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1 Introduction

It is generally admitted that in natural languages nominal unary determiners, that
is functional expressions which form nouns phrases when applied to one common
noun, denote not arbitrary type 〈1, 1〉 quantifiers (relations between sets) but only
those which satisfy the constraint of conservativity. This constraint informally
says that to determine the truth conditions of sentences with such determiners one
has not to take into account all sets determined by the arguments of the function,
in particular the complement of the first set-theoretic argument does not matter.
It follows from this that some type 〈1, 1〉 are not ”naturally” denotable by even
complex unary determiners.

The conservativity fact is sometimes considered as a language universal: all
types of determiners in all natural languages are conservative in the sense that they
denote only conservative functions. Even if some non-conservative determiners are
known it appears that they are rare and not arbitrary since they are systematically
related to conservative determiners (cf. Zuber 2004a).

It has also been established that NLs display binary or even n-ary determin-
ers that is functional expressions which form noun phrases from more than one
common noun (cf. Keenan and Moss 1985). A simple example of such a binary
determiner is given by the comparative determiner more... than as it occurs in
the noun phrase more students than teachers.

Such n-ary determiners denote higher order quantifiers which are n-ary rela-
tions between sets or, equivalently, binary relations between relations and sets.
The notion of conservativity, and other related notions discussed in the context of
type 〈1, 1〉 quantifiers easily generalise to higher order quantifiers denoted by n-ary
determiners and consequently the universalistic claim concerning conservativity
of n-ary determiners as well. Thus one considers as language universal the claim
that n-ary, or more specifically binary, determiners in all NLs are conservative.

The purpose of this paper is to show that in some sense a stronger claim can
be made concerning binary determiners: such determiners satisfy the natural con-
straint of symmetry. In the case of unary determiners symmetry just means that
in simple sentences with such determiners one can permute verbal and nominal ar-
guments without changing the truth-value of the whole. The notion of symmetry
can be generalised to quantifiers denoted by binary (or even n-ary) determiners
(Zuber 2007). It appears than that a huge majority of binary determiners denote
symmetric quantifiers. For instance the comparative determiner more...than de-
notes a symmetric quantifier because in particular sentences in (1) are equivalent:
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(1a) More students than teachers are Buddhists.
(1b) More Buddhists are students than teachers.

The paper is organised as follows. First, I will recall basic properties of ”sim-
ple” type 〈1, 1〉 focusing on symmetric, and their duals, contrapositional quanti-
fiers. It will be generally assumed that universe of discourse if finite. Then in
the next section I will show how various properties, in particular conservativity
and symmetry, extend to higher order quantifiers. Finally various known types of
binary determiners will be examined in order to show that all of them are sym-
metric. All this will be done using the framework of Boolean semantics (Keenan
and Faltz 1986) since, as it will be shown, various involved classes of quantifiers
have the Boolean structure. This fact will be used to make more precise some
formal claims.

2 Variety of simple quantifiers

In this section we are interested in the denotations of (unary) nominal determiners.
These are expressions (like every, no, some...including Lea, most) which combine
with common nouns to form noun phrases. Thus, semantically, they are functions
from P (E) onto type 〈1〉 quantifiers, where E is the universe of discourse and a
type 〈1〉 quantifier is a set of sub-sets of E. They are type 〈1, 1〉 quantifiers
and will be called here simple quantifiers. These quantifiers can be viewed as
binary relations on sets. Indeed a type 〈1, 1〉 quantifier F , which is a function
in [P (E) → [P (E) → {0, 1}]] corresponds to the binary relation Q between sets
defined by QXY ⇔ F (X)(Y ) = 1. The set of all type 〈1, 1〉 quantifiers, or the set
of unrestricted functions belonging to [P (E) → [P (E) → {0, 1}]] will be denoted
by PDET . This set forms an atomic Boolean algebra. Any member F of PDET
has a Boolean complement ¬F and a post-complement F¬ defined in the usual
way.

It has been noticed that the class PDET is too ”large” to be the set of possible
denotations for unary determiners since all functions denoted by such determiners
satisfy various constraints. One of the best known such constraints on possible
denotations of determiners is conservativity. By definition:

D1: F is conservative or F ∈ CONS iff for any property X, Y and Z if X ∩ Y =
X ∩ Z then F (X)(Y ) = F (X)(Z)

Conservativity of type 〈1, 1〉 quantifiers can additionally be formulated in two
different ways:

Fact 1 (cf. Keenan and Faltz 1986) F ∈ CONS iff for any property X, Y one has
F (X)(Y ) = F (X)(X ∩ Y )
Fact 2 (Zuber 2005): F ∈ CONS iff for any property X, Y one has F (X)(Y ) =
F (X)(X ′ ∪ Y )

The set CONS forms an atomic Boolean algebra. Atoms of CONS are de-
fined as follows (Keenan 1993):

Fact 3: For any A,B ⊆ E the function FA,B such that FA,B(X)(Y ) = 1 iff X = A
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and X ∩ Y = B .

