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Abstract

This paper studies entailments between sentences like three boys kissed five girls
involving two or more numerically quantified noun phrases that are interpreted
as expressing cumulative quantification in the sense of Scha (1984). A precise
characterization of when one such sentence entails another such sentence that differs
from it only in the numerals is crucially important to evaluate claims about scalar
implicatures arising from the use of those sentences, as pointed out by Shimada
(to appear). This problem turns out to be non-trivial and surprisingly difficult.
We give a characterization of these entailments for the case of sentences with two
noun phrases, together with a complete axiomatization consisting of two simple
inference rules. We also give some valid inference rules for sentences with three
noun phrases.

1 Introduction

This paper concerns sentences expressing cumulative quantification (Scha, 1984), ex-
emplified by (1):

Three boys kissed five girls. (1)

We call sentences like (1) cumulative sentences, focusing only on their cumulative read-
ing. In general, a cumulative sentence may involve k numerically quantified noun
phrases and a verb expressing a k-ary relation. A general form of a cumulative sen-
tence may be schematically represented by

n1 N1 V n2 N2 . . .nk Nk, (2)

where each ni is a number word, Ni is a count noun, and V is a verb.

Following Krifka (1999), we assume that the relevant truth conditions of sentences
of the form (2) are as given in (3), where we write πi(R) for the ith projection {xi |
(x1, . . . , xk) ∈ R } of a k-ary relation R:

∃X1 . . . ∃Xk

k∧
i=1

(
|Xi| = ni ∧Xi ⊆ JNiK ∧Xi = πi(JVK ∩ (X1 × · · · ×Xk))

)
. (3)
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Figure 1: A model where three boys kissed five girls and three boys kissed four girls are
true but two boys kissed five girls is false.

The truth conditions in (3) are deliberately weaker than those suggested by Scha
(1984), which may be represented as follows:

k∧
i=1

|πi(JVK ∩ (JN1K× · · · × JNkK))| = ni. (4)

Krifka’s (1999) idea was that (3) represents the truth conditions that are directly deliv-
ered by compositional semantics involving plural predication,1 but they are pragmati-
cally strengthened by scalar implicatures, resulting in something like (4).

In more detail, Krifka (1999) assumes that when a speaker utters a sentence of the
form (2) for a specific choice of N1, . . . ,Nk,V, all the sentences of the form (2) for the
same choice of N1, . . . ,Nk,V constitute the set of relevant alternatives for the sentence,
partially ordered by the entailment relation. According to Krifka, Grice’s maxim of
Quantity has the effect that the numbers n1, . . . , nk actually used in the utterance
must be the highest numbers that make the sentence true.

A problem with this account, as pointed out by Shimada (to appear), is that the
partial order on Nk given by the entailment relation between the truth conditions (3)
is not the familiar coordinatewise order defined by

(n1, . . . , nk) ≤ (m1, . . . ,mk)⇐⇒ n1 ≤ m1 ∧ · · · ∧ nk ≤ mk.

For instance, three boys kissed five girls, understood according to (3), entails three boys
kissed four girls, but not two boys kissed five girls (see Figure 1). This means that a
speaker who knows the first of these three sentences to be true may nevertheless choose
to utter the last sentence to convey information not carried by the former. There is
no reason, then, to expect that Grice’s maxim forces the speaker to choose the highest

1Representing plural individuals as sets of atomic individuals, we may suppose that if the bare form
of a verb V denotes a k-ary relation JVK on atomic individuals, its plural form denotes its closure under
cumulativity, which amounts to { (X1, . . . , Xk) |

∧k
i=1Xi = πi(JVK ∩ (X1 × · · · ×Xk)) }. Numerically

quantified noun phrases ni Ni would denote generalized quantifiers {P | ∃X(X ⊆ JNiK∧|X| = n∧X ∈
P ) } over plural individuals and combine with the plural verb denotation in the standard way to produce
(3).



numbers that make the sentence true. Shimada (to appear) claims that this is as it
should be, and an utterance of two boys kissed five girls in fact does not implicate the
negation of three boys kissed five girls.

