the stacks themselves are not bounded in size. Any upper bound on the
size of stacks restricts the class of grammars to the context-free class.

The types of.rule shown in (1) are just those permitted in Hopcroft and
Ullman's defInition of the class of grammars--what I shall refer to as the
standard definition. Notice that this defInition (a) copies all or most of the

68 STUART M. SHffiBER
2. Robert Berwick and Amy Weinberg. The Grammatical Basis of Linguistic Performance:

Language Use and Acquisition. MIT Press, Cambridge, Massachusetts, 1984.
3. Joan Bresnan, editor. The Mental Representation of Grammatical Relations. MIT Press,

Cambridge, Massachusetts, 1982.
4. Luca Cardelli and Peter Wegner. Understanding types, data abstraction and

polymorphism. Draft paper, 1985.
5. Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, Massachusetts,

1965.
6. Noam Chomsky. Lectures on Government and Binding. Foris Publications, Dordrecht,

Holland, 1982.
7. Steven Fortune, Daniel Leivant, and Michael O'Donnell. The Expressiveness of Simple

and Second Order Type Structures. Research Report RC 8542, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1980.

8. Gerald Gazdar. Phrase Structure Grammar, pages 131-186. D. Reidel, Dordrecht,
Holland, 1982.]

9. Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized Phrase
Structure Grammar. Blackwell Publishing, Oxford, England, and Harvard University
Press, Cambridge, Massachusetts, 1985.

10. Ronald Kaplan. Personal communication, 1985.
11. Martin Kay. Unification Grammar. Technical Report, Xerox Palo Alto Research

Center, Palo Alto, California, 1983.
12. Fernando C. N. Pereira and Stuart M. Shieber. The semantics of grammar formalisms

seen as computer languages. In of the Tenth International Conference on
Computational Linguistics, StanfoId University, Stanford, California, 2-7 July 1984.

13. Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction. In
of the 21st Annual Meeling of the Association for ComputatiolJal Linguistics, pages 137-
144, Massachusetts Institute of Technology, Cambridge, Massachusetts, 15-17 June
1983.

14. Ritchie, Graeme. The Computational Complexity of Sentence Derivation in Functional
Unification Grammar. In Proceedings of the 11th International Conference on
Computational Linguistics, pages 5!W-586, University of Bonn, Bonn, West-Germany,
August 1986.

15. William C. Rounds and Robert Kasper. A Complete Logical Calculus for RecoId
Structures Representing Linguistic Information. In Proceedings of the 15th Annual
Symposium on Logic in Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachussetts, June 1986.

16. Stuart M. Shieber. The design of a computer language for linguistic information. In
Of the Tenth International Conference on Computational Linguistics,

Stanford University, Stanford, California, 2-7 July 1984.
17. Stuart M. Shieber. An Introduction to Unification-Based Approaches to Grammar.

Volume 4 of Lecture Note Series, Center for the Study of Language and Information,
Stanford, California, 1986.

18. Stuart M. Shieber. A simple reconstruction of GPSG. In Proceedings of the 11th
International Conference on Computational Linguistics, University of Bonn, Bonn,
West Germany, 25-29 August 1986.

19. Stuart M. Shieber. Using restriction to extend parsing algorithms for complex-feature-
based formalisms. In of the 22nd Annual Meeting of the Association for
Computational Linguistics, University of Chicago, Chicago, Dlinois, July 1985.

20. Patrick H. Winston and Karen A. Prendergast. The AI Business: Commercial Uses of
ArtifiCial Intelligence. MIT Press, Cambridge, Massachusetts, 1984.

GERALD GAZDAR

UNIVERSITY OF SUSSEX

SCHOOL OF SOCIAL SCIENCES

BRIGHTON

APPLICABILITY

OF INDEXED GRAMMARS

TO NATURAL LANGUAGES

* 1. INTRODUCI10N

If we take the class of context-free phrase structure grammars (CF-
PSGs) and modify it so that (i) grammars are allowed to make use of
fmite feature systems and (ii) rules are permitted to manipulate the
features in arbitrary ways, then what we end up with is equivalent to what
we started out with. Suppose, however, that we take the class of context-
free phrase structure grammars and modify it so that (i) grammars are
allowed to employ a single designated feature that takes stacks of items
drawn from some finite set as its values, and (ii) rules are permitted to