The constraint of conservativity considerable reduces the number of conserva-
tive functions in comparison with the number of unrestricted functions. Thus we
have (Thijsse 1985):

Proposition 4: If |E| = n then |PDET | = 24n

and |CONS| = 23n

It follows from Proposition 4 that in the universe with just two elements we
have 65,536 of unrestricted type 〈1, 1〉 quantifiers among which there are only 512
conservative ones.

There are various empirically and theoretically important sub-classes of the
algebra CONS. Thus CONS has two sub-algebras, the algebra INT of inter-
sective functions, and the algebra CO-INT of co-intersective functions (Keenan
1993). By definition:

D2: F ∈ INT , iff for all properties X, Y , Z and W , if X ∩ Y = Z ∩ W then
F (X)(Y ) = F (Z)(W ).
D3: F ∈ CO-INT1 iff for all properties X, Y , Z and W , if X −Y = Z−W then
F (X)(Y ) = F (Z)(W ).

Intersective and co-intersective type 〈1, 1|rangle quantifiers can be defined in
four equivalent ways as shown by the following facts (Zuber 2007):

Fact 5: The following four conditions are equivalent: (i) F ∈ INT , (ii) F (X)(Y ) =
F (X ∩ Y )(X ∩ Y ), (iii) F (X)(Y ) = F (E)(X ∩ Y ), (iv) F (X)(Y ) = F (X ∩ Y )(E)
Fact 6: The following four conditions are equivalent: F ∈ CO-INT1, (ii) F (X)(Y ) =
F (X−Y )(X ′∪Y ), (iii) F (X)(Y ) = F (X−Y )(∅), (iv) F (X)(Y ) = F (E)(X ′∪Y )

Both sets, INT and CO-INT , form atomic (and complete) Boolean algebras.
Their atoms are determined by a property (Keenan 1993): for any property P
the function FP such that FP (X)(Y ) = 1 iff X ∩ Y = P is a atom of INT and
the function FP such that FP (X)(Y ) = 1 iff X − Y = P is an atom of CO-INT .
Exclusion determiners (Zuber 1998) denote such atomic functions: no...except Leo
and Lea denotes an atom of the algebra of intersective function determined by
the set composed of two elements, Leo and Lea.

The algebra INT contains a sub-algebra CARD of cardinal determiners: they
are denotations of, roughly speaking, various numerals. By definition:

D4: F ∈ CARD iff for all properties X, Y , W and Z, if |X ∩ Y | = |W ∩ Z| then
F (X)(Y ) = F (W )(Z).

Atoms of CARD are the functions fα, where α is a cardinal, such that fα(X)(Y )
is true iff |X∩Y | = α. From this definition it follows that any cardinal determines
an atom of CARD. Thus the determiner exactly n denotes an atomic cardinal
function.

As might be expected the algebra CO-INT has an analogous sub-algebra.
This is the algebra CO-CARD of co-cardinal functions (Keenan 1993):
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D5: F ∈ CO-CARD iff for all properties X, Y , W and Z, if |X − Y | = |W − Z|
then F (X)(Y ) = F (W )(Z)

Determiners like every...except five denote co-cardinal functions. Moreover, every
post-complement of a cardinal quantifier is a co-cardinal quantifier.

Unary determiners whose semantics also involves cardinality of sets denoted
by arguments are those denoting proportional quantifiers PROPORT . They are
defined as follows (Keenan 2002):

D6: F ∈ PROPORT iff for all sets X, Y,W,Z ⊆ E if |W |×|X∩Y | = |X|×|W∩Z|
then F (X)(Y ) = F (W )(Z)

Proportional quantifiers form an atomic Boolean algebra (Zuber 2005).
A classical example of a proportional quantifier is the quantifier denoted by

the determiner most (in the sense of more than half ).
Let me mention in addition the algebra of generalised cardinals or GCARD

introduced in Keenan and Faltz 1975 (under the name of cardinal independent)
and, independently in Zuber 2004 and studied in more detail in Zuber 2005. This
algebra, and its higher order generalisations will play an essential role in what
follows. By definition:

D7 F ∈ GCARD iff for all properties X, Y, Z if |X∩Y | = |X∩Z| then F (X)(Y ) =
F (X)(Z).

What definition D7 says intuitively is that a generalised cardinal is a function
which cannot distinguish among properties Y1 and Y2 at the argument X if X∩Y1

and X ∩ Y2 have the same cardinality.
Obviously the algebra GCARD is a proper sub-algebra of CONS and con-

tains as proper sub-algebras CARD and, only in finite universes, CO-CARD.
Moreover the following fact is also true (Zuber 2005):

Fact 7: PROPORT is a sub-algebra of GCARD.

Proof : It is enough to show that any proportional quantifier is a generalised car-
dinal. Suppose that D is proportional and that for arbitrary X, Y and Z one has
|X ∩Y | = |X ∩Z|. Then it is also true that |X| × |X ∩Y | = |X| × |X ∩Z|. Since
D is proportional this means that F (X)(Y ) = F (X)(Z) and thus D is generalised
cardinal.