The actual entailment relation between cumulative sentences understood according
to the truth conditions in (3), even for the case k = 2, is rather complex. A precise
characterization of this relation is important to understand how the truth conditions
of cumulative sentences may be pragmatically strengthened by scalar implicatures.
Shimada (to appear) gives two sufficient conditions for the entailment to hold, for the
case k = 2. In Section 3, we reformulate Shimada’s sufficient conditions and show that
they form a complete set of inference rules.

In Section 4, we consider the case k = 3, and give some valid inference rules which
will hopefully form part of a complete system of rules.

Let us write RX1 . . . Xk for the formula

k∧
i=1

Xi = πi(R ∩ (X1 × · · · ×Xk)) (5)

and R(n1, . . . , nk) for the closed formula

∃X1 . . . ∃Xk

(
k∧

i=1

|Xi| = ni ∧RX1 . . . Xk

)
. (6)

Since the truth conditions (3) can be equivalently expressed in the form (6) with R =
JVK ∩ (JN1K× · · · × JNkK), the entailment relation between cumulative sentences (with
the same choice of nouns and verbs) corresponds to the logical consequence relation
between the closed formulas of the form (6) for various choices of n1, . . . , nk.

As usual, we write

R(n1, . . . , nk) |= R(m1, . . . ,mk) (7)

to mean R(m1, . . . ,mk) is a logical consequence of R(n1, . . . , nk). Since (6) is evidently
definable by an existential first-order formula with n1 + · · · + nk bound variables, the
relation (7), understood as a 2k-ary relation on the natural numbers, is decidable. This
fact alone, however, does not suggest any efficient procedure to decide whether (7) is
true.

Strictly speaking, logical consequence (in the model-theoretic sense) is a relation
between closed formulas of a formal language, so when we write (7), we are using R
as a predicate symbol, not as a k-ary relation (i.e., set of ordered k-tuples). A model
for formulas of the form R(n1, . . . , nk) is a structure M = (M,RM), where M is a
non-empty set and RM is a k-ary relation on M . The relation (7) holds if and only if
every model of R(n1, . . . , nk) is a model of R(m1, . . . ,mk). In this paper, we choose to
be sloppy and will not make a clear distinction between syntax and semantics. This
should not lead to any confusion.



2 Preliminaries

We employ the projection (π) and selection (σ) operators from relational database the-
ory, using component numbers 1, 2, . . . , k to pick out attributes of a k-ary relation (see
Ullman, 1988). For example, if R is a ternary relation,

π1,2(R) = { (x, y) | (x, y, z) ∈ R },
σ$16=a(R) = { (x, y, z) ∈ R | x 6= a }.

Usually, the condition F in a selection operator σF must be a Boolean combination of
equalities and inequalities, but in this paper we allow a selection operator of the form
σ$i∈D.

When R is a binary relation, we also use standard notations like

• dom(R) and ran(R) for π1(R) and π2(R),

• R−1 for π2,1(R),

• R−1(b) for π1(σ$2=b(R)),

• R−1(D) for π1(σ$2∈D(R)), etc.

If R is a binary relation, its deterministic reduct is2

d(R) = { (x, y) ∈ R | ∀y′((x, y′) ∈ R→ y′ = y) }.

Clearly, d(R) is a partial function.

Lemma 1. σ$1∈dom(d(R))(R) = d(R).

Proof. Clearly, d(R) = { (x, y) ∈ R | ∀y′∀y′′(((x, y′) ∈ R ∧ (x, y′′) ∈ R) → y′ = y′′) },
and so dom(d(R)) = {x ∈ dom(R) | ∀y′∀y′′(((x, y′) ∈ R ∧ (x, y′′) ∈ R)→ y′ = y′′) }. It
easily follows that d(R) = { (x, y) ∈ R | x ∈ dom(d(R)) }.