* This paper originates in a talk given to the Workshop on Scandinavian and the
Theory of Grammar held in Trondheim in the Summer of 1982 and orgamzed by Lars
Hellan. I am indebted to Jens Erik Fenstad for drawing my attention to an error in my
presentation there. A subsequent version was given to the Santa Cruz Workshop on the
Mathematics of Grammars and Languages organized by Geoffrey K. Pullum in June 1985. I .
am grateful to Fernando Pereira, Carl Pollard, and Stuart Shieber for relevant
conversations to Bill Marsh and Geoff Pullum for their detailed comments on earlier
drafts, and to'Dikran Karageuzian and his colleagues for the work they did on the diagrams
and figures found below. Support for work on this paper was provided by the ESRC (UK),
by grants to Stanford University from the National Science Foundation (BNs.8102406) and
the Sloan Foundation by the Center for the Study of Language and Information, and by
grants from the Sloan' Foundation and System Development Foundation to the Center for
Advanced Study in the Behavioral Sciences.

I

69

U. Reyle and C. Rohrer (eds.),
Natural Language Parsing and Linguistic Theories, 69-94.
© 1988 by D. Reidel PUblishing Company.

68 STUART M. SHffiBER
2. Robert Berwick and Amy Weinberg. The Grammatical Basis of Linguistic Performance:

Language Use and Acquisition. MIT Press, Cambridge, Massachusetts, 1984.
3. Joan Bresnan, editor. The Mental Representation of Grammatical Relations. MIT Press,

Cambridge, Massachusetts, 1982.
4. Luca Cardelli and Peter Wegner. Understanding types, data abstraction and

polymorphism. Draft paper, 1985.
5. Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge, Massachusetts,

1965.
6. Noam Chomsky. Lectures on Government and Binding. Foris Publications, Dordrecht,

Holland, 1982.
7. Steven Fortune, Daniel Leivant, and Michael O'Donnell. The Expressiveness of Simple

and Second Order Type Structures. Research Report RC 8542, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1980.

8. Gerald Gazdar. Phrase Structure Grammar, pages 131-186. D. Reidel, Dordrecht,
Holland, 1982.]

9. Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized Phrase
Structure Grammar. Blackwell Publishing, Oxford, England, and Harvard University
Press, Cambridge, Massachusetts, 1985.

10. Ronald Kaplan. Personal communication, 1985.
11. Martin Kay. Unification Grammar. Technical Report, Xerox Palo Alto Research

Center, Palo Alto, California, 1983.
12. Fernando C. N. Pereira and Stuart M. Shieber. The semantics of grammar formalisms

seen as computer languages. In of the Tenth International Conference on
Computational Linguistics, StanfoId University, Stanford, California, 2-7 July 1984.

13. Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction. In
of the 21st Annual Meeling of the Association for ComputatiolJal Linguistics, pages 137-
144, Massachusetts Institute of Technology, Cambridge, Massachusetts, 15-17 June
1983.

14. Ritchie, Graeme. The Computational Complexity of Sentence Derivation in Functional
Unification Grammar. In Proceedings of the 11th International Conference on
Computational Linguistics, pages 5!W-586, University of Bonn, Bonn, West-Germany,
August 1986.

15. William C. Rounds and Robert Kasper. A Complete Logical Calculus for RecoId
Structures Representing Linguistic Information. In Proceedings of the 15th Annual
Symposium on Logic in Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachussetts, June 1986.

16. Stuart M. Shieber. The design of a computer language for linguistic information. In
Of the Tenth International Conference on Computational Linguistics,

Stanford University, Stanford, California, 2-7 July 1984.
17. Stuart M. Shieber. An Introduction to Unification-Based Approaches to Grammar.

Volume 4 of Lecture Note Series, Center for the Study of Language and Information,
Stanford, California, 1986.

18. Stuart M. Shieber. A simple reconstruction of GPSG. In Proceedings of the 11th
International Conference on Computational Linguistics, University of Bonn, Bonn,
West Germany, 25-29 August 1986.

19. Stuart M. Shieber. Using restriction to extend parsing algorithms for complex-feature-
based formalisms. In of the 22nd Annual Meeting of the Association for
Computational Linguistics, University of Chicago, Chicago, Dlinois, July 1985.

