What Was Wrong with
the Chomsky Hierarchy?

Makoto Kanazawa
Hosei University

Chomsky Hierarchy of Formal
Languages

recursively
enumerable

context-
sensitive

context-
free

INTROIT)}JCTION

AUTOMATA THEORY,
LANGUAGES,

COMPUTATION

Chomsky, N., 106, 123, 145, 216, 232
Chomsky hierarchy, 217-232
Chomsky normal form, 92-94

Hopcroft and Ullman 1979

Enduring impact of Chomsky’s work
on theoretical computer science.

15 pages devoted to the Chomsky
hierarchy.

Introduction

to the

Theory of
Computation X

Chomsky normal form, 108-111, 158,
198,291
Chomsky, Noam, 444

Sipser 2013

No mention of the Chomsky hierarchy.
The same with the latest edition of
Hopcroft, Motwani, and Ullman (2006).

Semi-Thue System/String Rewriting

System
Production a—p a,pe(NUD)*
One-step rewriting yas = ypo

N: finite alphabet of nonterminal
symbols
2 finite alphabet of terminal symbols

Language LG ={weZ|S=>*w}
Type O unrestricted
Type 1 lol<1BI
Type 2 ae N
Type 3 ae N,fe ZN
- _ LBA: linear-bounded automata =
rewriting machine . .
systems models NSPACE(n) Turing machines
PDA: pushdown automata
type 0 recursively Turing machines FA: finite automata

enumerable

context- LBA

type 1 sensitive
t 2 context-

ype free PDA
type 3 FA

recursively
enumerable
type 0
type 1 context-

sensitive

PSPACE-complete

type 2
type 3

Context-sensitive languages are
computationally very complex.

Some context-sensitive languages are
PSPACE-complete.

* Context-sensitive languages are computationally very
complex.

* There is a huge gap between context-free and context-
sensitive.

¢ Many intermediate classes of languages have been
considered in formal language theory.

¢ |n particular, “mildly context-sensitive” grammars have
been investigated by computational linguists.

Indexed Grammars

Hopcroft and Uliman 1979

143 INDEXED LANGUAGES

Of the many generalizations of context-free grammars that have been proposed, a
class called “indexed” appears the most natural, in that it arises in a wide variety
of contexts. We give a grammar definition here. Other definitions of the indexed
languages are cited in the bibliographic notes.

An indexed grammar is a 5-tuple (V, T, I, P, S), where V is the set of variables,
T the set of terminals, I the set of indices, S in V is the start symbol, and P is a finite
set of productions of the forms

1) A>a, 2) A>Bf or 3) Af>a,

where 4 and Barein V, fis in I, and « is in (V U T)*

Example 142 Let G=({S, T, 4, B, C}, {a, b, ¢}, {, g}, P, S), where P consists of
STy, Af > aA, Ag > a,
T-Tf, Bf - bB, Bg—b,
T — ABC, Cf—-cC, Cg—c
An example derivation in this indexed grammar is
S= Tg= Tfg= AfgBfgCfg
= aAgBfgCfg=> aaBfgCfg = aabBgCfg

= aabbCfg = aabbcCg= aabbcc.
In general,

S Tfig= Af'gBfigCfig% a'* 'bi* 1™t

Theorem 14.7 (a) If L is accepted by a one-way nondeterministic stack automa-
ton, then L is an indexed language. (b) If L is an indexed language, then L is a
context-sensitive language.

recursively
enumerable

What type of rewriting system is an

type 0 indexed grammar??
type 1 context-
sensitive

22 indexed
type 2 p—
type 3

Type 0
Production a—f

One-step rewriting yas = ypo

Indexed
Production T — ABC
One-step rewriting Tfg = AfgBfgCfg

An indexed grammar is not an instance of a type 0 grammar.

recursively

enumerable
type 0

context-
sensitive

type 1

indexed

NP-complete

context-

type 2
type 3

Indexed languages are also sort of
complex.