Lemma 2. If |dom(R)| < |ran(R)|, then |ran(d(R))| < |dom(R)|.

Proof. Assume |dom(R)| < |ran(R)|. Since d(R) is a partial function, |dom(d(R))| ≥
|ran(d(R))|. This implies R 6= d(R). Since R = σ$1∈dom(R)(R), Lemma 1 implies
dom(R) ⊃ dom(d(R)). So |ran(d(R))| ≤ |dom(d(R))| < |dom(R)|.

Lemma 3. d(σ$1∈D(R)) = σ$1∈D(d(R)).

2This piece of terminology comes from descriptive complexity theory (Immerman, 1999), where the
deterministic transitive closure of a binary relation is defined as the transitive closure of its deterministic
reduct.



Proof. We have

d(σ$1∈D(R)) = { (x, y) ∈ σ$1∈D(R) | ∀y′((x, y′) ∈ σ$1∈D(R)→ y′ = y) }
= { (x, y) ∈ R | x ∈ D ∧ ∀y′(((x, y′) ∈ R ∧ x ∈ D)→ y′ = y) }
= { (x, y) ∈ R | x ∈ D ∧ ∀y′((x, y′) ∈ R→ y′ = y) }
= σ$1∈D({ (x, y) ∈ R | ∀y′((x, y′) ∈ R→ y′ = y) })
= σ$1∈D(d(R)).

Lemma 4. If dom(R′) = dom(R) and R′ ⊆ R, then d(R′) ⊇ d(R).

Proof. Suppose dom(R′) = dom(R) and R′ ⊆ R. We have

d(R′) = { (x, y) | x ∈ dom(R′) ∧ ∀y′((x, y′) ∈ R′ → y′ = y) }
= { (x, y) | x ∈ dom(R) ∧ ∀y′((x, y′) ∈ R′ → y′ = y) }
⊇ { (x, y) | x ∈ dom(R) ∧ ∀y′((x, y′) ∈ R→ y′ = y) }
= d(R).

It is easy to see that RX1 . . . Xk, as defined by (5), is monotone in R: if R ⊆ R′,
then RX1 . . . Xk implies R′X1 . . . Xk. It follows that RX1 . . . Xk if and only if there
exists some R′ ⊆ R such that Xi = πi(R

′) for i = 1, . . . , k. The following two lemmas
are straightforward:

Lemma 5. The following are equivalent:

(i) R(n1, . . . , nk).

(ii) ∃R′ ⊆ R

(
k∧

i=1

|πi(R′)| = ni

)
.

Lemma 6. The following are equivalent:

(i) R(n1, . . . , nk) |= R(m1, . . . ,mk).

(ii)

k∧
i=1

|πi(R)| = ni implies R(m1, . . . ,mk).

Lemma 7. Let R be a k-ary relation. Let a ∈ πi(R) and R′ = σ$i 6=a(R). Then we
have

πi(R
′) = πi(R)− {a},

πj(R
′) = πj(R)− (d(πj,i(R)))−1(a) for j 6= i.



Proof. It is easy to see that πi(R
′) = πi(R) − {a}. Now let j 6= i and suppose y ∈

πj(R
′). Then for some (x1, . . . , xk) ∈ R, xj = y and xi 6= a. Since (y, xi) ∈ πj,i(R),

we have (y, a) 6∈ d(πj,i(R)). So y ∈ πj(R) − (d(πj,i(R)))−1(a). Conversely, suppose
y ∈ πj(R) − (d(πj,i(R)))−1(a). This implies that there must be some z 6= a such that
(y, z) ∈ πj,i(R), which implies that for some (x1, . . . , xk) ∈ R, xi = z and xj = y. Since
xi 6= a, (x1, . . . , xk) ∈ R′. So y ∈ πj(R′).