Finally the algebra of GCARD has a sub-algebra of those quantifiers which
are at the same time fixed points with respect to post-complements (FPPCPL)
that is such type 〈1, 1〉 quantifiers D that D(X)(Y ) = D(X)(Y ′) (half is a typ-
ical determined which denotes such quantifiers). They can be defined as follows
(Zuber 2005):

D8: D ∈ GCARD ∩ FPPCPL iff D(X)(Y1) = D(X)(Y2) whenever |X ∩ Y1| =
|X ∩ Y ′

2 |.

I mentioned the algebra GCARD because, as indicated by above properties,
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many classes of conservative quantifiers are generalised cardinals. Let us see some
examples. Quantifiers NO and FIV E are generalised cardinals because they
are cardinals. Similarly EV ERY and EV ERY...EXCEPT 10 are generalised
cardinals because they are co-cardinals. Notice that this last clain is true only
for finite universes since only in this case it is true that |X ∩ Y1| = |X ∩ Y2| iff
|X ∩ Y ′

1 | = |X ∩ Y ′
2 |.

Consider now the determiner the n. One considers traditionally that the n
denotes the quantifier THE n defined as follows: THE n(X)(Y ) = 1 iff |X| = n
and X ⊆ Y . Observe that THE n is neither cardinal nor co-cardinal. One can
check also that it is not proportional: to see this (for n = 1) take X, Y,W,Z such
that |X| = 1, |W | = 2, X ⊆ Y and W ⊆ Z. It is easy to see, however, that the
n denotes a proper generalised cardinal quantifier. Similarly one can show that
the determiners like most but less than 10 or most or at least 10 are properly
generalised cardinals.

Let us show now that the quantifier MOST OR AT −LEAST (10) is neither
cardinal nor proportional. We show first that it is not cardinal. Suppose for this
that |X ∩ Y | = |W ∩ Z| < 10, |X ∩ Y | ≤ |X ∩ Y ′| and |W ∩ Z| > |W ∩ Z ′|.
In this case MOST (X) OR AT − LEAST (10)(X)(Y ) = 0 and MOST (W ) OR
AT − LEAST (10)(W )(Z) = 1 which means that MOST OR AT − LEAST (10)
is not cardinal.

Suppose now that |X∩Y | = |X∩Y ′| = 10, |W∩Z| = 8, |X| = 20 and |W | = 16.
In this case |W × |X ∩ Y | = |X| × |W ∩Z|. However in this case MOST (X) OR
AT−LEAST (10)(X)(Y ) = 1 and MOST (W ) OR AT−LEAST (10)(W )(Z) = 0
which means that the considered quantifier is not proportional. It is, however,
generalised cardinal because it is a join of two generalised cardinals.

Observe finally that (exactly) half ... out of n is a generalised cardinal which
is a member of FPPCPL (and which is neither proportional nor cardinal).

Important point in the context of unary determiners and above examples is
that not all of them denote generalised cardinals. To see this it is enough to take a
properly intersective (non-cardinal) or a properly co-intersective (non-co-cardinal)
quantifiers. For instance No...except Leo, most/some ...including Leo and every...
except Leo are not generalised cardinals. My point is to try to show, however,
that all binary determiners denote (appropriately generalised to the higher order
case) generalised cardinals.

We can now introduce two other classes of type 〈1, 1〉 quantifiers: symmetric
and contrapositional ones. When extended to higher order quantifiers they will
play essential role in our analysis or binary determiners. In addition they allow us
to better understand the relationship between conservative quantifiers in general
and various their sub-classes.

Symmetric and contrapositional type 〈1, 1〉 quantifiers are defined as follows
(Zuber 2007):

D9: F ∈ SY M iff for all properties X, Y one has F (X)(Y ) = F (Y )(X)
D10: F ∈ CONTR iff for all sets X, Y one has F (X)(Y ) = F (Y ′)(X ′).

Both sets, SY M and CONTR form atomic Boolean algebras. They elements
need not to be conservative. The following propositions show when they are con-
servative (Zuber 2007):
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Proposition 8: CONS ∩ SY M = INT
Proposition 9: CONS ∩ CONTR = CO-INT

It follows from Propositions 8 and 9 that under conservativity type 〈1, 1〉 sym-
metric quantifiers are the same as the intersective ones and contrapositional are
the same as co-intersective ones. As we will see this is not the case for higher
order quantifiers.

Interestingly we have similar relations between algebras GCARD, CARD,
CO-CARD and SY M and CONTR. More precisely, the following propositions
hold (Zuber 2007):

Proposition 10: GCARD ∩ SY M = CARD
Proposition 11: GCARD ∩ CONTR = CO-CARD

Thus cardinal and intersective quantifiers are symmetric. For example FIV E,
SOME, SOME..., INCLUDING LEA and NO, ..., EXCEPT LEO are sym-
metric quantifiers.

It is interesting that one can define symmetric quantifiers in the format we use
in other definitions and which can be easily generalised to quantifiers of higher
types. The following trivial proposition which indicates such an equivalent defini-
tion will be used as a convenient handle for generalising symmetry to higher types :

Proposition 12: F ∈ SY M iff there exists a commutative binary function ” ⊗ ”
taking sets as arguments such that for all X, Y,W,Z if X ⊗ Y = W ⊗ Z then
F (X)(Y ) = F (W )(Z).

