Remarks on Kratzer's OrderingPremise Semantics of Modalities and Conditionals

Norry Ogata
Osaka University

Contents

1. Definitions of Ordering-Premise Semantics
2. Their Motivations
3. Some Formal Properties and Flaws
4. Multi-modal Premise Semantics
5. Premise Semantics from the viewpoint of Dynamic Doxastic Logic

Definitions of Ordering-Premise Semantics

Let W be a set of possible worlds, functions such that
are called a modal base and ordering source respectively.
They gives two types of premise set (set of propositions)
to each possible worlds.

$$
\llbracket \square \phi \rrbracket_{\mathcal{K}}=\{w \in W \mid
$$

where

Lemma 1.

(1) $\leq_{\mathcal{O}(w)}$ is reflexive, transitive, and anti-symmetry,
even if $\mathcal{O}(w)=\varnothing$.
(2) $\leq_{O(w)} \circ \leq_{\mathcal{O}(w)}$ is reflexive, transitive, and anti-symmetry, even if $\mathcal{O}(w)=\varnothing$.
(3) $w \leq_{O(w)} w$ even if $\mathcal{O}(w)=\varnothing$.

Kripke Semantics

: a non-empty set of possible worlds
: a binary relation on W
$: \Phi \rightarrow \wp(W)$ a valuation of Φ
: a Kripke model

$$
\Leftrightarrow: \forall \varphi \in \Gamma \forall w \in W . \mathcal{M}, w \vDash \varphi \Rightarrow \mathcal{M}, w \vDash \phi
$$

Lemma 2.

(1) $R_{X}=\{(w, z) \mid$
$\left.\forall u \in \bigcap \mathcal{B}(w) \exists v \in \bigcap \mathcal{B}(w) z \in \bigcap \mathcal{B}(w) \cdot z \leq_{O(w)} v \& v \leq_{O(w)} u\right\}$
$=\left\{(w, z) \mid \forall u \in \bigcap \mathcal{B}(w) z \leq_{O(w)} \circ \leq_{\mathcal{O}(w)} u\right\}$
is reflexive, transitive, and serial if $w \in \cap B(w) \because$ Lemma 1(2)
(2) If $\forall w \in W: B(w)=\varnothing$, then $\left\langle W, R_{\mathcal{K}}\right\rangle$ is a reflexive,
transitive, serial Kripke frame
$\because R_{X}=\left\{(w, z) \mid \forall u \in W \cdot z \leq_{\mathcal{O}(w)} \circ \leq_{\mathcal{O}(w)} u\right\}$.
(3) $R_{\mathcal{K}}$ is transitive and serial \because Lemma 2(1-2).

Lemma 3.

(1) $\left\langle W, R_{\mathcal{K}}\right\rangle \vDash \square \varphi \rightarrow \diamond \varphi \because$ Lemma 2(3),
(2) $\left\langle W, R_{\mathcal{K}}\right\rangle \vDash \square \varphi \rightarrow \square \square \varphi \because$ Lemma 2(3),
(3) $\left\langle W, R_{\mathcal{K}}\right\rangle \vDash ? \mathcal{X} \rightarrow(\square \varphi \rightarrow \varphi) \because$ Lemma 2(1-2)

Problems on Ordering-Premise Semantics

- Case1:Some verifiable propositions are not in any premise sets
- Case2:On "Overcoming Inconsistencies"
- Case3:On "Practical Inference"=multimodal inference

Case 1:Circumstantial Conversational Backgrounds

\mathcal{B} is realistic, i.e., $\forall w . w \in \cap \mathcal{B}(w)$.
$\mathcal{B}(u)=\{\mathbf{p}, \mathbf{q}\}$
$\mathcal{O}(u)=\left\{\mathbf{p}^{" '}\right\}$,
$\mathbf{p} \cap \mathbf{q}=\{u\}, u \in \mathbf{p}^{\prime} \subset \mathbf{p}{ }^{\prime \prime} \subset \mathbf{p}{ }^{\prime \prime}$
Then, $\langle\mathrm{W}, \mathcal{B}, \mathcal{O}, V\rangle, u \vDash \diamond \mathbf{p}^{\prime}, \Delta \mathbf{p}^{\prime \prime}$
even though \mathbf{p}^{\prime} and \mathbf{p} " are not
in the conversational background.