Lemma 8. If A = dom(R), B = ran(R), and ∅ 6= B′ ⊂ B, then there exists a b ∈ B′
such that |(d(R))−1(b)| ≤ b(|A| − 1)/|B′|c.

Proof. Since |(d(R))−1(B′)| =
∑

y∈B′ |(d(R))−1(y)|, it suffices to show (d(R))−1(B′) ⊂
A. Suppose (d(R))−1(B′) = A. Then dom(d(R)) = A and ran(d(R)) = B′. By
Lemma 1, R = σ$1∈A(R) = σ$1∈dom(d(R))(R) = d(R). But ran(d(R)) = B′ 6= B =
ran(R), a contradiction.

3 Binary Cumulative Sentences

In what follows, we use letters k, l,m, n as variables ranging over the set N − {0} of
positive integers. The following lemmas are straightforward:

Lemma 9. If R(m,n) |= R(k, l), then one of the following holds:

(i) m ≥ n and k ≥ l;

(ii) m ≤ n and k ≤ l.

Lemma 10. If R(m,n) |= R(k, l), then m ≥ k and n ≥ l.

The following lemma is Proposition 1 of Shimada (to appear):

Lemma 11. If m > n, then R(m,n) |= R(m− 1, n).

Proof. Suppose m > n, and let R be a binary relation such that A = dom(R), B =
ran(R), and |A| = m, |B| = n. By Lemmas 5 and 6, it suffices to show the existence
of an R′ ⊆ R such that |dom(R′)| = m − 1 and |ran(R′)| = n. Since d(R−1) is
a partial function from B to A and |A| > |B|, there must be an a ∈ A such that
(d(R−1))−1(a) = ∅. Let R′ = σ$16=a(R). By Lemma 7, dom(R′) = A − {a} and
ran(R′) = B, and we are done.

The integer part bm/nc of a fraction m/n is the quotient of m divided by n. We
write m mod n for the remainder of m divided by n. We always have m = n · bm/nc+
(m mod n). The following lemma is adapted from Proposition 2 of Shimada (to appear):

Lemma 12. If m ≥ n > 1, then R(m,n) |= R(m− bm/nc, n− 1).



Proof. Suppose m ≥ n > 1, and let R be a binary relation such that A = dom(R), B =
ran(R), and |A| = m, |B| = n. By Lemma 6, it suffices to show R(m− bm/nc, n− 1).
Since m = |A| ≥ |(d(R))−1(B)| =

∑
y∈B |(d(R))−1(y)|, there must be a b ∈ B such that

|(d(R))−1(b)| ≤ bm/nc. Let R′ = σ$26=b(R). By Lemma 7, dom(R′) = A− (d(R))−1(b)
and ran(R′) = B − {b}. Let m′ = |A − (d(R))−1(b)|. Then m′ ≥ m − bm/nc. By
Lemma 5, we have R(m′, n− 1).

Since m ≥ n, we have

m− bm/nc ≥ n · bm/nc − bm/nc
= (n− 1) · bm/nc
≥ n− 1.

So Lemma 11 implies R(m− bm/nc, n− 1).

It is evident that the symmetric variants of Lemmas 11 and 12 hold as well: m < n
implies R(m,n) |= R(m,n−1) and 1 < m ≤ n implies R(m,n) |= R(m−1, n−bn/mc).
Combining all these, we see that R(m,n) |= R(m−1, n−bn/mc) holds whenever m > 1,
and symmetrically, R(m,n) |= R(m− bm/nc, n− 1) holds whenever n > 1.

Let us write R(m,n) ` R(k, l) if R(k, l) can be deduced from R(m,n) using the
following rules of inference:

R(m,n) m > 1

R(m− 1, n− bn/mc) (R2–1)
R(m,n) n > 1

R(m− bm/nc, n− 1)
(R2–2)

Theorem 13 (Soundness). If R(m,n) ` R(k, l), then R(m,n) |= R(k, l).

Lemma 14 (Characterization). Let m ≥ n. The following conditions are equivalent:

(i) R(m,n) |= R(k, l).

