Ogden's Lemma, Multiple Context-Free Grammars, and the Control Language Hierarchy

Makoto Kanazawa*

National Institute of Informatics and SOKENDAI, 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, Japan

Abstract. I present a simple example of a multiple context-free language for which a very weak variant of generalized Ogden's lemma fails. This language is generated by a non-branching (and hence well-nested) 3-MCFG as well as by a (non-well-nested) binary-branching 2-MCFG; it follows that neither the class of well-nested 3-MCFLs nor the class of 2-MCFLs is included in Weir's control language hierarchy, for which Palis and Shende proved an Ogden-like iteration theorem. I then give a simple sufficient condition for an MCFG to satisfy a natural analogue of Ogden's lemma, and show that the corresponding class of languages is a substitution-closed full AFL which includes Weir's control language hierarchy. My variant of generalized Ogden's lemma is incomparable in strength to Palis and Shende's variant and is arguably a more natural generalization of Ogden's original lemma.

Keywords: grammars, Ogden's lemma, multiple context-free grammars, control languages

1 Introduction

A multiple context-free grammar [12] is a context-free grammar on tuples of strings (of varying length). An analogue of the pumping lemma, which asserts the existence of a certain number of substrings that can be simultaneously iterated, has been established for *well-nested* MCFGs and (non-well-nested) MCFGs of dimension 2 [6]. So far, it has been unknown whether an analogue of Ogden's [10] strengthening of the pumping lemma holds of these classes. This paper negatively answers the question for both classes, and moreover proves a generalized Ogden's lemma for the class of MCFGs satisfying a certain simple property. The class of languages generated by the grammars in this class includes Weir's [13] control language hierarchy, the only non-trivial subclass of MCFLs for which an Ogden-style iteration theorem has been proved so far [11].

2 Preliminaries

The set of natural numbers is denoted \mathbb{N} . If i and j are natural numbers, we write [i, j] for the set $\{n \in \mathbb{N} \mid i \leq n \leq j\}$. We write |w| for the length of a string w

^{*} This work was supported by JSPS KAKENHI Grant Number 25330020.

and |S| for the cardinality of a set S; the context should make it clear which is intended. If u, v, w are strings, we write (u[v]w) for the subinterval [|u| + 1, |uv|]of [1, |uvw|]. If w is a string, w^R denotes the reversal of w.

2.1 Multiple Context-Free Grammars

A multiple context-free grammar (MCFG) [12] is a quadruple $G = (N, \Sigma, P, S)$, where N is a finite set of nonterminals, each with a fixed dimension $\geq 1, \Sigma$ is a finite alphabet of terminals, P is a set of rules, and S is the distinguished initial nonterminal of dimension 1. We write $N^{(q)}$ for the set of nonterminals in N of dimension q. A nonterminal in $N^{(q)}$ is interpreted as a q-ary predicate over Σ^* . A rule is stated with the help of variables interpreted as ranging over Σ^* . Let \mathcal{X} be a denumerable set of variables. We use boldface lower-case letters as elements of \mathcal{X} . A rule is a definite clause (in the sense of logic programming) constructed with atoms of the form $A(\alpha_1, \ldots, \alpha_q)$, with $A \in N^{(q)}$ and $\alpha_1, \ldots, \alpha_q$ patterns, i.e., strings over $\Sigma \cup \mathcal{X}$. An MCFG rule is of the form

$$A(\alpha_1,\ldots,\alpha_q) \leftarrow B_1(\boldsymbol{x}_{1,1},\ldots,\boldsymbol{x}_{1,q_1}),\ldots,B_n(\boldsymbol{x}_{n,1},\ldots,\boldsymbol{x}_{n,q_n}),$$

where $n \geq 0$, A, B_1, \ldots, B_n are nonterminals of dimensions q, q_1, \ldots, q_n , respectively, the $\boldsymbol{x}_{i,j}$ are pairwise distinct variables, and each α_i is a string over $\Sigma \cup \{\boldsymbol{x}_{i,j} \mid i \in [1,n], j \in [1,q_i]\}$, such that $(\alpha_1, \ldots, \alpha_q)$ contains at most one occurrence of each $\boldsymbol{x}_{i,j}$. An MCFG is an *m*-*MCFG* if the dimensions of its nonterminals do not exceed *m*; it is *r*-ary branching if each rule has no more than *r* occurrences of nonterminals in its body (i.e., the part that follows the symbol \leftarrow). We call a unary branching grammar non-branching.¹

An atom $A(\alpha_1, \ldots, \alpha_q)$ is ground if $\alpha_1, \ldots, \alpha_q \in \Sigma^*$. A ground instance of a rule is the result of substituting a string over Σ for each variable in the rule. Given an MCFG $G = (N, \Sigma, P, S)$, a ground atom $A(w_1, \ldots, w_q)$ directly follows from a sequence of ground atoms $B_1(v_{1,1}, \ldots, v_{1,q_1}), \ldots, B_n(v_{n,1}, \ldots, v_{n,q_n})$ if $A(w_1, \ldots, w_q) \leftarrow B_1(v_{1,1}, \ldots, v_{1,q_1}), \ldots, B_n(v_{n,1}, \ldots, v_{n,q_n})$ is a ground instance of some rule in P. A ground atom $A(w_1, \ldots, w_q)$ is derivable, written $\vdash_G A(w_1, \ldots, w_q)$, if it directly follows from some sequence of derivable ground atoms. In particular, if $A(w_1, \ldots, w_q) \leftarrow$ is a rule in P, we have $\vdash_G A(w_1, \ldots, w_q)$.

A derivable ground atom is naturally associated with a *derivation tree*, each of whose nodes is labeled by a derivable ground atom, which directly follows from the sequence of ground atoms labeling its children. The language generated by G is defined as $L(G) = \{ w \in \Sigma^* \mid \vdash_G S(w) \}$, or equivalently, $L(G) = \{ w \in \Sigma^* \mid G \text{ has a derivation tree for } S(w) \}$. The class of languages generated by m-MCFGs is denoted m-MCFL, and the class of languages generated by r-ary branching m-MCFGs is denoted m-MCFL(r).