Case 1:Circumstantial Conversational Backgrounds

$u \in \mathbf{p}{ }^{\prime \prime} \cap \mathbf{q}^{\prime} \subset \mathbf{p}^{\prime \prime} \subset \mathbf{p}{ }^{\prime \prime} \cup \mathbf{q}^{\prime}$
Then, $\langle\mathrm{W}, \mathcal{B}, \mathcal{O}, V\rangle, u \vDash \diamond\left(\mathbf{p}{ }^{\prime \prime} \vee \mathbf{q}^{\prime}\right), \diamond\left(\mathbf{p}{ }^{\prime \prime} \wedge \mathbf{q}^{\prime}\right)$
for each $\mathbf{q}^{\prime}(\ni u)$ which is not
in the conversational background.

Case 2: Judgments

Judge A: a is liable (); Judge B: a is not liable($-($)
Judge $\mathrm{A}=$ Judge B : the murder is a crime ()
$\therefore \llbracket$ Judgments $\rrbracket=\llbracket \perp \rrbracket=\varnothing$.
Judgments $\vDash \square c, \square \neg c$
Judgments $\not \models \diamond l, \diamond \neg l$, for all formula c, l, \ldots

Case 2: Judgments (Kratzer's Solution)

w

Closest to the ideal

$\forall w \cdot \mathcal{B}(w)=\varnothing$,i.e., $\cap \mathcal{B}(w)=W$,i.e., $R_{\mathcal{K}}$ is reflexive, i.e.,

Case 3: Practical Inference

\mathcal{B} is circumstantial, i.e., $\mathcal{B}(w)=\{$ goToPub \leftrightarrow popular $\}$
\mathcal{O} is bouletic, i.e., $\mathcal{O}(w)=\{$ popular, $\neg g o$ ToPub, hike $\}$
$\mathcal{B}(w) \cup \mathcal{O}(w)=\llbracket \perp \rrbracket=\varnothing$

Case 3: Practical Inference (Kratzer's Solution)

Case 3: Practical Inference (Frank's Solution)

"Does this correspond to our intuitions? In one way it does, but in another it doesn't." Frank(1997)

She proposes a contraction of 'p' and 'not-p' in the sense of Belief Revision.
$\mathcal{B}(w) \cup!\mathcal{O}(w)=\mathcal{B}(w) \cup \mathcal{O}^{\prime}(w)$,
where
$\mathcal{O}^{\prime}(w) \subseteq \mathcal{O}(w) \& \bigcap\left(\mathcal{B}(w) \cup \mathcal{O}^{\prime}(w)\right) \neq \varnothing \&$
$\forall X \subseteq \mathcal{O}(w)$ if $\mathcal{O}^{\prime}(w) \subseteq X$, then $\cap(\mathcal{B}(w) \cup X)=\varnothing$.

For another contraction in DRT, see 4.1.4. of Frank(1997).

Case 3

- If Kratzer's treatment of practical inference is right, we can add more multi-modal premises:
i. The speaker's father's wish: not-hike
ii. The law: not-gotoPub
iii. ...

How many are ordering sources or modal bases needed? Or Such a multi-modal situation can be treated?

Lemma 4.

$$
\begin{aligned}
& \mathcal{K}, w \vDash \diamond \varphi \\
& \Leftrightarrow \mathcal{K}, w \vDash \neg \square \neg \varphi \\
& \Leftrightarrow \neg \forall u \in \cap \mathcal{B}(w) \exists v \in \bigcap \mathcal{B}(w) \forall z \in \cap \mathcal{B}(w) . \\
& z \leq_{\mathcal{O}(w)} v \& v \leq_{\mathcal{O}(w)} u \Rightarrow \mathcal{K}, v \vDash \neg \varphi \\
& \Leftrightarrow \exists u \in \bigcap \mathcal{B}(w) \forall v \in \cap \mathcal{B}(w) \exists z \in \cap \mathcal{B}(w) . \\
& z \leq_{\mathcal{O}(w)} v \& v \leq_{\mathcal{O}(w)} u \& \mathcal{K}, v \vDash \varphi
\end{aligned}
$$