(ii) k ≤ m ∧ l ≤ n ∧ l ≤ k ≤ l · bm/nc+ min(m mod n, l).

(iii) R(m,n) ` R(k, l).

Proof. (i)⇒ (ii). By Lemmas 9 and 10, we only need to show

k ≤ l · bm/nc+ min(m mod n, l). (8)

Let A = {a0, . . . , am−1}, B = {b0, . . . , bn−1}, and consider the binary relation

R = { (ai, bj) | j = i mod n }.

Clearly, dom(R) = A and ran(R) = B, so R(m,n) holds. By the assumption (i),
R(k, l). Let A′ ⊆ A,B′ ⊆ B be such that |A′| = k, |B′| = l, and RA′B′. We must have

A′ ⊆
⋃

bj∈B′

{ ai | j = i mod n },



so
k ≤

∑
bj∈B′

|{ i | j = i mod n }|. (9)

We distinguish two cases.
Case 1. n divides m, i.e., m mod n = 0. In this case, it is clear that

|{ i | j = i mod n }| = m/n = bm/nc

holds for each j = 0, . . . , n− 1. By (9),

k ≤ l · bm/nc,

which implies (8).
Case 2. n does not divide m, i.e., m mod n ≥ 1. In this case,

|{ i | j = i mod n }| =

{
bm/nc+ 1 if 0 ≤ j < m mod n,

bm/nc if m mod n ≤ j ≤ n− 1.

Then (8) easily follows from (9).
(ii)⇒ (iii). By (R2–1), it suffices to prove

R(m,n) ` R(l · bm/nc+ min(m mod n, l), l). (10)

We show this by induction on n− l. If n− l = 0, then l = n > m mod n, so l · bm/nc+
min(m mod n, l) = n · bm/nc+ (m mod n) = m, and (10) becomes R(m,n) ` R(m,n),
which holds trivially.

Now suppose n− l ≥ 1. The induction hypothesis says

R(m,n) ` R((l + 1) · bm/nc+ min(m mod n, l + 1), l + 1).

Let
k′ = (l + 1) · bm/nc+ min(m mod n, l + 1),

so that the right-hand side of the induction hypothesis becomes R(k′, l + 1). Since
l + 1 > 1, an application of the rule (R2–2) gives

R(k′, l + 1) ` R(k′ − bk′/(l + 1)c, l).

Combining this with the induction hypothesis, we get

R(m,n) ` R(k′ − bk′/(l + 1)c, l). (11)

Case 1. m mod n < l + 1. Then k′ = (l + 1) · bm/nc+ (m mod n). Now

k′

l + 1
=

(l + 1) · bm/nc+ (m mod n)

l + 1

= bm/nc+
m mod n

l + 1
.



It follows that

bk′/(l + 1)c = bm/nc,

since m mod n < l + 1. So

k′ − bk′/(l + 1)c = (l + 1) · bm/nc+ (m mod n)− bm/nc
= l · bm/nc+ (m mod n). (12)

Since m mod n < l + 1, m mod n ≤ l and min(m mod n, l) = m mod n. So (10)
becomes

R(m,n) ` R(l · bm/nc+ (m mod n), l),

which we can obtain from (11) by substituting (12) for k′ − bk′/(l + 1)c.
Case 2. m mod n ≥ l+ 1. Then k′ = (l+ 1) · bm/nc+ l+ 1 = (l+ 1) · (bm/nc+ 1).

So

k′ − bk′/(l + 1)c = (l + 1) · (bm/nc+ 1)− (bm/nc+ 1)

= l · (bm/nc+ 1)

= l · bm/nc+ l. (13)

Since m mod n ≥ l + 1 > l, we have min(m mod n, l) = l, and (10) becomes

R(m,n) ` R(l · bm/nc+ l, l),

which we can obtain from (11) by substituting (13) for k′ − bk′/(l + 1)c.
(iii)⇒ (i). By Theorem 13.