20. Patrick H. Winston and Karen A. Prendergast. The AI Business: Commercial Uses of
ArtifiCial Intelligence. MIT Press, Cambridge, Massachusetts, 1984.

GERALD GAZDAR

UNIVERSITY OF SUSSEX

SCHOOL OF SOCIAL SCIENCES

BRIGHTON

APPLICABILITY

OF INDEXED GRAMMARS

TO NATURAL LANGUAGES

* 1. INTRODUCI10N

If we take the class of context-free phrase structure grammars (CF-
PSGs) and modify it so that (i) grammars are allowed to make use of
fmite feature systems and (ii) rules are permitted to manipulate the
features in arbitrary ways, then what we end up with is equivalent to what
we started out with. Suppose, however, that we take the class of context-
free phrase structure grammars and modify it so that (i) grammars are
allowed to employ a single designated feature that takes stacks of items
drawn from some finite set as its values, and (ii) rules are permitted to

* This paper originates in a talk given to the Workshop on Scandinavian and the
Theory of Grammar held in Trondheim in the Summer of 1982 and orgamzed by Lars
Hellan. I am indebted to Jens Erik Fenstad for drawing my attention to an error in my
presentation there. A subsequent version was given to the Santa Cruz Workshop on the
Mathematics of Grammars and Languages organized by Geoffrey K. Pullum in June 1985. I .
am grateful to Fernando Pereira, Carl Pollard, and Stuart Shieber for relevant
conversations to Bill Marsh and Geoff Pullum for their detailed comments on earlier
drafts, and to'Dikran Karageuzian and his colleagues for the work they did on the diagrams
and figures found below. Support for work on this paper was provided by the ESRC (UK),
by grants to Stanford University from the National Science Foundation (BNs.8102406) and
the Sloan Foundation by the Center for the Study of Language and Information, and by
grants from the Sloan' Foundation and System Development Foundation to the Center for
Advanced Study in the Behavioral Sciences.

I

69

U. Reyle and C. Rohrer (eds.),
Natural Language Parsing and Linguistic Theories, 69-94.
© 1988 by D. Reidel PUblishing Company.

72 GERALD GAZDAR

stack to all nonterminal . daughters in all rule types, and (b) restricts
additions to the stack to cases where the mother category has but a single
daughter. Neither aspect of the definition appears to be essential, and
things are probably only done that way in order to facilitate doing proofs.
Suppose we allow the rule types shown in (2) in addition to those listed in
(1):

(2) i.
ii.
iii.

A[..] -> WiD B[..] W2D
A[) -> WiD B[i, ..] WZp
A[l, ..] -> W1[]E[..] W2U

Rules of type (2.i) would allow the stack to be carried down onto a
single nonterminal designated daughter, and rules of type (2.ii) and (2.iii)
would also allow such a designated daughter to have its stack incremented
or decremented, respectively. As shown in the appendix, permitting such
additional rule types has no consequences for the class of languages such
grammars can generate.

3. SOME EXAMPLE GRAMMARS

The best way to see how indexed grammars work is to look at an
example, such as (3), which shows a grammar for aDbD.

(3) S[.•] -> aA[z, .•]
A[..] -> aA[a, ..]
A[..] -> B[..]
B[a, ..] -> bB[..]
B[z, ..] -> b

This looks more complicated than it actually is. All it does is generate
trees such as that shown in (4):

I
I

.J ...
":"<'?

APPLICABILITY OF INDEXED GRAMMARS 73

(4) 51]

8

B[z]
b

b

As we go down the tree, nonterminal as are produced, and index as are
loaded onto the stack. WheD we get to the middle, signalled by the change
of category from A to B, then nonterminal bs are produced, and index as
are removed from the stack. The stack thus records how many
nonterminal as were originally produced, and this record can then be used
to produce exactly as many nonterminal bs. One slight complication is the
use of the end-marker index z. This is necessary because the standard
formulations of index grammars allow a non-empty stack to simply
disappear if the category the· stack appears on only has terminal
daughters. We could avoid the need for end-marker indices of this kind by
requiring that the stack distributed over daughters must be empty when
every daughter is nonterminal. As shown in the appendix, such a
constraint would not affect the class of languages generated, but it does
simplify the formulation of certain kinds of grammar. Thus we could
simplify the grammar in (3) above by replacing each occurrence of z with
Q. When I come to discuss certain abstract tree configurations later in the
paper, I shall simply ignore end-marker indices.

