
The Pumping Lemma for Well-Nested Multiple
Context-Free Languages

Makoto Kanazawa?

National Institute of Informatics

Abstract. Seki et al. (1991) proved a rather weak pumping lemma for
multiple context-free languages, which says that any infinite m-multiple
context-free language contains a string that is pumpable at some 2m
substrings. We prove a pumping lemma of the usual universal form for
the subclass consisting of well-nested multiple context-free languages.
This is the same class of languages generated by non-duplicating macro
grammars and by coupled-context-free grammars.

1 Introduction

Call a string z in a language L k-pumpable (in L) if there are strings u0, . . . , uk
and v1, . . . , vk that satisfy the following conditions:

z = u0v1u1v2u2 . . . uk−1vkuk,

v1v2 . . . vk 6= ε,

u0v
i
1u1v

i
2u2 . . . uk−1v

i
kuk ∈ L for every i ≥ 0.

In their paper introducing multiple context-free grammars, Seki et al. (1991)
proved a rather weak pumping lemma for multiple context-free languages, which
says that if L is an infinite m-MCFL, then some string in L is 2m-pumpable.
Despite its peculiarly weak existential form, this lemma is quite useful; for ex-
ample, it can be used to show that the language { an1 . . . an2m+1 | n ≥ 0 } over the
alphabet {a1, . . . , a2m+1} separates the (m+ 1)-MCFLs from m-MCFLs.

As it happens, Seki et al.’s (1991) proof of their lemma was quite complex,
and by some quirk of fate a number of people were led to believe erroneously
that a pumping lemma of the more usual universal form has been established
for MCFLs: if L is an m-MCFL, all but finitely many strings in L are 2m-
pumpable. Radzinski (1991) appealed to it in his attempt to prove that the
language { abk1abk2 . . . abkn | n ≥ 1, k1 > k2 > · · · > kn > 0 } is not an
MCFL.1 As a matter of fact, it remains an open question to this day whether the
universal pumping lemma holds of all m-MCFLs (Kanazawa and Salvati 2007).
? I am grateful to Shoh Yamashita and Makoto Tatsuta for helpful discussions.
1 This language, considered by Radzinski (1991) in connection with the system of

Chinese number names, was shown to be non-semilinear by Michaelis and Kracht
(1997), so Radzinski’s (1991) claim that it is not an MCFL was correct, even though
his appeal to the universal pumping lemma for general MCFLs was not justified.

2 Makoto Kanazawa

This question is especially interesting in view of the fact that the class of m-
MCFLs is captured by a large number of different formalisms, including among
many others hyperedge replacement grammars (Engelfriet and Heyker 1991) and
deterministic tree-walking transducers (Weir 1992).

In this paper, we show that a universal pumping lemma holds for the subclass
of MCFLs generated by well-nested multiple context-free grammars. It is not
difficult to prove that well-nested MCFGs are equivalent to coupled-context-
free grammars (Hotz and Pitsch 1996) and to non-duplicating macro grammars
(Fischer 1968).

The principal difficulty in proving a pumping lemma for MCFLs lies in the
fact that pumpability of a derivation tree does not translate into pumpability of
its string yield. Consider a derivation tree that contains inside it a “pump”, i.e.,
a tree whose frontier consists of terminal nodes plus a single node marked by
the same nonterminal as the root. In the case of a CFG, the function of a pump
is to take a string and wrap two strings around it; its contribution to the string
yield of the whole derivation tree is simply insertion of two substrings into the
yield. Iterating the pump i times in the derivation tree results in insertion of i
consecutive copies of those substrings, leading to 2-pumpability. In the case of
an m-MCFG, in contrast, the function of a pump is to take a k-tuple of strings
(k ≤ m) and return another k-tuple. Each component of the original k-tuple
appears somewhere in the resulting k-tuple, but it may move into a different
component. If that happens, the effect of the presence of a pump is not merely
insertion of 2k substrings, but also involves shuffling of the substrings contributed
by the subtree below the pump.

Call a pump of an MCFG an even k-pump if it maps a k-tuple of strings
(x1, . . . , xk) to a k-tuple of the form (v1x1v2, . . . , v2k−1xkv2k). The presence of
an even k-pump inside a derivation tree leads to 2k-pumpability of its string
yield, but it is not generally true, even for well-nested MCFGs, that all but
finitely many derivation trees contain an even pump. Our strategy for proving
the universal pumping lemma for well-nested m-MCFGs is as follows. We show
by a series of transformations that for every well-nested m-MCFG G, the set of
strings that are the yields of derivation trees of G without even m-pumps is the
language of some well-nested (m − 1)-MCFG. Since well-nested 1-MCFGs are
just CFGs, this implies, by induction, that all but finitely many strings in the
language of G are 2m-pumpable.