Ordering Lemma

(1) $v \leq_{O(w)} u$ even if $\mathcal{O}(w)=\varnothing$
$\because P(u) \cap \mathcal{O}(w)=\varnothing \subseteq \varnothing=P(v) \cap \mathcal{O}(w)$
(2) $v \leq_{O(w)} u$ even if $\mathcal{O}(w) \cap P(u)=\varnothing$
$\because P(u) \cap \mathcal{O}(w)=\varnothing \subseteq X$ for all X
(3) $v \leq_{\mathcal{O}(w)} u$ even if $\mathcal{O}(w) \cap P(u)=\varnothing \& P(v) \cap \mathcal{O}(w)=\varnothing$
$\because \varnothing \subseteq \varnothing$

Propositions on Case 2

$$
\begin{aligned}
& \mathcal{O}(w)=\{\neg l, l, \neg c\} \\
& P(v)=\{\neg l, \neg c\} \therefore P(v)_{\mathcal{O}(w)}=\{\neg l, \neg c\} \\
& P(u)=\{l, \neg c\} \therefore P(u)_{\mathcal{O}(w)}=\{l, \neg c\} \\
& P(t)=\{\neg l, c\} \therefore P(t)_{\mathcal{O (w)}}=\{\neg l\} \\
& P(s)=\{l, c\} \therefore P(s)_{\mathcal{O}(w)}=\{l\} \\
& \mathcal{B}(w)=\varnothing \therefore \bigcap B(w)=W(P(w)=\{\perp\} ?) \\
& \therefore u \leq_{\mathcal{O}(w)} s ; v \leq_{\mathcal{O (w)}} t ; x \leq_{\mathcal{O (w)}} x ;\left(x \leq_{\mathcal{O (w)}} w\right) \\
& \therefore u, v, t, s, w \leq_{\mathcal{O (w)}} t, s, w \leq_{\mathcal{O (w)}} w \\
& \therefore w \vDash \diamond l, \diamond \neg l, ? \diamond \neg c, ? \perp, ? \diamond \perp
\end{aligned}
$$

Ordering Proposition: Case 3

$\mathcal{O}(w)=\{$ pop,$\neg g o$, hike $\} ; \forall w \cdot \mathcal{B}(w)=\{g o \leftrightarrow p o p\}$
$P(v)=\{\neg$ hike $, \neg g o, \neg p o p\} \therefore P(v)_{O(w)}=\{\neg g o\}$
$P(u)=\{\neg$ hike, go, pop $\} \therefore P(u)_{\mathcal{O (w)}}=\{$ pop $\}$
$P(t)=\{$ hike $, \neg g o, \neg p o p\} \therefore P(t)_{\mathcal{O}(w)}=\{$ hike,$\neg g o\}$
$P(s)=\{$ hike, go, pop $\} \therefore P(s)_{\mathcal{O}(w)}=\{$ hike, pop $\}$
Let $P(w)=\varnothing$ or $\{g o \leftrightarrow p o p\} \therefore P(w)_{\mathcal{O}(w)}=\varnothing$
Let $\cap \mathcal{B}(w)=\{w\}$ or W
$\therefore t \leq \leq_{\mathcal{O}(w)} u, v ; s \leq_{\mathcal{O}(w)} u ; x \leq_{\mathcal{O}(w)} x ; x \leq_{\mathcal{O}(w)} w$
$\therefore w \vDash \diamond \neg g o, \Delta h i k e, \diamond p o p, \Delta g o, \diamond \neg p o p, \square(g o \leftrightarrow p o p)$