Notice that (4) is a right-linear (and hence finite state) tree, and that

Gazdar 1988

r
r
r
\

r
r
(!fIWt

l

r
r
r
r
r
r
r
r
r
r
r
r
r

The productions in an Indexed Grammar can be written as (refer [Gazdar 85a], the

original definition of Indexed Grammars appears in [Aho 68])

.Y'[··]--+ .. Ydi, ..] Yn[i, ..] (push) or

.Y [i, ..] --+.\ 1 [••] Y n [••] or

In an Indexed Grammar, a stack of svmbols (called the indices) is associated \vith . .

nontenninals during derivations. [..] is used to represent the present stack associated

with a nonterminal. In the first production the parent (th.s of the production) distributes

copies of its stack to its children after pushing the symbol i at the top of the stack. Thus,

we can see how the stack information is shared by all the symbols in me right-hand

of the production.

In an LIG the productions have the fonn

.. "'([i, ..] --+ ."'(1 [] • • •. ,:r j [..] . . .• "'(n [] (pop) or

LIG differs from IG in that the stack is passed on to only one of the children. [] corre-

sponds to a new but empty stack. The productions of LIG' s can be generalized [0 be of

the form

79

r
r
r
\

r
r
(!fIWt

l

r
r
r
r
r
r
r
r
r
r
r
r
r

The productions in an Indexed Grammar can be written as (refer [Gazdar 85a], the

original definition of Indexed Grammars appears in [Aho 68])

.Y'[··]--+ .. Ydi, ..] Yn[i, ..] (push) or

.Y [i, ..] --+.\ 1 [••] Y n [••] or

In an Indexed Grammar, a stack of svmbols (called the indices) is associated \vith . .

nontenninals during derivations. [..] is used to represent the present stack associated

with a nonterminal. In the first production the parent (th.s of the production) distributes

copies of its stack to its children after pushing the symbol i at the top of the stack. Thus,

we can see how the stack information is shared by all the symbols in me right-hand

of the production.

In an LIG the productions have the fonn

.. "'([i, ..] --+ ."'(1 [] • • •. ,:r j [..] . . .• "'(n [] (pop) or

LIG differs from IG in that the stack is passed on to only one of the children. [] corre-

sponds to a new but empty stack. The productions of LIG' s can be generalized [0 be of

the form

79

Vijayashanker 1987

“Convergence” of Mildly Context-
Sensitive Grammar Formalisms

TAG ≡ LIG ≡ HG

Vijay-Shanker and Weir 1994

TAG: tree-adjoining grammar; LIG:
linear indexed grammar; HG: head
grammar

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

linear
indexedtype 1.5?

There is a book where the author calls
the linear indexed grammars “type
1.5”.

T[] → AB[]C

T[fg] ⇒ AB[fg]C

Production

One-step rewriting

α → βProduction

γαδ ⇒ γβδOne-step rewriting

Type 0

Linear indexed

A linear indexed grammar is not an instance of a type 0 grammar.

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

linear
indexed

indexed

There are actually almost no other
grammar formalisms that are instances
of Chomsky’s type 0 grammars.

Thue→Post→Chomsky

§ 1. GENERATIVE GRAMMARS AND LINGUISTIC COMPETENCE 9

ments may provide useful, in fact, compelling evidence for
such a theory.

To avoid what has been a continuing misunderstanding, it is
perhaps worth while to reiterate that a generative grammar is
not a model for a speaker or a hearer. It attempts to characterize
in the most neutral possible terms the knowledge of the language
that provides the basis for actual use of language by a speaker-
hearer. When we speak of a grammar as generating a sentence
with a certain structural description, we mean simply that the
grammar assigns this structural description to the sentence.
When we say that a sentence has a certain derivation with respect
to a particular generative grammar, we say nothing about how
the speaker or hearer might proceed, in some practical or
efficient way, to construct such a derivation. These questions
belong to the theory of language use — the theory of per-
formance. No doubt, a reasonable model of language use will
incorporate, as a basic component, the generative grammar that
expresses the speaker-hearer's knowledge of the language; but
this generative grammar does not, in itself, prescribe the char-
acter or functioning of a perceptual model or a model of speech
production. For various attempts to clarify this point, see
Chomsky (1957), Gleason (1961), Miller and Chomsky (1963), and
many other publications.