2 Preliminaries

For m,n ∈ N (the set of natural numbers), we use the notation [m,n] to denote
{ i ∈ N | m ≤ i ≤ n }.

A ranked alphabet is a finite set ∆ =
⋃
n∈N ∆

(n) such that ∆(i)∩∆(j) = ∅ for
i 6= j. The rank of f ∈ ∆ is the unique r such that f ∈ ∆(r). The set T∆ of trees
over a ranked alphabet ∆ is the smallest set closed under the rule: f ∈ ∆(n)

and T1, . . . , Tn ∈ T∆ imply (fT1 . . . Tn) ∈ T∆. We also use trees with holes,
which are represented by trees over a ranked alphabet ∆ augmented with a set

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 3

Y of variables. The notation T∆(Y) denotes the set of trees over ∆ ∪Y, where
the variables in Y have rank 0. We use expressions like T [y1, . . . ,ym] to denote
trees in T∆(Y) whose variables are among y1, . . . ,ym, and write T [T1, . . . , Tm]
for the result of substituting T1, . . . , Tm for y1, . . . ,ym in T [y1, . . . ,ym]. A tree
T ∈ T∆(Y) is a simple tree if each variable in Y occurs in T at most once.

We assume that the reader is familiar with the notion of recognizable set
of trees (see Comon et al. 2007 or Gecseg and Steinby 1997). The family of
recognizable sets is closed under Boolean operations.

3 Multiple Context-Free Grammars

A multiple context-free grammar (Seki et al. 1991) is a context-free grammar on
tuples of strings, and is a special kind of parallel multiple context-free grammar,
which in turn is a special kind of elementary formal system (Smullyan 1961,
Groenink 1997), a logic program on strings. We use the notation of elementary
formal systems, rather than Seki et al.’s (1991), to represent rules of MCFGs.

Let N be a ranked alphabet and Σ be an unranked alphabet. We assume
that we are given a fixed infinite supply X of variables ranging over strings. An
expression of the form B(t1, . . . , tr), where B ∈ N (r) and t1, . . . , tr are strings
over Σ ∪X, is called an atom over N,Σ. A rule over N,Σ is an expression

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
),

where

1. n ≥ 0,
2. B ∈ N (r) and Bi ∈ N (ri) for all i ∈ [1, n],
3. xi,j are pairwise distinct variables in X,
4. t1, . . . , tr are strings over Σ ∪{xi,j | i ∈ [1, n], j ∈ [1, ri] } such that each xi,j

occurs at most once in t1 . . . tr.

In a rule

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
),

the atom to the left of :− is called the head of the rule, and the sequence of
atoms to the right of :− is called the body. Each atom in the body is called a
subgoal. The symbol :− is omitted from a rule whose body is empty. Such a rule
is called a terminating rule.

A multiple context-free grammar (MCFG) is a 4-tuple G = (N,Σ,P, S),
where

1. N is a ranked alphabet of nonterminals,
2. Σ is an (unranked) alphabet of terminals, disjoint from N ,
3. P is a finite set of rules over N,Σ, and
4. S ∈ N (1).

4 Makoto Kanazawa

We say that G is an m-MCFG if the rank of nonterminals does not exceed m.2

The language of G is L(G) = {w ∈ Σ∗ | `G S(w) }, where `G is defined by
the following inference schema:

`G B1(w1,1, . . . , w1,r1) . . . `G Bn(wn,1, . . . , wn,rn
)

`G B(t1, . . . , tr)σ

where wi,j ∈ Σ∗, B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn) is a
rule in P , and σ is the substitution that sends xi,j to wi,j . If G is an m-MCFG,
L(G) is called an m-MCFL.

It is also convenient to extend the definition of `G as follows:

B(x1, . . . , xr) `G B(x1, . . . , xr)
Γ1 `G B1(x1,1, . . . , x1,r1)σ . . . Γn `G Bn(xn,1, . . . , xn,rn)σ

Γ1, . . . , Γn `G B(t1, . . . , tr)σ

In the second schema,B(t1, . . . , tn) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
)

is a rule in P , and Γ1, . . . , Γn is a sequence of atoms with no repeated variables.
We call an MCFG G = (N,Σ,P, S) reduced if the following conditions hold

for each nonterminal B ∈ N (r):

– `G B(w1, . . . , wr) for some w1, . . . , wr ∈ Σ∗, and
– B(x1, . . . , xr) `G S(t) for some t ∈ (Σ ∪ {x1, . . . , xr})∗.

The following lemma can be shown by a familiar method:

Lemma 1. For every m-MCFG G = (N,Σ,P, S) such that L(G) 6= ∅, there
exists a reduced m-MCFG G′ = (N ′, Σ, P ′, S) such that L(G) = L(G′), N ′ ⊆ N ,
and P ′ ⊆ P .