Conditionals in OrderingPremise Semantics
 $\mathcal{K}=\langle W, \mathcal{B}, \mathcal{O}, V\rangle$

where
(1) material: $\forall w \cap \mathcal{B}(w)=\{w\} ; \forall w \mathcal{O}(w)=\varnothing$.
(2) strict: $\forall w \mathcal{B}(w)=\varnothing ; \forall w \mathcal{O}(w)=\varnothing$.
(3) counterfactual: $\forall w \mathcal{B}(w)=\varnothing ; \forall w \cap \mathcal{O}(w)=\{w\}$.
(4) indicative: $\forall w \mathcal{B}(w)=\varnothing ; \mathcal{O}$ is circumstantial

Counterfactuals in OrderingPremise Semantics

- A counterfactual is characterized by an empty modal base f and a totally realistic ordering source g. It follows from David Lewis' work mentioned above, that this analysis of counterfactuals is equivalent to the one I give in Kratzer(1981b). ...The idea is this: All possible worlds in which the antecedent p is true, are ordered with respect to their being more or less near to what is actually the case in the world under consideration. - Kratzer(1981a)

Standard Semantics of Conditionals (SMC)

$$
\mathcal{M}=\langle W, f, V\rangle ;
$$

$\left.\llbracket \phi_{1}>\phi_{2}\right]_{\mathcal{M}}=\{w \in W \mid$
(1) material: $w \in X \Rightarrow w \in f(w, X)$

$$
\& w \in(W-X) \cup Y \Rightarrow f(w, X) \subseteq Y .
$$

(2) strict: $f(w, X)=X$.
(3) counterfactual: many versions (e.g., Kratzer(1981)=SS;Stalnaker(1968)=VCS;

Lewis(1973)=VC).

Counterfactuals in SMC

SS=M.P.;RCEA';RCM;RCE;CC+CA+AC+CS+MP (Pollock 1981) =RCEC;RCK;ID+MOD+CA+CS+MP (Nute \& Cross 2002)
$C A: f(w, X \cup Y) \subseteq f(w, X) \cup f(w, Y)$
$A C: f(w, X) \subseteq Y \Rightarrow f(w, X \cap Y) \subseteq f(w, X)$
$C S: w \in X \Rightarrow f(w, X) \subseteq\{w\}$
$M P: w \in X \Rightarrow w \in f(w, X)$
$I D: f(w, X) \subseteq X$
$M O D: f(w, W-X) \subseteq X \Rightarrow f(w, Y) \subseteq f(w, X)$

Standardization of OrderingPremise Semantics

$$
\begin{aligned}
& w \in \llbracket \phi_{1}>\phi_{2} \rrbracket_{\mathcal{K}} \\
& \Leftrightarrow \forall u \in \cap(\mathcal{B}(w) \cup\{X\}) \exists v \in \cap(\mathcal{B}(w) \cup\{X\}) \\
& \forall z \in \cap(\mathcal{B}(w) \cup\{X\}) \cdot z \leq_{\mathcal{O}(w)} v \& v \leq{ }_{\mathcal{O}(w)} u \Rightarrow z \in Y \\
& \Leftrightarrow \forall u \in X \exists v \in X \forall z \in X \cdot z \leq_{\mathcal{O}(w)} v \& v \leq_{\mathcal{O}(w)} u \Rightarrow z \in Y, \\
& \text { where } \forall w \cdot \cap \mathcal{O}(w)=\{w\} \text { and } X=\llbracket \phi_{1} \rrbracket_{\mathcal{K}}, Y=\llbracket \phi_{2} \rrbracket_{\mathcal{K}[\mathcal{B}, \mathcal{B}]} .
\end{aligned}
$$

Standardization of OrderingPremise Semantics

$f_{\mathcal{K}}$'s properties
$I D$: obvious
$M P:$ yes $\because \forall u \in X . w \leq_{\mathcal{O}(w)} w \& w \leq_{\mathcal{O}(w)} u$
$\because P(u) \cap \mathcal{O}(w) \subseteq P(w) \cap \mathcal{O}(w)$

Kratzer's Samaritan Paradox

For each morally accessible world s :
No murder occurs ($\neg p$)
If a murder occurs, the murderer will be given $\$ 100 .(\neg p \vee q)$
$1 . \square(p \rightarrow q) \therefore$ vacluously true
2. $p \rightarrow \square q \therefore$ vacuously true
3. $p>q$
$\Leftrightarrow \forall u, z \in \llbracket p \rrbracket_{\mathcal{K}} \cdot \exists v \in \llbracket p \rrbracket_{\mathcal{K}} \cdot z \leq_{O(w)} v \& v \leq_{O(w)} u \Rightarrow z \in \llbracket q \rrbracket_{\mathcal{K}[\mathcal{B} \cup \mathcal{B}]}$
s is excluded but "no X must morally occur" cannot be said?