Similar property holds for contrapositional quantifiers:

Proposition 13: F ∈ CONTR iff there exists a commutative binary function ”⊗”
taking sets as arguments such that for all X, Y,W,Z if X ⊗ Y ′ = W ⊗ Z ′ then
F (X)(Y ) = F (W )(Z).

Propositions 12 and 13 will allow us to generalise the notion of symmetry and
contraposition to quantifiers of higher types.

3 Quantifiers of higher types

In the previous section we presented various properties quantifiers of type 〈1, 1〉
quantifiers that is quantifiers corresponding to binary relations between sets. They
are denotations of unary determiners. Since we are going to make some claims
about constraints on denotations of binary determiners we need to consider how
to extend various properties discussed in the previous section to a more general
case of quantifiers which are still binary relations but arguments of these relations
are other relations, usually binary, or sets and binary relations. Though we are
basically interested in denotations of binary determiners and thus in binary rela-
tions having between binary relations and sets in most definitions we will propose
we will not limit the number of arguments corresponding to nominal arguments
of determiner. Thus we define various properties of higher order quantifiers in the
way that they are applicable to denotations of n-ary determiners in general, for n
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arbitrary. This move will allow us to understand better the basic ideas underlying
various definitions. Thus most definitions to be given concern type 〈1n, 1〉 quan-
tifiers that is binary relations whose first argument is an n-ary relation between
sets and the second argument is a set.

Most of the definitions we are looking for have already been suggested (cf.
Keenan and Moss 1984, Beghelli 1994, Keenan 2003, Zuber 2005). After the dis-
cussion from the previous section we have a relatively clear intuition of how to
define conservative quantifiers of higher types. Here are two general definitions:
the definition of conservative quantifiers and the definition of straightforwardly
related generalised cardinals (Zuber 2005):

D11: D ∈ CONS〈1n,1〉 iff ∀Xi, Y1, Y2, D(X1, ..., , Xn)(Y1) = D(X1, ..., Xn)(Y2) if
Xi ∩ Y1 = Xi ∩ Y2, for every 1 ≤ i ≤ n.
D12: D ∈ GCARD〈1n,1〉 iff ∀Xi, Y1, Y2, D(X1, ..., Xn)(Y1) = D(X1, ..., Xn)(Y2) if
|Xi ∩ Y1| = |Xi ∩ Y2|, for every 1 ≤ i ≤ n.

As in the case of simple quantifiers conservative higher order quantifiers can
be defined in two other ways. This is indicated by the following facts;

Fact 14: D ∈ CONS〈1n,1〉 iff D(X1, ..., X2)(Y ) = D(X1, ..., Xn)(Y ∩
⋃

n Xi), for
every 1 ≤ i ≤ n.
Fact 15: D ∈ CONS〈1n,1〉 iff D(X1, ..., X2)(Y ) = D(X1, ..., Xn)(Y ∪

⋂
n X ′

i), for
every 1 ≤ i ≤ n.

These facts follow from the equalities given in (3):

(3) Xi ∩ Y = Xi ∩ Y ∩
⋃

n Xi = Xi ∩ (
⋂

n X ′
i ∪ Y )

It is not difficult to establish that:

Fact 16: GCARD〈1n,1〉 ⊂ CONS〈1n,1〉

Both sets, GCARD〈1n,1〉 and CONS〈1n,1〉, form atomic Boolean algebras.
More specifically we have (Zuber 2005):

Proposition 17: Let 1 ≤ i ≤ n, Pi ⊆ E and P ⊆
⋃

i Pi. Then the function
FP1,...,Pn,P such that FP1,...,Pn,P (X1, ..., Xn)(Y ) = 1 iff Xi = Pi and P = Y ∩

⋃
i Xi

is an atom of CONS〈1n,1〉. All atoms of CONS〈1n,1〉 are of this form.

Concerning atoms of GCARD〈1n,1〉 we have:

Proposition 18: Let 1 ≤ i ≤ n, Pi ⊆ E. Then the function FP1,...,Pn,n such
that FP1,...,Pn,n(X1, ..., Xn)(Y ) = 1 iff Pi = Xi and |Xi ∩ Y | = n is an atom of
GCARD〈1n,1〉. All atoms of GCARD〈1n,1〉 are of this form.

Proof : We prove only the first part of the proposition. Suppose a contrario that
the function FP1,...,Pn,n is not an atom of GCARD〈1n,1〉. This means that there
exist a function G of type 〈1n, 1〉 which is a generalised cardinal and which is
strictly included in FP1,...,Pn,n. This entails that for some X1..., Xn, Y we have
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G(X1, ..., Xn)(Y ) = 0) and FP1,...,Pn,n(Xi, ..., Xn, Y ) = 1. Consequently, given
the definition of FP1,...,Pn,n we have Pi = Xi and |Xi∩Y | = n. Since G cannot be
a constant function (always equal 0) there is a sequence of arguments W1, ...,Wn, Z
such that G(W1, ...,Wn), (Z) = 1 and FP1,...,Pn,n(W1, ...,Wn), (Z) = 1. It follows
from this that Pi = Wi and |Wi ∩ Z| = n. But this is impossible because in this
case G would not be a generalised cardinal.