Example 1. Consider the following 2-MCFG:

$$\begin{array}{ll} S(\boldsymbol{x}_1 \# \boldsymbol{x}_2) \leftarrow D(\boldsymbol{x}_1, \boldsymbol{x}_2) & D(\boldsymbol{x}_1 \boldsymbol{y}_1, \boldsymbol{y}_2 \boldsymbol{x}_2) \leftarrow E(\boldsymbol{x}_1, \boldsymbol{x}_2), D(\boldsymbol{y}_1, \boldsymbol{y}_2) \\ D(\varepsilon, \varepsilon) \leftarrow & E(\boldsymbol{a} \boldsymbol{x}_1 \bar{\boldsymbol{a}}, \bar{\boldsymbol{a}} \boldsymbol{x}_2 \boldsymbol{a}) \leftarrow D(\boldsymbol{x}_1, \boldsymbol{x}_2) \end{array}$$

¹ Non-branching MCFGs have been called *linear* in [1].

3

Fig. 1. A derivation tree of a 2-MCFG.

Here, S is the initial nonterminal and D and E are both nonterminals of dimension 2. This grammar is binary branching and generates the language { $w \# w^R | w \in D_1^*$ }, where D_1^* is the (one-sided) Dyck language over the alphabet { a, \bar{a} }. Figure 1 shows the derivation tree for $aa\bar{a}\bar{a}a\bar{a}\#\bar{a}a\bar{a}aa$.

It is also useful to define the notion of a derivation of an atom $A(\alpha_1, \ldots, \alpha_q)$ from an assumption $C(\mathbf{x}_1, \ldots, \mathbf{x}_r)$, where $\mathbf{x}_1, \ldots, \mathbf{x}_r$ are pairwise distinct variables. An atom $A(\alpha_1, \ldots, \alpha_q)$ is derivable from an assumption $C(\mathbf{x}_1, \ldots, \mathbf{x}_r)$, written $C(\mathbf{x}_1, \ldots, \mathbf{x}_r) \vdash_G A(\alpha_1, \ldots, \alpha_q)$, if either

- 1. A = C and $(\alpha_1, ..., \alpha_q) = (x_1, ..., x_r)$, or
- 2. there are some atom $B_i(\beta_1, \ldots, \beta_{q_i})$ and ground atoms $B_j(v_{j,1}, \ldots, v_{j,q_j})$ for each $j \in [1, i-1] \cup [i+1, n]$ such that $C(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r) \vdash_G B_i(\beta_1, \ldots, \beta_{q_i})$, $\vdash_G B_j(v_{j,1}, \ldots, v_{j,q_j})$, and

$$A(\alpha_1, \dots, \alpha_q) \leftarrow B_1(v_{1,1}, \dots, v_{1,q_1}), \dots, B_{i-1}(v_{i-1,1}, \dots, v_{i-1,q_{i-1}}), \\B_i(\beta_1, \dots, \beta_{q_i}), B_{i+1}(v_{i+1,1}, \dots, v_{i+1,q_{i+1}}), \dots, B_n(v_{n,1}, \dots, v_{n,q_n})$$

is an instance of some rule in P.

Let us write $[v_1/\boldsymbol{x}_1, \ldots, v_r/\boldsymbol{x}_r]$ for the simultaneous substitution of strings v_1, \ldots, v_r for variables $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r$. Evidently, when we have $\vdash_G B(v_1, \ldots, v_r)$ and $B(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r) \vdash_G A(\alpha_1, \ldots, \alpha_q)$, the two derivations can be combined into one witnessing $\vdash_G A(\alpha_1, \ldots, \alpha_q)[v_1/\boldsymbol{x}_1, \ldots, v_r/\boldsymbol{x}_r]$. The following lemma says that when $B(v_1, \ldots, v_r)$ is derived in the course of a derivation of $A(w_1, \ldots, w_q)$, the derivation can be decomposed into one for $B(v_1, \ldots, v_r)$ and a derivation from an assumption $B(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r)$:

Lemma 2. Let τ be a derivation tree of an MCFG G for some ground atom $A(w_1, \ldots, w_q)$, and let $B(v_1, \ldots, v_r)$ be the label of some node of τ . Then there is an atom $A(\alpha_1, \ldots, \alpha_q)$ such that $B(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r) \vdash_G A(\alpha_1, \ldots, \alpha_q)$ and $(w_1, \ldots, w_q) = (\alpha_1, \ldots, \alpha_q)[v_1/\boldsymbol{x}_1, \ldots, v_r/\boldsymbol{x}_r].$

Example 3. Consider the derivation tree in Figure 1 and the node ν labeled by $E(aa\bar{a}\bar{a},\bar{a}\bar{a}aa)$. Let τ be the subtree of this derivation tree consisting of ν

4 M. Kanazawa

$$E(a\boldsymbol{x}_1\bar{a},\bar{a}\boldsymbol{x}_2a)$$

$$|$$

$$D(\boldsymbol{x}_1,\boldsymbol{x}_2)$$

$$E(\boldsymbol{x}_1,\boldsymbol{x}_2) \quad D(\varepsilon,\varepsilon)$$

Fig. 2. A derivation of $E(a\boldsymbol{x}_1\bar{a},\bar{a}\boldsymbol{x}_2a)$ from assumption $E(\boldsymbol{x}_1,\boldsymbol{x}_2)$.

and the nodes that lie below it. Consider the node ν_1 labeled by $E(a\bar{a}, \bar{a}a)$ in τ . The rules used in the portion of τ that remains after removing the nodes below ν_1 determine a derivation tree for $E(\mathbf{x}_1, \mathbf{x}_2) \vdash_G E(a\mathbf{x}_1\bar{a}, \bar{a}\mathbf{x}_2a)$, depicted in Figure 2. Note that substituting $a\bar{a}, \bar{a}a$ for $\mathbf{x}_1, \mathbf{x}_2$ in $E(a\mathbf{x}_1\bar{a}, \bar{a}\mathbf{x}_2a)$ gives back $E(aa\bar{a}\bar{a}, \bar{a}\bar{a}aa)$.