Frank's solution to Kratzer's Samaritan Paradox

No murder occurs ($\neg p$)
If a murder occurs, the murderer will be given $\$ 100 .(\neg p \vee q)$
$F=C n(\{\square r \mid r \in C n(\{\neg p, \neg p \vee q\})\})$
$H=C n(\{r \rightarrow q \mid r \in C n(C n(C n(F \cup\{p\})-\{p\}) \cup!F)\}$
(ignoring variable assignments;
In H, p and $\neg p$ are contracted)

The Frank-Zvolensky Problem

$f_{\mathcal{K}}$ satisfies ID in any interpretation, i.e., $p>p$.
\#If teenagers drink, then they must drink.(deontic)
\#If I file my taxes, then I must file my taxes.(bouletic)
\#If $\mathrm{a}=\mathrm{b}$, then it is necessarily $\mathrm{a}=\mathrm{b}$.(alethic by Ogata)

Frank: $X \cup!\{p>p\}=\operatorname{Cn}(\operatorname{Cn}(X \cup\{p>p\})-\{p, \neg p\})$
$p, \neg p$ are undefined in $X \cup!\{p>p\}$
But: OK: If Dalai Lama is mad, he must do so. (=he must have his reason. Etc...by Zvolensky(2002)

Multi-Modal Premise Semantics (Basic Ideas)

- Exploiting Belief-Revision Theory, esp., Model Theories of Dynamic Doxastic Logics (Segerberg 2001) etc.
- Exlpoiting Multi-Modal Logic, esp., BDILogics (Rao \& Georgeff 1996) etc.

Model Theory of DDL (1)

Let W be any nonempty set.
A topology in W is a family \mathcal{O} of subsets of W such as:
(i) $W, \varnothing \in \mathcal{O}$,
(ii) $\bigcup_{W i \subseteq W}^{i=\infty} W_{i} \in \mathcal{O}$,
(iii) $\bigcap_{\emptyset \neq W i \subseteq W}^{\mathrm{i}<\mathrm{n}} W_{i} \in \mathcal{O}$.
$\langle W, \mathcal{O}\rangle$ is called a
If $X \in \mathcal{O}$, then X is called
If X is open, $W-X$ is called
If X is open and closed, it is called

Model Theory of DDL (2)

A cover $C \subseteq \wp(\wp(W))(\neq \varnothing)$ of a set $X \subseteq W$ is a family s.t. $X \subseteq U C$.
If every $Y \in C$ is open, C is called an
If every open cover of \mathcal{O} has a finite subcover,
\mathcal{O} is called
If for any pair of distinct elements of \mathcal{O},
one is an element of a clopen set of which the other is not,
\mathcal{O} is called
If \mathcal{O} is compact and totally separated, it is a
Then $\langle W, \mathcal{O}\rangle$ is called a

Model Theory of DDL (3)

An onion in $\langle W, \mathcal{O}\rangle$ is a nonempty family $O \subseteq \wp(\wp(W))$
satisfying the following conditions:
(NESTEDNESS) if $X, Y \subseteq O, X \subseteq Y$ or $Y \subseteq X$, (LIMIT) for any clopen set P, if $P \cap \cup O \neq \varnothing$, then there is a least element $X \in O$ s.t. $P \cap Y \neq \varnothing$. If evey $X \in O$ is closed, O is called a

Model Theory of DDL (4)

If an onion O satisfies the following conditions, it is called a
(AINT) if $\varnothing \neq C \subseteq O$ then $\cap C \in O$;
(AUNI) if $\varnothing \neq C \subseteq O$ then $U C \in O$;
The

$$
B_{O} \text { of } O \text { and the }
$$

$$
C_{o} \text { of } O
$$

are defined by the conditions:
$B_{O}=\cap O, C_{O}=\bigcup O$.

