
Ogden’s Lemma, Multiple Context-Free Grammars, and the Control Language
Hierarchy

Makoto Kanazawa1

Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, Koganei-shi, Tokyo, Japan

Abstract

I present a simple example of a multiple context-free language for which a very weak variant of generalized Ogden’s
lemma fails. This language is generated by a non-branching (and hence well-nested) 3-MCFG as well as by a (non-
well-nested) binary-branching 2-MCFG; it follows that neither the class of well-nested 3-MCFLs nor the class of
2-MCFLs is included in Weir’s control language hierarchy, for which Palis and Shende proved an Ogden-like iteration
theorem. I then give a simple sufficient condition for an MCFG to satisfy a natural analogue of Ogden’s lemma,
and show that the corresponding class of languages is a substitution-closed full AFL which includes Weir’s control
language hierarchy. My variant of generalized Ogden’s lemma is incomparable in strength to Palis and Shende’s
variant and is arguably a more natural generalization of Ogden’s original lemma. I also prove a strengthening of my
earlier pumping lemma for well-nested MCFLs which places a bound on the combined length of the substrings that
can be iterated.

Keywords: grammars, Ogden’s lemma, multiple context-free grammars, control languages, pumping lemma

1. Introduction

A multiple context-free grammar [1] is a context-free grammar on tuples of strings (of varying length). It has
widely been believed that MCFGs provide an adequate formalization of Joshi’s [2] informal concept of mildly context-
sensitive grammars, but some recent work has cast doubt on this identification [3, 4]. For this reason, it is always
interesting to ask to what extent a given prominent property of context-free grammars is either shared by or suitably
generalizes to MCFGs.

An analogue of the pumping lemma, which asserts the existence of a certain number of substrings that can be
simultaneously iterated, has been established for well-nested MCFGs and (non-well-nested) MCFGs of dimension
2 [5]. So far, it has been unknown whether an analogue of Ogden’s [6] strengthening of the pumping lemma holds
of these classes. This paper negatively answers the question for both classes, and moreover proves a generalized
Ogden’s lemma for the class of MCFGs satisfying a certain simple property. The class of languages generated by
the grammars in this class includes Weir’s [7] control language hierarchy, the only non-trivial subclass of MCFLs for
which an Ogden-style iteration theorem has been proved so far [8].

The paper also gives a strengthened version of the pumping lemma of [5] that is more in line with the original
statement of the pumping lemma for context-free languages [9].

2. Preliminaries

The power set of a set X is denoted P(X). If X and Y are sets, we write YX for the set of (total) functions
from X to Y . The set of natural numbers is denoted N. If i and j are natural numbers, we write [i, j] for the set

Email address: kanazawa@hosei.ac.jp (Makoto Kanazawa)
1This work was supported by JSPS KAKENHI Grant Number 25330020.

Preprint submitted to Information and Computation August 26, 2019

{ n ∈ N | i ≤ n ≤ j }. We write |w| for the length of a string w and |S | for the cardinality of a set S ; the context should
make it clear which is intended. If u, v,w are strings, we write (u[v]w) for the subinterval [|u| + 1, |uv|] of [1, |uvw|]. If
w is a string, wR denotes the reversal of w.

Given a positive integer k, a function ρ from {1, . . . , k} to {1,R}, and homomorphisms h1, . . . , hk from Σ∗ to Γ∗, we
define a function 〈ρ, h1, . . . , hk〉 from Σ∗ to Γ∗ by

〈ρ, h1, . . . , hk〉(w) = h′1(w) . . . h′k(w),

where for i = 1, . . . , k, h′i(w) is either hi(w) or (hi(w))R depending on whether ρ(i) is 1 or R. Such a function is called
a homomorphic replication of type ρ [10, 11]. In this paper, we sometimes represent ρ ∈ {1,R}{1,...,k} as a sequence
(ρ(1), . . . , ρ(k)). A homomorphic replication is extended to a function from P(Σ∗) to P(Γ∗) in a familiar way. For
example, if L ⊆ Σ∗ and h1 and h2 are homomorphisms from Σ∗ to Γ∗, then 〈(1,R), h1, h2〉(L) = { h1(w)(h2(w))R | w ∈
L }.

If Σ and Γ are finite alphabets, a function σ from Σ to P(Γ∗) is called a substitution. A substitution σ is extended
to a function from Σ∗ to P(Γ∗) and then to a function from P(Σ∗) to P(Γ∗) by

σ(ε) = ε,

σ(aw) = σ(a)σ(w) for a ∈ Σ,w ∈ Σ∗,

σ(L) =
⋃
w∈L

σ(w) for L ⊆ Σ∗.

If Σ′ ⊆ Σ and for each c ∈ Σ′, Lc ⊆ Γ∗, we write [c← Lc]c∈Σ′ for the substitution σ such that

σ(c) =

Lc if c ∈ Σ′,
{c} otherwise,

and write L[c← Lc]c∈Σ′ for σ(L).
If σ is a substitution from Σ to P(Σ∗), then we let

σ0(L) = L,

σn+1(L) = σ(σn(L)),

σ∞(L) =
⋃
n∈N

σn(L).

The operation σ∞ is called an iterated substitution; it is a nested iterated substitution [12] if c ∈ σ(c) for each c ∈ Σ.
A family L of languages is closed under substitution if whenever L ∈ L ∩P(Σ∗) and Lc ∈ L ∩P(Γ∗) for

each c ∈ Σ, we have L[c ← Lc]c∈Σ ∈ L . We say that L is closed under nested iterated substitution if whenever
L ∈ L ∩P(Σ∗) and c ∈ Lc ∈ L ∩P(Σ∗) for each c ∈ Σ, we have σ∞(L) ∈ L , where σ = [c ← Lc]c∈Σ. It is known
that the family of context-free languages is closed under substitution and nested iterated substitution [13].

2.1. Multiple Context-Free Grammars
A multiple context-free grammar (MCFG) [1] is a quadruple G = (N,Σ, P, S), where N is a finite set of nontermi-

nals, each with a fixed dimension ≥ 1, Σ is a finite alphabet of terminals, P is a set of rules, and S is the distinguished
initial nonterminal of dimension 1. We write N(q) for the set of nonterminals in N of dimension q. A nonterminal
in N(q) is interpreted as a q-ary predicate over Σ∗. A rule is stated with the help of variables interpreted as ranging
over Σ∗. Let X be a denumerable set of variables. We use boldface lower-case letters as elements of X. A rule is a
definite clause (in the sense of logic programming) constructed with atoms of the form A(α1, . . . , αq), with A ∈ N(q)

and α1, . . . , αq patterns, i.e., strings over Σ ∪ X. An MCFG rule is of the form

A(α1, . . . , αq)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn),

where n ≥ 0, A, B1, . . . , Bn are nonterminals of dimensions q, q1, . . . , qn, respectively, the xi, j are pairwise distinct
variables, and each αi is a string over Σ ∪ { xi, j | i ∈ [1, n], j ∈ [1, qi] }, such that (α1, . . . , αq) contains at most one

2

S (aaāāaā#āaāāaa)

D(aaāāaā, āaāāaa)

E(aaāā, āāaa)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

D(aā, āa)

E(aā, āa)

D(ε, ε)

D(ε, ε)

Figure 1: A derivation tree of a 2-MCFG.

occurrence of each xi, j. An MCFG is an m-MCFG if the dimensions of its nonterminals do not exceed m; it is r-ary
branching if each rule has no more than r occurrences of nonterminals in its body (i.e., the part that follows the symbol
←). We call a unary branching grammar non-branching.2

An instance of a rule is the result of substituting a pattern for each variable in the rule. An atom or a rule instance
is ground if it contains no variables. Given an MCFG G = (N,Σ, P, S), a ground atom A(w1, . . . ,wq) directly follows
from a sequence of ground atoms B1(v1,1, . . . , v1,q1), . . . , Bn(vn,1, . . . , vn,qn) if

A(w1, . . . ,wq)← B1(v1,1, . . . , v1,q1), . . . , Bn(vn,1, . . . , vn,qn)

is a ground instance of some rule in P. A ground atom A(w1, . . . ,wq) is derivable, written `G A(w1, . . . ,wq), if it
directly follows from some sequence of derivable ground atoms. In particular, if A(w1, . . . ,wq)← is a rule in P, we
have `G A(w1, . . . ,wq).

A derivable ground atom is naturally associated with a derivation tree whose nodes are labeled by derivable ground
atoms. A derivation tree τ for a ground atom A(w1, . . . ,wq) is a tree such that

• the root of τ is labeled by A(w1, . . . ,wq),

• for each node ν of τ, the ground atom labeling ν directly follows from the sequence of ground atoms labeling
its children.

When τ is a derivation tree of G for A(w1, . . . ,wq), we sometimes write

`G τ : A(w1, . . . ,wq).

The language generated by G is defined as L(G) = {w ∈ Σ∗ | `G S (w) }, or equivalently, L(G) = {w ∈ Σ∗ |

G has a derivation tree for S (w) }. The class of languages generated by m-MCFGs is denoted m-MCFL, and the class
of languages generated by r-ary branching m-MCFGs is denoted m-MCFL(r).