A rule is non-deleting if it satisfies the strengthened form of the fourth con-
dition on rules:

4′. t1, . . . , tr are strings over Σ ∪{xi,j | i ∈ [1, n], j ∈ [1, ri] } such that each xi,j
occurs exactly once in t1 . . . tr.

A non-deleting MCFG is one whose rules are all non-deleting. Non-deleting
(m-)MCFGs are also known as (string-based) (m-)linear context-free rewriting
systems (LCFRSs) (Vijay-Shanker et al. 1987, Weir 1988). It is known that for
every m-MCFG G, there is a non-deleting m-MCFG G′ such that L(G) = L(G′)
(Seki et al. 1991).

We call a rule B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
)

non-permuting if it satisfies the following condition:

– there are no i, j, k such that 1 ≤ i ≤ n, 1 ≤ j < k ≤ ri, and t1 . . . tr ∈
(Σ ∪X)∗xi,k(Σ ∪X)∗xi,j(Σ ∪X)∗.

2 The rank of a nonterminal is called its dimension by Seki et al. (1991).

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 5

A non-permuting MCFG is one whose rules are all non-permuting. Non-deleting
non-permuting MCFGs correspond to what Villemonte de la Clergerie (2002a,
2002b) called ordered simple RCG and Kracht (2003) called monotone LCFRSs.

Theorem 2 (Kracht 2003). For every m-MCFG G, there is a non-deleting
non-permuting m-MCFG G′ such that L(G) = L(G′).

Example 3. The following (non-deleting non-permuting) 2-MCFG generates
resp = { am1 am2 bn1b

n
2a

m
3 am4 bn3b

n
4 | m,n ≥ 0 }:

S(x1y1x2y2) :− P (x1, x2), Q(y1, y2).
P (ε, ε). P (a1x1a2, a3x2a4) :− P (x1, x2).
Q(ε, ε). Q(b1y1b2, b3y2b4) :− Q(y1, y2).

We call a rule B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
)

well-nested if it is non-deleting and non-permuting and satisfies the following
condition:

– there are no i, j, k, i′, j′, k′ such that 1 ≤ i, i′ ≤ n, i 6= i′, 1 ≤ j < k ≤ ri,
1 ≤ j′ < k′ ≤ ri′ , and t1 . . . tr ∈ (Σ ∪X)∗xij(Σ ∪X)∗xi′j′(Σ ∪X)∗xik(Σ ∪
X)∗xi′k′(Σ ∪X)∗.

We say that an MCFG G is well-nested if every rule of G is well-nested. A well-
nested MCFL is the language of some well-nested MCFG. Note that the grammar
in Example 3 is not well-nested, because the first rule is not well-nested.

Example 4. The following is an example of a well-nested 2-MCFG:

S(x1x2) :− A(x1, x2). A(ε, ε). A(ax1bx2c, d) :− A(x1, x2).

The well-nestedness constraint has been studied by Kuhlmann and Möhl
(2007a, 2007b) in the context of dependency grammars. Well-nested (m-)MCFGs
are essentially the same as coupled-context-free grammars (of rank m) (Hotz and
Pitsch 1996), and it can be shown that they are equivalent to non-duplicating
macro grammars (of rank m − 1) (Fischer 1968).3 It is known that well-nested
2-MCFGs are equivalent to tree-adjoining grammars (Joshi and Schabes 1997).

Although well-nestedness restricts the generative power ofm-MCFGs for each
m (Seki and Kato 2008), almost all examples of m-MCFGs that have appeared

3 The equivalence between well-nested MCFGs and coupled-context-free grammars is a
special case of the equivalence between MCFGs and local unordered scattered context
grammars (Rambow and Satta 1999). Seki and Kato (2008) prove that all non-
duplicating macro grammars—which they call variable-linear macro grammars—
have equivalent MCFGs. The MCFGs constructed by their proof are well-nested.

The languages generated by non-duplicating macro grammars are the same as the
yield images of the tree languages generated by linear context-free tree grammars
(Kepser and Mönnich 2006).

6 Makoto Kanazawa

in the literature have an equivalent well-nested m′-MCFG for some m′ ≥ m. The
only exception we are aware of is the 3-MCFG Gex given by Michaelis (2009):

S(x1x2x3) :− B(x1, x2, x3). A(a, a, a). A(b, b, b).
A(x1a, x2a, ax3) :− A(x1, x2, x3). A(x1b, x2b, bx2) :− A(x1, x2, x3).

A(x1y1, y2x2, y3x3) :− B(x1, x2, x3), B(y1, y2, y3).
B(ε, [], ε). B(x1, x2, x3) :− A(x1, x2, x3). B(x1, [x2], x3) :− B(x1, x2, x3).