An MCFG rule $A(\alpha_1, \ldots, \alpha_q) \leftarrow B_1(\boldsymbol{x}_{1,1}, \ldots, \boldsymbol{x}_{1,q_1}), \ldots, B_n(\boldsymbol{x}_{n,1}, \ldots, \boldsymbol{x}_{n,q_n})$ is said to be

- non-deleting if all variables $\boldsymbol{x}_{i,j}$ in its body occur in $(\alpha_1, \ldots, \alpha_q)$;
- non-permuting if for each $i \in [1, n]$, the variables $\boldsymbol{x}_{i,1}, \ldots, \boldsymbol{x}_{i,q_i}$ occur in $(\alpha_1, \ldots, \alpha_q)$ in this order;
- well-nested if it is non-deleting and non-permuting and there are no $i, j \in [1, n], k \in [1, q_i 1], l \in [1, q_l 1]$ such that $\mathbf{x}_{i,k}, \mathbf{x}_{j,l}, \mathbf{x}_{i,k+1}, \mathbf{x}_{j,l+1}$ occur in $(\alpha_1, \ldots, \alpha_q)$ in this order.

Every m-MCFG(r) has an equivalent m-MCFG(r) whose rules are all nondeleting and non-permuting, and henceforth we will always assume that these conditions are satisfied. An MCFG whose rules are all well-nested is a *well-nested* MCFG [6]. The 2-MCFG in Example 1 is well-nested. It is known that there is no well-nested MCFG for the language { $w \# w \mid w \in D_1^*$ } [9], although it is easy to write a non-well-nested 2-MCFG for this language.

Every (non-deleting and non-permuting) non-branching MCFG is by definition well-nested. The class $\bigcup_m m$ -MCFL(1) coincides with the class of output languages of deterministic two-way finite-state transducers (see [1]).

2.2 The Control Language Hierarchy

Weir's [13] control language hierarchy is defined in terms of the notion of a labeled distinguished grammar, which is a 5-tuple $G = (N, \Sigma, P, S, f)$, where $\overline{G} = (N, \Sigma, P, S)$ is an ordinary context-free grammar and $f: P \to \mathbb{N}$ is a function such that if $\pi \in P$ is a context-free production with n occurrences of nonterminals on its right-hand side, then $f(\pi) \in [0, n]$. We view P as a finite alphabet, and use a language $C \in P^*$ to restrict the derivations of G. The pair (G, C) is a control grammar. For each nonterminal $A \in N$, define $R_{(G,C)}(A) \subseteq \Sigma^* \times P^*$ inductively as follows: for each production $\pi = A \to w_0 B_1 w_1 \dots B_n w_n$ in P,

- if $f(\pi) = 0$ and $(\{v_j\} \times C) \cap R_{(G,C)}(B_j) \neq \emptyset$ for each $j \in [1,n]$, then $(w_0v_1w_1\ldots v_nw_n,\pi) \in R_{(G,C)}(A);$

- if $f(\pi) = i \in [1, n], (v_i, z) \in R_{(G,C)}(B_i)$, and $(\{v_j\} \times C) \cap R_{(G,C)}(B_j) \neq \emptyset$ for each $j \in [1, i-1] \cup [i+1, n]$, then $(w_0v_1w_1...v_nw_n, \pi z) \in R_{(G,C)}(A)$.

The language of the control grammar (G, C) is $L(G, C) = \{ w \in \Sigma^* \mid (\{w\} \times C) \cap R_{(G,C)}(S) \neq \emptyset \}.$

The first level of the control language hierarchy is $C_1 = CFL$, the family of context-free languages, and for $k \ge 1$,

$$\mathcal{C}_{k+1} = \{ L(G, C) \mid (G, C) \text{ is a control grammar and } C \in \mathcal{C}_k \}.$$

The second level C_2 is known to coincide with the family of languages generated by well-nested 2-MCFGs, or equivalently, the family of *tree-adjoining languages* [13].

Example 4. Let $G = (N, \Sigma, P, S, f)$ be a labeled distinguished grammar consisting of the following productions:

 $\pi_1 \colon S \to aS\bar{a}S, \qquad \qquad \pi_2 \colon S \to bS\bar{b}S, \qquad \qquad \pi_3 \colon S \to \varepsilon,$

where $f(\pi_1) = 1, f(\pi_2) = 1, f(\pi_3) = 0$. Let $C = \{\pi_1^n \pi_2^n \pi_3 \mid n \in \mathbb{N}\}$. Then $L(G, C) = D_2^* \cap (\{a^n b^n \mid n \in \mathbb{N}\} \{\bar{a}, \bar{b}\}^*)^*$, where D_2^* is the Dyck language over $\{a, \bar{a}, b, \bar{b}\}$. Since C is a context-free language, this language belongs to C_2 .

Palis and Shende [11] proved the following Ogden-like theorem for C_k :

Theorem 5 (Palis and Shende). If $L \in C_k$, then there is a number p such that for all $z \in L$ and $D \subseteq [1, |z|]$, if $|D| \ge p$, there are $u_1, \ldots, u_{2^k+1}, v_1, \ldots, v_{2^k} \in \Sigma^*$ that satisfy the following conditions:

(i) $z = u_1 v_1 u_2 v_2 \dots u_{2^k} v_{2^k} u_{2^{k+1}}$. (ii) for some $j \in [1, 2^k]$,

$$\begin{split} D &\cap (u_1 v_1 \dots [u_j] v_j u_{j+1} v_{j+1} \dots u_{2^k} v_{2^k} u_{2^{k}+1}) \neq \varnothing, \\ D &\cap (u_1 v_1 \dots u_j [v_j] u_{j+1} v_{j+1} \dots u_{2^k} v_{2^k} u_{2^{k}+1}) \neq \varnothing, \\ D &\cap (u_1 v_1 \dots u_j v_j [u_{j+1}] v_{j+1} \dots u_{2^k} v_{2^k} u_{2^{k}+1}) \neq \varnothing. \end{split}$$

 $(\text{iii}) |D \cap (u_1v_1 \dots u_{2^{k-1}}[v_{2^{k-1}+1}v_{2^{k-1}+1}] \dots u_{2^k}v_{2^k}u_{2^k+1})| \le p.$

(iv) $u_1 v_1^n u_2 v_2^n \dots u_{2^k} v_{2^k}^n u_{2^{k+1}} \in L$ for all $n \in \mathbb{N}$.