Example 1. Consider the following 2-MCFG:

S (x1#x2)← D(x1, x2)
D(ε, ε)←

D(x1y1, y2x2)← E(x1, x2),D(y1, y2)
E(ax1ā, āx2a)← D(x1, x2)

Here, S is the initial nonterminal and D and E are both nonterminals of dimension 2. This grammar is binary branching
and generates the language {w#wR | w ∈ D∗1 }, where D∗1 is the (one-sided) Dyck language over the alphabet {a, ā}.
Figure 1 shows the derivation tree for aaāāaā#āaāāaa.

It is also useful to define the notion of a derivation of an atom A(α1, . . . , αq) from an assumption C(x1, . . . , xr),
where x1, . . . , xr are pairwise distinct variables. An atom A(α1, . . . , αq) is derivable from an assumption C(x1, . . . , xr),
written C(x1, . . . , xr) `G A(α1, . . . , αq), if either

2Non-branching MCFGs were called linear in [14].

3

E(ax1ā, āx2a)

D(x1, x2)

E(x1, x2) D(ε, ε)

Figure 2: A derivation tree context for E(ax1ā, āx2a) with an assumption E(x1, x2).

1. A = C and (α1, . . . , αq) = (x1, . . . , xr), or
2. there are some atom Bi(β1, . . . , βqi) and ground atoms B j(v j,1, . . . , v j,q j) for j ∈ [1, i − 1] ∪ [i + 1, n] such that

C(x1, . . . , xr) `G Bi(β1, . . . , βqi), `G B j(v j,1, . . . , v j,q j) (j ∈ [1, i − 1] ∪ [i + 1, n]), and

A(α1, . . . , αq)← B1(v1,1, . . . , v1,q1), . . . , Bi−1(vi−1,1, . . . , vi−1,qi−1),
Bi(β1, . . . , βqi), Bi+1(vi+1,1, . . . , vi+1,qi+1), . . . , Bn(vn,1, . . . , vn,qn)

is an instance of some rule in P.

Analogously to the case of a derivation without an assumption, when an atom A(α1, . . . , αq) is derivable from an
assumption C(x1, . . . , xr), there is an associated tree witnessing this fact. In such a tree, there is a unique leaf labeled
by C(x1, . . . , xq), and the nodes along the path from the root to that leaf are labeled by non-ground atoms, while all
other nodes are labeled by ground atoms. We call such a tree derivation tree context [5] and the atom C(x1, . . . , xr)
its assumption. We write C(x1, . . . , xr) `G υ : A(α1, . . . , αq) to mean that υ is a derivation tree context witnessing
C(x1, . . . , xr) `G A(α1, . . . , αq).

Let us write [v1/x1, . . . , vr/xr] for the simultaneous substitution of strings v1, . . . , vr for variables x1, . . . , xr. Ev-
idently, when we have `G τ : C(v1, . . . , vr) and C(x1, . . . , xr) `G υ : A(α1, . . . , αq), we can combine τ and υ into a
derivation tree for A(α1, . . . , αq)[v1/x1, . . . , vr/xr]. This derivation tree, which we write υ[τ], is the result of inserting
τ in place of the assumption C(x1, . . . , xr) of υ and then applying the substitution [v1/x1, . . . , vr/xr] to the remaining
non-ground atoms. Thus, we have

`G υ[τ] : A(α1, . . . , αq)[v1/x1, . . . , vr/xr]

whenever `G τ : C(v1, . . . , vr) and C(x1, . . . , xr) `G υ : A(α1, . . . , αq).
The following lemma says that when B(v1, . . . , vr) is derived in the course of a derivation of A(w1, . . . ,wq), the

derivation can be decomposed into one for B(v1, . . . , vr) and a derivation tree context with an assumption B(x1, . . . , xr):

Lemma 2. Let τ be a derivation tree of an MCFG G for some ground atom A(w1, . . . ,wq), and let τ′ be a subtree of
τ consisting of a node labeled by B(v1, . . . , vr) and the nodes that lie below it. Then there is a derivation tree context
υ with an assumption B(x1, . . . , xr) such that τ = υ[τ′]. In particular, we have

B(x1, . . . , xr) `G υ : A(α1, . . . , αq),
(w1, . . . ,wq) = (α1, . . . , αq)[v1/x1, . . . , vr/xr],

for some patterns α1, . . . , αq.

Example 3. Consider the derivation tree in Figure 1 and the node ν labeled by E(aaāā, āāaa). Let τ be the subtree
of this derivation tree consisting of ν and the nodes that lie below it. Consider the node ν1 labeled by E(aā, āa) in
τ. The rules used in the portion of τ that remains after removing the nodes below ν1 determine a derivation tree
context witnessing E(x1, x2) `G E(ax1ā, āx2a), which is depicted in Figure 2. Note that substituting aā, āa for x1, x2
in E(ax1ā, āx2a) gives back E(aaāā, āāaa).

An MCFG rule A(α1, . . . , αq)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn) is said to be

• non-deleting if all variables xi, j in its body occur in (α1, . . . , αq);

• non-permuting if for each i ∈ [1, n], the variables xi,1, . . . , xi,qi occur in (α1, . . . , αq) in this order;

4

• well-nested if it is non-deleting and non-permuting and there are no i, j ∈ [1, n], k ∈ [1, qi − 1], l ∈ [1, ql − 1]
such that xi,k, x j,l, xi,k+1, x j,l+1 occur in (α1, . . . , αq) in this order.

Every r-ary branching m-MCFG has an equivalent r-ary branching m-MCFG whose rules are all non-deleting and
non-permuting, and henceforth we will always assume that these conditions are satisfied. An MCFG whose rules are
all well-nested is a well-nested MCFG [5]. The 2-MCFG in Example 1 is well-nested. It is known that there is no
well-nested MCFG for the language {w#w | w ∈ D∗1 } [15], although it is easy to write a non-well-nested 2-MCFG for
this language.

Every (non-deleting and non-permuting) non-branching MCFG is by definition well-nested. The class
⋃

m m-MCFL(1)
coincides with the class of output languages of deterministic two-way finite-state transducers (see [14]).

2.2. The Control Language Hierarchy
Weir’s [7] control language hierarchy is defined in terms of the notion of a labeled distinguished grammar, which

is a 5-tuple G = (N,Σ, P, S , f), where G = (N,Σ, P, S) is an ordinary context-free grammar and f : P → N is a
function such that if π ∈ P is a context-free production with n occurrences of nonterminals on its right-hand side, then
f (π) ∈ [0, n]. We view P as a finite alphabet, and use a language C ∈ P∗ to restrict the derivations of G. The pair
(G,C) is a control grammar. To define the language of (G,C), we first define the rewriting of a nonterminal induced
by a nonempty string ξ ∈ P+ inductively as follows:

• A
π

==⇒G α if π = A→ α is a production in P and f (π) = 0,

• A
πξ

==⇒G w0B1w1 . . . Bi−1wi−1βwiBi+1wi+1 . . . Bnwn if π = A → w0B1w1 . . . Bnwn is a production in P, f (π) = i ≥

1, and Bi
ξ

==⇒G β.

If A
ξ

==⇒G α for some ξ ∈ C, we write A
C

==⇒G α. A controlled derivation of (G,C) starting from a nonterminal is
defined inductively as follows:

• A⇒∗(G,C) A,

• A⇒∗(G,C) αβγ if A⇒∗(G,C) αBγ and B
C

==⇒G β.

Clearly, if A⇒∗(G,C) α, then A⇒∗
G
α. The language of (G,C) is

L(G,C) = {w ∈ Σ∗ | S ⇒∗(G,C) w }.

The first level of the control language hierarchy is C1 = CFL, the family of context-free languages, and for k ≥ 1,

Ck+1 = { L(G,C) | (G,C) is a control grammar and C ∈ Ck }.

The second level C2 is known to coincide with the family of languages generated by well-nested 2-MCFGs, or equiv-
alently, the family of tree-adjoining languages [7].

Example 4. Let G = (N,Σ, P, S , f) be a labeled distinguished grammar consisting of the following productions:

π1 : S → aS āS , π2 : S → bS b̄S , π3 : S → ε,

where f (π1) = 1, f (π2) = 1, f (π3) = 0. Note that G is the well-known context-free grammar for D∗2, the Dyck
language over {a, ā, b, b̄}. Let C = { πn

1π
n
2π3 | n ∈ N }. Then we have

S
π3

==⇒G ε,

S
π1π2π3

=====⇒G abb̄S āS ,

S
π2

1π
2
2π3

=====⇒G aabbb̄S b̄S āS āS ,

5

S

ā Sa

ε

S

āa S

ā Sa

ε

S

b̄ SSb

εε

S

b̄ Sb

ε

S

b̄ SSb

εε

π1

π1

π2

π2

π3 π3

π3

π3 π3

π3

π3

π2

π1

Figure 3: A derivation tree of a control grammar. In this tree, each node labeled by a nonterminal is accompanied by the label of the rule applied at
that node, and patches of green connect each node with rule label π to the child corresponding to the value of f (π).

and hence

S ⇒∗(G,C) ε,

S ⇒∗(G,C) abb̄ā,

S ⇒∗(G,C) aabbb̄b̄āabb̄āā.

The controlled derivation of the last string aabbb̄b̄āabb̄āā is shown in the form of a derivation tree in Figure 3. We
have L(G,C) = D∗2 ∩ ({ anbn | n ∈ N }{ā, b̄}∗)∗. Since C is a context-free language, this language belongs to C2.