Confusion over this matter has been sufficiently persistent to
suggest that a terminological change might be in order. Never-
theless, I think that the term "generative grammar" is completely
appropriate, and have therefore continued to use it. The term
"generate" is familiar in the sense intended here in logic,
particularly in Post's theory of combinatorial systems. Further-
more, "generate" seems to be the most appropriate translation
for Humboldt's term erzeugcn, which he frequently uses, it seems,
in essentially the sense here intended. Since this use of the term
"generate" is well established both in logic and in the tradition
of linguistic theory, I can see no reason for a revision of
terminology.

Chomsky 1965

 Tan JouHNL ow SmBouc LOGIC
 Volume 12, Number 1, March 1947

 RECURSIVE UNSOLVABILITY OF A PROBLEM OF THUE

 EMIL L. POST

 Alonzo Church suggested to the writer that a certain problem of Thue [6]'
 might be proved unsolvable by the methods of [5]. We proceed to prove the
 problem recursively unsolvable, that is, unsolvable in the sense of Church [1],
 but by a method meeting the special needs of the problem.

 Thue's (general) problem is the following. Given a finite set of symbols al,

 a2, ... , a, , we consider arbitrary strings (Zeichenreihen) on those symbols,
 that is, rows of symbols each of which is in the given set. Null strings are in-
 cluded. We further have given a finite set of pairs of corresponding strings on

 the ai's, (Al , B1), (A2 , B2), , I (An , B,). A string R is said to be a substring
 of a string S if S can be written in the form URV, that is, S consists of the letters,

 in order of occurrence, of some string U, followed by the letters of R, followed by
 the letters of some string V. Strings P and Q are then said to be similar if Q
 can be obtained from P by replacing a substring Ai or Bi of P by its correspond-
 ent Bi, Ai. Clearly, if P and Q are similar, Q and P are similar. Finally, P
 and Q are said to be equivalent if there is a finite set R1 , R2, * * *, R, of strings on
 a,, * * *, a, such that in the sequence of strings P, R1, R2, ... , RX Q each
 string except the last is similar to the following string. It is readily seen that
 this relation between strings on a,, * * *, a, ,is indeed an equivalence relation.
 Thue's problem is then the problem of determining for arbitrarily given strings

 A, B on al, * * *, a;, whether, or no, A and B are equivalent.
 This problem, at least for the writer, is more readily placed if it is restated

 in terms of a special form of the canonical systems of [3]. In that notation,
 strings C and D are similar if D can be obtained from C by applying to C one
 of the following operations:

 PAiQ produces PBQ, PBQ produces PAQ, i = 1, 2, * , n. (1)

 In these operations the operational variables P, Q represent arbitrary strings
 Strings A and B will then be equivalent if B can be obtained from A by starting
 with A, and applying in turn a finite sequence of operations (1). That is, A
 and B are equivalent if B is an assertion in the "canonical system"2 with primi-
 tive assertion A and operations (1). Thue's general problem thus becomes the
 decision problem for the class of all canonical systems of this "Thue type."

 This general problem could easily be proved recursively unsolvable if, instead
 of the pair of operations for each i of (1), we merely had the first operation of
 each pair.3 In fact, by direct methods such as those of [31, we easily reduce the
 decision problem of an arbitrary "normal system" [3] to the decision problem
 of such a system of "semi-Thue type," the known recursive unsolvability of the

 Received October 26, 1946. Presented to the American Mathematical Society November
 2, 1946.

 1 Numbers in brackets refer to the bibliography at the end of the paper.
 2 Null assertions, however, now being allowed.
 J That is, using the language of propositions instead of operations, if we merely had an

 implication where (1) has an equivalence.

 1

This content downloaded from 133.25.240.37 on Thu, 28 Jun 2018 12:34:17 UTC
All use subject to http://about.jstor.org/terms

How did Chomsky come to use semi-
Thue systems as the most general
type of grammars?

I believe Post (1947) coined the term
“semi-Thue system”.

Post Canonical Systems
 FORMAL REDUCTIONS OF THE GENERAL COMBINATORIAL

 DECISION PROBLEM.*

 By EMIL L. POST.