Kanazawa and Salvati [8] proved the inclusion $C_k \subseteq 2^{k-1}$ -MCFL, while using Theorem 5 to show that the language RESP_{2k-1} belongs to 2^{k-1} -MCFL – C_k for $k \ge 2$, where RESP_l = { $a_1^m a_2^m b_1^n b_2^n \dots a_{2l-1}^m a_{2l}^m b_{2l-1}^n b_{2l}^n \mid m, n \in \mathbb{N}$ }.

3 The Failure of Ogden's Lemma for Well-Nested MCFGs and 2-MCFGs

Let G be an MCFG, and consider a derivation tree τ for an element z of L(G). When a node of τ and one of its descendants are labeled by ground atoms

 $B(w_1,\ldots,w_r)$ and $B(v_1,\ldots,v_r)$ sharing the same nonterminal B, the portion of τ consisting of the nodes that are neither above the first node nor below the second node determines a derivation tree σ witnessing $B(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_r) \vdash_G B(\beta_1,\ldots,\beta_r)$ (called a *pump* in [6]), where $(\beta_1,\ldots,\beta_r)[v_1/\boldsymbol{x}_1,\ldots,v_r/\boldsymbol{x}_r] = (w_1,\ldots,w_r)$. This was illustrated by Example 3. When each \boldsymbol{x}_i occurs in β_i , i.e., $\beta_i = v_{2i-1}\boldsymbol{x}_i v_{2i}$ for some $v_{2i-1}, v_{2i} \in \Sigma^*$ (in which case σ is an *even pump* [6]), iterating σ gives a derivation tree for $B(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_r) \vdash_G B(v_1^n \boldsymbol{x}_1 v_2^n,\ldots,v_{2r-1}^n \boldsymbol{x}_r v_{2r}^n)$. Combining this with the rest of τ gives a derivation tree for $z(n) = u_1 v_1^n u_2 v_2^n \ldots u_{2r} v_{2r}^n u_{2r+1} \in L(G)$ for every $n \in \mathbb{N}$, where z(1) = z. When some \boldsymbol{x}_i occurs in β_j with $j \neq i$ (σ is an *uneven pump*), however, the result of iterating σ exhibits a complicated pattern that is not easy to describe.

A language L is said to be k-iterative if all but finitely many elements of L can be written in the form $u_1v_1u_2v_2...u_kv_ku_{k+1}$ so that $v_1...v_k \neq \varepsilon$ and $u_1v_1^nu_2v_2^n...u_kv_k^nu_{k+1} \in L$ for all $n \in \mathbb{N}$. A language that is either finite or includes an infinite k-iterative subset is said to be weakly k-iterative. (These terms are from [4,3].) The possibility of an uneven pump explains the difficulty of establishing 2m-iterativity of an m-MCFL. In 1991, Seki et al. [12] proved that every m-MCFL is weakly 2m-iterative, but whether every m-MCFL is 2m-iterative remained an open question for a long time, until Kanazawa et al. [7] negatively settled it in 2014 by exhibiting a (non-well-nested) 3-MCFL that is not k-iterative for any k. Earlier, Kanazawa [6] had shown that the language of a well-nested m-MCFG is always 2m-iterative, and moreover that a 2-MCFL is always 4-iterative. The proof of this last pair of results was much more indirect than the proof of the pumping lemma for the context-free languages, and did not suggest a way of strengthening them to an Ogden-style theorem. Below, we show that there is indeed no reasonable way of doing so.

Let us say that a language L has the weak Ogden property if there is a natural number p such that for every $z \in L$ and $D \subseteq [1, |z|]$ with $|D| \ge p$, there are strings $u_1, \ldots, u_{k+1}, v_1, \ldots, v_k$ $(k \ge 1)$ satisfying the following conditions:

2. $D \cap (u_1v_1 \dots u_i[v_i] \dots u_kv_ku_{k+1}) \neq \emptyset$ for some $i \in [1, k]$, and

3. $u_1 v_1^n \dots u_k v_k^n u_{k+1} \in L$ for all $n \ge 0$.

The elements of D are referred to as distinguished positions in z.

Theorem 6. There is an $L \in 3$ -MCFL $(1) \cap 2$ -MCFL(2) that does not satisfy the weak Ogden property.

Proof. Let L be the set of all strings over the alphabet $\{a, b, \$\}$ that are of the form

$$a^{i_1}b^{i_0}\$a^{i_2}b^{i_1}\$a^{i_3}b^{i_2}\$\dots\$a^{i_n}b^{i_{n-1}} \tag{(\dagger)}$$

for some $n \geq 3$ and $i_0, \ldots, i_n \geq 0$. This language is generated by the nonbranching 3-MCFG (left) as well as by the binary branching 2-MCFG (right) in Figure 3. Now suppose L has the weak Ogden property, and let p be the number satisfying the required conditions. Let