GERALD GAZDAR
UNIVERSITY OF SUSSEX
SCHOOL OF SOCIAL SCIENCES
BRIGHTON

APPLICABILITY
OF INDEXED GRAMMARS
TO NATURAL LANGUAGES

In the standard formulations, an indexed grammar can contain rules of
three different sorts:

(1) i. A[l.] -> W.]

ii. A[L] -> B[]
iii. Afi,.] -> W.]

Suppose we allow the rule types shown in (2) in addition to those listed in

(1):

(2)i. A[L] -> Wq[] B].]

ii. Al] -> W I]B[x,]
iii. Afi,.] -> []B[]Wﬁ

Gazdar 1988

Vijayashanker 1987

The productions in an Indexed Grammar can be written as (refer [Gazdar 85a], the

original definition of Indexed Grammars appears in [Aho 68])
X[]-Xili,] ... X[, -] (push) or
X(i,]=Xy[-]... Xa[] (pop) or

X[-]—a

In an LIG the productions have the form
X=X .. X;[i,] ... Xa[] (push) or
X[,]=Xul]... X[]. .. Xa[] (pop) or
X[-j—a

LIG differs from IG in that the stack is passed on to only one of the children.

“Convergence” of Mildly Context-
Sensitive Grammar Formalisms

TAG = LIG = HG

Vijay-Shanker and Weir 1994

TAG: tree-adjoining grammar; LIG:
linear indexed grammar; HG: head
grammar

recursively

enumerable
type 0

context-

type 1
sensitive

linear
indexed

type 1.5?

type 2
type 3

There is a book where the author calls
the linear indexed grammars “type
1.5”.

Type 0

Production a—p

One-step rewriting yas = ypo

Linear indexed
Production T[] - AB[]C

One-step rewriting Tlfg] = ABIfg]C

A linear indexed grammar is not an instance of a type 0 grammar.

recursively
enumerable

type 0

type 1 context-
sensitive
indexed

linear

indexed

type 2 p—

type 3

There are actually almost no other
grammar formalisms that are instances
of Chomsky’s type 0 grammars.

Thue—Post—Chomsky

Tas JourwaL or Srusowic Loarc
Volume 12, Number 1, March 1947

RECURSIVE UNSOLVABILITY OF A PROBLEM OF THUE
EMIL L. POST

Chomsky 1965

Confusion over this matter has been sufficiently persistent to
suggest that a terminological change might be in order. Never-
theless, I think that the term “generative grammar” is completely
appropriate, and have therefore continued to use it. The term
“generate” is familiar in the sense intended here in logic,
particularly in Post’s theory of combinatorial systems. Further-
more, “generate” seems to be the most appropriate translation
for Humboldt’s term erzeugen, which he frequently uses, it seems,
in essentially the sense here intended. Since this use of the term
“generate” is well established both in logic and in the tradition
of linguistic theory, 1 can see no reason for a revision of
terminology.

How did Chomsky come to use semi-
Thue systems as the most general
type of grammars?

| believe Post (1947) coined the term
“semi-Thue system”.

Post Canonical Systems

FORMAL REDUCTIONS OF THE GENERAL COMBINATORIAL
DECISION PROBLEM.*

By Emin L. Posr.

The operations of the system are a
specified finite set of productions, each of the following form:

gan, glszz‘ s gxm,Pi',,,) G1(mys1)
g21Piry §o2Piy - - 'gzmgpi”m, J2(mge1)

96Pu,® g P ® - gemPiy ® Gronn
produce
91P¢, !]2P<;2 c gauPtm Gma1e

An indexed grammar is an instance of a Post canonical system.

Why Didn’t Chomsky Use Post
Canonical Systems?

Post 1947

A very special case of the canonical form is what we term the normal
form. A system in canonical form will be said to be in normal form if it has
but one primitive assertion, and, each of its productions is in the form

gP
produces
Py
The main purpose of the present paper is to demonstrate that every system

in canonical form can formally be reduced to a system in normal form. The
two forms may therefore in fact be said to be equipotent.