This non-well-nested 3-MCFG generates the following language:4

L(Gex) = {w1 . . . wnznwn . . . z1w1z0w
R
n . . . w

R
1 |

n ≥ 1, wi ∈ {a, b}+ for 1 ≤ i ≤ n, and zn . . . z0 ∈ D∗{[,]} }.

According to Staudacher (1993), this language is not an indexed language, which
implies that it does not have a non-duplicating macro grammar and hence is not
a well-nested MCFL.

In what follows, we will only consider MCFGs that are non-deleting and
non-permuting. By a “rule”, we will mean a rule that is non-deleting and non-
permuting.

4 Derivation Trees of Multiple Context-Free Grammars

We now give our definition of the notion of a derivation tree for an MCFG
G = (N,Σ,P, S). For this purpose, we view the set P of rules as a ranked
alphabet. A rule π of the form

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
)

belongs to P (n) (i.e., is treated as a symbol of rank n).
Let Y be a countably infinite set of variables. We use boldface letters y,yi,

to represent variables in Y, to distinguish them from variables in MCFG atoms,
for which we use xi,j , zi,j , yi, etc. We use simple trees in TP (Y) as terms in
statements of the form

Γ `G T :B(t1, . . . , tr),

where Γ is an expression of the form

y1 : C1(z1,1, . . . , z1,r1), . . . ,yp : Cp(zp,1, . . . , zp,rp
).

The earlier system for deriving statements of the form Γ `G B(t1, . . . , tr), where
Γ is a sequence of atoms, is now augmented with trees from TP (Y) as follows:

y :B(x1, . . . , xn) `G y :B(x1, . . . , xn)
Γ1 `G T1 :B1(x1,1, . . . , x1,r1)σ . . . Γn `G Tn :Bn(xn,1, . . . , xn,rn

)σ
Γ1, . . . , Γn `G πT1 . . . Tn :B(x1, . . . , xr)σ

4 Here, D∗{[,]} refers to the (one-sided) Dyck language over a single pair of brackets
[,].

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 7

In the second schema, π is the rule

B(x1, . . . , xr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn),

and the variables (including boldface ones) in Γ1, . . . , Γn have no repeated oc-
currences.

A tree T ∈ TP is called a derivation tree if

`G T :B(w1, . . . , wr)

holds for some B ∈ N and w1, . . . , wr ∈ Σ∗. The nonterminal B is called the
type of T , and the tuple (w1, . . . , wr) is called its yield. Any derivation tree T
has a unique type and a unique yield, for which we write type(T) and yield(T),
respectively. A derivation tree is complete if it is of type S. We denote the set of
derivation trees of type B by DBG . Note that DBG is a recognizable (in fact, local)
subset of TP .

We call a simple tree T ∈ TP (Y) a non-terminating derivation tree if

Γ `G T :B(t1, . . . , tr)

holds for some Γ,B, t1, . . . , tr. Note that derivation trees are special cases of
non-terminating derivation trees. We call a non-terminating derivation tree T a
derivation tree context if

y : C(y1, . . . , yp) `G T :B(t1, . . . , tr)

holds of some y ∈ Y, C ∈ N (p) and B ∈ N (r).
It is easy to see that if T is a derivation tree and T ′ is a subtree of T , then T ′

is also a derivation tree. The same goes with non-terminating derivation trees.

Lemma 5. If Γ `G T : B(t1, . . . , tr) and y : B(x1, . . . , xr) `G U [y] :
C(u1, . . . , up), then Γ `G U [T] : C(u1, . . . , up)σ, where σ is the substitution
that sends xi to ti for all i ∈ [1, r].

Lemma 6. Let T be a derivation tree of type B with yield (w1, . . . , wr). Suppose
that T ′ is a subtree of T such that type(T ′) = C and yield(T ′) = (v1, . . . , vp).
Then there is a derivation tree context U [y] and some t1, . . . , tr such that:

T = U [T ′],
y : C(y1, . . . , yp) `G U [y] : B(t1, . . . , tr),

(w1, . . . , wr) = (t1, . . . , tr)σ,

where σ is the substitution that maps yi to vi for i ∈ [1, p].

We call a derivation tree context U [y] a k-pump if U [y] 6= y and there exist
B ∈ N (k) and t1, . . . , tk ∈ (Σ ∪ {x1, . . . , xk})∗ such that

y :B(x1, . . . , xk) `G U [y] :B(t1, . . . , tk).

8 Makoto Kanazawa

We say that a derivation tree T contains a k-pump U [y] if T = U ′[U [T ′]] for
some derivation tree T ′ and derivation tree context U ′[y].

A k-pump U [y] is even if there are v1, . . . , v2k ∈ Σ∗ such that

y :B(x1, . . . , xk) `G U [y] :B(v1x1v2, . . . , v2k−1xkv2k),

and it is a proper even k-pump if it moreover holds that

v1 . . . v2k 6= ε.