$$z = a\$a^2b\$a^3b^2\$\dots\$a^{p+1}b^p,$$

 $^{1. \} z = u_1 v_1 \dots u_k v_k u_{k+1},$

Ogden's Lemma, MCFGs, and the Control Language Hierarchy

$A(\varepsilon) \leftarrow$	$A(\varepsilon) \leftarrow$
$A(b\boldsymbol{x}_1) \leftarrow A(\boldsymbol{x}_1)$	$A(b\boldsymbol{x}_1) \leftarrow A(\boldsymbol{x}_1)$
$B(\boldsymbol{x}_1, arepsilon) \leftarrow A(\boldsymbol{x}_1)$	$B(\boldsymbol{x}_1,arepsilon) \leftarrow A(\boldsymbol{x}_1)$
$B(aoldsymbol{x}_1, boldsymbol{x}_2) \leftarrow B(oldsymbol{x}_1, oldsymbol{x}_2)$	$B(aoldsymbol{x}_1,boldsymbol{x}_2) \leftarrow B(oldsymbol{x}_1,oldsymbol{x}_2)$
$C(\boldsymbol{x}_1, \boldsymbol{x}_2, \varepsilon) \leftarrow B(\boldsymbol{x}_1, \boldsymbol{x}_2)$	$C(\varepsilon, \varepsilon) \leftarrow$
$C(\boldsymbol{x}_1, a \boldsymbol{x}_2, b \boldsymbol{x}_3) \leftarrow C(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$	$C(aoldsymbol{x}_1,boldsymbol{x}_2) \leftarrow C(oldsymbol{x}_1,oldsymbol{x}_2)$
$C(\boldsymbol{x}_1 \$ \boldsymbol{x}_2, \boldsymbol{x}_3, \varepsilon) \leftarrow C(\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3)$	$D(x_1 \$ y_1 x_2, y_2) \leftarrow B(x_1, x_2), C(y_1, y_2)$
$D(x_1\$x_2, x_3) \leftarrow C(x_1, x_2, x_3)$	$D(x_1 \$ y_1 x_2, y_2) \leftarrow D(x_1, x_2), C(y_1, y_2)$
$D(\boldsymbol{x}_1, a \boldsymbol{x}_2) \leftarrow D(\boldsymbol{x}_1, \boldsymbol{x}_2)$	$E(\boldsymbol{x}_1, \boldsymbol{x}_2) \leftarrow D(\boldsymbol{x}_1, \boldsymbol{x}_2)$
$S(\boldsymbol{x}_1 \$ \boldsymbol{x}_2) \leftarrow D(\boldsymbol{x}_1, \boldsymbol{x}_2)$	$E(\boldsymbol{x}_1, a \boldsymbol{x}_2) \leftarrow E(\boldsymbol{x}_1, \boldsymbol{x}_2)$
	$S(\boldsymbol{x}_1 \$ \boldsymbol{x}_2) \leftarrow E(\boldsymbol{x}_1, \boldsymbol{x}_2)$

Fig. 3. Two grammars generating the same language.

and let D consist of the positions in z occupied by \$. Note that |D| = p. By the weak Ogden property, there must be strings $u_1, \ldots, u_{k+1}, v_1, \ldots, v_k$ $(k \ge 1)$ such that $z = u_1v_1 \ldots u_kv_ku_{k+1}$, at least one of v_1, \ldots, v_k contains an occurrence of \$, and $u_1v_1^n \ldots u_kv_k^nu_{k+1} \in L$ for all n. Without loss of generality, we may assume that v_1, \ldots, v_k are all nonempty strings. Let us write z(n) for $u_1v_1^n \ldots u_kv_k^nu_{k+1}$. First note that none of v_1, \ldots, v_k can start in a and end in b, since otherwise z(2) would contain ba as a factor and not be of the form (\dagger) . Let i be the greatest number such that v_i contains an occurrence of \$. Since none of v_{i+1}, \ldots, v_k contains an occurrence of \$, it is easy to see that v_{i+1}, \ldots, v_k are all in $a^+ \cup b^+$. We consider two cases, depending on the number of occurrences of \$ in v_i . Each case leads to a contradiction.

Case 1. v_i contains just one occurrence of \$. Then $v_i = x$ \$y, where x is a suffix of $a^{j+1}b^j$ and y is a prefix of $a^{j+2}b^{j+1}$ for some $j \in [0, p-1]$. Note that z(3) contains yx\$yx\$ as a factor. Since z(3) is of the form (†), this means that $yx = a^l b^l$ for some $l \ge 0$.

Case 1.1 $l \leq j + 1$. Then y must be a prefix of a^{j+1} and since x is a suffix of $a^{j+1}b^j$, it follows that $l \leq j$. Since $yu_{i+1}v_{i+1} \dots u_k v_k u_{k+1}$ has $a^{j+2}b^{j+1}$ as a prefix and $v_{i+1}, \dots, v_k \in a^+ \cup b^+$, $yx yu_{i+1}v_{i+1}^2 \dots u_k v_k^2 u_{k+1}$ has $a^l b^l a^q b^r$ as a prefix for some $q \geq j+2$ and $r \geq j+1$. The string $a^l b^l a^q b^r$ is a factor of z(2)and since z(2) is of the form (†), we must have $l \geq r$, but this contradicts $l \leq j$.

Case 1.2. $l \ge j+2$ In this case x must be a suffix of b^j and y must have $a^{j+2}b^2$ as a prefix, so l = j+2. Note that

$$\$yx\$yu_{i+1}v_{i+1}^2\dots u_kv_k^2u_{k+1} = \$a^lb^l\$yu_{i+1}v_{i+1}^2\dots u_kv_k^2u_{k+1}$$

is a suffix of z(2), so either $yu_{i+1}v_{i+1}^2 \dots u_k v_k^2 u_{k+1}$ equals $a^q b^l$ or has $a^q b^l$ as a prefix for some q. Since l = j + 2 and $yu_{i+1}v_{i+1} \dots u_k v_k u_{k+1}$ either equals $a^{j+2}b^{j+1}$ or has $a^{j+2}b^{j+1}$ as a prefix, it follows that there is some h > i such that $v_h = b$ and v_{i+1}, \dots, v_{h-1} are all in a^+ . But then z(3) will contain

$$y_{k}y_{k+1}v_{i+1}^{3}\dots u_{k}v_{k}^{3}u_{k+1}$$

7

which must have

$$a^{j+2}b^{j+2}a^{q'}b^{j+3}$$

as a prefix for some q', contradicting the fact that z(3) is of the form (†).

Case 2. v_i contains at least two occurrences of \$. Then we can write

$$v_i = x \$ a^{l+1} b^l \$ \dots \$ a^{m+1} b^m \$ y_i$$

where $1 \le l \le m \le p-1$, x is a suffix of $a^l b^{l-1}$, and y is a prefix of $a^{m+2} b^{m+1}$. Since

$$a^{m+1}b^m yx^{a^{l+1}}b^l$$

is a factor of z(2), we must have

$$yx = a^l b^{m+1}.$$

Since y is a prefix of $a^{m+2}b^{m+1}$ and l < m+2, y must be a prefix of a^l . It follows that x has b^{m+1} as a suffix. But then b^{m+1} must be a suffix of $a^l b^{l-1}$, contradicting the fact that l-1 < m+1.

