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1. Introduction

A λ-term is affine if no subterm contains more than one free occurrence of
the same variable. It is known that an affine λ-term is always typable [6]
and its principal typing is balanced in the sense that each atomic type occurs
positively at most once and negatively at most once1 [4, 8]. Also, a balanced
sequent can have at most one inhabitant up to βη-equality. This is known
as the Coherence Theorem [15, 16, 3]. It follows that up to βη-equality, an
affine λ-term is uniquely characterized by its principal typing. An additional
important property of balanced sequents is that a β-normal inhabitant of a
balanced sequent is always affine. A slightly weaker result of Jaśkowski [9]
states that a balanced sequent that is provable in intuitionistic logic has an
affine inhabitant, which, together with the Coherence Theorem, implies the
stronger statement. A direct proof was also provided by Hirokawa [8]. So
there is a bijective correspondence between the affine λ-terms in long normal
form and the balanced sequents that are provable in intuitionistic logic.

Previously, I introduced the notions of almost affine and almost linear
λ-terms in order to isolate a computationally tractable class of “context-free
grammars on λ-terms” [10, 12], and subsequently used them to capture tree
transductions that are definable in monadic second-order logic in terms of
“higher-order” homomorphisms [11]. A λ-term is almost affine if it is ty-
pable and has a typing where any variable that occurs free more than once
in any subterm has an atomic type. A λ-term is almost linear if it is an
almost affine λI-term. An almost affine λ-term corresponds to a derivation
in sequent calculus where the structural rule of contraction is restricted to
atomic formulas [1]. A sequent is called negatively non-duplicated if each
atomic type occurs negatively at most once. Aoto and Ono [2] proved that

1This definition of “balanced” is from Mints [16]. Babaev and Solv’ev [3] and Hi-
rokawa [8] use “balanced” in the weaker sense of containing at most two occurrences of
each atomic type.
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all inhabitants of a negatively non-duplicated sequent are βη-equal, gen-
eralizing the Coherence Theorem. Aoto [1] proved that a minimal intu-
itionistically provable sequent that has an almost affine inhabitant must be
negatively non-duplicated. This was slightly generalized in [10, 12], where it
was proved that a principal typing of an almost affine λ-term is negatively
non-duplicated. Thus, almost affine λ-terms are also characterized by their
principal typing up to βη-equality.

In this paper, I prove an analogue of the theorem of Jaśkowski [9] and
Hirokawa [8] for negatively non-duplicated sequents: any inhabitant of a
negatively non-duplicated sequent is βη-equal to an almost affine λ-term.2

In the course of this proof, I also derive Aoto and Ono’s [2] theorem as an
immediate corollary.

A consequence of the main theorem of this paper is that a λ-term M
in long normal form β-expands to an almost affine λ-term if and only if
the principal typing of M is negatively non-duplicated. This is a useful
characterization, since the class of almost affine λ-terms is not closed under
β-reduction and we do not have an equally simple, purely syntactic charac-
terization of the long normal forms of almost affine λ-terms.3

2. Simply Typed Lambda Calculus

2.1. Lambda Terms

This and the next subsections fix terminology and notations. We mostly
follow [7].

We assume we are given a set X of variables, of which there are count-
ably many. The set Λ of (pure) λ-terms is the smallest superset of X
such that M ∈ Λ and N ∈ Λ imply (MN) ∈ Λ, and x ∈ X and M ∈ Λ
imply (λx.M) ∈ Λ. As usual, we allow ourselves to omit the outermost
pair of parentheses, and write MNP for (MN)P and λx1 . . . xn.M for
λx1.(. . . .(λxn.M) . . . ).

It is best to be precise about α-equivalence. We use strings over {0, 1}
to refer to positions inside a λ-term. We write ε for the empty string,

2This result was stated without proof in [12] and mentioned in [13].
3Bourreau and Salvati [5] characterized λ-terms that are in long normal form relative

to a negatively non-duplicated typing in terms of the notion of first-order copying λ-term.
They used game semantics to obtain this characterization (among other results), but the
characterization can also be obtained from the results in section 3 of this paper fairly
easily. Bourreau and Salvati made no attempt to show that a first-order copying λ-term
always β-expands to an almost affine λ-term.
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and write u ≤ v to mean u is a prefix of v. Given a λ-term M , the set
of positions of M , written pos(M), is defined by pos(x) = {ε} for x ∈
X , pos(MN) = {ε} ∪ { 0u | u ∈ pos(M) } ∪ { 1u | u ∈ pos(N) }, and
pos(λx.M) = {ε} ∪ { 0u | u ∈ pos(M) }.