Lemma 7. Let G be an MCFG and T be a complete derivation tree of G with
yield z. If T contains a proper even k-pump, then z is 2k-pumpable in L(G).

Example 4 (continued). Let π1, π2, π3 name the three rules of the grammar G in
Example 4. We have DSG = {Ti | i ≥ 0 }, where

Ti = π1 (π2 . . . (π2︸ ︷︷ ︸
i times

π3) . . .)︸ ︷︷ ︸
i times

,

and

yield(Ti) =

{
ε if i = 0,
ai−1abc(bdc)i−1d if i ≥ 1.

Note that the derivation tree T1 contains an (uneven) 2-pump, but yield(T1) =
abcd is not 4-pumpable. For i ≥ 2, yield(Ti) = ai−1abc(bdc)i−1d is 2-pumpable,
but no matter which 2-pump one picks in Ti, the occurrences of symbols that
come from the 2-pump do not form contiguous substrings of yield(Ti) that can
be repeated.

Lemma 8. Let G = (N,Σ,P, S) be an MCFG. Then the set

{T ∈ DSG | T contains an even k-pump }

is recognizable.

Let G = (N,Σ,P, S) and G′ = (N ′, Σ, P ′, S′) be m-MCFGs. A mapping
h : N ′ → N is a homomorphism from G′ to G if the following conditions hold:

– h(S′) = S.
– For every B′ ∈ N ′(r), h(B′) ∈ N (r).
– For every π′ ∈ P ′ of the form

B′(t1, . . . , tr) :− B′1(x1,1, . . . , x1,r1), . . . , B′n(xn,1, . . . , xn,rn),

if B = h(B′) and Bi = h(B′i) for i ∈ [1, n], then

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

is a rule in P . (We refer to this rule as h(π′).)

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 9

Lemma 9. Let G and G′ be MCFGs such that there is a homomorphism from
G′ to G. If G is well-nested, then so is G′.

If h is a homomorphism from G′ to G and T ′ ∈ DB′G′ , then we write h(T ′)
for the result of replacing occurrences of each rule π′ in T ′ by h(π′). Note that
h(T ′) must be a derivation tree in Dh(B′)

G that has the same yield as T ′.

Lemma 10. Let G = (N,Σ,P, S) be an m-MCFG. If K is a non-empty rec-
ognizable subset of DSG, then there are an m-MCFG G′ = (N ′, Σ, P ′, S′) and a
homomorphism h from G′ to G such that

1. K = {h(T ′) | T ∈ DS′G′ }.
2. If G is reduced, then G′ is reduced.

5 Unfolding

Let G = (N,Σ,P, S) be an m-MCFG. A rule

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
)

over N,Σ is a derivable rule of G if it holds that

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
) `G B(t1, . . . , tr).

We call an MCFG G′ = (N ′, Σ, P ′, S′) conservative over G = (N,Σ,P, S) if
N ′ ⊆ N , S′ = S, and every rule in P ′ is a derivable rule of G. Clearly, “is
conservative over” is a transitive relation.

Lemma 11. Let G and G′ be MCFGs such that G′ is conservative over G.

1. If G is well-nested, then so is G′.
2. If G′ has an even m-pump, so does G.

Let π, π′ denote the following two rules:

B(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)
C(u1, . . . , us) :− C1(y1,1, . . . , y1,s1), . . . , Cp(yp,1, . . . , yp,sp),

where Bi = C (which implies ri = s). Then we denote by π ◦i π′ the rule

B(t1, . . . , tr)σ :− B1(x1,1, . . . , x1,r1), . . . , Bi−1(xi−1,1, . . . , xi−1,ri−1),
C1(y1,1, . . . , y1,s1), . . . , Cp(yp,1, . . . , yp,sp),
Bi+1(xi+1,1, . . . , xi+1,ri+1), . . . , Bn(xn,1, . . . , xn,rn),

where σ is the substitution that sends xi,j to uj . Note that if π and π′ are rules
of an MCFG G, then π ◦i π′ is a derivable rule of G.

Let G = (N,Σ,P, S) be an MCFG. Let π ∈ P be as above, and let π1, . . . , πk
be all the rules in P that have Bi in their head. The result of unfolding π
in G (at the i-th subgoal) is defined to be G′ = (N,Σ,P ′, S), where P ′ =
(P − {π}) ∪ {π ◦i πj | j ∈ [1, k] }. Clearly, G′ is conservative over G. The
following is familiar from logic programming (Tamaki and Sato 1984):

Lemma 12. Let G = (N,Σ,P, S) be an MCFG and π be a rule in P . If G′ is
the result of unfolding π in G at some subgoal, then L(G) = L(G′).