Palis and Shende [8] proved the following Ogden-like theorem for Ck:

Theorem 5 (Palis and Shende). Let L ∈ Ck. There is a number p such that for all z ∈ L and D ⊆ [1, |z|], if |D| ≥ p,
there are u1, . . . , u2k+1, v1, . . . , v2k ∈ Σ∗ that satisfy the following conditions:

(i) z = u1v1u2v2 . . . u2k v2k u2k+1.
(ii) for some j ∈ [1, 2k],

D ∩ (u1v1 . . . [u j]v ju j+1v j+1 . . . u2k v2k u2k+1) , ∅,
D ∩ (u1v1 . . . u j[v j]u j+1v j+1 . . . u2k v2k u2k+1) , ∅,
D ∩ (u1v1 . . . u jv j[u j+1]v j+1 . . . u2k v2k u2k+1) , ∅.

(iii) |D ∩ (u1v1 . . . u2k−1 [v2k−1 u2k−1+1v2k−1+1] . . . u2k v2k u2k+1)| ≤ p.
(iv) u1vn

1u2vn
2 . . . u2k vn

2k u2k+1 ∈ L for all n ∈ N.

Kanazawa and Salvati [16] proved the inclusion Ck ⊆ 2k−1-MCFL, while using Theorem 5 to show that the
language RESP2k−1 belongs to 2k−1-MCFL − Ck for k ≥ 2, where RESPl = { am

1 am
2 bn

1bn
2 . . . a

m
2l−1am

2lb
n
2l−1bn

2l | m, n ∈ N }.

3. The Failure of Ogden’s Lemma for Well-Nested MCFGs and 2-MCFGs

Let G be an MCFG, and consider a derivation tree τ for an element z of L(G). When a node of τ and one of its
descendants are labeled by ground atoms B(w1, . . . ,wr) and B(v1, . . . , vr) sharing the same nonterminal B, the portion
of τ consisting of the nodes that are neither above the first node nor below the second node determines a derivation
tree context υ witnessing B(x1, . . . , xr) `G B(β1, . . . , βr) (called a pump in [5]), where (β1, . . . , βr)[v1/x1, . . . , vr/xr] =

(w1, . . . ,wr). This was illustrated by Example 3. When each xi occurs in βi, i.e., βi = v2i−1xiv2i for some v2i−1, v2i ∈

Σ∗ (in which case υ is an even pump [5]), iterating υ gives a derivation tree context witnessing B(x1, . . . , xr) `G
B(vn

1x1vn
2, . . . , v

n
2r−1xrvn

2r). Combining this with the rest of τ gives a derivation tree for z(n) = u1vn
1u2vn

2 . . . u2rvn
2ru2r+1 ∈

L(G) for every n ∈ N, where z(1) = z. When some xi occurs in β j with j , i (υ is an uneven pump), however, the
result of iterating υ exhibits a complicated pattern that is not easy to describe.

A language L is said to be k-iterative if all but finitely many elements of L can be written in the form u1v1u2v2 . . . ukvkuk+1
so that v1 . . . vk , ε and u1vn

1u2vn
2 . . . ukvn

kuk+1 ∈ L for all n ∈ N. A language that is either finite or includes an infinite

6

A(ε)←

A(bx1)← A(x1)

B(x1, ε)← A(x1)

B(ax1, bx2)← B(x1, x2)

C(x1, x2, ε)← B(x1, x2)

C(x1, ax2, bx3)← C(x1, x2, x3)

C(x1$x2, x3, ε)← C(x1, x2, x3)

D(x1$x2, x3)← C(x1, x2, x3)

D(x1, ax2)← D(x1, x2)

S (x1$x2)← D(x1, x2)

A(ε)←

A(bx1)← A(x1)

B(x1, ε)← A(x1)

B(ax1, bx2)← B(x1, x2)

C(ε, ε)←

C(ax1, bx2)← C(x1, x2)

D(x1$y1 x2, y2)← B(x1, x2),C(y1, y2)

D(x1$y1 x2, y2)← D(x1, x2),C(y1, y2)

E(x1, x2)← D(x1, x2)

E(x1, ax2)← E(x1, x2)

S (x1$x2)← E(x1, x2)

Figure 4: Two grammars generating the same language.

k-iterative subset is said to be weakly k-iterative. (These terms are from [17, 18].) The possibility of an uneven pump
explains the difficulty of establishing 2m-iterativity of an m-MCFL. In 1991, Seki et al. [1] proved that every m-MCFL
is weakly 2m-iterative, but whether every m-MCFL is 2m-iterative remained an open question for a long time, until
Kanazawa et al. [19] negatively settled it in 2014 by exhibiting a (non-well-nested) 3-MCFL that is not k-iterative
for any k. Earlier, Kanazawa [5] had shown that the language of a well-nested m-MCFG is always 2m-iterative, and
moreover that a 2-MCFL is always 4-iterative. The proof of this last pair of results was much more indirect than the
proof of the pumping lemma for the context-free languages, and did not suggest a way of strengthening them to an
Ogden-style theorem. Below, we show that there is indeed no reasonable way of doing so.

Let us say that a language L has the weak Ogden property if there is a natural number p such that for every z ∈ L
and D ⊆ [1, |z|] with |D| ≥ p, there are strings u1, . . . , uk+1, v1, . . . , vk (k ≥ 1) satisfying the following conditions:

1. z = u1v1 . . . ukvkuk+1,
2. D ∩ (u1v1 . . . ui[vi] . . . ukvkuk+1) , ∅ for some i ∈ [1, k], and
3. u1vn

1 . . . ukvn
kuk+1 ∈ L for all n ≥ 0.

The elements of D are referred to as distinguished positions in z.

Theorem 6. There is an L ∈ 3-MCFL(1) ∩ 2-MCFL(2) that does not satisfy the weak Ogden property.

Proof. Let L be the set of all strings over the alphabet {a, b, $} that are of the form

ai1 bi0 $ai2 bi1 $ai3 bi2 $. . . $ain bin−1 (†)

for some n ≥ 3 and i0, . . . , in ≥ 0. This language is generated by the non-branching 3-MCFG (left) as well as by the
binary branching 2-MCFG (right) in Figure 4. Now suppose L has the weak Ogden property, and let p be the number
satisfying the required conditions. Let

z = a$a2b$a3b2$. . . $ap+1bp,

and let D consist of the positions in z occupied by $. Note that |D| = p. By the weak Ogden property, there must be
strings u1, . . . , uk+1, v1, . . . , vk (k ≥ 1) such that z = u1v1 . . . ukvkuk+1, at least one of v1, . . . , vk contains an occurrence
of $, and u1vn

1 . . . ukvn
kuk+1 ∈ L for all n. Without loss of generality, we may assume that v1, . . . , vk are all nonempty

strings. Let us write z(n) for u1vn
1 . . . ukvn

kuk+1. First note that none of v1, . . . , vk can start in a and end in b, since
otherwise z(2) would contain ba as a factor and not be of the form (†). Let i be the greatest number such that vi

contains an occurrence of $. Since none of vi+1, . . . , vk contains an occurrence of $, it is easy to see that vi+1, . . . , vk

are all in a+ ∪ b+. We consider two cases, depending on the number of occurrences of $ in vi. Each case leads to a
contradiction.

Case 1. vi contains just one occurrence of $. Then vi = x$y, where x is a suffix of a j+1b j and y is a prefix of
a j+2b j+1 for some j ∈ [0, p − 1]. Note that z(3) contains yxyx$ as a factor. Since z(3) is of the form (†), this means
that yx = albl for some l ≥ 0.

7

Case 1.1 l ≤ j + 1. Then y must be a prefix of a j+1 and since x is a suffix of a j+1b j, it follows that l ≤ j. Since
yui+1vi+1 . . . ukvkuk+1 has a j+2b j+1 as a prefix and vi+1, . . . , vk ∈ a+ ∪ b+, yxyui+1v2

i+1 . . . ukv2
kuk+1 has $albl$aqbr as a

prefix for some q ≥ j + 2 and r ≥ j + 1. The string $albl$aqbr is a factor of z(2) and since z(2) is of the form (†), we
must have l ≥ r, but this contradicts l ≤ j.

Case 1.2. l ≥ j + 2 In this case x must be a suffix of b j and y must have a j+2b2 as a prefix, so l = j + 2. Note that

yxyui+1v2
i+1 . . . ukv2

kuk+1 = $albl$yui+1v2
i+1 . . . ukv2

kuk+1

is a suffix of z(2), so either yui+1v2
i+1 . . . ukv2

kuk+1 equals aqbl or has aqbl$ as a prefix for some q. Since l = j + 2 and
yui+1vi+1 . . . ukvkuk+1 either equals a j+2b j+1 or has a j+2b j+1$ as a prefix, it follows that there is some h > i such that
vh = b and vi+1, . . . , vh−1 are all in a+. But then z(3) will contain

yxyui+1v3
i+1 . . . ukv3

kuk+1,

which must have
$a j+2b j+2$aq′b j+3

as a prefix for some q′, contradicting the fact that z(3) is of the form (†).
Case 2. vi contains at least two occurrences of $. Then we can write

vi = x$al+1bl$. . . $am+1bm$y,

where 1 ≤ l ≤ m ≤ p − 1, x is a suffix of albl−1, and y is a prefix of am+2bm+1. Since

$am+1bm$yx$al+1bl$

is a factor of z(2), we must have
yx = albm+1.

Since y is a prefix of am+2bm+1 and l < m + 2, y must be a prefix of al. It follows that x has bm+1 as a suffix. But then
bm+1 must be a suffix of albl−1, contradicting the fact that l − 1 < m + 1.