If u is a position of M , the subterm of M occurring at u, written
M/u, is defined by M/ε = M, (MN)/0u = M/u, (MN)/1u = N/u, and
(λx.M)/0u = M/u. Suppose M/u = x ∈X . The occurrence of x at u in M
is called free if there is no prefix v of u such that M/v is of the form λx.N .
Otherwise, the occurrence of x at u is bound by the longest prefix v of u
such that M/v is of the form λx.N , in which case v is called the binder of u.
The binding map bM of M is a partial function from pos(M) to pos(M) such
that bM (u) = v holds if and only if v is the binder of u. We write FV(M)
for the set of variables that have free occurrences in M .

Let M,N be λ-terms. We say that M and N are α-equivalent and write
M ≡α N if pos(M) = pos(N), bM = bN , and for all u ∈ pos(M)−dom(bM ),
M/u ∈ X implies M/u = N/u. One can readily check that ≡α is an
equivalence relation.

A λ-term M is regular [14] if for each x ∈ X , there is at most one
u ∈ pos(M) such that M/u is of the form λx.N , and if there is one, there
is no free occurrence of x in M . For every λ-term M , there is a regular M ′

such that M ≡α M ′.
Let M,N be λ-terms and x be a variable. We say that N is free for x

in M if for all y ∈ FV(N) and for all u ∈ pos(M) such that x occurs free at
u, there is no v ≤ u such that M/v is of the form λy.R. When N is free for
x in M , the result of substituting N for x in M , written M [x := N ], is the
λ-term that results from replacing all free occurrences of x in M by N .

An occurrence of a λ-term of the form (λx.M)N inside a λ-term is called
a β-redex. Note that whenever (λx.M)N occurs in a regular λ-term, N is
free for x in M , and consequently M [x := N ] is defined.

We write P →β Q when there are λ-terms P ′ and Q′ such that P ≡α P ′,
Q′ ≡α Q, P ′ is regular, and Q′ is the result of replacing a β-redex (λx.M)N
in P ′ by M [x := N ]. We write P �β Q to mean either P ≡α Q or P is
related to Q by the transitive closure of the relation →β. When P �β Q,
we say that P β-reduces to Q and Q β-expands to P . A λ-term P is in
β-normal form if it does not contain any β-redexes.

An occurrence of a λ-term of the form λx.Mx with x 6∈ FV(M) inside a
λ-term is called an η-redex. We write P →η Q when there are P ′, Q′ such
that P ≡α P ′, Q′ ≡α Q, and Q′ is the result of replacing an η-redex λx.Mx
in P ′ by M . We use �η in a similar way to �β. When P �η Q, we say
that P η-reduces to Q and Q η-expands to P . We write P =βη Q (read:
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P is βη-equal to Q) when P and Q are related by the symmetric transitive
closure of the relation �β ∪�η.

2.2. Type Assignment System

We write At for the set of atomic types, which we assume to be countably
infinite. The set of types is the smallest superset T of At such that α ∈ T
and β ∈ T imply (α→ β) ∈ T . As usual, we omit the outermost pair of
parentheses when writing types, and we write α→ β→ γ for α→ (β→ γ).

The set of positions of a type α, written pos(α), is defined by pos(p) = {ε}
for p ∈ At and pos(α→ β) = {ε} ∪ { 1u | u ∈ pos(α) } ∪ { 0u | u ∈ pos(β) }.
A position u is positive if its parity (i.e., the number of 1s in u modulo 2) is
0, and negative if its parity is 1.

If u is a position of α, the subtype of α occurring at u, written α/u, is
defined by α/ε = α, (α→ β)/0u = β/u, (α→ β)/1u = α/u. If α/u = β, we
say that β occurs at position u in α, and the occurrence of β at position
u is positive (resp. negative) if u is positive (resp. negative). If β has a
positive (resp. negative) occurrence in α, we say that β occurs positively
(resp. negatively) in α.

An occurrence of β at position u in α is a subpremise if u = u′1 for
some u′. Such an occurrence is a positive (resp. negative) subpremise if it
is a positive (resp. negative) occurrence. We also say that β is a positive
(negative) subpremise of α if β occurs as a positive (negative) subpremise in
α, and write Possub(α) and Negsub(α) for the set of types that are positive
and negative subpremises of α, respectively.