Theorem 15 (Completeness). R(m,n) ` R(k, l) if and only if R(m,n) |= R(k, l).

Proof. Immediate form Lemma 14 and its symmetric variant for m ≤ n.

Figure 2 shows a Hasse diagram for the partial order representing the entailment
relation between binary cumulative sentences R(m,n) with m,n ≤ 8.

4 Ternary Cumulative Sentences

The entailment relation between ternary cumulative sentences seems to be much more
complicated than the binary case, and we only have some partial results so far.

Lemma 16. Suppose m ≥ n. Then

{R(m,n, p)} ∪ {¬R(m− i, n− j, p) | 0 ≤ i < j < n }

is satisfiable.
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Figure 2: A Hasse diagram of entailment between binary cumulative sentences (from
Shimada, to appear).

Proof. This set is satisfied by any binary relation R such that R(m,n, p) and π1,2(R)
is a function.

Lemma 17. Suppose m ≤ n+ p− 2. Then

{R(m,n, p)} ∪ {¬R(m′, n, p) | m′ < m }

is satisfiable.

Proof. Let A = {a1, . . . , am}, B = {b1, . . . , bn}, C = {c1, . . . , cp}, and

R = { (amin(j,m), bj , cp) | 1 ≤ j ≤ n− 1 } ∪
{ (amin(n−1+k,m), bn, ck) | 1 ≤ k ≤ p− 1 }.

Then π1(R) = A, π2(R) = B, π3(R) = C, so R(m,n, p). Note that for all x ∈ A, either
(d(π2,1(R)))−1(x) 6= ∅ or (d(π3,1(R)))−1(x) 6= ∅. Suppose m′ < m and R(m′, n, p), so
that π1(R

′) ⊂ A, π2(R
′) = B, π3(R

′) = C for some R′ ⊆ R. Let a ∈ A− π1(R′). Then
σ$16=a(R) ⊇ R′, so π2(σ$16=a(R)) = B and π3(σ$16=a(R)) = C. Lemma 7 then implies
(d(π2,1(R)))−1(a) = (d(π3,1(R)))−1(a) = ∅, a contradiction.

Proposition 18. The following inference rule is valid:

R(m,n, p) m > n m > p m > n+ p− 2

R(m− 1, n, p)
(R3–1)



Proof. Assume m > n,m > p,m > n + p − 2, and let R be a ternary relation such
that A = π1(R), B = π2(R), C = π3(R) and |A| = m, |B| = n, |C| = p. We show
that there exists an R′ ⊆ R such that |π1(R′)| = m − 1, |π2(R′)| = n, |π3(R′)| = p.
Let S = d(π2,1(R)) and T = d(π3,1(R)). Since m > n and m > p, Lemma 2 implies
|ran(S)| ≤ n− 1 and |ran(T )| ≤ p− 1. Since m > n+ p− 2, it follows that there is an
a ∈ A − (ran(S) ∪ ran(T )). Let R′ = σ$16=a(R). Since S−1(a) = T−1(a) = ∅, we get
π1(R

′) = A− {a}, π2(R′) = B, and π3(R
′) = C by Lemma 7.

Lemma 19. Suppose m− 1 ≥ 2(n− p+ 1) and p ≥ 2. Then

{R(m,n, p)} ∪ {¬R(m− 1, n′, p) | n′ < n }

is satisfiable.

Proof. If n ≤ p, it is easy to see that the conclusion of the lemma holds, so let us
suppose n > p.

Let A = {a0, . . . , am−1}, B = {b0, . . . , bn−1}, C = {c0, . . . , cp−1}, and define

R = { (ai, bj , ck) | (i ≤ m− 2 ∧ j = i mod (n− p+ 1) ∧ k = 0) ∨
(i = m− 1 ∧ j = n− p+ k ∧ k ≥ 1) }.