Since Theorem 5 above implies that every language in Weir’s control language hierarchy satisfies the weak Ogden
property, we obtain the following corollary:3

Corollary 7. There is a language in 3-MCFL(1)∩ 2-MCFL(2) that lies outside of Weir’s control language hierarchy.

Previously, Kanazawa et al. [19] showed that Weir’s control language hierarchy does not include 3-MCFL(2), but
left open the question of whether the former includes the languages of well-nested MCFGs. The above corollary
settles this question in the negative.

4. A Generalized Ogden’s Lemma for a Subclass of the MCFGs

An easy way of ensuring that an m-MCFG G satisfies a generalized Ogden’s lemma is to demand that whenever
B(x1, . . . , xr) `G B(β1, . . . , βr), each xi occurs in βi. For example, the grammar in Example 1 satisfies this property.
This is a rather strict requirement, however, and the resulting class of grammars does not seem to cover even the
second level C2 of the control language hierarchy. In this section, we show that a weaker condition implies a natural
analogue of Ogden’s [6] condition; we prove in the next section that the result covers the entire control language
hierarchy.

3The language L in the proof of Theorem 6 was inspired by Lemma 5.4 of Greibach [11], where a much more complicated language was used
to show that the range of a deterministic two-way finite-state transducer need not be strongly iterative. One can see that the language Greibach used
is an 8-MCFL(1). In her proof, Greibach essentially relied on a stronger requirement imposed by her notion of strong iterativity, namely that in the
factorization z = u1v1 . . . ukvkuk+1, there must be some i such that ui and ui+1 contain at least one distinguished position and vi contains at least two
distinguished positions. Strong iterativity is not implied by the condition in Theorem 5, so Greibach’s lemma fell short of providing an example of
a language in

⋃
m m-MCFL(1) that does not belong to Weir’s hierarchy.

8

A(ax1 x2b, cbcd)

B(x1 x2)

A(x1, x2)

B(bc)

A(b, c)

A(b, c)

A(abcx1, x2bcd)

B(bc)

A(b, c)

B(bc)

A(b, c)

A(x1, x2)

Figure 5: Decreasing and non-decreasing derivation tree contexts.

Let us say that a derivation tree context υ witnessing A(x1, . . . , xq) `G B(β1, . . . , βr) is decreasing if there is
a node labeled by an atom C(γ1, . . . , γs) with s < q along the path from the root of υ to the leaf labeled by
A(x1, . . . , xq); otherwise it is non-decreasing. (If q > r, there can be no non-decreasing derivation tree context
witnessing A(x1, . . . , xq) `G B(β1, . . . , βr).) An m-MCFG G = (N,Σ, P, S) is proper if for each A ∈ N(q), whenever
A(x1, . . . , xq) `G υ : A(α1, . . . , αq) for some non-decreasing derivation tree context υ, each xi occurs in αi.

Example 8. Consider the following 2-MCFG G:

S (x1x2)← A(x1, x2)
A(b, c)←

A(ayx1, x2 zd)← B(y), B(z), A(x1, x2)
B(x1x2)← A(x1, x2)

We have, for example,

A(x1, x2) `G A(ax1x2b, cbcd), A(x1, x2) `G A(abcx1, x2bcd)

as witnessed by derivation tree contexts in Figure 5. The former is decreasing, while the latter is non-decreasing. It is
easy to see that this grammar is proper.

Proposition 9. The question of whether a given MCFG is proper is decidable.

Proof. Given an m-MCFG, we first remove all useless nonterminals (i.e., nonterminals A such that there is no derivable
ground atom A(w1, . . . ,wq)) by a standard technique. Let G = (N,Σ, P, S) be the resulting m-MCFG without useless
nonterminals.

Define a family of sets of functions FA,B ⊆ {1, . . . , r}{1,...,q} for A ∈ N(q), B ∈ N(r):

FA,B = { f ∈ {1, . . . , r}{1,...,q} | A(x1, . . . , xq) `G υ : B(β1, . . . , βr),
xi occurs in β f (i) for i = 1, . . . , q, and
υ is a non-decreasing derivation tree context }.

Clearly, the given MCFG is proper if and only if FA,A contains just the identity function on {1, . . . , q} for all A ∈ N(q)

and q ≤ m.
The sets FA,B form the least family of sets that satisfy the following closure conditions. For A ∈ N(q),

• FA,A contains the identity function on {1, . . . , q}, and

• if r ≥ q, C(γ1, . . . , γr) ← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn) is a rule of G, f ∈ FA,Bi , and xi, j occurs in
γg(j) for j = 1, . . . , qi, then FA,C contains the composition g ◦ f defined by (g ◦ f)(k) = g(f (k)).

Since there are only finitely many functions in {1, . . . , r}{1,...,q}, the sets FA,B are clearly computable.

Theorem 10. Let L be the language of a proper m-MCFG. There is a natural number p such that for every z ∈ L and
D ⊆ [1, |z|] with |D| ≥ p, there are strings u1, . . . , u2m+1, v1, . . . , v2m satisfying the following conditions:

(i) z = u1v1 . . . u2mv2mu2m+1.
(ii) for some j ∈ [1, 2m],

D ∩ (u1v1 . . . [u j]v ju j+1v j+1 . . . u2mv2mu2m+1) , ∅,
D ∩ (u1v1 . . . u j[v j]u j+1v j+1 . . . u2mv2mu2m+1) , ∅,
D ∩ (u1v1 . . . u jv j[u j+1]v j+1 . . . u2mv2mu2m+1) , ∅.

9

(iii) |D ∩
m⋃

i=1

(u1v1 . . . u2i−1[v2i−1u2iv2i] . . . u2mv2mu2m+1)| ≤ p.

(iv) u1vn
1u2vn

2 . . . u2mvn
2mu2m+1 ∈ L for all n ∈ N.

The third clause says that the m substrings v1u2v2, v3u4v4, . . . , v2m−1u2mv2m of z together contain at most p distin-
guished positions. The case m = 1 of Theorem 10 exactly matches the statement of Ogden’s [6] original lemma (as
does the case k = 1 of Theorem 5).

Proof of Theorem 10. Let G = (N,Σ, P, S) be a proper m-MCFG. For a rule

A(α1, . . . , αq)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn),

let its weight be the number of occurrences of terminal symbols in α1, . . . , αq plus n, and let d be the maximal weight
of a rule in P.

Let z ∈ L, D ⊆ [1, |z|], and τ be a derivation tree for z. We refer to elements of D as distinguished positions. Note
that it makes sense to ask whether a particular symbol occurrence in the atom A(w1, . . . ,wq) labeling a node ν of τ is
in a distinguished position or not. This is because by Lemma 2, there are strings z1, . . . , zq+1 such that ν determines a
derivation tree context witnessing A(x1, . . . , xq) `G S (z1x1z2x2 . . . zqxqzq+1), which tells us where in z each argument
of A(w1, . . . ,wq) ends up. Henceforth, when the ground atom labeling a node ν contains a symbol occurrence in a
distinguished position, we simply say that ν contains a distinguished position. We call a node ν a B-node (cf. [6]) if at
least one of its children contains a distinguished position and ν contains more distinguished positions than any of its
children. The B-height of a node ν is defined as the maximal B-height h of its children if ν is not a B-node, and h + 1
if ν is a B-node. (When ν has no children, its B-height is 0.)

Claim. A node ν of τ whose B-height is h can contain no more than dh+1 distinguished positions.

The proof of the claim is by induction on the (ordinary) height of ν. We distinguish two cases according to whether ν
is a B-node.

Case 1. ν is not a B-node.
Case 1.1. ν has no children that contain a distinguished position. (This covers the case where ν is a leaf.) Then

h = 0. If the rule used at ν has k occurrences of terminal symbols in its left-hand side, then ν can contain no more than
k ≤ d = dh+1 distinguished positions.

Case 1.2. ν has exactly one child ν′ that contains a distinguished position. Then the B-height of ν′ is also h and
ν contains the same number of distinguished positions as ν′ does. By induction hypothesis, ν′ contains no more than
dh+1 distinguished positions.

Case 2. ν is a B-node. Then h ≥ 1. Each of the children of ν has B-height ≤ h − 1, and by induction hypothesis
contains no more than dh distinguished positions. If A(α1, . . . , αq) ← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn) is the
rule used at ν and k is the number of occurrences of terminal symbols in (α1, . . . , αq), then ν can contain no more than
k + n · dh distinguished positions. By the definition of d, this number does not exceed d · dh = dh+1.

This completes the proof of the claim.
Our goal is to find an h such that, when |D| ≥ dh+1, we can locate four nodes µ1, µ2, µ3, µ4, all of B-height ≤ h, on

the same path of τ that together decompose τ into υ1, υ2, υ3, υ4, τ
′ such that

A(x1, . . . , xq) `G υ1 : S (z1x1z2x2 . . . zqxqzq+1), (1)
B(x1, . . . , xq) `G υ2 : A(y1x1y2, . . . , y2q−1xqy2q), (2)
B(x1, . . . , xq) `G υ3 : B(v1x1v2, . . . , v2q−1xqv2q), (3)
C(x1, . . . , xq) `G υ4 : B(x1x1x2, . . . , x2q−1xqx2q), (4)

`G τ′ : C(w1, . . . ,wq), (5)

where for some j ∈ [1, 2q], each of x j, v j, y j contains at least one distinguished position. Since

y1v1x1w1x2v2y2, . . . , y2q−1v2q−1x2q−1wqx2qv2qy2q

10

together can contain no more than dh+1 distinguished positions, this establishes the theorem, with p = dh+1 and
u1 = z1y1, u2 = x1w1x2, u3 = y2z2y3, etc.