The tail of a type α = α1 → · · · → αn → p, written tail(α), is p. Note
that if u ∈ pos(α) ∩ 0∗ and neither u0 nor u1 is in pos(α), then α/u is the
tail of α.

A type envioronment is a function from a finite subset of X to T (un-
derstood as a set of ordered pairs). An element of a type environment (x, α)
is written as x : α, and a type environment is usually written in the form of
a list x1 :α1, . . . , xn :αn, with the understanding that x1, . . . , xn are pairwise
distinct. We use upper-case Greek letters Γ,∆, . . . for type environments.
We also use usual notations for functions, like Γ(x) (the type α such that
x : α ∈ Γ), dom(Γ) (the domain of Γ), ran(Γ) (the range), and Γ � X (Γ
restricted to a set X of variables). An expression of the form Γ ⇒ α, con-
sisting of a type environment, the symbol⇒, and a type, is called a sequent.
A typing judgment is an expression of the form Γ⇒M :α, which is like a se-
quent except that it contains in addition a λ-term M (and a colon following
it).
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The following axiom schema and the introduction (→I) and elimination
(→E) rules determine what typing judgments are derivable:

x : α⇒ x : α

Γ⇒M : β

Γ− {x : α} ⇒ λx.M : α→ β
→I (proviso: Γ ∪ {x : α} is a type environment)

Γ⇒M : α→ β ∆⇒ N : α

Γ ∪∆⇒MN : β
→E (proviso: Γ ∪∆ is a type environment)

The proviso in→I means that either x :α ∈ Γ or x 6∈ dom(Γ). In an instance
of the elimination rule, the left premise is called the major premise, and the
right premise is called the minor premise.

The rules of introduction and elimination are understood in the usual
way to sanction inference steps. A deduction of Γ ⇒ M : α is a tree whose
nodes are labeled by typing judgments such that (i) the root node is labeled
by Γ⇒M :α, (ii) each leaf node is labeled by an axiom, and (iii) each non-
leaf node is sanctioned by the introduction rule (in case it has one child) or
the elimination rule (in case it has two children). A deduction of Γ⇒M :α
is called a deduction for M . If there is a deduction of Γ⇒ M : α, we write
` Γ ⇒ M : α and say that Γ ⇒ M : α is derivable. A sequent Γ ⇒ α is
inhabited if there is a λ-term M such that Γ⇒M : α is derivable, in which
case M is called an inhabitant of Γ⇒ α and Γ⇒ α is called a typing of M .
A λ-term M is typable if it has a typing. Note that if Γ ⇒ α is a typing of
M , then dom(Γ) = FV(M).4

Clearly, the structure of a deduction D for M exactly reflects the struc-
ture of M , and we can use positions in pos(M) to refer to occurrences of
judgments in D .

A typing Γ⇒ α of a λ-term M is principal if for every typing ∆⇒ β of
M , there is a type substitution σ such that β = ασ and for every variable
x ∈ FV(M), ∆(x) = Γ(x)σ. Similarly, a principal deduction for M is a
deduction for M from which all other deductions for M can be obtained
by type substitution. It is known that every typable λ-term has a principal
typing and principal deduction.

Figure 1 shows an example of a deduction, with the name of the rule
written next to each inference step. This deduction is a principal deduction
for (λx.yxx)(wz).

Note that the type environment ∆ in each typing judgment ∆ ⇒ N :
β appearing in a deduction is recoverable from the remaining part of the

4This property will not hold if we use an alternative formulation of the axiom which is
common in the literature: Γ, x :α⇒ x :α. It is more convenient for our purposes to adopt
a definition that implies this property.
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y : p2→ p2→ p1 ⇒ y : p2→ p2→ p1 x : p2 ⇒ x : p2
y : p2→ p2→ p1, x : p2 ⇒ yx : p2→ p1 →E x : p2 ⇒ x : p2

y : p2→ p2→ p1, x : p2 ⇒ yxx : p1 →E
y : p2→ p2→ p1 ⇒ λx.yxx : p2→ p1

→I z : p3→ p2 ⇒ z : p3→ p2 w : p3 ⇒ w : p3
z : p3→ p2, w : p3 ⇒ zw : p2 →E

y : p2→ p2→ p1, z : p3→ p2, w : p3 ⇒ (λx.yxx)(zw) : p1
→E

Figure 1. An example of a deduction.

y : p2→ p2→ p1 x : p2
yx : p2→ p1 →E x : p2

yxx : p1 →E
λx.yxx : p2→ p1

→I z : p3→ p2 w : p3
zw : p2 →E

(λx.yxx)(zw) : p1
→E

Figure 2. A deduction in abbreviated form.

deduction. For this reason, we sometimes use an abbreviated notation for
a deduction where the type environment and the symbol ⇒ are dropped.
Figure 2 shows the deduction in Figre 1 under this convention.