10 Makoto Kanazawa

6 Proof of the Main Theorem

We call a rule B(t1, . . . , tm) :− B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
) of an

m-MCFG m-proper if there exists an i ∈ [1, n] such that ri = m and for all
j ∈ [1,m],

tj ∈ (Σ ∪X)∗xi,j(Σ ∪X)∗.

In this case we call this rule m-proper on the i-th subgoal.

Lemma 13. Let G be an m-MCFG that has no even m-pump. Then there is
an m-MCFG G′ that satisfies the following conditions:

– G′ is conservative over G,
– G′ has no m-proper rules, and
– L(G) = L(G′).

Proof. The desired grammar G′ may be obtained from G by repeatedly unfolding
m-proper rules. We omit the details. ut

Lemma 14. Let m ≥ 2 and let G be a well-nested m-MCFG without m-proper
rules. Then there is a well-nested (m− 1)-MCFG G′ such that L(G) = L(G′).

Proof. Define the m-degree of a rule to be the number of subgoals whose nonter-
minal is of rank m if the nonterminal in the head is of rank m, and 0 otherwise.
We repeatedly apply the following transformation to eliminate from G rules that
have m-degree > 0. Pick a rule π with m-degree > 0, if there is one. Modulo the
order of the subgoals, π is of the following form:

B(t1, . . . , tm) :− C(y1, . . . , ym), B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn
).

Let f : {1, . . . ,m} → {1, . . . ,m} be the function such that yi occurs in tf(i) for
all i ∈ [1,m]. Since π is not m-proper, at least one of the following possibilities
must obtain:

Case 1. Either 1 < f(1) or f(m) < m. Suppose tf(1) = uy1v and tf(m) =
u′ymv

′. Since π is well-nested,

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

can be partitioned into Γ1, Γ2 so that xi,j occurs in

t1 . . . tf(1)−1uv
′tf(m)+1 . . . tm

if and only if Bi(xi,1, . . . , xi,ri) is in Γ1. Let p = f(m)− f(1) + 1, and let D be
a new nonterminal of rank p. Note p < m.

Case 1a. f(1) < f(m). We replace π by the following two well-nested rules:

B(t1, . . . , tf(1)−1, uz1, z2, . . . , zp−1, zpv
′, tf(m)+1, . . . , tm) :− Γ1, D(z1, . . . , zp).

D(y1v, tf(1)+1, . . . , tf(m)−1, u
′ym) :− C(y1, . . . , ym), Γ2.

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 11

Case 1b. f(1) = f(m). Then tf(1) = tf(m) = uy1wymv
′ for some w. We

replace π by the following two well-nested rules:

B(t1, . . . , tf(1)−1, uz1v
′, tf(m)+1, . . . , tm) :− Γ1, D(z1).

D(y1wym) :− C(y1, . . . , ym), Γ2.

Case 2. There is a k ∈ [1,m − 1] such that f(k + 1) − f(k) > 1. Suppose
tf(k) = uykv and tf(k+1) = u′yk+1v

′. Since π is well-nested,

B1(x1,1, . . . , x1,r1), . . . , Bn(xn,1, . . . , xn,rn)

can be partitioned into Γ1, Γ2 so that xi,j occurs in

vtf(k)+1 . . . tf(k+1)−1u
′

if and only if Bi(xi,1, . . . , xi,ri) is in Γ1. Let p = f(k)+(m−f(k+1)+1), and let
D be a new nonterminal of rank p. Note p < m. We replace π by the following
two well-nested rules:

B(z1, . . . , zf(k)−1, zf(k)v, tf(k)+1, . . . , tf(k+1)−1, u
′zf(k)+1, zf(k)+2, . . . , zp)

:− D(z1, . . . , zp), Γ1.

D(t1, . . . , tf(k)−1, uyk, yk+1v
′, tf(k+1)+1, . . . , tm) :− C(y1, . . . , ym), Γ2.

In all cases, π is replaced by two new rules, and the m-degree of the first
rule is less than that of π and the m-degree of the second rule is 0 (since the
rank of D is p < m), so the transformation reduces the sum of the m-degrees
of the rules. It is also clear that the first rule is not m-proper, so the grammar
continues to be without m-proper rules. The generated language remains the
same because the original grammar can be obtained from the new grammar by
unfolding (Lemma 12).

The process of repeatedly applying this transformation must terminate af-
ter a finite number of steps, and every rule in the final grammar has rank m
nonterminals only in the head or only in the body (if any).

We can now eliminate all occurrences of rank m nonterminals in rule bodies
by unfolding. If a rule π has a rank m nonterminal C in the i-th subgoal, we
unfold π at that subgoal. Since any rule π′ that has C in the head has no rank
m nonterminal in the body, π ◦i π′ has one fewer rank m nonterminals in the
body than π does. Thus, we can repeatedly apply this transformation, which
will terminate in a finite number of steps.