Proposition 18 allows us to calculate the number of generalised cardinals of
type 〈1n, 1〉. Thus we have:

Proposition 19: Let |E| = k. Then the number of atoms of GCARD〈1n,1〉 (over

E)=
∑k

i=0[(k − i + 1)×
(

k
i

)
]n

Proposition 19 allows us to establish the number of elements of GCARD〈1n,1〉.
Thus if |E| = 2 and n = 2, the algebra GCARD〈1n,1〉 has 26 atoms and thus 226

elements. Keenan and Moss (1985) show that in this case the algebra CONS〈12,1〉
contains 247 elements.

Comparing the above definitions with the definitions of intersective, co-intersective,
cardinal and co-cardinal simple quantifiers we see how to define higher order inter-
sective, co-intersecive, cardinal and co-cardinal quantifiers of type 〈1n, 1〉. Thus
we have the following definitions:

D 13: D ∈ INT〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if Xi∩Z1 = Yi∩Z2 then D(X1, ..., Xn)(Z1) =
D(Y1, ..., Yn)(Z2), for every 1 ≤ i ≤ n.
D 14: D ∈ CO-INT〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if Xi − Z1 = Yi − Z2, for every
1 ≤ i ≤ n then D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
D15: D ∈ CARD〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, if |Xi ∩ Z1| = |Yi ∩ Z2|, for every
1 ≤ i ≤ n then D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
D16: D ∈ CO-CARD〈1n,1〉 iff ∀Xi, Yi, Z1, Z2, D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2)
if |Xi − Z1| = |Yi − Z2|, for every 1 ≤ i ≤ n.

Various classes of quantifiers specified in these definitions are related between
themselves. We have in particular (cf. Keenan and Moss 1984):

Fact 20: CONS〈1n,1〉, GCARD〈1n,1〉, INT〈1n,1〉, CO-INT〈1n,1〉, CARD〈1n,1〉,
CO-CARD〈1n,1〉 form Boolean algebras.
Fact 21: CARD〈1n,1〉 ⊆ INT〈1n,1〉 ⊆ CONS〈1n,1〉

Another relation easy to establish (holding in finite models), and analogous
to that established in the previous section of quantifiers of type 〈1, 1〉 is indicated
in:

Fact 22: CARD〈1n,1〉 ∪ CO-CARD〈1n,1〉 ⊆ GCARD〈1n,1〉 ⊆ CONS1〈1n,1〉

To be more precise the above set inclusions can in fact be replaced by state-
ments indicating that included sets are sub-algebras of sets in which they are
included.

It is easy to check that the quantifier MORE...THAN... denoted by the binary
determiner more ...than... (occurring in NPs on the subject position) is a type
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〈12, 1〉 cardinal quantifier. We will discuss many other examples in the next
section.

All the above definitions specify various classes of type 〈1n, 1〉 quantifiers. Nat-
ural languages have also clear cases of type 〈1, 1n〉 quantifiers or at least of type
〈1, 12〉. An example of such a quantifier is the quantifier MORE...ARE...THAN...
(as the denotation of the determiner occurring in More students are Buddhists than
shogi players. This means that various classes of type 〈1, 1n〉 quantifiers should be
defined as well. We give here only definitions of conservativity and intersectivity
for such quantifiers. These definitions, in conjunction with other definitions given
above show how to define other properties of type 〈1, 1n〉 quantifiers (cf. Zuber
2005):

D17: D ∈ CONS〈1,1n〉 iff for all X, Yi, Zi if X ∩ Yi = X ∩Zi, for every 1 ≤ i ≤ n
then D(X)(Y1, ..., Yn) = D(X)(Z1, ..., Zn)
D18: D ∈ INT〈1,1n〉 iff for all X1, X2, Yi, Zi, D(X1)(Y1, ..., Yn) = D(X2)(Z1, ..., Zn),
whenever X1 ∩ Yi = X2 ∩ Zi, for every 1 ≤ i ≤ n.

Higher type quantifiers, in addition to their Boolean complements, have also
post-complements. A general definition of the post-complement of type 〈1k, 1l〉
quantifier goes as follows:

D 19: If F is a type 〈1k, 1l〉 quantifier then F¬, the post-complement of F , is that
type 〈1k, 1l〉 quantifier for which F¬(X1, ..., Xk)(Y1, ..., Yl) = F (X1, ..., Xk)(Y ′

1 , ..., Y ′
l )

The operation of post-complementation has similar effects in the case of higher
type quantifiers, as in the case of simple quantifiers. For instance:

Fact 23: D ∈ INT〈1n,1〉 iff D¬ ∈ CO-INT〈1n,1〉 and D ∈ INT〈1,1n〉 iff D¬ ∈ CO-
INT〈1,1n〉