The relation of β-reduction naturally extends to deductions. If D is a
deduction of Γ ⇒ M : α and M →β M

′, then there is a deduction D ′ of
Γ � FV(M ′)⇒M ′ : α induced by the given one-step β-reduction from M to
M ′. This is written D →β D ′. Similarly, we write D �β D ′ and say that
D β-reduces to D ′ when either the associated λ-terms are α-equivalent and
D and D ′ are otherwise identical or D and D ′ are related by the transitive
closure of →β. We say that a deduction of Γ ⇒ M : α is in β-normal form
when M is β-normal. It is known that every deduction β-reduces to one in
β-normal form.

Similarly, if D is a deduction of Γ ⇒ M : α and M �η M
′, then there

is an induced deduction D ′ of Γ ⇒ M ′ : α, in which case we say that D ′

η-reduces to D and write D �η D ′.
A deduction is said to be in η-long form if every occurrence of a judgment

of the form ∆ ⇒ N : β → γ in it is either the conclusion of an instance of
the introduction rule or the major premise of an instance of the elimination
rule. The deduction in Figure 1 is in η-long form. Every deduction can be
η-expanded to a deduction of the same judgment in η-long form.

A λ-term M is η-long relative to Γ ⇒ α if there is a deduction of Γ ⇒
M : α that is η-long. Similarly, a λ-term M is in η-long β-normal form (or
long normal form for short) relative to Γ ⇒ α if it is β-normal and η-long
relative to Γ ⇒ α. We simply say that M is in η-long β-normal form (or
long normal form) if M is in η-long β-normal form relative to some typing
(or, equivalently, relative to its principal typing). Note that if a λ-term M
has a typing Γ ⇒ α, then there is always a λ-term M ′ =βη M that is in
η-long β-normal form relative to Γ′ ⇒ α for some Γ′ ⊆ Γ.
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3. Negatively Non-duplicated Sequents

In this section, we state some lemmas that will be important in the proof of
our theorem in the next section. Proofs are omitted due to lack of space.

Let Γ ⇒ α0 be a sequent, where Γ = x1 : α1, . . . , xn : αn. The set of
positions of Γ ⇒ α0, written pos(Γ ⇒ α0), is defined by pos(Γ ⇒ α0) =⋃n
i=0{ (i, u) | u ∈ pos(αi) }. An occurrence of a type γ at position (i, u) ∈

pos(Γ ⇒ α0) is positive if i = 0 and u is positive, or 1 ≤ i ≤ n and u is
negative; otherwise, the occurrence is negative.

We let Possub(Γ ⇒ α0) = Possub(α0) ∪
⋃n
i=1 Negsub(αi) and

Negsub(Γ ⇒ α0) = Negsub(α0) ∪
⋃n
i=1({αi} ∪ Possub(αi)). The elements

of the former (resp. the latter) are positive (resp. negative) subpremises of
Γ⇒ α0.

Lemma 3.1. Suppose that an axiom x : β ⇒ x : β occurs in a deduction D
of Γ⇒M :α in β-normal form. Then β is a negative subpremise of Γ⇒ α.

A deduction (in abbreviated notation) in η-long β-normal form for a
λ-term M can be uniquely written in the following way:5

y : β1→ · · · → βn→ p
D1

M1 : β1 . . .
Dn

Mn : βn

yM1 . . .Mn : p
→E

λx1 . . . xl.yM1 . . .Mn : α1→ · · · → αl→ p
→I

where y ∈ FV(M) ∪ {x1, . . . , xl} and each subdeduction Di for Mi is in
η-long β-normal form.

A sequent Γ ⇒ α is said to be negatively non-duplicated if no atomic
type has more than one negative occurrence in it [1]. We say that Γ ⇒
α has the negative subpremise property if for all β, γ ∈ Negsub(Γ ⇒ α),
tail(β) = tail(γ) implies β = γ. The following is obvious from the definition
of a subpremise.

Lemma 3.2. If Γ ⇒ α is a negatively non-duplicated sequent, then it has
the negative subpremise property.