After this procedure, rank m nonterminals become useless, and we can simply
delete rules with rank m nonterminals in the head to obtain an (m− 1)-MCFG.

ut

Example 4 (continued). Applying the procedure of Lemma 14 to the grammar
G in Example 4 gives the following 1-MCFG:

S(ε). S(azcd) :− D(z). D(b). D(azcbd) :− D(z).

12 Makoto Kanazawa

Theorem 15. Let m ≥ 1. For every well-nested m-MCFG G, all but finitely
many strings z ∈ L(G) are 2m-pumpable in L(G).

Proof. Induction on m. The case m = 1 is just the pumping lemma for context-
free languages. Let m ≥ 2 and assume that the theorem holds for m− 1.

Let G = (N,Σ,P, S) be a well-nested m-MCFG. Without loss of generality,
we can assume that G is reduced. Let

K = {T ∈ DSG | T does not contain an even m-pump }.

By Lemma 8, K is a recognizable subset of DSG. By Lemma 10, there is a re-
duced well-nested m-MCFG G′ = (N ′, Σ, P ′, S′) such that L(G′) = {w ∈ Σ∗ |
`G T : S(w) for some T ∈ K } and no derivation tree in DS′G′ contains an even m-
pump. SinceG′ is reduced, it follows thatG′ has no evenm-pump. By Lemmas 13
and 14, there is a well-nested (m− 1)-MCFG G′′ such that L(G′) = L(G′′). By
induction hypothesis, there is a number p such that all strings z in L(G′′) with
|z| ≥ p are 2(m− 1)-pumpable.

Now assume z ∈ L(G) and |z| ≥ p. We show that z is 2m-pumpable. If
z ∈ L(G′′), then z is 2(m − 1)-pumpable, so a fortiori z is 2m-pumpable. Now
suppose z 6∈ L(G′′) and consider a smallest complete derivation tree T of G with
yield z. Since z 6∈ L(G′′), T contains an even m-pump U [y]:

T = U ′[U [T ′]].

Because of the minimality of T , the evenm-pump U [y] must be proper (otherwise
U ′[T ′] is a smaller complete derivation tree for z). By Lemma 7, we conclude
that z is 2m-pumpable. ut

Example 16. Let D∗{a,ā} be the Dyck language over {a, ā} generated by the fol-
lowing context-free grammar:

S → ε | TS T → aSā

Define Shuffle3(L1, L2, L3) to be

{u1v1w1 . . . unvnwn | n ≥ 1, u1 . . . un ∈ L1, v1 . . . vn ∈ L2, w1 . . . wn ∈ L3 },

and consider the language L = Shuffle3(D∗{a,ā}, D
∗
{b,b̄}, D

∗
{c,c̄}). Note that L is

semiliniear and satisfies Seki et al.’s pumping condition for 3-MCFLs. We do
not know whether L is a 3-MCFL, but we can use Theorem 15 to show that L
is not a well-nested 3-MCFL. Suppose that L is a well-nested 3-MCFL. Let

K = L ∩ a∗(āb)∗(b̄c)∗(c̄a)∗(āb)∗(b̄c)∗c̄∗

= { ai(āb)j(b̄c)k(c̄a)l(āb)m(b̄c)nc̄q |
i ≥ j ≥ k ≥ l ≤ m ≤ n ≤ q = i and i+ l = j +m = k + n }.

From known facts about equivalent formalisms (Fischer 1968, Kepser and
Mönnich 2006, Seki and Kato 2008), the class of well-nested m-MCFLs is closed

The Pumping Lemma for Well-Nested Multiple Context-Free Languages 13

under intersection with regular sets, so K must be a well-nested 3-MCFL. Note
that K still satisfies Seki et al.’s pumping condition for 3-MCFLs, and is also
semilinear. By Theorem 15, there is a number p such that all strings in K of
length ≥ p are 6-pumpable. Take

w = ap(āb)p(b̄c)p(c̄a)p(āb)p(b̄c)pc̄p ∈ K,

which must have six substrings that can be pumped up and down. It is not hard
to see that each of the six substrings must lie entirely inside one of the seven
intervals [pi + 1, p(i + 1)] consisting of the (pi + 1)-th through the p(i + 1)-th
symbols of w (i = 0, . . . , 6), and yet each of the seven intervals must contain one
of the six substrings, a contradiction.