Let M = max{ |N(q)| | 1 ≤ q ≤ m } and let

g(1) = 1,
g(q + 1) = h(q) + g(q) for 1 ≤ q < m,

h(q) = g(q) · (2q · (M + 1) + 1).

We show that

h =

m∑
q=1

h(q)

is the desired value for h.
By the “dimension” of a node, we mean the dimension of the nonterminal in the label of that node. Assume

|D| ≥ dh+1. Then the root of τ has B-height ≥ h, and τ must have a path that contains a node of each B-height ≤ h. For
each i = 0, . . . , h, from among the nodes of B-height i on that path, pick a node νi of the lowest dimension.

By a q-stretch, we mean a contiguous subsequence of ν0, ν1, . . . , νh consisting entirely of nodes of dimension ≥ q.
We claim that some q-stretch contains more than 2q · (M + 1) + 1 nodes of dimension q. For, suppose not. Then
we can show by induction on q that the sequence of h + 1 nodes ν0, ν1, . . . , νh contains no more than g(q) maximal
q-stretches and no more than h(q) nodes of dimension q, which contradicts h =

∑m
q=1 h(q). Since the entire sequence

ν0, ν1, . . . , νh is a 1-stretch, the number of maximal 1-stretches is g(1) = 1, and the number of nodes of dimension
1 is ≤ 2 · (M + 1) + 1 = h(1). For q < m, each maximal (q + 1)-stretch is contained in a maximal q-stretch,
and if the last node of the former is not identical to the last node of the latter, then the former must be followed
by a node of dimension q. By induction hypothesis, this means that the number of maximal (q + 1)-stretches is
≤ g(q) + h(q) = g(q + 1). Since each node of dimension q + 1 belongs to a maximal (q + 1)-stretch, the number of
such nodes is ≤ g(q + 1) · (2(q + 1) · (M + 1) + 1) = h(q + 1).

So we have a q-stretch that contains nodes νi0 , . . . , νik of dimension q for some q ∈ [1,m], where k = 2q·(M+1)+1.
Let An be the nonterminal in the label of νin . By the definition of a q-stretch and the way the original sequence
ν0, . . . , νh is defined, the nodes of τ that are neither below νin−1 nor above νin determine a non-decreasing derivation tree
context witnessing An−1(x1, . . . , xq) `G An(xn,1x1xn,2, . . . , xn,2q−1xqxn,2q) for some strings xn,1, . . . , xn,2q. Since there
must be a B-node lying above νin−1 and below or at νin , at least one of xn,1, . . . , xn,2q must contain a distinguished posi-
tion. By the pigeon-hole principle, there is a j ∈ [1, 2q] such that { n ∈ [1, k] | xn, j contains a distinguished position }
has at least M + 2 elements. This means that we can pick three elements n1, n2, n3 from this set so that n1 < n2 < n3
and An1 = An2 . Letting µ1 = νi0 , µ1 = νin1

, µ2 = νin2
, µ3 = νin3

, we see that (2), (3), (4) hold with C = Ai0 , B = Ain1
=

Ain2
, A = Ain3

and x j, v j, y j all containing a distinguished position, as desired.

Let us write m-MCFLprop for the family of languages generated by proper m-MCFGs. Using standard techniques
(cf. Theorem 3.9 of [1]), we can easily establish the following:

Proposition 11. For each m ≥ 1, m-MCFLprop is a substitution-closed full abstract family of languages.

5. Relation to the Control Language Hierarchy

Kanazawa and Salvati [16] showed Ck ⊆ 2k−1-MCFL for each k through a tree grammar generating the derivation
trees of a level k control grammar (G,C), noting that the tree language in question can be obtained from the monadic
tree representation of C by linear tree homomorphism, the tree analogue of the Kleene star operation, and intersection
with regular tree language. In fact, detour through tree languages is not necessary—a level k control language can be
obtained from a level k − 1 control language by certain string language operations. It is easy to see that the family⋃

m m-MCFLprop is closed under those operations.
Let us sketch the idea using Example 4. Under the tree language approach, monadic trees representing strings of

the form πn
1π

n
2π3 undergo a linear and nondeleting tree homomorphism:

π1(x) 7→ S (4)(a, x, ā,�), π2(x) 7→ S (4)(b, x, b̄,�), π3 7→ S (1)ε,

11

S

ā Sa S

āa SS

b̄ Sb S

b̄ SSb

ε

π1

π1

π2

π2

π3

Figure 6: A fragment of a derivation tree of a control grammar, with rule labels.

where S (4) and S (1) are rank 4 and rank 1 symbols, respectively, and a, ā, b, b̄ are rank 1 symbols. The set of derivation
trees of the control grammar is then obtained from the set L consisting of the output of this tree homomorphism by
iterating substitution � ← L on the set {�} (resulting in L�,∗, the �-iteration [20] or closure [21] of L) and throwing
away trees that contain �.

Staying inside the realm of string languages, we can start by applying a homomorphic replication 〈(1,R), h1, h2〉

to the control set C = { πn
1π

n
2π3 | n ∈ N }, obtaining

〈(1,R), h1, h2〉(C) = { h1(w)(h2(w))R | w ∈ C },

where h1 and h2 are homomorphisms defined by

h1(π1) = a,

h1(π2) = b,

h1(π3) = ε,

h2(π1) = S ā,

h2(π2) = S b̄,

h2(π3) = ε.

For instance, π2
1π

2
2π3 is mapped to aabbb̄S b̄S āS āS . (This string is the yield of the tree in Figure 6.) Iterating the

substitution S ← 〈(1,R), h1, h2〉(C) on {S } and then throwing away strings that contain S gives the language of the
control grammar of this example.

In general, let π be a production A → w0B1w1 . . . Bnwn of a labeled distinguished grammar G = (N,Σ, P, S , f). If
f (π) = i ∈ [1, n], we let

h1(π) = w0B1w1 . . . Bi−1wi−1, h2(π) = wnBn . . .wi+1Bi+1wi,

and if f (π) = 0, we let
h1(π) = w0B1w1 . . . Bnwn, h2(π) = ε.

The control set C ⊆ P∗ is first intersected with a local set so as to ensure consistency of nonterminals in adjacent
productions, and then partitioned into sets CA indexed by nonterminals, with CA holding only those strings whose first
symbol is a production that has A on its left-hand side. More precisely, if π and π′ are productions in P, let us say that
π′ can follow π if f (π) = j ≥ 1 and the jth nonterminal on the right-hand side of π coincides with the left-hand side
nonterminal of π′. Define

CA = { π1 . . . πn ∈ C | n ≥ 1, the left-hand side of π1 is A,

πi+1 can follow πi for each i = 1, . . . , n − 1, and
f (πn) = 0 }.

(6)

For each A ∈ N, the set CA can be obtained from C by intersection with a local (and hence regular) set. Let

LA = 〈(1,R), h1, h2〉(CA) (7)

12

for each A ∈ N. The final operation is iterating the substitution [A ← LA]A∈N on {S } and throwing away strings
containing nonterminals.4 This can be expressed equivalently in terms of a nested iterated substitution:

L(G,C) = σ∞({S }) ∩ Σ∗, where σ = [A← LA ∪ {A}]A∈N . (8)

That equation (8) should hold is easy to see. For each A ∈ N, we have the following equivalences:

• A
ξ

==⇒G α if and only if ξ ∈ CA and α = 〈(1,R), h1, h2〉(ξ),

• A
C

==⇒G α if and only if α ∈ LA,

• A⇒∗(G,C) α if and only if α ∈ σ∞({A}).

Thus, L(G,C) can be obtained from C by intersection with regular sets, homomorphic replication, and nested iterated
substitution.

Lemma 12. If L ∈ m-MCFLprop, k ≥ 1, ρ ∈ {1,R}{1,...,k}, and h1, . . . , hk are homomorphisms, then the language
〈ρ, h1, . . . , hk〉(L) belongs to km-MCFLprop.

Example 1 in Section 2.1 illustrates Lemma 12 with m = 1, L = D∗1, ρ = (1,R), and h1, h2 both equal to the identity
function.

of Lemma 12. We only prove the lemma for ρ = (1,R). The general case is similar.
Let G = (N,Σ, P, S) be a proper m-MCFG for L and h1, h2 be homomorphisms from Σ∗ to Γ∗. Define a 2m-MCFG

G′ = (N′,Γ, P′, S ′) as follows:

• N′ = {S ′} ∪
⋃

i≤m(N′)(2i), where S ′ ∈ (N′)(1) and for each i ≤ m, (N′)(2i) = N(i).

• P′ contains the rule
S ′(x1, x2)← S (x1, x2),

and for each rule π in P of the form

A(α1, . . . , αq)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn),

the rule π′ of the form

A(h1(α1), . . . , h1(αq), (h2(α′q))R, . . . , (h2(α′1))R)←

B1(x1,1, . . . , x1,q1 , x
′
1,q1
, . . . , x′1,1), . . . , Bn(xn,1, . . . , xn,qn , x

′
n,qn
, . . . , x′n,1),

where for l = 1, . . . , q, α′l is the result of replacing each xi, j by x′i, j in αl, and the homomorphisms h1, h2 are
extended to homomorphisms from (Σ ∪ X)∗ to (Γ ∪ X)∗ by h1(x) = h2(x) = x for all variables x ∈ X.