Lemma 3.3. Let Γ⇒ α be a sequent with the negative subpremise property,
and suppose that D is a deduction of Γ ⇒ M : α in β-normal form. Then
for every judgement of the form ∆⇒ N : q that occurs in D , ∆⇒ q has the
negative subpremise property.

5As usual, a double horizontal line abbreviates a sequence of inference steps sanctioned
by the same inference rule.
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Lemma 3.4. Let Γ⇒ p be a sequent with the negative subpremise property.
Suppose that D is a deduction of Γ ⇒ M : p in η-long β-normal form. If a
typing judgement Γ′ ⇒M ′ : p occurs in D , then M = M ′.

Lemma 3.5. Let Γ ⇒ α be a negatively non-duplicated sequent, and let D
be a deduction of Γ⇒M :α in η-long β-normal form. For every occurrence
of a judgment ∆ ⇒ N : β in D that is not a major premise of →E, the
sequent ∆⇒ β is negatively non-duplicated.

We call a type environment Γ = {x1 :α1, . . . , xn :αn} injective if αi = αj
implies i = j.

Lemma 3.6. Suppose that Γ⇒ α and Γ′ ⇒ α are negatively non-duplicated
sequents, Γ ∪ Γ′ is an injective type environment, and Γ ∪ Γ′ ⇒ α has the
negative subpremise property. If ` Γ ⇒ M : α and ` Γ′ ⇒ M ′ : α, then
M =βη M

′.

Aoto and Ono’s [2] theorem is derived as an immediate corollary to
Lemma 3.6.

Theorem 3.7 (Aoto and Ono). Suppose that Γ ⇒ M : α and ∆ ⇒ N : α
are derivable and Γ ∪∆ ⇒ α is a negatively non-duplicated sequent. Then
M =βη N .

4. Negatively Non-duplicated Sequents and Almost Affine
λ-terms

A deduction is almost affine if every instance of the elimination rule in it

Γ⇒M : α→ β ∆⇒ N : α

Γ ∪∆⇒MN : β
→E

satisfies the condition ran(Γ∩∆) ⊆ At. A λ-term M is almost affine relative
to Γ ⇒ α if there is an almost affine deduction of Γ ⇒ M : α. We simply
say that M is almost affine if M is almost affine relative to some typing
(or, equivalently, relative to its principal typing). Figure 1 is an example of
an almost affine deduction. Unlike the class of affine λ-terms, the class of
almost affine λ-terms is clearly not closed under β-reduction. For instance,
the λ-term (λx.yxx)(zw) in Figure 1 β-reduces to y(zw)(zw), which is not
almost affine.

Kanazawa [12, Theorem 3.41] gives a simple proof that a principal typing
of an almost affine λ-term is always negatively non-duplicated. In this sec-
tion, we show that a long normal inhabitant of a negatively non-duplicated
sequent always β-expands to some almost affine λ-term.
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We say that a β-reduction step from a deduction D of Γ ⇒ M : α to
a deduction D ′ of Γ � FV(M ′) ⇒ M ′ : α is atomic duplicating if in the
subdeduction of D that is associated with the contracted β-redex (λx.P )Q
of M

...
∆1 ⇒ P : γ

∆1 − {x : p} ⇒ λx.P : p→ γ
→I

...
∆2 ⇒ Q : p

(∆1 − {x : p}) ∪∆2 ⇒ (λx.P )Q : γ
→E

the type p is atomic and the λ-term P contains more than one free occurrence
of x.

We need a few more pieces of terminology for the following proofs. Sup-
pose that a λ-term of the form xP1 . . . Pn occurs at position u of a λ-term
M . Then the occurrence of Pi at position u0n−i1 is called an argument of
the occurrence of x at position u0n. Suppose moreover that Pi has the form
λz1 . . . zm.λy.Q. Then we say that the occurrence of x at u0n directly controls
the occurrences of y whose binder is the occurrence of λy.Q at u0n−i10m.
We say that an occurrence of a variable x controls an occurrence of a variable
y if they stand in the transitive closure of the relation of direct control [17].
It is easy to see that if M = M1M2 is a λ-term in β-normal form, then every
bound occurrence of a variable in M is controlled by some free occurrence
of a variable in M .

Let M be a typable λ-term, and suppose that an occurrence of x at
position u of M controls an occurrence of y at position v. Let D be a
deduction for M , and suppose that x : α ⇒ x : α and y : β ⇒ y : β are the
occurrences of axioms at positions u and v of D , respectively. Then it is
easy to see that β is a positive subpremise of α.