Similar conditions hold for cardinal and co-cardinal quantifiers.
We want now to define symmetry and contraposition for quantifiers of higher

order types. Obviously in such definitions we cannot just permute arguments of
the corresponding relation since such a permutation changes the type of quanti-
fier in this case. For indeed, if the type of a relation depends on the type of its
arguments then the binary relation which has as a first argument a set and as
the second argument an n-ary relation between sets is not of the same type as
the binary relation whose first argument is a n-ary relation between sets and the
second argument is a set. But this just means that we cannot define symmetric
higher order quantifiers by comparing relations with permuted arguments as in
definition D9 for simple quantifiers. It is possible, however, in this case to use the
equivalence indicated in Proposition 12 and 13 and define symmetric and contra-
positional quantifiers of higher types in the definitional format mostly used here
(Zuber 2007):

D 20: A type 〈1n, 1〉 quantifier D is symmetric iff there exists a binary commu-
tative function ⊗ on pairs of sets such that ∀Xi, Yi, Z1, Z2, D(X1, ..., Xn)(Z1) =
D(Y1, ..., Yn)(Z2) if Xi ⊗ Z1 = Yi ⊗ Z2, for every 1 ≤ i ≤ n.
D 21: A type 〈1n, 1〉 quantifier D is contrapositional iff there exists a binary
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commutative function ⊗ such that ∀Xi, Yi, Z1, Z2, if Xi ⊗ Z ′
1 = Yi ⊗ Z ′

2 then
D(X1, ..., Xn)(Z1) = D(Y1, ..., Yn)(Z2), for every 1 ≤ i ≤ n.

Similarly for type 〈1, 1n〉 quantifiers:

D 22: A type 〈1, 1n〉 quantifier is symmetric iff there exists a binary commutative
function ⊗ on pairs of sets such that for all X1, X2, Yi, Zi, if X1 ⊗ Yi = X2 ⊗ Zi,
then D(X1)(Y1, ..., Yn) = D(X2)(Z1, ..., Zn), for every 1 ≤ i ≤ n.
D 23 A type 〈1, 1n〉 quantifier is contrapositional iff there exists a binary commuta-
tive function ⊗ on pairs of sets such that for all X1, X2, Yi, Zi, D(X1)(Y1, ..., Yn) =
D(X2)(Z1, ..., Zn), whenever X1 ⊗ Y ′

i = X2 ∩ Z ′
i, for every 1 ≤ i ≤ n.

The following propositions show the usefulness of these definitions for n-ary de-
terminers denoting symmetric or contrapositional quantifiers (Zuber 2007):

Proposition 24: Let F ∈ PDET〈1n,1〉 and G ∈ PDET〈1,1n〉 such that F (X1, ..., Xn)(Y ) =
G(Y )(X1, ..., Xn). Then F is symmetric iff G is symmetric.
Proposition 25: Let F ∈ PDET〈1n,1〉 and G ∈ PDET〈1,1n〉 such that F (X1, ..., Xn)(Y ) =
G(Y ′)(X ′

1, ..., X
′
n). Then F is contrapositional iff G is contrapositional.

Thus, roughly, proposition 24 says that if two functions have ”symmetric
types” and are equal then they are both symmetric.

Concerning symmetric quantifiers the following easy to establish fact (formu-
lated somewhat informally) allows us to understand what symmetry for higher
types of quantifiers means:
Fact 26: A type 〈1n, 1〉 quantifier D is symmetric iff D(X, ...X)(Y ) = D(Y, ..., Y )(X)

We observe also, as for simple quantifiers, that symmetric and contrapositional
quantifiers are related by post-complements:

Fact 27: A higher type quantifier F is symmetric iff F¬ is contrapositional.

Furthermore we can also easily establish the following:

Fact 28: If F ∈ INT〈1n,1〉 or F ∈ INT〈1,1n〉 then F is symmetric.
Fact 29: if F ∈ CO-INT〈1n,1〉 or F ∈ CO-INT〈1,1n〉 then F is contrapositional.

We can illustrate proposition 19, and indirectly fact 22 by the following exam-
ple. We will consider two quantifiers we have already seen. Consider first the type
〈〈1, 1〉, 1〉 quantifier MORE...THAN.... It is denoted by the binary determiner
more...than... as it occurs in More students than teachers. Its semantics is given
by: MORE(X1, X2)(Y ) = 1 iff |X1 ∩ Y | > |X2 ∩ Y |. As the second quantifier
consider MORE...ARE...THAN.... This type 〈1, 〈1, 1〉〉 quantifier is the deno-
tation of the complex (structured) determiner found in More students are vege-
tarians than (are) Buddhists. Its semantics is given by MORE(Y )(X1, X2) = 1
iff |Y ∩X1| > |Y ∩X2|. It follows from the provided semantics that both quan-
tifiers are intersective (in fact cardinal) and thus symmetric. Furthermore, we
can check that they have both identical semantics up to the permutation of ar-
guments required by the symmetry. So in particular More students than teachers
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are Buddhists is equivalent to More Buddhists are students than teachers.
To illustrate proposition 10 we can use the example of higher type (reducible)

quantifiers formed by the quantifier EV ERY and the conjunction AND. Thus
Every student and teacher is a Buddhist is equivalent, under the distributive
reading, to Every non Buddhist is a non-student and a non-teacher. This means
that the type 〈〈1, 1〉, 1〉 quantifier EV ERY...AND...IS... and the type 〈1, 〈1, 1〉〉
quantifier EV ERY...IS...AND... are both contrapositional.