It is clear that the bijection π 7→ π′ from P to P′ − {S ′(x1x2) ← S (x1, x2)} puts the derivation trees of G and those of
G′ in one-to-one correspondence, and L(G′) = 〈(1,R), h1, h2〉(L).

To see that G′ is proper, note that for each A ∈ N, a non-decreasing derivation tree context of G′ for A(γ1, . . . , γ2q)
(with an assumption A(x1, . . . , x2q)) is mapped to a non-decreasing derivation tree context of G for A(α1, . . . , αq) (with
an assumption A(x1, . . . , xq)) such that for i = 1, . . . , q, γi = h1(αi) and γ2q−i+1 = (h2(α′i))

R, where α′i is the result of
replacing x j by x2q− j+1 for each j = 1, . . . , q. Since G is proper, xi must occur in αi for i = 1, . . . , q, which implies
that xi occurs in γi and x2q−i+1 occurs in γ2q−i+1.

The proof of the next lemma is similar to that of closure under substitution.

4This last step may be thought of as the fixed point computation of a “context-free grammar” with an infinite set of rules { A → α | A ∈ N, α ∈
LA }.

13

Lemma 13. The family m-MCFLprop is closed under nested iterated substitution.

Proof. Let G = (N,Σ, P, S) and Gc = (Nc,Σ, Pc, S c) for each c ∈ Σ be proper m-MCFGs. We may assume without
loss of generality that no two of these grammars share any nonterminals. Let L = L(G) and Lc = L(Gc). Assume that
c ∈ Lc for each c ∈ Σ and let σ = [c ← Lc]c∈Σ. Then σ∞ is a nested iterated substitution. Our goal is to show that
σ∞(L) is in m-MCFLprop.

We first modify G and Gc (c ∈ Σ) slightly without changing the generated languages. For each d ∈ Σ, introduce
a new nonterminal Ad of dimension 1. For each rule π of G and Gc (c ∈ Σ), let π′ be the result of replacing the
occurrences of terminals in the left-hand side of π by distinct variables and adding appropriate atoms of the form
Ad(x) to the right-hand side of π, where x is a variable that replaced an occurrence of d. For example, if π is

A(ax1b, b̄cx2āc)← A(x1, x2),

then π′ is
A(yx1 z,wvx2ut)← A(x1, x2), Aa(y), Ab(z), Ab̄(w), Ac(v), Aā(u), Ac(t).

Let

G′ = (N ∪ { Ad | d ∈ Σ },Σ, { π′ | π ∈ P } ∪ { Ad(d)← | d ∈ Σ }, S),
G′c = (Nc ∪ { Ad | d ∈ Σ },Σ, { π′ | π ∈ Pc } ∪ { Ad(d)← | d ∈ Σ }, S c).

It is clear that G′ and G′c (c ∈ Σ) are proper m-MCFGs, L(G′) = L(G), and L(G′c) = L(Gc) for c ∈ Σ.
Now define

Ĝ = (N̂,Σ, P̂, S),

N̂ = N ∪
⋃
c∈Σ

Nc ∪ { Ad | d ∈ Σ },

P̂ = { π′ | π ∈ P ∪
⋃
c∈Σ

Pc } ∪ { Ad(d)← | d ∈ Σ } ∪ { Ad(x)← S d(x) | d ∈ Σ }.

The grammar Ĝ is the result of combining G′,G′c (c ∈ Σ) into one grammar and adding new rules Ad(x) ← S d(x) for
d ∈ Σ. We show that Ĝ is proper and L(Ĝ) = σ∞(L).

To show that Ĝ is proper, consider a non-decreasing derivation tree context υwitnessing A(x1, . . . , xq) `Ĝ A(α1, . . . , αq),
where q ≥ 2. Since υ is non-decreasing, it cannot be decomposed into two derivation tree contexts witnessing

A(x1, . . . , xq) `Ĝ Ad(δ),
Ad(z) `Ĝ A(α′1, . . . , α

′
q)

for any d ∈ Σ. It follows that every fact of the form Ad(γ) derived in the course of υ is ground. Replace every such
fact in υ by Ad(d), deleting all facts used to derive it. The result must be a non-decreasing derivation tree context υ′

witnessing A(x1, . . . , xq) `Ĝ A(γ1, . . . , γq) such that xi occurs in γ j if and only if xi occurs in α j. Since no rule of the
form Ac(x) ← S c(x) is used in υ′, it is a derivation tree context in G′ or in some G′c. Since G′ and G′c are proper, xi

must occur in γi, and hence in αi, for i = 1, . . . , q. This shows that Ĝ is proper.
To show that L(Ĝ) = σ∞(L), we first note

u1cu2 ∈ L(Ĝ) and v ∈ Lc imply u1vu2 ∈ L(Ĝ). (9)

For, suppose `Ĝ S (u1cu2) and v ∈ Lc. Since the only way c can be introduced into a derivation is by the rule Ac(c)←,
we get

Ac(x) `Ĝ S (u1xu2)

by Lemma 2. Since `Ĝ S c(v) and Ac(x)← S c(x) is a rule of Ĝ, we obtain `Ĝ S (uvu2).
We can easily deduce σ∞(L) ⊆ L(Ĝ) from (9). It suffices to prove that w ∈ σn(L) implies w ∈ L(Ĝ) by induction

on n. If w ∈ σ0(L) = L, then `G′ S (w) and so `Ĝ S (w). If w ∈ σn+1(L) = σ(σn(L)), then there are c1, . . . , cl ∈ Σ and
w1, . . . ,wl ∈ Σ∗ such that

14

• c1 . . . cl ∈ σ
n(L),

• wi ∈ Lci for i = 1, . . . , l,

• w = w1 . . .wl.

By induction hypothesis, c1 . . . cl ∈ L(Ĝ). Then w = w1 . . .wl ∈ L(Ĝ) follows from (9).
It remains to show L(Ĝ) ⊆ σ∞(L). For this, we prove that `Ĝ S (w) implies w ∈ σ∞(L) by induction on the number

k of times rules of the form Ad(x) ← S d(x) (d ∈ Σ) are used in the derivation tree τ of Ĝ for S (w). If k = 0, then τ is
a derivation tree of G′, and so w ∈ L ⊆ σ∞(L). If k > 0, pick one of the lowest nodes ν of τ which is derived using a
rule of the form Ad(x)← S d(x). Then there are strings u1, u2, v such that

• w = u1vu2,

• `G′d S d(v), and

• the part of τ that remains after deleting all nodes below ν determines a derivation tree context υ witnessing
Ad(x) `Ĝ S (u1xu2).

The derivation tree context υ together with the rule Ad(d)← forms a derivation tree for `G′ S (u1du2) containing k − 1
instances of rules of the form Ac(x) ← S c(x). By induction hypothesis, u1du2 ∈ σ

n(L) for some n. Since v ∈ Ld and
c ∈ Lc for all c ∈ Σ, u1vu2 ∈ σ(σn(L)) = σn+1(L) ⊆ σ∞(L).

Theorem 14. For each k ≥ 2, Ck (2k−1-MCFLprop.

Proof. The inclusion Ck ⊆ 2k−1-MCFLprop for each k ≥ 1 is proved by induction on k. For the induction basis, we
have C1 = CFL, which clearly equals 1-MCFLprop. Now let k ≥ 1 and L ∈ Ck+1. Then L = L(G,C) for some labeled
distinguished grammar G = (N,Σ, P, S , f) and some C ∈ P(P∗) ∩ Ck. For each nonterminal A of G, let CA and LA

be as defined by (6) and (7). By induction hypothesis, C ∈ 2k−1-MCFLprop, and since 2k−1-MCFLprop is closed under
intersection with regular sets, each CA belongs to 2k−1-MCFLprop as well. By Lemma 12, then, LA ∈ 2k-MCFLprop.
Given the equation (8), Lemma 13 and closure under intersection with regular sets (again) imply L ∈ 2k-MCFLprop.

The properness of the inclusion for k ≥ 2 is again witnessed by the language RESP2k−1 , since Palis and Shende’s
[8] theorem (Theorem 5 above) implies that RESP2k−1 = { am

1 am
2 bn

1bn
2 . . . a

m
2k−1am

2k bn
2k−1bn

2k | m, n ∈ N } does not belong
to Ck, while RESP2k−1 is generated by the following proper 2k−1-MCFG:

S (x1y1 · · · x2k−1 y2k−1)← A(x1, . . . , x2k−1), B(y1, . . . , y2k−1),
A(ε, . . . , ε)← ,

A(a1x1a2, . . . , a2k−1x2k−1 a2k)← A(x1, . . . , x2k−1),
B(ε, . . . , ε)← ,

B(b1x1b2, . . . , b2k−1x2k−1 b2k)← B(x1, . . . , x2k−1).

(Here, A and B are nonterminals of dimension 2k−1.)

For k = 2, the language {w#w | w ∈ D∗1 } (mentioned in Section 2.1) also witnesses the separation of 2-MCFLprop
from C2, since it is known that every language in C2 has a well-nested 2-MCFG. I currently do not see how to settle
the question of whether the inclusion of

⋃
k Ck in

⋃
m m-MCFLprop is strict.