Lemma 4.1. If Γ ⇒ α is a negatively non-duplicated sequent and D is a
deduction of Γ ⇒ M : α in η-long β-normal form, then there is an almost
affine deduction D ′ of Γ⇒M ′ :α such that D ′ �β D by atomic duplicating
β-reduction steps.

Proof. The proof is by induction on the complexity of (i.e., the number of
occurrences of → in) Γ⇒ α. We assume that M is regular.

Case 1. D ends in →I. This case is straightforward and is omitted.
Case 2. D does not end in →I. Since D is in η-long β-normal form,

α = p ∈ At, M is of the form yM1 . . .Mn (n ≥ 0), and the deduction D is
of the following form:

y : β1→ · · · → βn→ p
D1

Γ1 ⇒M1 : β1 . . .
Dn

Γn ⇒Mn : βn

y : β1→ · · · → βn→ p,Γ1 ∪ · · · ∪ Γn ⇒ yM1 . . .Mn : p
→E
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Here, Γi = Γ�FV(Mi). Note that y 6∈ FV(M1)∪· · ·∪FV(Mn) by Lemmas 3.2
and 3.4. Let

Γ̂ = {x : γ ∈ Γ | γ 6∈ At and x : γ ∈ Γi ∩ Γj for some i, j such that i 6= j }.

Case 2.1. Γ̂ = ∅. Then for i = 1, . . . , n,

ran(({y : β1→ · · · → βn→ p} ∪ Γ1 ∪ · · · ∪ Γi−1) ∩ Γi) ⊆ At. (∗)

Since Γi ⇒ βi is negatively non-duplicated and Γi ⇒ βi is less complex
than Γ ⇒ p, we can apply the induction hypothesis to Di and obtain an
almost affine deduction D ′i of Γi ⇒ Mi : βi that β-reduces to Di by atomic
duplicating β-reduction steps. Let D ′ be the following deduction:

y : β1→ · · · → βn→ p
D ′1

Γ1 ⇒M ′1 : β1 . . .
D ′n

Γn ⇒M ′n : βn

y : β1→ · · · → βn→ p,Γ1 ∪ · · · ∪ Γn ⇒ yM ′1 . . .M
′
n : p

→E

By (∗), D ′ is an almost affine deduction. It is clear that D ′ β-reduces to D
by atomic β-reduction steps.

Case 2.2. Γ̂ 6= ∅. In this case we must have n ≥ 1. Suppose Γ̂ =
{y1 : α1, . . . , ym : αm} and qi = tail(αi) for i = 1, . . . ,m.

Our goal is to find a k such that yk always occurs with the same ar-
guments up to α-equivalence, and there are a λ-term N and a sequence of
λ-terms ~P satisfying the following properties:

• M ≡α N [z := yk ~P ],

• x ∈ FV(N) ∩ FV(yk ~P ) implies Γ(x) ∈ At.

If such a k is found, then we can “extract” (α-variants of) the deduction F
of Γ′′ ⇒ yk ~P : qk from D and form a deduction E of Γ′, z : qk ⇒ N : p so that
the deduction

E
Γ′, z : qk ⇒ N : p

Γ′ ⇒ λz.N : qk→ p
→I F

Γ′′ ⇒ yk ~P : qk

Γ′ ∪ Γ′′ ⇒ (λz.N)(yk ~P ) : p
→E

β-reduces to D by an atomic duplicating β-reduction step.
We begin by showing the following:

Claim. For every i = 1, . . . ,m, there are sets Ti ⊆
⋃
j 6=i({αj}∪Possub(αj))

and Ui ⊆ ran(Γ)∩At such that whenever ∆⇒ yi ~P : qi occurs in D , we have
ran(∆) = {αi} ∪ Ti ∪ Ui.
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First, we note that ran(∆) must be constant for every such occurrence.
For, suppose that ∆′ ⇒ yi ~P ′ : qi also occurs in D . By Lemma 3.5, ∆ ⇒ qi
and ∆′ ⇒ qi are both negatively non-duplicated. By Lemma 3.1, ran(∆) ∪
ran(∆′) ⊆ Negsub(Γ ⇒ p), so ∆ ∪ ∆′ ⇒ qi has the negative subpremise
property. Define a renaming of variables θ by θ(z′) = z if ∆(z) = ∆′(z′)
for some z, and θ(z′) = z′ otherwise. Then ∆ ⇒ yi ~P : qi and the result of
applying θ to ∆′ ⇒ yi ~P ′ : qi together satisfy the conditions of Lemma 3.6,
and we can conclude ran(∆) = ran(∆′).