It is clear that A = π1(R), B = π2(R), C = π3(R), so R(m,n, p) holds. For each
j ≤ n− p,

{aj , an−p+1+j} ⊆ (d(π1,2(R)))−1(bj),

and for each j ≥ n− p+ 1,

cj−(n−p) ∈ (d(π3,2(R)))−1(bj).

This property ensures that R(m− 1, n′, p) does not hold for any n′ < n.

Proposition 20. Suppose n−1 ≥ 2(m−p+1), m ≥ n, and p ≥ 2. Then R(m,n, p) |=
R(m′, n′, p) implies m′ = m and n′ = n.

Proof. Suppose R(m,n, p) |= R(m′, n′, p). By Lemma 16,

m−m′ ≥ n− n′.

In particular, m′ = m implies n′ = n.
Assume m′ < m. Since

m ≤ n− 1

2
+ p− 1

≤ n+ p− 2,

Lemma 17 applies, so n′ < n.



Let R be a ternary relation such that A = π1(R), B = π2(R), C = π3(R), and
|A| = m, |B| = n, |C| = p. By Lemmas 5 and 6, there exist R′ ⊆ R and A′, B′ such
that π1(R

′) = A′, π2(R
′) = B′, π3(R

′) = C, and |A′| = m′, |B′| = n′. Let b1, . . . , bn−n′

be the elements of B − B′, and for each i = 1, . . . , n − n′, pick ai and ci such that
(ai, bi, ci) ∈ R. Let

R′′ = R′ ∪ {(a1, b1, c1), . . . , (an−n′−1, bn−n′−1, cn−n′−1)}.

Then R′′ ⊆ R, and it is easy to see

|π1(R′′)| ≤ m′ + n− n′ − 1,

|π2(R′′)| = n− 1,

|π3(R′′)| = p.

Since m−m′ ≥ n− n′, we have

m′ + n− n′ − 1 ≤ m′ +m−m′ − 1

= m− 1.

This shows that R(m′′, n−1, p) holds for some m′′ < m whenever R(m,n, p) holds. On
the other hand, since n− 1 ≥ 2(m− p+ 1) and p ≥ 2, a variant of Lemma 19 says

{R(m,n, p)} ∪ {¬R(m′, n− 1, p) | m′ < m }

is satisfiable, a contradiction.

For example, (m,n, p) = (15, 13, 10) satisfies the conditions of Proposition 20, so
R(15, 13, 10) |= R(m′, n′, 10) only if m′ = 15 and n′ = 13.

Proposition 21. The following inference rule is valid:

R(m,n, p) 2(n− p+ 1) ≥ m > p 2(m− p+ 1) ≥ n > p p ≥ 2

R(m− 1, n− 1, p)
(R3–2)

Proof. Suppose 2(n−p+1) ≥ m > p, 2(m−p+1) ≥ n > p, and p ≥ 2. LetR be a ternary
relation such that A = π1(R), B = π2(R), C = π3(R), and |A| = m, |B| = n, |C| = p.
We show that there is an R′ ⊆ R such that |π1(R′)| = m − 1, |π2(R′)| = n − 1, and
|π3(R′)| = p.

Since n > p, Lemma 2 implies |ran(d(π3,2(R)))| ≤ p−1. So |B− ran(d(π3,2(R)))| ≥
n − p + 1. Let B′ be a subset of B − ran(d(π3,2(R))) with |B′| = n − p + 1. Since
p ≥ 2, B′ ⊂ B. By Lemma 8, there is a b ∈ B′ such that |(d(π1,2(R)))−1(b)| ≤
b(m− 1)/(n− p+ 1)c. Since 2(n− p+ 1) ≥ m, we have b(m− 1)/(n− p+ 1)c ≤ 1, so
(d(π1,2(R)))−1(b) is either empty or a singleton. Let

R1 = σ$26=b(R).



Since b 6∈ ran(d(π3,2(R))), we have (d(π3,2(R)))−1(b) = ∅. By Lemma 7, π2(R1) =
B − {b} and π3(R1) = C.