Model Theory of DDL (5)

Let $\langle W, \mathcal{O}\rangle$ be a Stone space.
An onion frame is a triple $\langle W, \mathcal{O}, D\rangle$
where $D: \wp(W) \rightarrow \wp(\wp(W))$,
called the onion determiner, is defined by the conditions:
(i) for every $X \in \operatorname{dom}(D), D(X)$ is an onion,
(ii) $\varnothing \in \operatorname{dom}(D)$,
(iii) $\exists C \subseteq W$.s.t. $\forall X \in \operatorname{dom}(D), C=\bigcup D(X)$,
(iv) if $X \in \operatorname{dom}(D)$, then,

For each clopen set $P . C \cap P \neq \varnothing \Rightarrow S \cap P \in \operatorname{dom}(D)$,
where S is the smallest element in $D(X)$ to overlap with P.
$C \in \operatorname{rng}(D)$ is called

Multi-Modal DDL (1)

Let A be a set of agents and M a set of modalities.
A multimodal index set $\operatorname{Ind}(A, M)$ over A and M is defined by:
$\imath:=m(a)\left|\iota_{1} ; \iota_{2}\right| \iota_{1}+\iota_{2} \mid \iota^{*}$

Multi-Modal DDL (2)

Let $(p \in) \Phi$ be a set of propositional variables
$(w \in) W$ a set of possible worlds,
$(l \in) \operatorname{Ind}(A, M)$ a multimodal index set,
and $\mathcal{F}=\langle W, \mathcal{O}, D, O, \operatorname{Ind}(A, M)\rangle$ a multimodal onion frame.
where $D: \operatorname{Ind}(A, M) \times W \rightarrow(\wp(W) \rightarrow \wp(\wp(W)))$,
and $D(l, w)$ is a onion determiner and
$O: \operatorname{Ind}(A, M) \times W \rightarrow \wp \rho(\wp(W))$,
$O(l, w)$ is a onion for each $l \in \operatorname{Ind}(A, M), w \in W$.

Multi-Modal DDL (3)

Let $\Phi(\ni p)$ be a set of propositional variables
and $\operatorname{Ind} \operatorname{Var}(\ni x)$ a variable of multimodal indices.
The language $\mathcal{L}_{\text {IndVar },>, \Phi}(\ni \varphi)$ generated
by Φ and $\operatorname{Ind}(A, M)$ is defined by:
$\varphi::=p\left|\varphi_{1} \wedge \varphi_{2}\right| \neg \varphi\left|\square_{x} \varphi\right| \varphi_{1}>_{x} \varphi_{2}$

Multi-Modal DDL (4)

Let $\Phi(\ni p)$ be a set of propositional variables, $\operatorname{Ind}(A, M)(\ni \imath)$ a multimodal index set,
$\mathcal{L}_{\text {Ind }(A, M),>\Phi}(\ni \varphi)$ a language
$W(\ni w)$ a set of possible worlds, $V: \Phi \rightarrow \wp(W)$ a valuation,
$f: W \times \wp(W) \rightarrow \wp(W)$ a selection function,
and $\langle W, \mathcal{O}, D, O, \operatorname{Ind}(A, M)\rangle$ a multimodal onion frame.

The relation $\langle W, O, f, V, \vec{\imath}, w\rangle \vDash \varphi$ is defined by recursion on φ :