Now suppose that ∆⇒ yi ~P : qi occurs in Dj . Then by Lemma 3.1 again,

ran(∆) ⊆ Negsub(Γj ⇒ βj) =
⋃
{ {γ} ∪ Possub(γ) | γ ∈ ran(Γj)} ∪Negsub(βj).

Since yi :αi ∈ Γ̂, the same condition must hold with k in place of j for some
k 6= j. Since y :β1→· · ·→βn→p ∈ Γ and Γ⇒ p is negatively non-duplicated,
we have Negsub(Γj ⇒ βj) ∩ Negsub(Γk ⇒ βk) =

⋃
{ {γ} ∪ Possub(γ) | γ ∈

ran(Γj ∩Γk) }. It follows that ran(∆) ⊆ (ran(Γ)∩At)∪
⋃
{ {γ}∪Possub(γ) |

γ ∈ ran(Γ̂) }. Since yi : αi ∈ ∆ and ∆⇒ qi is negatively non-duplicated, we
have ran(∆− {yi : αi}) ∩ Possub(αi) = ∅. This establishes the claim.

We define two relations ≺1 and ≺2 on {1, . . . ,m}:

i ≺1 j iff Ti ∩ Possub(αj) 6= ∅, i ≺2 j iff αi ∈ Tj .

The relation i ≺1 j means that yi always occurs with an argument that
contains a variable controlled by an outside occurrence of yj . (Notice that
the fact that Γ⇒ p is negatively non-duplicated means that any occurrence
of a variable of type δ ∈ Possub(αj) must be controlled by an occurrence
of yj .) The relation i ≺2 j holds if and only if yj always occurs with an
argument that contains an occurrence of yi.

Since {α1, . . . , αm} ⊆ ran(Γ) and Γ ⇒ p is negatively non-duplicated,
({αi} ∪ Possub(αi)) ∩ ({αj} ∪ Possub(αj)) = ∅ if i 6= j. Since Ti ⊆⋃
j 6=i({αj} ∪ Possub(αj)), it follows that both ≺1 and ≺2 are irreflexive.

By the above characterization of ≺1 and ≺2, it is easy to see that ≺2 is
transitive and i ≺1 j implies i ≺2 j. Therefore, the transitive closure ≺+

1

of ≺1 is included in ≺2 and is thus also irreflexive. This means that both
≺+

1 and ≺2 are strict partial orders. Note that i ≺+
1 j implies that every

occurrence of yi occurs inside an argument of an occurrence of yj , while
i ≺2 j is consistent with the possibility that some occurrence of yi does not
occur inside an argument of any occurrence of yj . So in general, ≺+

1 can be
a proper subrelation of ≺2.

We now show



12 Makoto Kanazawa

(†) If i ≺1 j and i ≺2 h, then j ≺2 h or j = h or h ≺1 j.

(‡) If i ≺+
1 j and i ≺2 h, then j ≺2 h or j = h or h ≺+

1 j.

To show (†), suppose i ≺1 j and i ≺2 h. Since i ≺2 h, we have αi ∈ Th
and a judgment of the form ∆ ⇒ yi ~P : qi with ran(∆) = {αi} ∪ Ti ∪ Ui
must occur in a deduction of a judgment of the form Θ ⇒ yh ~Q : qh with
ran(Θ) = {αh} ∪ Th ∪ Uh. Since i ≺1 j, there is a type δ ∈ Ti ∩ Possub(αj).
By Lemma 3.1, δ must be a negative subpremise of Θ ⇒ qh, so δ ∈ {αh} ∪
Possub(αh)∪

⋃
{ {γ}∪Possub(γ) | γ ∈ Th }∪Uh. Since {αh, αj}∪Uh ⊆ ran(Γ)

and Γ ⇒ p is negatively non-duplicated, δ 6= αh and δ 6∈ Uh, which leaves
two cases: (i) δ ∈ Possub(αh), or (ii) δ ∈ {γ} ∪ Possub(γ) for some γ ∈ Th.
If (i) holds, Possub(αj) ∩ Possub(αh) 6= ∅ and it follows that j = h. If (ii)
holds, either αj ∈ Th and hence j ≺2 h, or Th ∩ Possub(αj) 6= ∅ and hence
h ≺1 j.