The remain the definition of proportional quantifiers to be given. I give it only
for the case when n = 2. The definition goes as follows (Zuber 2005):

D24: D ∈ PROPORT〈12,1〉 iff for all X1, X2, Y1, Y2, Z1, Z2, D(X1, X2)(Z1) =
D(Y1, Y2)(Z2) whenever |Y1| × |Y2| × |X1 ∩ Z1| = |X1| × |X2| × |Y1 ∩ Z2| and
|Y1| × |Y2| × |X2 ∩ Z1| = |X1| × |X2| × |Y2 ∩ Z2|.

One checks by calculation that according to D 24 determiners like proportion-
ally as many... as... denote proportional type 〈12, 1〉 quantifiers.

For proportional quantifiers the following is true:

Proposition 30: PROPORT〈12,1〉 is a sub-algebra of GCARD〈12,1〉.

To conclude this section let me mention some differences between simple and
higher order quantifiers. There are many such differences. One important dif-
ference concerns simple et binary proportional quantifiers: only the former are
closed with respect to post-complement. Other differences, more important for
our analysis, concern intersective and symmetric quantifiers. We have seen that
under conservativity these to notions are co-extensive. Furthermore we have also
seen that intersectivity if simple quantifiers can be defined in four equivalent ways
(cf. Fact 5). This is not the case for intersectivity of type 〈〈1, 1〉1〉 or type 〈1〈1, 1〉〉
quantifiers. In particular there are symmetric and conservative type 〈〈1, 1〉1〉
quantifieres which are not intersective. Here is a simple example. Let D be a
type 〈〈1, 1〉1〉 quantifier defined as follows D(X1, X2)(Y ) = 1 iff X1∪Y = X2∪Y .
It is easy to show that this quantifier is symmetric and conservative but not in-
tersective. Its symmetry is shown by choosing as the commutative operation ⊗
the operations of set-union ∪.

4 Denotations of binary determiners

Binary determiners are discontinuous functional expressions which take two argu-
ments. They are not necessarily ”nominal” because syntactically they can be of
two categories. First, they can take two common nouns and form a noun phrase.
Though such NPs can occur on various positions we will consider only the case
when they occur on subject position. Thus determiners of the first category form
a sentence with two com moun nouns and a verb phrase. Consequently, seman-
tically, they denote type 〈〈1, 1〉, 1〉 quantifiers. Second, binary determiners can
take two verb phrases and form with one common noun a sentence. In this case
they denote 〈1, 〈1, 1〉〉 quantifiers. Our proposal here concerns basically binary
determiners of the first category.

From the formal and empirical view it is useful to distinguish two types of
binary determiners (cf. Keenan and Moss 1985): comparative binary determiners
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and Booleanly reducible binary determiners. Often discussed in the literature
”natural” higher order quantifiers are so-called comparative binary quantifiers
(Beghelli 1992). These are quantifiers denoted in the simplest case by discon-
tinuous (binary) determiners like more... than or as many... as. When these
determiners form subject NPs (in sentences with ”simple” VPs) then they denote
quantifiers of type 〈〈1, 1〉1〉. These quantifiers can be said to be genuine higher
order since they cannot be reduced to a Boolean combination of simple quantifiers
(Keenan and Moss 1985, Beghelli 1994). Furthermore. they are ”natural” in the
sense that the determiners by which they are denoted have a categorial status of
binary determiners syntactically justified (Keenan 1989).

Beghelli (1994) distinguishes various sub-groups of comparative determiners
(quantifiers). Usually they exhibit a complex syntax which can be ignored for
our purposes. The simplest and in some sense basic group of determiners may be
called simple comparatives. They include determiners like more...than..., exactly
as many... as..., the same number of..as.., , etc. It is easy to see that these
determiners denote cardinal quantifiers and thus, given proposition x, they are
symmetric and, at the same time, generalised cardinals. Let us show this for illus-
tration on one example. Consider for instance the quantifier FEWER...THAN...
denoted by the determiner occurring in the noun phrase fewer students than teach-
ers. Its semantics is given in (1):

(1) FEWER(X1)THAN(X2)(Y ) = 1 iff |X1 ∩ Y | < |X2 ∩ Y |

To show that it is cardinal suppose that (2) and (3) hold. We have to show that
(4) holds as well:

(2) |X1 ∩ Y1| = |X1 ∩ Y2| and |X2 ∩ Y1| = |X2 ∩ Y2|
(3) FEWER(X1)THAN(X2)(Y1) = 1
(4) FEWER(X1)THAN(X2)(Y2) = 1

The result is obvious given the semantics in (1): the equalities in (2) allow us to
make replacements making (4) true.