6. A Refined Pumping Lemma for Well-Nested MCFGs

The pumping lemma of [5] simply stated that every well-nested m-MCFL L is 2m-iterative, which means that every
sufficiently long string z in L can be written in the form z = u1v1u2v2 . . . u2mv2mu2m+1 so that u1vn

1u2vn
2 . . . u2mvn

2mu2m+1 ∈

L for all n ∈ N. From Theorem 6, we know that for m ≥ 3, we cannot constrain the locations of the substrings
v1, v2, . . . , v2m within z so that they include at least one of arbitrarily picked positions. Given Theorem 10, a question
that naturally arises is whether the lemma can be augmented with a bound on the combined length of the strings

15

v2i−1u2iv2i (i = 1, . . . ,m).5 This would make a natural generalization of the pumping lemma for context-free languages
as originally stated by Bar-Hillel et al. [9]. Below, we give a proof of such a strengthening of the pumping lemma for
well-nested m-MCFLs.

The proof is a modification of the proof in [5], which proceeded by induction on m. In the modified proof, we need
to work with a statement that is stronger than the theorem we wish to prove, which necessitates a slightly generalized
notion of a (well-nested) m-MCFG. By a non-strict m-MCFG, we mean an MCFG in which

• the initial nonterminal may have an arbitrary dimension, but cannot appear in the right-hand side of a rule, and

• the dimension of every other nonterminal is less than or equal to m.

A non-strict m-MCFG is just an ordinary MCFG except for the choice of the initial nonterminal, so we can con-
tinue to use notions like derivation trees, derivation tree contexts, well-nestedness of rules, etc., with their meanings
unchanged. If G = (N,Σ, P, S) is a non-strict m-MCFG and the dimension of its initial nonterminal S is l, then its
language is a set of l-tuples of strings defined by L(G) = { (w1, . . . ,wl) | `G S (w1, . . . ,wl) }.

Given a non-strict m-MCFG G, an even m-pump is a derivation tree context υ such that

• υ contains more than one node,

• B(x1, . . . , xm) `G υ : B(β1, . . . , βm), and

• xi occurs in βi for i = 1, . . . ,m.

We say that a derivation tree τ of G contains an even m-pump υ if τ = υ′[υ[τ′]] for some derivation tree context υ′ and
derivation tree τ′. An even m-pump υ of G is redundant if B(x1, . . . , xm) `G υ : B(x1, . . . , xm). Clearly, every tuple
(w1, . . . ,wl) ∈ L(G) has a derivation tree that does not contain any redundant even m-pumps.

A key fact about well-nested MCFGs used by [5] can be generalized to the following lemma, which now applies
to non-strict well-nested MCFGs:

Lemma 15. Let m ≥ 2 and let G be a non-strict well-nested m-MCFG with initial nonterminal of dimension l. There
is a non-strict well-nested (m − 1)-MCFG G̃ such that

L(G̃) = { (z1, . . . , zl) ∈ L(G) | G has a derivation tree for (z1, . . . , zl)
containing no even m-pump }.

This can be established by a series of lemmas, exactly like in [5]. The only difference is that in [5], in the last
transformation used to obtain G̃, all nonterminals of dimension ≥ m become useless and get eliminated, whereas here,
the initial nonterminal is always retained.

Lemma 16. Let m ≥ 1 and let G be a non-strict well-nested m-MCFG with initial nonterminal of dimension l. There
is a natural number p such that for every (z1, . . . , zl) ∈ L(G) with |z1 . . . zl| ≥ p, there exist an l-tuple of patterns
(γ1, . . . , γl) with variables x1, . . . , xm and strings w1, . . . ,wm, v1, v2, . . . , v2m satisfying the following conditions:

(i) (z1, . . . , zl) = (γ1, . . . , γl)[v1w1v2/x1, . . . , v2m−1wmv2m/xm].
(ii) |v1v2 . . . v2m| > 0.

(iii)
m∑

i=1

|v2i−1wiv2i| ≤ p.

(iv) (γ1, . . . , γl)[vn
1w1vn

2/x1, . . . , vn
2m−1wmvn

2m/xm] ∈ L for all n ∈ N.

Proof. The theorem is proved by induction on m.
Induction basis. m = 1. Let G = (N,Σ, P, S) be a non-strict well-nested 1-MCFG. There must be numbers n1 and

n2 such that whenever
S (β1, . . . , βl)← B1(x1), . . . , Bn(xn) (10)

5Compare Groenink’s [22] notion of k-pumpability, which included a bound on the length of vi.

16

is a rule of G, the number of occurrences of terminal symbols in (β1, . . . , βl) does not exceed n1, and n ≤ n2. For
every non-initial nonterminal B of G, the set of strings z such that `G B(z) is a context-free language. By the pumping
lemma for context-free languages [9], for each B, there is a number pB such that whenever `G B(z) and |z| ≥ pB, there
are strings u1, u2, u3, v1, v2 such that z = u1v1u2v2u3, |v1v2| > 0, |v1u2v3| ≤ pB, and `G B(u1vn

1u2vn
2u3) for all n ∈ N. Let

p = n1 + n2 ·max{ pB | B ∈ N(1) }.

Now let `G S (z1, . . . , zl) and |z1 . . . zl| ≥ p, and suppose that the last step of the derivation of S (z1, . . . , zl) is by a
rule of the form (10). Then there must be y1, . . . , yn ∈ Σ∗ and i ∈ [1, n] such that

`G B j(y j) for j = 1, . . . , n,
(z1, . . . , zl) = (β1, . . . , βl)[y1/x1, . . . , yn/xn]

|yi| ≥ pBi .

There are strings u1, u2, u3, v1, v2 such that yi = u1v1u2v2u3, |v1v2| > 0, |v1u2v2| ≤ pBi , and `G Bi(u1vn
1u2vn

2u2) for all
n ∈ N. Let

(γ1, . . . , γl) = (β1, . . . , βl)[y1/x1, . . . , yi−1/xi−1, u1x1u3/xi, yi+1/xi+1, . . . , yn/xn].

The tuple (γ1, . . . , γl) and the strings u2, v1, v2 satisfy the conditions (i)–(iv).
Induction step. Assume m ≥ 2 and let G = (N,Σ, P, S) be a non-strict well-nested m-MCFG. For each nonterminal

A ∈ N(m), let GA = ((N−{S })∪{S A},Σ, PA, S A), where S A is a new initial nonterminal of dimension m and PA consists
of all rules of P not involving S together with new rules of the form

S A(α1, . . . , αm)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn) (11)

such that
A(α1, . . . , αm)← B1(x1,1, . . . , x1,q1), . . . , Bn(xn,1, . . . , xn,qn) (12)

is a rule of P. By Lemma 15, there is a non-strict well-nested (m − 1)-MCFG G̃ generating all l-tuples of strings
for which G has a derivation tree containing no even m-pump. Likewise, for each A ∈ N(m), we have a non-strict
well-nested (m − 1)-MCFG G̃A generating all m-tuples of strings for which GA has a derivation tree containing no
even m-pump. By induction hypothesis, these non-strict well-nested (m − 1)-MCFGs satisfy the conditions of the
theorem, with m − 1 in place of m. Let p̃ and p̃A (A ∈ N(m)) be the natural numbers associated with these grammars
by the theorem. Let p = max({ p̃} ∪ { p̃A | A ∈ N(m) }).

Now take an arbitrary tuple (z1, . . . , zl) ∈ L(G) with |z1 . . . zl| ≥ p. We distinguish two cases according to whether
G has a derivation tree for (z1, . . . , zl) containing no even m-pump.

Case 1. G has a derivation tree for (z1, . . . , zl) containing no even m-pump. Then (z1, . . . , zl) belongs to L(G̃).
Since |z1 . . . zl| ≥ p̃, there are (γ1, . . . , γl) and w1, . . . ,wm−1, v1, v2, . . . , v2(m−1) satisfying (i)–(iv) with m − 1 in place of
m. Let wm = v2m−1 = v2m = ε. Then the l-tuple (γ1, . . . , γl−1, γlxm) and the strings w1, . . . ,wm, v1, v2, . . . , v2m satisfy
(i)–(iv).

Case 2. Every derivation tree of G for (z1, . . . , zl) contains an even m-pump. Take a derivation tree τ for (z1, . . . , zl)
that contains no redundant even m-pump and let υ be one of the lowest even m-pumps contained in τ. That is to say,
τ = υ′[υ[τ′]] for some derivation tree context υ′ and derivation tree τ′ such that υ[τ′] contains no even m-pump other
than υ. We have

A(x1, , . . . , xm) `G υ′ : S (γ1, . . . , γl),
A(x1, . . . , xm) `G υ : A(v1x1v2, . . . , v2m−1xmv2m),

`G τ′ : A(w1, . . . ,wm)

for some nonterminal A ∈ N(m), patterns γ1, . . . , γl, and strings w1, . . . ,wm, v1, v2, . . . , v2m. Since υ is not redundant,
|v1v2 . . . v2m| > 0.

Case 2.1.
∑m

i=1 |v2i−1wiv2i| ≤ p. Then the conditions (i)–(iv) are clearly satisfied.
Case 2.2.

∑m
i=1 |v2i−1wiv2i| > p. We have

`GA τ
′′ : S A(v1w1v2, . . . , v2m−1wmv2m),

17

where τ′′ is a derivation tree that is just like υ[τ′] except that the last rule applied is changed from a rule of the form
(12) to a rule of the form (11). By the choice of υ, it is clear that τ′′ contains no even m-pump. Hence

(v1w1v2, . . . , v2m−1wmv2m) ∈ L(G̃A).