The property (‡) can be proved by induction on n ≥ 1 such that i ≺n1 j.
The property (†) takes care of the induction basis (n = 1). For the induction
step, suppose i ≺n1 j′ ≺1 j and i ≺2 h. By induction hypothesis, j′ ≺2 h or
j′ = h or h ≺+

1 j′. In case j′ = h or h ≺+
1 j′, since j′ ≺1 j, we have h ≺+

1 j.
In case j′ ≺2 h, (†) gives j ≺2 h or j = h or h ≺1 j.

Now let k be a ≺2-minimal element among the ≺+
1 -maximal elements of

{1, . . . ,m}. Using (‡), we can show that i ≺2 k implies i ≺+
1 k. To see this,

suppose i ≺2 k. Since k is ≺2-minimal among the ≺+
1 -maximal elements, i

is not ≺+
1 -maximal. Let j be a ≺+

1 -maximal element such that i ≺+
1 j. Then

since j 6≺2 k and k 6≺+
1 j, we can conclude by (‡) that j = k and hence i ≺+

1 k.
This means that if some occurrence of yi is in an argument of an occurrence
of yk, every occurrence of yi is in an argument of an occurrence of yk. Since
the ≺+

1 -maximality of k means Tk ⊆ ran(Γ̂), we have {αk}∪Tk∪Uk ⊆ ran(Γ).

Let Γ′′ = {x : Γ(x) | Γ(x) ∈ {αk} ∪ Tk ∪ Uk }. Then whenever ∆⇒ yk ~P : qk
occurs in D for some ~P , we must have ∆ = Γ′′. Since D is in η-long β-normal
form, Theorem 3.7 implies that ~P is also unique up to α-equivalence. Let F
be a subdeduction of D that ends in Γ′′ ⇒ yk ~P : qk. Clearly, F is in η-long
β-normal form. By the above remark, if yi : αi ∈ Γ′′, every occurrence of yi
in M is inside an occurrence of (an α-variant of) yk ~P .

Pick a fresh variable z. Let N be the result of replacing every occurrence
of (an α-variant of) yk ~P in M by z, and let E be the result of similarly
replacing every occurrence of (an α-variant of) F in D by a single-line
deduction z : qk ⇒ z : qk. Then E must be a deduction of a judgment
Γ′, z : qk ⇒ N : p in η-long β-normal form for some type environment Γ′ that
satisfies Γ′ ∪ Γ′′ = Γ and Γ′ ∩ Γ′′ ⊆ Uk ⊆ At.
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Let D̃ be the following deduction:

E
Γ′, z : qk ⇒ N : p

Γ′ ⇒ λz.N : qk→ p
→I F

Γ′′ ⇒ yk ~P : qk

Γ⇒ (λz.N)(yk ~P ) : p
→E

Clearly, D̃ β-reduces to D by an atomic duplicating β-reduction step.
Since Γ′, z : qk ⇒ p and Γ′′ ⇒ qk are both less complex than Γ ⇒ p,

we can apply the induction hypothesis to E and F , obtaining almost affine
deductions E ′ and F ′ of Γ′, z :qk ⇒ N ′ :p and of Γ′′ ⇒ Q :qk, which β-reduce
to E and F by atomic duplicating β-reduction steps, respectively. Let D̃ ′

be the following deduction:

E ′

Γ′, z : qk ⇒ N ′ : p

Γ′ ⇒ λz.N ′ : qk→ p
→I F ′

Γ′′ ⇒ Q : qk
Γ⇒ (λz.N ′)Q : p

→E

Then D̃ ′ is an almost affine deduction that β-reduces to D by atomic dupli-
cating β-reduction steps.

We have exhausted all cases and the inductive proof is complete.

Theorem 4.2. Every inhabitant of a negatively non-duplicated sequent is
βη-equal to an almost affine λ-term.

Corollary 4.3. Let M be a λ-term in η-long β-normal form. Then M
β-expands to an almost affine λ-term if and only if M has a negatively
non-duplicated principal typing.

Remark. We cannot weaken “long normal form” in the statement of
Lemma 4.1 to “β-normal form”. If a λ-term M is β-normal but not η-
long relative to a negatively non-duplicated typing, there may be no almost
affine λ-term that β-reduces to M . For example, M = w(xy)(x(λz.yz))
has a negatively non-duplicated typing, but M does not β-expand to any
almost affine λ-term. Note that M is βη-equal to an almost affine λ-term
(λv.wvv)(x(λz.yz)).
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