7 Conclusion

We have proved a pumping lemma for well-nested m-MCFGs, which, unlike Seki
et al.’s (1991) pumping lemma for general MCFGs, has the usual universal form.
The special case of this for m = 2 is already known (Palis and Shende 1995), but
the result is new for m ≥ 3. The only place in our proof where well-nestedness is
used is Lemma 14. While it is an open question whether this lemma holds of m-
MCFGs in general, it is easy to see that it holds of (not necessarily well-nested)
2-MCFGs. Thus we have

Theorem 17. For every 2-MCFG G, all but finitely many strings z ∈ L(G)
are 4-pumpable in L(G).

References

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Löding, Sophie Tison, and Marc Tommasi. 2007. Tree Automata Tech-
niques and Applications. Available on http://tata.gforge.inria.fr/. Release October
12, 2007.

Engelfriet, Joost and Linda Heyker. 1991. The string generating power of context-free
hypergraph grammars. Journa of Computer and System Sciences 43:328–360.

Fisher, Michael J. 1968. Grammars with Macro-Like Productions. Ph.D. thesis, Har-
vard University.

Gécseg, Ferenc and Magnus Steinby. 1997. Tree languages. In G. Rozenberg and
A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond Words, pages
1–68. Berlin: Springer.

Groenink, Annius. 1997. Surface without Structure. Ph.D. thesis, Utrecht University.
Hotz, Günter and Gisela Pitsch. 1996. On parsing coupled-context-free languages.

Thoretical Computer Science 161:205–253.
Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg

and A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond Words, pages
69–123. Berlin: Springer.

Kanazawa, Makoto and Sylvain Salvati. 2007. Generating control languages with ab-
stract categorial grammars. In the preliminary proceedings of FG-2007: The 12th
Conference on Formal Grammar .

14 Makoto Kanazawa

Kepser, Stephan and Uwe Mönnich. 2006. Closure properties of linear context-free tree
languages with an application to optimality theory. Theoretical Computer Science
354(1):82–97.

Kracht, Marcus. 2003. The Mathematics of Language. Berlin: Mouton de Gruyter.
Kuhlman, Marco and Mathias Möhl. 2007a. Mildly context-sensitive dependency lan-

guages. In Proceedings of the 45th Annual Meeting of the Association for Computa-
tional Linguistics, pages 160–167.

Kuhlman, Marco and Mathias Möhl. 2007b. The string-generative capacity of regular
dependency languages. In FG-2007 .

Michaelis, Jens. 2009. An additional observation on strict derivational minimalism. In
J. Rogers, ed., Proceedings of FG-MoL 2005: The 10th conference on Formal Gram-
mar and the 9th Meeting on Mathematics of Language, pages 101–111. Stanford,
CA: CSLI Publications.

Michaelis, Jens and Marcus Kracht. 1997. Semilinearity as a syntactic invariant. In
C. Retoré, ed., Logical Aspects of Computational Linguistics, pages 329–345. Berlin:
Springer.

Palis, M. A. and S. M. Shende. 1995. Pumping lemmas for the control language
hierarchy. Mathematical Systems Theory 28(3):199–213.

Radzinski, Daniel. 1991. Chinese number-names, tree adjoining languages, and mild
context-sensitivity. Computational Linguistics 17(3):277–299.

Rambow, Owen and Giorgio Satta. 1999. Independent parallelism in finite copying
parallel rewriting systems. Theoretical Computer Science 223:87–120.

Seki, Hiroyuki and Yuki Kato. 2008. On the generative power of multiple context-free
grammars and macro grammars. IEICE Transactions on Information and Systems
E91–D(2):209–221.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On
multiple context-free grammars. Theoretical Computer Science 88(2):191–229.

Smullyan, Raymond M. 1961. Theory of Formal Systems. Princeton, N.J.: Princeton
University Press.

Staudacher, Peter. 1993. New frontiers beyond context-freeness: DI-grammars and
DI-automata. In 6th Conference of the European Chapter of the Association for
Computational Linguistics (EACL ’93), pages 358–367.

Tamaki, H. and T. Sato. 1984. Unfold/fold transformation of logic programs. In
Proceedings of the Second International Conference on Logic Programming , pages
127–138.

Vijay-Shanker, K., David J. Weir, and Aravind K. Joshi. 1987. Characterizing struc-
tural descriptions produced by various grammatical formalisms. In 25th Annual
Meeting of the Association for Computational Linguistics, pages 104–111.

Villemonte de la Clergerie, Éric. 2002a. Parsing MCS languages with thread automata.
In Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+6), pages 101–108.

Villemonte de la Clergerie, Éric. 2002b. Parsing mildly context-sensitive languages
with thread automata. In Proceedings of the 19th International Conference on Com-
putational Linguistics, pages 1–7.

Weir, David. 1992. Linear context-free rewriting systems and deterministic tree-walking
transducers. In Proceedings of the 30th Annual Meeting of the Association for Com-
putational Linguistics, pages 136–143.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms.
Ph.D. thesis, University of Pennsylvania.