Perhaps because of this striking
result?

recursively
enumerable

type 0

type 1 context-
sensitive
indexed

linear

indexed

type 2

type 3

Should Context-Free Grammars Be
Thought of as String Rewriting Systems?

S = NP VP = Kim VP = Kim V NP = Kim saw NP = Kim saw Sandy

S = NP VP = Kim VP = Kim V NP = Kim V Sandy = Kim saw Sandy

S = NP VP = NP V NP = Kim V NP = Kim saw NP = Kim saw Sandy

S = NP VP = NP VNP = Kim VNP = Kim V Sandy = Kim saw Sandy

S = NP VP = NP V NP = NP saw NP = Kim saw NP = Kim saw Sandy

S = NP VP = NP V NP = NP saw NP = NP saw Sandy = Kim saw Sandy

S = NP VP = NP V NP = NP V Sandy = Kim V Sandy = Kim saw Sandy

S = NP VP = NP V NP = NP V Sandy = NP saw Sandy = Kim saw Sandy S

RN
NP VP
I / N\
Kim V NP
I I

saw Sandy

It is silly to define well-formed
sentences in terms of derivations if
what we really want is to assign tree
structures to sentences.

Bottom-up Interpretation of Context-
Free Rules

Bi=c"vi(i=1,....n) A—->wiBiwi..BawheP
A =G" Wo V1 W1 ... Vn Wn

LG) ={weZ*|S=c"w}

All we need is the subrelation of =g

restricted to N x >*.
Just a general type of inductive
definition.

Inductive Definition = CFG Interpreted
Bottom-up

By ME? is understood the set of meaningful expressions of
type a; this notion has the following recursive definition:

(1) Every variable and constant of type a is in ME,.

) 1f‘u € ME, and u is a variable of type b, then Aux € ME ;-
(3) Il‘u €ME,, and e ME,, then «(B) e ME, .

(@) Ifa,pe ME,, theno = fe ME,.

() I ¢4 € ME, and u is a variable, then -1, [¢ A], [0 V¥]:

(6 =), [0 =), Vud,A up, 0, Wo. Hop € ME,.
(6) I e ME,, then [“a]l:bME:f) .D¢ a0

CFGs as Logic Programs on Strings

A = woB1wi ... Bnhwn

A(Wo X1 W1 ... Xn Wn) < B1(x1),...,Bn(Xn)

Horn clause

LG) ={we=*|G+ Sw}

Derivation = Proof Tree

S(Kim saw Sandy)
e ~
NP(Kim) VP(saw Sandy)
VRN
V(saw) NP(Sandy)

G + S(Kim saw Sandy)

It’s a small step to use n-ary predicates
forn>=2.

Multiple Context-Free Grammars

A(O.1 Clq) — B1 (X1 Agees ,X1 ,q1), aea ,Bn(Xn,1 yrae ,Xn,qn)

n>0,q9,q=>1,
ake (Zu{xjlie[ln],je[1a]}"
each x;; occurs exactly once in (a,...,0q)

- g =dim(A) (dimension of A)
- dim(S) =1
s LG ={weZ|GHF SWw)}

It’s best to think of an MCFG as a kind

of logic program.
Each rule is a definite clause.
Nonterminals are predicates on strings.

S(x1#x2) < D(x1, X2)
D(e, €) «
D(x1y1, y2x2) < E(x1,x2), D(y1,y2)
E(ax1a, axza) + D(x1,X2)
2-MCFG S(aaaaaa#aaaaaa)

2-ary branching |
D(aaaaaa, aaaaaa)

{ w#wR | w € D1* }

e ™~
E(aaaa, aaaa) D(a3, aa)
I VRN
D(a3, aa) E(@a, aa) D, €)
VRN I

E(aa, aa) D(e,e) Dfg,€)
I

D(e, €) derivation tree

S(X1...Xm) + A(X1,...,Xm)
AE,...,g) +

A(a1 x1 az,...,82m-1 Xm @z2m) < A(X1,...,Xm)

non-branching m-MCFG

m-MCFL {ainax"... azm-1"azm" [N =0}
(m-1)-MCFL

Seki et al. 1991

MCFGs as Logic Programs on Strings

Surface withou Structure

Annius Groenink

NP(s), V(d, o, h, v).
NP(s), V(d, o, h, v).
NP(s), V(d, o, h, v).
NP(s), V(d, o, A, v).

s-rel: S(...dat s do hv)
s-decl: S(s hdov)
s-inter: S(h s dov)
s-topic: S(dhsov)

V(d, X h, X) - VT(h), NP(d).