Case 1. (d(π1,2(R)))−1(b) = {a} for some a ∈ A. By Lemma 7, we have π1(R1) =
A− {a}, and we are done.

Case 2. (d(π1,2(R)))−1(b) = ∅. By Lemma 7, we have π1(R1) = A. By Lemma 2,
|ran(d(π3,1(R1)))| ≤ p− 1, so |A− ran(d(π3,1(R1)))| ≥ m− p+ 1. Let A′ be a subset of
A− ran(d(π3,1(R1))) with |A′| = m− p+ 1. By Lemma 8, we can find an a′ ∈ A′ such
that |(d(π2,1(R)))−1(a′)| ≤ b(n − 1)/(m − p + 1)c ≤ 1. So (d(π2,1(R)))−1(a′) is either
empty or a singleton. Since a′ 6∈ ran(d(π3,1(R1))), we have (d(π3,1(R1)))

−1(a′) = ∅.

Case 2.1. (d(π2,1(R)))−1(a′) = {b′} for some b′ ∈ B. Let

R2 = σ$16=a′(R).

We know that (d(π3,1(R1)))
−1(a′) = ∅. But since dom(π3,1(R1)) = π3(R1) = C =

π3(R) = dom(π3,1(R)), Lemma 4 implies d(π3,1(R1)) ⊇ d(π3,1(R)). It follows that
(d(π3,1(R)))−1(a′) = ∅ as well. By Lemma 7, we have π1(R2) = A − {a′}, π2(R2) =
B − {b′}, and π3(R2) = C.

Case 2.2. (d(π2,1(R)))−1(a′) = ∅. Since it is easy to see π2,1(R1) =
π2,1(σ$26=b(R)) = σ$16=b(π2,1(R)), Lemma 3 implies d(π2,1(R1)) = σ$16=b(d(π2,1(R))).
This means that (d(π2,1(R1)))

−1(x) = (d(π2,1(R)))−1(x) − {b} for every x ∈ A. In
particular, (d(π2,1(R1)))

−1(a′) = ∅− {b} = ∅. Let

R3 = σ$16=a′(R1).

Since we also know that (d(π3,1(R1)))
−1(a′) = ∅, Lemma 7 gives π1(R3) = π1(R1) −

{a′} = A− {a′}, π2(R3) = π2(R1) = B − {b}, and π3(R3) = π3(R1) = C.

Proposition 22. The following inference rule is valid:

R(m,n, p) m− b(m− 1)/(n− p+ 1)c ≥ n+ p− 3 n > p ≥ 2

R(m− b(m− 1)/(n− p+ 1)c, n− 1, p)
(R3–3)

Proof. Suppose that m− b(m− 1)/(n− p+ 1)c ≥ n+ p− 3 and n > p ≥ 2. Let R be
a ternary relation such that A = π1(R), B = π2(R), C = π3(R), and |A| = m, |B| =
n, |C| = p. We show that R(m− b(m− 1)/(n− p+ 1)c, n− 1, p) holds.

Let S = d(π3,2(R)) and T = d(π1,2(R)). Since n > p, |B − ran(S)| ≥ n − p + 1 by
Lemma 2. Since p ≥ 2, n−p+1 < n. By Lemma 8, there is a b ∈ B− ran(S) such that
|T−1(b)| ≤ b(m−1)/(n−p+1)c. Since b 6∈ ran(S), S−1(b) = ∅. Let R′ = σ$26=b(R). By
Lemma 7, π1(R

′) = A−T−1(b), π2(R′) = B−{b}, π3(R′) = C, so R(m′, n−1, p) for some
m′ ≥ m−b(m−1)/(n−p+1)c. Since m−b(m−1)/(n−p+1)c ≥ n+p−3 ≥ (n−1)+p−2,
Lemma 18 implies R(m− b(m− 1)/(n− p+ 1)c, n− 1, p).
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