Since cardinal quantifiers (of any type) form a Boolean algebra they are
closed with respect to Boolean operations. This means for instance that AT −
LEAST − AS −MANY...AS... is also cardinal because it is the complement of
FEWER...THAN.... Similarly the complex determiner at least 10 more but not
more than 20 more... than ... (as it occurs in at least ten more but not more
then 20 students more then teachers) denotes the meet of two quantifiers de-
noted respectively by at least 10 more... than... and not more than 20 ...than....
Since both these quantifiers are cardinal the whole quantifier is also a cardinal
and consequently symmetric and generalised cardinal. Symmetry of many other
quantifiers can be established in the same way (see Beghelli 1994).

One observes in addition that for many simple comparative determiners men-
tioned above there exist logically equivalent syntactically more complex ones. For
instance a lesser number of... than... is semantically equivalent to fewer...than...
and exactly as many... as... is equivalent to exactly the same number of... as....
Their semantic status is however the same.

There is a class of binary determiners which denote intersective but not cardi-
nal quantifiers. These are determiners which may be called modified comparatives.
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They can be modified by adjectives (as in more male... than female... or by pos-
sessives (as in more Leo’s... than Bill’s...). What is interesting is the fact that
though such modified comparatives are in some sense derived from cardinal ones
they are not cardinal. In other words the modification does not preserve the
property of being cardinal. Modification preserves, however, intersectivity. Let
us se this in more details.

Let us observe first that modifiers we are talking about denote absolute func-
tions (absolute modifiers). A function M from sets to sets is absolute (Keenan
and Faltz 1985) iff for any set X, F (X) = X ∩M(E). Absolute adjectives (male,
female) and possessives denote absolute modifiers. Thus, roughly female students
are students and female objects and Bill’s bicycles are bicycles and Bill’s objects.

Let us define now an intersective type 〈〈1, 1〉, 1〉 quantifier restricted (mopdi-
fied) by two sets:

D25: Let A and B be sets and D a type 〈〈1, 1〉, 1〉 quantifier. Then DA,B is a type
〈〈1, 1〉, 1〉 quantifier defined as follows: DA,B(X1.X2)(Y ) = D(A∩X1, B∩X2)(Y )

For such modified quantifiers it is easy to establish the following fact:

Fact 30: If D ∈ INT〈12,1〉 then DA,B ∈ INT〈12,1〉, for any set A,B.

It follows from fact 30 that modified comparative binary determiners denote
intersective quantifiers (because they are obtained by modification of cardinal,
and thus intersective quantifiers). Consequently modified comparative binary
determiners also denote symmetric (but not generalised cardinal) quantifiers.

Beghelli (1994) mentions also existence of the class of binary determiners he
calls identity comparative. These determiners do not involve comparison of car-
dinalities or quantities but rather a comparison of identities of individuals. syn-
tactically they combine one common noun with two VPs to form a sentence and
thus they denote type 〈1, 〈1, 1〉〉 quantifiers. Here are some (Beghelli’s) examples
of sentences with such determiners:

(5) The same students came early as left late.
(6) Whatever students came early left late.
(7) The same five students came early as left late.

The determiners in the above sentences denotes the following quantifiers:

(8) THE-SAME(X)(Y1, Y2) = 1 iff X ∩ Y1 = X ∩ Y2

(9) WHATEV ER(X)(Y1, Y2) = 1 iff X ∩ Y1 ⊆ X ∩ Y2

(10) THE-SAME-5(X)(Y1, Y2) = 1 iff X ∩ Y1 = X ∩ Y2 ∧ |X ∩ Y1| = 5

Thus sentence (6) is true iff the set of students who came early is included in the
set of students who left late. It is easy to show that quantifiers in (8), (9) and
(10) are all intersective and thus symmetric.

There remains a last type of determiners we need to examine is represented by
the proportional binary determiners as the one found in (11). It denotes a type
〈〈1, 1〉, 1〉 quantifier which has the semantics given in (12):
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(11) Proportionally as many students as teachers danced.
(12) PROP -AS-MANY (X1, X2)(Y ) = 1 iff |X1 ∩ Y |/|X1| = |X2 ∩ Y |/|X2|

The quantifier in (12) is proportional in the sense of D24. It is not intersective.
We show, not quite explicitly, that it is symmetric. According to D22 we have
to show that there exists a binary operation on sets ⊗ which is commutative and
such that if (13) holds then (14) holds:

(13) X1 ⊗ Z1 = Y1 ⊗ Z2 and X2 ⊗ Z1 = Y2 ⊗ Z2

(14) PROP -AS-MANY (X1, X2)(Z1) = PROP -AS-MANY (Y1, Y2)(Z2)

Chose ⊗ as: X ⊗Y = |X ∩Y |/(|X|× |Y |). This operation is obviously commuta-
tive. A somewhat tedious simple arithmetic operations on fractions in conjunction
with necessary substitutions of equals by equals lead to the required equivalence
in (14).

Examples:
Apart fom Leo all students who are Buddhists are vegetarians

5 Conclusion
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