V(n, do, 7, hv) - VR(r), NP(n), V(d, o, h, v).
NP(Jan). NP(Marie). NP(koffie).

NP(jij). NP(wie).

VT(drinken). VR(zag).

Fig. 4. An LCFRS in predicate notation for Dutch sentential forms.

S(vie zag jij koffie drinken)

NP(jij) V(w;e,koffie,zag, drinken)
VR(zag) NP(vie) V(kotfie,) drinken, A)
P SN
VT(drinken) NP(koffie)

Fig. 5. LCFRS derivation of Wie zag jij koffie drinken?

Elementary Formal Systems

Smullyan 1961

Elementary Formal Systems

Smullyan 1961

“Elementary Formal Systems can be looked at as variants of
the canonical languages of Post The reason for our choice
of elementary formal systems, in lieu of Post’s canonical
systems, is that their structure is more simply described, and
their techniques are more easily applied. The general notion
of “production” used in Post systems is replaced by the
simpler logistic rules of substitution and detachment (modus
ponens), which are more easily formalized.”

Chomsky Hierarchy

Rewriting . . .
Systems Machines Logic Programs on Strings Languages
) Elementary Formal Systems
Type O Turing (Smullyan 1961) re.
Length-Bounded EFS (Arikawa CSL =
lpe LBA et al. 1989) NSPACE(n)
Poly-time Simple LMG (Groenink 1997) /
Tuyrin Hereditary EFS (lkeda and P
9 Arimura 1997)
MCFG MCFL
Type 2 PDA Simple EFS (Arikawa 1970) CFL

Type 3 FA Reg

recursively
enumerable

context-
sensitive

multiple
context-free

head

context-

. A long quote, from an interview
ChomSk)' on Mathematical held in the year when Hopcroft and

Linguistics (|979) Ullman’s textbook was published.

... what happened is that there was a
period of fairly fruitful contact between automata theory and linguistics in
the late fifties and the early sixties. It mostly had to do with the properties
of context-free grammars. Things turned up which are quite interesting.

... Certainly context-free grammars represent some of the properties of
languages. This seems to me what one would expect from applied mathe-
matics, to see if you can find systems that capture some of the properties
of the complex system that you are working with, and to ask whether
those systems have any intrinsic mathematical interest, and whether they
are worth studying in abstraction. And that has happened at exactly one
level, the level of context-free grammar.

Chomsky (2004): Generative Enterprise Revisited

Chomsky on Mathematical
Linguistics (1979)

... Atany other level it has not hap-
pened. The systems that capture other properties of language, for exam-
ple transformational grammar, hold no interest for mathematics. But I do
not think that that is a necessary truth. It could turn out that there would
be richer or more appropriate mathematical ideas that would capture
other, maybe deeper properties of language than context-free grammars
do. In that case you have another branch of applied mathematics which
might have linguistic consequences. That could be exciting.

Chomsky (2004): Generative Enterprise Revisited

Summary

The four levels of the Chomsky hierarchy are not of equal
importance.

The choice of semi-Thue systems as the most general form
of grammar hampered investigation of some important
language classes.

Smullyan’s elementary formal system provides the right
level of generality and simplicity.

Bottom-up semantics of rules is basic.

Natural generalization of “inductive definitions”.

What is the Significance of Grammar
Formalisms?

Abstract conception of grammars.

Makes possible investigation of algorithmic properties of
grammars.

Should have good formal properties (like familiar closure
properties).

The choice of a grammar formalism should not be thought
of as a tight characterization of possible human grammars.

A grammar formalism does not have explanatory power.