Since Theorem 5 above implies that every language in Weir's control language hierarchy satisfies the weak Ogden property, we obtain the following corollary:²

Corollary 7. There is a language in 3-MCFL $(1) \cap 2$ -MCFL(2) that lies outside of Weir's control language hierarchy.

Previously, Kanazawa et al. [7] showed that Weir's control language hiearchy does not include 3-MCFL(2), but left open the question of whether the former includes the languages of well-nested MCFGs. The above corollary settles this question in the negative.

4 A Generalized Ogden's Lemma for a Subclass of the MCFGs

An easy way of ensuring that an *m*-MCFG *G* satisfies a generalized Ogden's lemma is to demand that whenever $B(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_r) \vdash_G B(\beta_1, \ldots, \beta_r)$, each \boldsymbol{x}_i occurs in β_i . This is a rather strict requirement, however, and the resulting class of grammars does not seem to cover even the second level C_2 of the control

² The language L in the proof of Theorem 6 was inspired by Lemma 5.4 of Greibach [5], where a much more complicated language was used to show that the range of a deterministic two-way finite-state transducer need not be *strongly iterative*. One can see that the language Greibach used is an 8-MCFL(1). In her proof, Greibach essentially relied on a stronger requirement imposed by her notion of strong iterativity, namely that in the factorization $z = u_1 v_1 \dots u_k v_k u_{k+1}$, there must be some *i* such that u_i and u_{i+1} contain at least one distinguished position and v_i contains at least *two* distinguished positions. Strong iterativity is not implied by the condition in Theorem 5, so Greibach's lemma fell short of providing an example of a language in $\bigcup_m m$ -MCFL(1) that does not belong to Weir's hierarchy.

language hierarchy. In this section, we show that a weaker condition implies a natural analogue of Ogden's [10] condition; we prove in the next section that the result covers the entire control language hierarchy.

Let us say that a derivation of $B(\beta_1, \ldots, \beta_r)$ from assumption $A(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_q)$ is non-decreasing if it cannot be broken down into two derivations witnessing $A(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_q) \vdash_G C(\gamma_1, \ldots, \gamma_s)$ and $C(\boldsymbol{z}_1, \ldots, \boldsymbol{z}_s) \vdash_G B(\beta'_1, \ldots, \beta'_r)$ such that s < q. (If q > r, there can be no non-decreasing derivation witnessing $A(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_q) \vdash_G B(\beta_1, \ldots, \beta_r)$.) An m-MCFG $G = (N, \Sigma, P, S)$ is proper if for each $A \in N^{(q)}$, whenever $A(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_q) \vdash_G A(\alpha_1, \ldots, \alpha_q)$ with a non-decreasing derivation, each \boldsymbol{x}_i occurs in α_i . It is easy to see that properness is a decidable property of an MCFG.

Theorem 8. Let L be the language of a proper m-MCFG. There is a natural number p such that for every $z \in L$ and $D \subseteq [1, |z|]$ with $|D| \ge p$, there are strings $u_1, \ldots, u_{2m+1}, v_1, \ldots, v_{2m}$ satisfying the following conditions:

- 1. $z = u_1 v_1 \dots u_{2m} v_{2m} u_{2m+1}$, 2. for some $j \in [1, 2m]$,
 - $D \cap (u_1v_1 \dots [u_j]v_ju_{j+1}v_{j+1} \dots u_{2m}v_{2m}u_{2m+1}) \neq \emptyset,$ $D \cap (u_1v_1 \dots u_j[v_j]u_{j+1}v_{j+1} \dots u_{2m}v_{2m}u_{2m+1}) \neq \emptyset,$ $D \cap (u_1v_1 \dots u_jv_j[u_{j+1}]v_{j+1} \dots u_{2m}v_{2m}u_{2m+1}) \neq \emptyset,$
- 3. $|D \cap \bigcup_{i=1}^{m} (u_1 v_1 \dots u_{2i-1} [v_{2i-1} u_{2i} v_{2i}] \dots u_{2m} v_{2m} u_{2m+1})| \le p,$ 4. $u_1 v_1^n u_2 v_2^n \dots u_{2m} v_{2m}^n u_{2m+1} \in L \text{ for all } n \in \mathbb{N}.$
- The case m = 1 of Theorem 8 exactly matches the condition in Ogden's [10] original lemma (as does the case k = 1 of Theorem 5).

Proof. Let $G = (N, \Sigma, P, S)$ be a proper *m*-MCFG. For a rule $A(\alpha_1, \ldots, \alpha_q) \leftarrow B_1(\boldsymbol{x}_{1,1}, \ldots, \boldsymbol{x}_{1,q_1}), \ldots, B_n(\boldsymbol{x}_{n,1}, \ldots, \boldsymbol{x}_{n,q_n})$, let its *weight* be the number of occurrences of terminal symbols in $\alpha_1, \ldots, \alpha_q$ plus *n*, and let *d* be the maximal weight of a rule in *P*.

Let $z \in L$, $D \subseteq [1, |z|]$, and τ be a derivation tree for z. We refer to elements of D as distinguished positions. Note that it makes sense to ask whether a particular symbol occurrence in the atom $A(w_1, \ldots, w_q)$ labeling a node ν of τ is in a distinguished position or not. This is because by Lemma 2, there are strings z_1, \ldots, z_{q+1} such that ν determines a derivation witnessing $A(\mathbf{x}_1, \ldots, \mathbf{x}_q) \vdash_G S(z_1\mathbf{x}_1z_2\mathbf{x}_2 \ldots z_q\mathbf{x}_qz_{q+1})$, which tells us where in z each argument of $A(w_1, \ldots, w_q)$ ends up. Henceforth, when the ground atom labeling a node ν contains a symbol occurrence in a distinguished position, we simply say that ν contains a distinguished position. We call a node ν a *B*-node (cf. [10]) if at least one of its children contains a distinguished position and ν contains more distinguished positions than any of its children. The *B*-height of a node ν is defined as the maximal *B*-height h of its children if ν is not a *B*-node, and h + 1 if ν is a *B*-node. (When ν has no children, its *B*-height is 0.) It is easy to see that a node of *B*-height h can contain no more than d^{h+1} distinguished positions.