 1. Introduction. It is not new to the literature that the usual form of

 a symbolic logic with its parenthesis notation and infinite set of variables can

 be transformed into one in which the enunciations, i. e., formulas of the

 system, are finite sequences of letters,' the different letters constituting a

 once-and-for-all given finite set. If the primitive letters of such a system are

 represented by a,, a2, , ap, an arbitrary enunciation of the system will take
 the form ai, a2* a,, i - 1, 2, 3, , ij 1, 2, , 1. In describing the
 basis of such a system it is convenient to use new letters to represent finite

 sequences of the above primitive letters. If then A, B, * , E represent

 the sequences ai, a 2 . . . a,, aj, aj2 ... aj , * * *, a)t1 a,2 * a., respectively,
 ABR E will represent the sequence ail a 2 **aO aj, aj2 aj.- a,1 am2
 * .* am,,.

 We shall say that such a system is in canonical form if its basis has the

 following structure.2 The primitive assertions of the system are a specified

 finite set of enunciations of the above form. The operations of the system are a
 specified finite set of productionts, each of the following form:

 gllPi'l g12PVt2 91M gmPi'.1 91 ('M+1)

 g2lPi"i g22PV'2 . .2m2Pi"m_2 g2(m2+1)

 P(o) d (e) gkmkP,' (k) ghk

 produce

 gqlPil gXi2P . . . ,q'Mpim ,QM+l'

 * Received November 14, 1941; Revised April 11, 1942.
 'More exactly, "strings" of "marks," to use terms of C. I. Lewis (A Survey of

 Symbolic Logic, Berkeley, 1918: chapter VI, sec. III).

 2 This formulation stems from the "Generalization by Postulation" of the writer's

 "Introduction to a general theory of elementary propositions," American Journal of
 Mathematics, vol. 43 (1921), pp. 163-185 (see p. 176). We take this opportunity to

 make the following Emendation: Lemma 1 thereof (pp. 177-178) requires the added

 condition that the expressions replacing the r's do not involve any letter upon which a

 substitution is made in the given deductive process. This necessitates several minor

 changes in the proof of the theorem there following. Actually, both Lemma 1 and its

 companion Lemma 2 admit of further simplification, with the proof of the theorem then

 being valid as it stands.

 197

This content downloaded from 133.25.167.229 on Fri, 29 Jun 2018 04:50:34 UTC
All use subject to http://about.jstor.org/terms

 FORMAL REDUCTIONS OF THE GENERAL COMBINATORIAL

 DECISION PROBLEM.*

 By EMIL L. POST.

 1. Introduction. It is not new to the literature that the usual form of

 a symbolic logic with its parenthesis notation and infinite set of variables can

 be transformed into one in which the enunciations, i. e., formulas of the

 system, are finite sequences of letters,' the different letters constituting a

 once-and-for-all given finite set. If the primitive letters of such a system are

 represented by a,, a2, , ap, an arbitrary enunciation of the system will take
 the form ai, a2* a,, i - 1, 2, 3, , ij 1, 2, , 1. In describing the
 basis of such a system it is convenient to use new letters to represent finite

 sequences of the above primitive letters. If then A, B, * , E represent

 the sequences ai, a 2 . . . a,, aj, aj2 ... aj , * * *, a)t1 a,2 * a., respectively,
 ABR E will represent the sequence ail a 2 **aO aj, aj2 aj.- a,1 am2
 * .* am,,.

 We shall say that such a system is in canonical form if its basis has the

 following structure.2 The primitive assertions of the system are a specified

 finite set of enunciations of the above form. The operations of the system are a
 specified finite set of productionts, each of the following form:

 gllPi'l g12PVt2 91M gmPi'.1 91 ('M+1)

 g2lPi"i g22PV'2 . .2m2Pi"m_2 g2(m2+1)

 P(o) d (e) gkmkP,' (k) ghk

 produce

 gqlPil gXi2P . . . ,q'Mpim ,QM+l'

 * Received November 14, 1941; Revised April 11, 1942.
 'More exactly, "strings" of "marks," to use terms of C. I. Lewis (A Survey of

 Symbolic Logic, Berkeley, 1918: chapter VI, sec. III).