Multi-Modal DDL (5)

$$
\begin{aligned}
& \langle W, O, f, V, \vec{\imath}, w\rangle \vDash p \Leftrightarrow w \in V(p) \\
& \langle W, O, f, V, \vec{\imath}, w\rangle \vDash \varphi_{1} \wedge \varphi_{2} \\
& \Leftrightarrow\langle W, O, f, V, \vec{\imath}, w\rangle \vDash \varphi_{1} \&\langle D, O, f, V, \vec{\imath}, w\rangle \vDash \varphi_{2} \\
& \langle W, O, f, V, \vec{\imath}, w\rangle \vDash \neg \varphi \Leftrightarrow\langle W, O, f, V, \vec{\imath}, w\rangle \not \models \varphi \\
& \langle W, O, f, V, \vec{\imath}, w\rangle \vDash \square_{x} \varphi \Leftrightarrow \cap O(\vec{\imath}(x), w) \subseteq \llbracket \varphi \rrbracket \\
& \llbracket \varphi \rrbracket=\{w \in W \mid\langle W, O, f, V, \vec{l}, w\rangle \vDash \varphi\}
\end{aligned}
$$

Multi-Modal DDL (6)

Belief-Desire Consistency (cf. BDI-logic)
$m c(l) \in \operatorname{Belief}(a), m c(\kappa) \in \operatorname{Desire}(a) \Rightarrow\left(\square_{l} \varphi \rightarrow \neg \square_{\kappa} \neg \varphi\right)$
$m c(\kappa) \in \operatorname{Belief}(a), m c(l) \in \operatorname{Desire}(a) \Rightarrow\left(\square_{\imath} \varphi \rightarrow \square_{\kappa} \neg \varphi\right)$
$m c(l) \in \operatorname{Belief}(a), m c(\kappa) \in \operatorname{Desire}(a) \Rightarrow\left(\psi>_{l} \varphi \rightarrow \neg\left(\psi>_{\kappa} \neg \varphi\right)\right)$
$m c(\kappa) \in \operatorname{Belief}(a), m c(l) \in \operatorname{Desire}(a) \Rightarrow\left(\psi>_{l} \varphi \rightarrow \neg\left(\psi>_{\kappa} \neg \varphi\right)\right)$

```
    Solution to Many Judges
    Problem
mc(\vec{l}(x))\in\mathrm{ obligatory }(a)=>\mp@subsup{\square}{x}{}(\varphi->\psi)->(\mp@subsup{\square}{x}{}\varphi->\mp@subsup{\square}{x}{}\psi)
mc(\vec{l}(x))\in\mathrm{ obligatory }(a)=>\mp@subsup{\square}{x}{}\varphi->\neg\mp@subsup{\square}{x}{}\neg\varphi
mc(\vec{l}(x))\in\mathrm{ obligatory (a) }=>\mp@subsup{\square}{x}{}\top
Judge A: }\mp@subsup{\square}{x}{}\mathrm{ liable, }\mp@subsup{\square}{x}{}\mathrm{ murderIsACrime, mc( }\vec{l}(x))\in\mathrm{ obligatory(a)
Judge B: }\mp@subsup{\square}{y}{}\neg\mathrm{ liable, }\mp@subsup{\square}{y}{}\mathrm{ murderIsACrime,mc( }\vec{l}(y))\in\mathrm{ obligatory (a)
No Inconsistency
```


Solution to the Practical Inference Problem

```
I want not to go to pub: mc(\vec{l}(y))\in\operatorname{Desire(a) & }\mp@subsup{\square}{y}{}\negpub
I want to be popular:mc(\vec{l}(y))\in\operatorname{Desire(a) & [\square}\mp@code{pop}
It is the case that if I go to pub, then I will be popular:
pub > }\mp@subsup{x}{x}{}\mathrm{ pop
mc(\vec{l}(x))\in\operatorname{Belief}(a)=>\neg(\mathrm{ pub }}\mp@subsup{>}{\mathrm{ Desire(a)}}{}\neg\mathrm{ pop }
\thereforeNo Inconsistency
```


Solution to Kratzer's Samaritan Paradox

No murder occurs: $\square_{\text {obligatory (a) }} \neg p$
If a murder occurs, the jurors must convene: $p>_{\text {obligaory(a) }} q \leftrightarrow(\neg p \vee q)$
But \#If a murder occurs, the murderer will be given $\$ 100$.

Other index types:
Obligation(a), Expectation(a), Predict(a),...