Our goal is to find an h such that, when $|D| \ge d^{h+1}$, we can locate four nodes $\mu_1, \mu_2, \mu_3, \mu_4$, all of *B*-height $\le h$, on the same path of τ that together decompose τ into five derivations witnessing

$$A(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_q) \vdash_G S(z_1\boldsymbol{x}_1 z_2 \boldsymbol{x}_2 \ldots z_q \boldsymbol{x}_q z_{q+1}), \tag{1}$$

$$B(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_q) \vdash_G A(y_1\boldsymbol{x}_1y_2,\ldots,y_{2q-1}\boldsymbol{x}_qy_{2q}), \tag{2}$$

$$B(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_q)\vdash_G B(v_1\boldsymbol{x}_1v_2,\ldots,v_{2q-1}\boldsymbol{x}_qv_{2q}),\tag{3}$$

$$C(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_q) \vdash_G B(x_1\boldsymbol{x}_1x_2,\ldots,x_{2q-1}\boldsymbol{x}_qx_{2q}), \tag{4}$$

$$\vdash_G C(w_1, \dots, w_q), \tag{5}$$

where for some $j \in [1, 2q]$, each of x_j, v_j, y_j contains at least one distinguished position. Since $y_1v_1x_1w_1x_2v_2y_2, \ldots, y_{2q-1}v_{2q-1}x_{2q-1}w_qx_{2q}v_{2q}y_{2q}$ together can contain no more than d^{h+1} distinguished positions, this establishes the theorem, with $p = d^{h+1}$ and $u_1 = z_1y_1, u_2 = x_1w_1x_2, u_3 = y_2z_2y_3$, etc.

We let $h = \sum_{q=1}^{m} h(q)$, where h(0) = 0 and $h(q) = (2q \cdot (|N|+1)+1) \cdot (h(q-1)+1)$ for $q \in [1, m]$. By the "dimension" of a node, we mean the dimension of the nonterminal in the label of that node. Assume $|D| \ge d^{h+1}$. Then the root of τ has *B*-height $\ge h$, and τ must have a path that contains a node of each *B*-height $\le h$. For each $i = 0, \ldots, h$, from among the nodes of *B*-height i on that path, pick a node ν_i of the lowest dimension.

By a *q*-stretch, we mean a contiguous subsequence of $\nu_0, \nu_1, \ldots, \nu_h$ consisting entirely of nodes of dimension $\geq q$. We claim that some *q*-stretch contains more than $2q \cdot (|N|+1)+1$ nodes of dimension *q*. For, suppose not. Then we can show by induction on *q* that $\nu_0, \nu_1, \ldots, \nu_h$ contains no more than h(q) nodes of dimension *q*, which contradicts $h = \sum_{q=1}^{m} h(q)$. Since the entire sequence $\nu_0, \nu_1, \ldots, \nu_h$ is a 1-stretch, the sequence contains at most $2 \cdot (|N|+1)+1 = h(1)$ nodes of dimension 1. If the sequence contains at most h(q-1) nodes of dimension q-1, then there are at most h(q-1)+1 maximal *q*-stretches, so the number of nodes of dimension *q* in the sequence cannot exceed $(2q \cdot (|N|+1)+1) \cdot (h(q-1)+1) = h(q)$.

So we have a q-stretch that contains nodes $\nu_{i_0}, \ldots, \nu_{i_k}$ of dimension q for some $q \in [1,m]$, where $k = 2q \cdot (|N| + 1) + 1$. Let A_n be the nonterminal in the label of ν_{i_n} . By the definition of a q-stretch and the way the original sequence ν_0, \ldots, ν_h is defined, the nodes of τ that are neither below $\nu_{i_{n-1}}$ nor above ν_{i_n} determine a non-decreasing derivation witnessing $A_{n-1}(x_1, \ldots, x_q) \vdash_G A_n(x_{n,1}x_1x_{n,2}, \ldots, x_{n,2q-1}x_qx_{n,2q})$ for some strings $x_{n,1}, \ldots, x_{n,2q}$. Since there must be a B-node lying above $\nu_{i_{n-1}}$ and below or at ν_{i_n} , at least one of $x_{n,1}, \ldots, x_{n,2q}$ must contain a distinguished position. By the pigeon-hole principle, there is a $j \in [1, 2q]$ such that $\{n \in [1, k] \mid x_{n,j}$ contains a distinguished position $\}$ has at least |N| + 2 elements. This means that we can pick three elements n_1, n_2, n_3 from this set so that $n_1 < n_2 < n_3$ and $A_{n_1} = A_{n_2}$. Letting $\mu_1 =$ $\nu_{i_0}, \mu_1 = \nu_{i_{n_1}}, \mu_2 = \nu_{i_{n_2}}, \mu_3 = \nu_{i_{n_3}}$, we see that (2), (3), (4) hold with C = $A_{i_0}, B = A_{i_{n_1}} = A_{i_{n_2}}, A = A_{i_{n_3}}$ and x_j, v_j, y_j all containing a distinguished position, as desired.

Let us write m-MCFL_{prop} for the family of languages generated by proper m-MCFGs. Using standard techniques (cf. Theorem 3.9 of [12]), we can easily

show that for each $m \ge 1$, m-MCFL_{prop} is a substitution-closed full abstract family of languages.

5 Relation to the Control Language Hierarchy

Kanazawa and Salvati [8] showed $C_k \subseteq 2^{k-1}$ -MCFL for each k through a tree grammar generating the derivation trees of a level k control grammar (G, C). In fact, detour through tree languages is not necessary—a level k control language can be obtained from a level k - 1 control language by certain string language operations. It is easy to see that the family $\bigcup_m m$ -MCFL_{prop} is closed under those operations.