 2 This formulation stems from the "Generalization by Postulation" of the writer's

 "Introduction to a general theory of elementary propositions," American Journal of
 Mathematics, vol. 43 (1921), pp. 163-185 (see p. 176). We take this opportunity to

 make the following Emendation: Lemma 1 thereof (pp. 177-178) requires the added

 condition that the expressions replacing the r's do not involve any letter upon which a

 substitution is made in the given deductive process. This necessitates several minor

 changes in the proof of the theorem there following. Actually, both Lemma 1 and its

 companion Lemma 2 admit of further simplification, with the proof of the theorem then

 being valid as it stands.

 197

This content downloaded from 133.25.167.229 on Fri, 29 Jun 2018 04:50:34 UTC
All use subject to http://about.jstor.org/terms

An indexed grammar is an instance of a Post canonical system.

Why Didn’t Chomsky Use Post
Canonical Systems?

 REDUCTIONS OF TI-IE COMIBINATORIAL DECISION PROBLEM. 199

 the production whenever it contains the enuniciations represelnted by the several
 premises of the prodluction.

 A very special case of the canonical form is what we term the normal

 form. A system in canonical form will be said to be in normal form if it has

 but one primitive assertion, and, ea el of its productions is in the form

 gP

 produces

 Pg'.

 The main purpose of the presenit paper is to demonstrate that every system
 in canonical form can formally be reduced to a system in normal form. The

 two forms may therefore in fact be said to be equipotent.- More precisely, we
 prove the following

 THEOREM. Giver a system in canonical form with primitive letters

 a1, a2 < * , , ap, a system in1 normal form with primitive letters a, a2, , aiu,
 a 1, a'2, * , a' can be set utp such that the assertions of the system in canonical

 form are exactly those assertions of the system in normal formn which involve

 no other letters than al, a2, , ap.

 As a result of this theorem the decision problem for a system in canonical

 form is reduced to the decision problenm for the corresponding systemi in normial

 form. For an enunciation of the former system is an assertion when and only
 when it is an assertion of the latter system. Hence any procedure whiclh could

 effectively determine for an arbitrary enunciation of the system in normal form
 whether it is or is not an assertion thereof would automatically do the same
 for the system in canonical form. Now by methocls such as those referred

 to in the opening sentence of this introduction, it can be shown that the
 problem of determining for an arbitrary well-formed formula in the X-calculus

 of Church whether it has or has not a normnal form (Church)) can be reduced

 to the decision problem for a particular system in our canonical form. While
 Church has proved the above problenm unsolvable in a certaini technical sense,
 in the interest of economy we invoke his identification of X-definability with

 effective calculability to conclude that as a resuilt the decision problem for that

 particular system in canonical form, and hence for the class of systems in
 canonical form, is unsolvable. We are thus led to the more surprising result

 5 Alonzo Church, " An unsolvable problem of elementary number theory," American
 Journal of Mathematics, vol. 58 (1936), pp. 345-363.

This content downloaded from 133.25.167.229 on Fri, 29 Jun 2018 04:50:34 UTC
All use subject to http://about.jstor.org/terms

Post 1947

Perhaps because of this striking
result?

recursively
enumerable

context-
sensitive

context-
free

regular

type 0

type 1

type 2
type 3

linear
indexed

indexed

Should Context-Free Grammars Be
Thought of as String Rewriting Systems?

S

NP VP

V NPKim

saw Sandy

S ⇒ NP VP ⇒ Kim VP ⇒ Kim V NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ Kim VP ⇒ Kim V NP ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ Kim V NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP saw NP ⇒ Kim saw NP ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP V Sandy ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ Kim V NP ⇒ Kim V Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP saw NP ⇒ NP saw Sandy ⇒ Kim saw Sandy

S ⇒ NP VP ⇒ NP V NP ⇒ NP V Sandy ⇒ NP saw Sandy ⇒ Kim saw Sandy

It is silly to define well-formed
sentences in terms of derivations if
what we really want is to assign tree
structures to sentences.

Bottom-up Interpretation of Context-
Free Rules

Bi ⇒G* vi (i = 1,…,n) A → w0 B1 w1 … Bn wn ∈ P
A ⇒G* w0 v1 w1 … vn wn

L(G) = { w ∈ Σ* | S ⇒G* w }

All we need is the subrelation of ⇒G*

restricted to N × Σ*.

Just a general type of inductive
definition.