A Solution to the FrankZvolensky Problem

$\langle D, O, V, \hat{\jmath}, \vec{l}, w\rangle \vDash \varphi_{1}>_{x} \varphi_{2}$
$\Leftrightarrow\left\{\begin{array}{c}\left\langle D, O\left[D(\vec{\imath}(x), w)\left(Z \cap f\left(w, \llbracket \varphi_{1} \|\right) /(\vec{l}(x), w)\right], V, \vec{\imath}, w\right\rangle \vDash \varphi_{2}\right. \\ \text { if } Z=\min \left\{S \in O(\vec{\imath}(x), w) \mid S \cap f\left(w, \llbracket \varphi_{1} \|\right) \neq \varnothing\right\} \neq \varnothing \\ \langle D, O[D(\imath, w)(\varnothing) /(\vec{l}(x), w)], V \vec{l}, w\rangle \vDash \varphi_{2} \\ \text { otherwise }\end{array}\right\}$
means that $\varphi_{1}>_{x} \varphi_{2}$ is equivalent to
$\left[{ }^{*} O_{l} \varphi_{1}\right] \varphi_{2}$ where $O \in \square, O_{1} \ldots$
If f does not satisfy $($ id $) f(w, X) \subseteq X$,
the logic does not satisfy $\varphi>\varphi$.

A Solution to the FrankZvolensky Problems

$$
\begin{aligned}
& \langle W, O, f, V, \vec{l}, w\rangle \vDash \varphi_{1}>\varphi_{2} \\
& \Leftrightarrow\left\{\begin{array}{l}
f\left(w, \cap\left(D(\vec{l}(x), w)\left(Z \cap \llbracket \varphi_{1} \rrbracket\right)\right)\right) \subseteq \llbracket \varphi_{2} \rrbracket \\
\text { if } Z=\min \left\{S \in O(\vec{l}(x), w) \mid S \cap \llbracket \varphi_{1} \rrbracket \neq \varnothing\right\} \neq \varnothing \\
\langle W, O[D(\vec{l}(x), w)(\varnothing) /(l, w)], f, V, \vec{l}, w\rangle \vDash \varphi_{2} \quad \text { otherwise }
\end{array}\right\}
\end{aligned}
$$

and f does not satisfy (id).

Loose End

- I have reviewed Kratzer's Ordering Premise Semantics of Modalities and Conditionals: but the properties of $f K$ has still been clarified.
- I have proposed "multimodal" premise semantics based on Dynamic Doxastic Logic, BDI-logics, and Conditional Logics
- I have provided another solution for each problems which are motivations of OrderingPremise Semantics

Bibliography

- Frank, A. (1997). On Context Dependence in Modal Constructions. Ph.D. thesis, University of Stuttgart.
- Kratzer, A. (1981a). The notional category of modality. In H.-J. Eikmeyer and H. Rieser (Eds.), Words, Worlds and Context: New Approaches to Word Semantics, pp. 38-74. Berlin: Walter de Gruyter\& Co.
- Kratzer, A. (1981b). Partition and revision: The semantics of counterfactuals.Journal of Philosophical Logic 10, 201-216.
- Kratzer, A. (1991). Modality. In A. von Stechow and D. Wunderlich (Eds.), Semantik: Ein intentionales Handbuch der zeitgenoess-ischen Forscung, pp. 639-650. Berlin: Walter de Gruyter \& Co.
- Nute, D. and C. B. Cross (2002). Conditional logic. In D. Gabbay and F. Guenthner (Eds.), Handbook of Philosophical Logic, 2nd Edition, Volume 4, pp. 1-98. Dordrecht: Kluwer Academic Pub.
- Rao, A. and M. P. Georgeff. (1998). Decision Procedures for BDI Logics. Journal of Logic and Computation 8:(3)293-342.
- Segerberg, K. (2001). The Basic Dynamic Doxastic Logic of AGM. In M.-A. Williams and H. Rott (eds.) Frontiers in Belief Revision, pp. 57-84. Dordrecht: Kluwer Academic Pub.
- Zvolenszky, Z. (2002). Is a possible-worlds semantics of modality possible?:A problem for Kratzer's semantics. In Proceedings from Semantics And Linguistic Theory, Volume 12.