Let us sketch the idea using Example 4. We start by applying a homomorphic replication [2,5] $\langle (1,R), h_1, h_2 \rangle$ to the control set $C = \{ \pi_1^n \pi_2^n \pi_3 \mid n \in \mathbb{N} \}$, obtaining

$$\langle (1,R), h_1, h_2 \rangle (C) = \{ h_1(w) h_2(w^R) \mid w \in C \},$$
(6)

where $h_1(\pi_1) = a, h_1(\pi_2) = b, h_1(\pi_3) = \varepsilon, h_2(\pi_1) = \bar{a}S, h_2(\pi_2)\bar{b}S, h_2(\pi_3) = \varepsilon$. For instance, $\pi_1^2 \pi_2^2 \pi_3$ is mapped to $aabb\bar{b}S\bar{b}S\bar{a}S\bar{a}S$. Iterating the substitution $S \leftarrow \langle (1, R), h_1, h_2 \rangle (C)$ on the resulting language and then throwing away strings that contain S gives the language of the control grammar of this example.

In general, if π is a production $A \to w_0 B_1 w_1 \dots B_n w_n$ of a labeled distinguished grammar $G = (N, \Sigma, P, S, f)$ and $f(\pi) = i \in [1, n]$, then we let $h_1(\pi) = w_0 B_1 w_1 \dots B_{i-1} w_{i-1}$ and $h_2(\pi) = w_i B_{i+1} w_{i+1} \dots B_n w_n$. In case $f(\pi) = 0, h_1(\pi)$ is the entire right-hand side of π and $h_2(\pi) = \varepsilon$. The control set C is first intersected with a local set so as to ensure consistency of nonterminals in adjacent productions, and then partitioned into sets C_A indexed by nonterminals, with C_A holding only those strings whose first symbol is a production that has A on its left-hand side. Let $L_A = \langle (1, R), h_1, h_2 \rangle (C_A)$ for each $A \in N$. The final operation is iterating simultaneous substitution $A \leftarrow L_A$ and throwing away strings containing nonterminals:

$$L_0 = L_S, \qquad L_{n+1} = L_n [A \leftarrow L_A]_{A \in N}, \qquad L = \bigcup_n L_n \cap \Sigma^*.$$
(7)

This last step may be thought of as the fixed point computation of a "context-free grammar" with an infinite set of rules $\{A \to \alpha \mid A \in N, \alpha \in L_A\}$.

Lemma 9. If $L \in m$ -MCFL_{prop} and h_1, h_2 are homomorphisms, then the language $\langle (1, R), h_1, h_2 \rangle(L)$ defined by (6) belongs to 2m-MCFL_{prop}.

Example 1 in Section 2.1 illustrates Lemma 9 with m = 1, $L = D_1^*$, and h_1, h_2 both equal to the identity function.

The proof of the next lemma is similar to that of closure under substitution.

Lemma 10. If $L_A \subseteq (N \cup \Sigma)^*$ belongs to m-MCFL_{prop} for each $A \in N$, then the language L defined by (7) also belongs to m-MCFL_{prop}.

Theorem 11. For each $k \ge 1$, $C_k \subsetneq 2^{k-1}$ -MCFL_{prop}.

Again, the language $\text{RESP}_{2^{k-1}}$ separates 2^{k-1} -MCFL_{prop} from \mathcal{C}_k . For k = 2, $\{w \# w \mid w \in D_1^*\}$ also witnesses the separation. I currently do not see how to settle the question of whether the inclusion of $\bigcup_k \mathcal{C}_k$ in $\bigcup_m m$ -MCFL_{prop} is strict.

6 Conclusion

Theorem 5 and Theorem 8 with $m = 2^{k-1}$ both apply to languages in C_k , but place incomparable requirements on the factorization $z = u_1v_1 \dots u_{2^k}v_{2^k}u_{2^{k+1}}$. Theorem 8 does not require $v_{2^{k-1}}u_{2^{k-1}+1}$ to contain $\leq p$ distinguished positions. On the other hand, it does not seem easy to derive additional restrictions on $v_{2i-1}u_{2i}v_{2i}$ from Palis and Shende's [11] proof. From the point of view of MCFGs, the conditions in Theorem 8 are very natural: the substrings that are simultaneously iterated should contain only a small number of distinguished positions.

References

- 1. Engelfriet, J.: Context-free graph grammars. In: Handbook of Formal Languages, Volume 3: Beyond Words, pp. 125–213. Springer, Berlin (1997)
- Ginsburg, S., Spanier, E.H.: AFL with the semilinear property. Journal of Computer and System Sciences 5(4), 365–396 (1971)
- 3. Greibach, S.A.: Hierarchy theorems for two-way finite state transducers. Acta Informatica 11, 89–101 (1978)
- Greibach, S.A.: One-way finite visit automata. Theoretical Computer Science 6, 175–221 (1978)
- Greibach, S.A.: The strong independence of substitution and homomorphic replication. R.A.I.R.O. Informatique théorique 12(3), 213–234 (1978)
- Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory: 13th International Conference, DLT 2009. Lecture Notes in Computer Science, vol. 5583, pp. 312–325. Springer, Berlin (2009)
- Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure of the strong pumping lemma for multiple context-free languages. Theory of Computing Systems 55(1), 250–278 (2014)
- 8. Kanazawa, M., Salvati, S.: Generating control languages with abstract categorial grammars. In: Preliminary Proceedings of FG-2007: The 12th Conference on Formal Grammar (2007)
- Kanazawa, M., Salvati, S.: The copying power of well-nested multiple context-free grammars. In: Dediu, A.H., Fernau, H., Martín-Vide, C. (eds.) Language and Automata Theory and Applications, Fourth International Conference, LATA 2010. Lecture Notes in Computer Science, vol. 6031, pp. 344–355. Springer, Berlin (2010)
- Ogden, W.: A helpful result for proving inherent ambiguity. Mathematical Systems Theory 2(3), 191–194 (1968)
- Palis, M.A., Shende, S.M.: Pumping lemmas for the control language hierarchy. Mathematical Systems Theory 28(3), 199–213 (1995)
- Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)
- Weir, D.J.: A geometric hierarchy beyond context-free languages. Theoretical Computer Science 104(2), 235–261 (1992)