Inductive Definition = CFG Interpreted
Bottom-up

CFGs as Logic Programs on Strings

A → w0 B1 w1 … Bn wn

A(w0 x1 w1 … xn wn) ← B1(x1),…,Bn(xn)

Horn clause

L(G) = { w ∈ Σ* | G ⊢ S(w) }

Derivation = Proof Tree

S(Kim saw Sandy)

NP(Kim) VP(saw Sandy)

V(saw) NP(Sandy)

G ⊢ S(Kim saw Sandy)

It’s a small step to use n-ary predicates
for n ≥ 2.

Multiple Context-Free Grammars

A(α1,…,αq) ← B1(x1,1,…,x1,q1),…,Bn(xn,1,…,xn,qn)

n ≥ 0, q, qi ≥ 1,

αk ∈ (Σ ∪ { xi,j | i ∈ [1,n], j ∈ [1,qi] })*

each xi,j occurs exactly once in (α1,…,αq)

• q = dim(A) (dimension of A)

• dim(S) = 1

• L(G) = { w ∈ Σ* | G ⊢ S(w) }

It’s best to think of an MCFG as a kind
of logic program.

Each rule is a definite clause.

Nonterminals are predicates on strings.

S(x1#x2) ← D(x1, x2)
D(ε, ε) ←

D(x1y1, y2x2) ← E(x1,x2), D(y1,y2)
E(ax1ā, āx2a) ← D(x1,x2)

{ w#wR | w ∈ D1* }

S(aaāāaā#āaāāaa)

D(aaāāaā, āaāāaa)

E(aaāā, āāaa)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

2-MCFG

2-ary branching

derivation tree

S(x1…xm) ← A(x1,…,xm)
A(ε,…,ε) ←

A(a1 x1 a2,…,a2m−1 xm a2m) ← A(x1,…,xm)

non-branching m-MCFG

{ a1n a2n … a2m−1n a2mn | n ≥ 0 }m-MCFL
(m−1)-MCFL

2-MCFL

=

CFL

1-MCFL

Seki et al. 1991

MCFGs as Logic Programs on Strings

Annius Groenink

..., daß Frank Julia Fred schwim
m

en helfen sah

 ...
th

at
Fr

an
k

sa
w

 J
ul

ia
 he

lp
 F

re
d

sw

im

...dat Frank Julia Fred zag helpen zwemmen

word order and tractability issues in natural language analysis

Surface without Structure

Elementary Formal Systems

Smullyan 1961

Elementary Formal Systems

“Elementary Formal Systems can be looked at as variants of
the canonical languages of Post …. The reason for our choice
of elementary formal systems, in lieu of Post’s canonical
systems, is that their structure is more simply described, and
their techniques are more easily applied. The general notion
of “production” used in Post systems is replaced by the
simpler logistic rules of substitution and detachment (modus
ponens), which are more easily formalized.”

Smullyan 1961

Chomsky Hierarchy
Rewriting
Systems Machines Logic Programs on Strings Languages

Type 0 Turing Elementary Formal Systems
(Smullyan 1961) r.e.

Type 1 LBA Length-Bounded EFS (Arikawa
et al. 1989)

CSL =
NSPACE(n)

Poly-time
Turing

Simple LMG (Groenink 1997) /
Hereditary EFS (Ikeda and

Arimura 1997)
P

MCFG MCFL
Type 2 PDA Simple EFS (Arikawa 1970) CFL
Type 3 FA Reg

recursively
enumerable

context-
sensitive

multiple
context-free

context-
free

regular

head

Chomsky on Mathematical
Linguistics (1979)

Chomsky (2004): Generative Enterprise Revisited

. . .

. . .

A long quote, from an interview
held in the year when Hopcroft and
Ullman’s textbook was published.

Chomsky on Mathematical
Linguistics (1979)

Chomsky (2004): Generative Enterprise Revisited

. . .

Summary
• The four levels of the Chomsky hierarchy are not of equal

importance.

• The choice of semi-Thue systems as the most general form
of grammar hampered investigation of some important
language classes.

• Smullyan’s elementary formal system provides the right
level of generality and simplicity.

• Bottom-up semantics of rules is basic.

• Natural generalization of “inductive definitions”.

What is the Significance of Grammar
Formalisms?

• Abstract conception of grammars.

• Makes possible investigation of algorithmic properties of
grammars.

• Should have good formal properties (like familiar closure
properties).

• The choice of a grammar formalism should not be thought
of as a tight characterization of possible human grammars.

• A grammar formalism does not have explanatory power.