Since
∑m

i=1 |v2i−1wiv2i| > p̃A, there are patterns δ1, . . . , δm and strings y1, . . . , ym−1, x1, x2, . . . , x2(m−1) such that

(v1w1v2, . . . , v2m−1wmv2m) = (δ1, . . . , δm)[x1y1x2/x1, . . . , x2(m−1)−1ym−1x2(m−1)/xm−1],
|x1x2 . . . x2(m−1)| > 0,
m−1∑
i=1

|x2i−1yix2i| ≤ p̃A,

(δ1, . . . , δm)[xn
1y1xn

2/x1, . . . , xn
2(m−1)−1ym−1xn

2(m−1)/xm−1] ∈ L(G̃A) for all n ∈ N.

By the construction of GA, the last condition implies

`G A(δ1, . . . , δm)[xn
1y1xn

2/x1, . . . , xn
2(m−1)ym−1xn

2(m−1)/xm−1],

which in turn implies
`G S (γ′1, . . . , γ

′
l)[xn

1y1xn
2/x1, . . . , xn

2(m−1)−1ym−1xn
2(m−1)/xm−1],

where
(γ′1, . . . , γ

′
l) = (γ1, . . . , γl)[δ1/x1, . . . , δm/xm].

Let ym = x2m−1 = x2m = ε. Then the l-tuple (γ′1, . . . , γ
′
l xm) and the strings y1, . . . , ym, x1, x2, . . . , x2m satisfy (i)–(iv).

Theorem 17. Let L be the language of a well-nested m-MCFG. There is a natural number p such that for every z ∈ L
with |z| ≥ p, there exists strings u1, u2, . . . , u2m+1, v1, v2, . . . , v2m satisfying the following conditions:

(i) z = u1v1u2v2 . . . u2mv2mu2m+1.

(ii) |v1v2 . . . v2m| > 0.

(iii)
m∑

i=1

|v2i−1u2iv2i| ≤ p.

(iv) u1vn
1u2vn

2 . . . u2nvn
2nu2n+1 ∈ L for all n ∈ N.

Since Lemma 15 can be proved for non-strict (not necessarily well-nested) 2-MCFGs, the above theorem also
holds of 2-MCFGs.6

7. Conclusion

We have proved a natural generalization of Ogden’s [6] lemma to what we call proper m-MCFGs. We have shown
that the pumping lemma of [5] can be strengthened to include a bound the combined length of the substrings that can
be simultaneously iterated, but there is no way of adding a further Ogden-like restriction on the positions of these
substrings.

Since Ck ⊆ 2k−1-MCFLprop, Palis and Shende’s [8] theorem (Theorem 5), on the one hand, and Theorem 10 with
m = 2k−1, on the other, both apply to languages in Ck, but they place incomparable requirements on the factorization
z = u1v1 . . . u2k v2k u2k+1. For k ≥ 2, Theorem 10 does not require v2k−1 u2k−1 v2k−1+1 to contain ≤ p distinguished positions.
On the other hand, it does not seem easy to derive additional restrictions on v2i−1u2iv2i from Palis and Shende’s [8]
proof. From the point of view of MCFGs, the conditions in Theorem 10 are very natural: the substrings that can be
simultaneously iterated should contain only a small number of distinguished positions.

6A referee pointed out that Theorem 17 was already stated by Sorokin [23] (Theorem 3 of his paper). I find this paper poorly written and difficult
to understand in general, and one of his main results (his Theorem 4) in particular contradicts Theorem 6 of the present paper and therefore is in
error (as acknowledged in [24]). As far as his Theorem 3 is concerned, his proof is based on a grammar transformation similar to that in my 2009
paper [5] but takes advantage of a Chomsky-like normal form for well-nested MCFGs (cf. [25]). I find his proof wanting in rigor and perspicuity,
but the general ideas appear to be correct.

18

References

[1] H. Seki, T. Matsumura, M. Fujii, T. Kasami, On multiple context-free grammars, Theoretical Computer Science 88 (2) (1991) 191–229.
[2] A. K. Joshi, Tree adjoining grammars: How much context-sensitivity is required to provide reasonable structural descriptions?, in: D. R.

Dowty, L. Karttunen, A. M. Zwicky (Eds.), Natural Language Parsing: Psychological, Computational and Theoretical Perspectives, Cam-
bridge University Press, Cambridge, 206–250, 1985.

[3] M. Kanazawa, The convergence of well-nested mildly context-sensitive grammar formalisms, an invited talk given at the 14th Conference
on Formal Grammar, Bordeaux, France. Slides available at https://makotokanazawa.ws.hosei.ac.jp/talks/fg2009_talk.pdf,
2009.

[4] M. Kanazawa, S. Salvati, MIX is not a tree-adjoining language, in: Proceedings of the 50th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguistics, 666–674, 2012.

[5] M. Kanazawa, The pumping lemma for well-nested multiple context-free languages, in: V. Diekert, D. Nowotka (Eds.), Developments in
Language Theory: 13th International Conference, DLT 2009, vol. 5583 of Lecture Notes in Computer Science, Springer, Berlin, 312–325,
2009.

[6] W. Ogden, A helpful result for proving inherent ambiguity, Mathematical Systems Theory 2 (3) (1968) 191–194.
[7] D. J. Weir, A geometric hierarchy beyond context-free languages, Theoretical Computer Science 104 (2) (1992) 235–261.
[8] M. A. Palis, S. M. Shende, Pumping lemmas for the control language hierarchy, Mathematical Systems Theory 28 (3) (1995) 199–213.
[9] Y. Bar-Hillel, M. Perles, E. Shamir, On formal properties of simple phrase structure grammars, Zeitschrift für Phonetik, Sprachwissenschaft

und Kommunikationsforschung 14 (2) (1961) 143–172.
[10] S. Ginsburg, E. H. Spanier, AFL with the semilinear property, Journal of Computer and System Sciences 5 (4) (1971) 365–396.
[11] S. A. Greibach, The strong independence of substitution and homomorphic replication, R.A.I.R.O. Informatique théorique 12 (3) (1978)

213–234.
[12] S. A. Greibach, Full AFLs and nested iterated substitution, Information and Control 16 (1970) 7–35.
[13] J. Král, A modification of a substitution theorem and some necessary and sufficient conditions for sets to be context-free, Mathematical

Systems Theory 4 (2) (1970) 129–139.
[14] J. Engelfriet, Context-free graph grammars, in: Handbook of Formal Languages, Volume 3: Beyond Words, Springer, Berlin, 125–213, 1997.
[15] M. Kanazawa, S. Salvati, The copying power of well-nested multiple context-free grammars, in: A.-H. Dediu, H. Fernau, C. Martı́n-Vide

(Eds.), Language and Automata Theory and Applications, Fourth International Conference, LATA 2010, vol. 6031 of Lecture Notes in
Computer Science, Springer, Berlin, 344–355, 2010.

[16] M. Kanazawa, S. Salvati, Generating control languages with abstract categorial grammars, in: Preliminary Proceedings of FG-2007: The
12th Conference on Formal Grammar, 2007.

[17] S. A. Greibach, One-way finite visit automata, Theoretical Computer Science 6 (1978) 175–221.
[18] S. A. Greibach, Hierarchy theorems for two-way finite state transducers, Acta Informatica 11 (1978) 89–101.
[19] M. Kanazawa, G. M. Kobele, J. Michaelis, S. Salvati, R. Yoshinaka, The failure of the strong pumping lemma for multiple context-free

languages, Theory of Computing Systems 55 (1) (2014) 250–278.
[20] F. Gécseg, M. Steinby, Tree Automata, ArXiv e-prints .
[21] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, M. Tommasi, Tree Automata Techniques and Applica-

tions, Available on http://tata.gforge.inria.fr/, release November 18, 2008, 2008.
[22] A. V. Groenink, Mild context-sensitivity and tuple-based generalization of context-free grammar, Linguistics and Philosophy 20 (1997)

607–636.
[23] A. Sorokin, Pumping lemma and Ogden lemma for displacement context-free grammars, in: A. M. Shur, M. V. Volkov (Eds.), DLT 2014:

Developments in Language Theory, vol. 8633 of Lecture Notes in Computer Science, Springer, Cham, 154–165, 2014.
[24] A. Sorokin, Ogden property for linear displacement context-free grammars, in: S. Artemov, A. Nerode (Eds.), LFCS 2016: Logical Founda-

tions for Computer Science, vol. 9537 of Lecture Notes in Computer Science 9537, Springer, Cham, 376–391, 2016.
[25] C. Gómez-Rodrı́guez, M. Kuhlmann, G. Satta, Efficient Parsing of Well-Nested Linear Context-Free Rewriting Systems, in: Human Language

Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, Association for Computational Linguistics, 276–284,
2010.

19

https://makotokanazawa.ws.hosei.ac.jp/talks/fg2009_talk.pdf
http://tata.gforge.inria.fr/

	Introduction
	Preliminaries
	Multiple Context-Free Grammars
	The Control Language Hierarchy

	The Failure of Ogden's Lemma for Well-Nested MCFGs and 2-MCFGs
	A Generalized Ogden's Lemma for a Subclass of the MCFGs
	Relation to the Control Language Hierarchy
	A Refined Pumping Lemma for Well-Nested MCFGs
	Conclusion

