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Abstract

I present a complete calculus for mixed inference (van Benthem 1991) with
composition and prove that it has the finite model property and is therefore
decidable. I also present a variant of the calculus complete with respect to
deterministic models, and mention the completeness and (un)decidability of
other styles of inference involving composition, including dynamic inference
(van Benthem 1991).

A recent trend in one corner of logic is to regard the meaning of a sentence as a
relation on information states. As discussed in van Benthem 1991, this ‘dynamic’
perspective gives rise to a number of new conceptions of inference, allowing different
answers to the question of what it means for conclusion C to follow from premises
P1, . . . , Pn. One such dynamic notion of inference is what van Benthem (1991) calls
mixed inference, which is of particular interest for its connection to Veltman’s (1991)
update semantics. In this paper, we investigate mixed inference with respect to
such standard logical questions as axiomatizability and decidability. Other dynamic
styles of inference will be discussed briefly in the last section of the paper.

1 Van Benthem’s Mixed Inference

1.1 Calculus M

In his 1991 paper, van Benthem introduces the following calculus M, to capture
the general properties of the style of inference that he calls mixed inference. M
is a calculus for deriving a sequent from a set of sequents. In M, a sequent is an
expression of the form X ⇒ d, where X is a finite sequence of atomic formulas,
and d is an atomic formula. In what follows, p, q, c, d (with or without subscripts)
range over atomic formulas, and X, Y , Z, W , V (with or without subscripts) range
over finite sequences of formulas.

Calculus M.

– Axioms: M has no axioms.

– Rules of Inference: M has two rules of inference:1

Left Monotonicity
X ⇒ d

p X ⇒ d

Left Cut
X ⇒ c X c Y ⇒ d

X Y ⇒ d

We write Γ `M I if Γ is a finite set of sequents and I is a sequent derivable
from sequents in Γ using the two rules of inference of M.

0I would like to thank Johan van Benthem for his guidance. I am also grateful to Jan van Eijck
and Yde Venema, who commented on earlier versions of the paper, and to Willem Groeneveld and
I. Németi, who gave me feedback at the Colloquium.

1In van Benthem 1991, the following version of Left Cut was used:

Left Cut
X ⇒ c Y X c Z ⇒ d

Y X Z ⇒ d

In the presence of Left Monotonicity, the two versions of Left Cut are equivalent.



1.2 Semantics

The intended semantics for M is as follows. A model for M is a structure M =
〈|M |, R0, R1, R2, . . .〉, where |M | is a non-empty set and each Ri is a binary relation
on |M |.

– The interpretation [[qi]]M of the i-th atomic formula qi is Ri.

– M |= p1 . . . pn ⇒ d if and only if range([[p1]]M ◦· · ·◦ [[pn]]M ) ⊆ fix([[d]]M ), where
fix(R) = {x | 〈x, x〉 ∈ R }.

We write M |= Γ if M |= I for all I in Γ.

– Γ |= I iff for all M , M |= Γ implies M |= I.

M is complete with respect to the intended semantics in the sense that Γ `M I
if and only if Γ |= I. This is proved in van Benthem 1991, by showing a method
of constructing for any finite set Γ of sequents a canonical model MΓ such that for
every sequent I, MΓ |= I if and only if Γ `M I.

1.3 Decidability

It is easy to see that M has the finite model property; i.e., M is complete with
respect to the class of finite models. This is so because the definition of M |= I
translates into a universal first-order sentence without function symbols. Suppose
M |= Γ and M 6|= p1 . . . pn ⇒ d, so that there are x0, . . . , xn such that 〈x0, x1〉 ∈
[[p1]]M , . . . , 〈xn−1, xn〉 ∈ [[pn]]M and 〈xn, xn〉 6∈ [[d]]M . Then the finite submodel M0

of M such that |M0| = {x0, . . . , xn} has M0 |= Γ and M0 6|= p1 . . . pn ⇒ d. That M
has the finite model property implies that it is decidable.

Grigori Mints (p.c.) has shown the decidability of M using an equivalent natural
deduction type calculus NDM, for which he proves a normalization theorem. (See
my notes Kanazawa 1993a, 1993b.)

2 Adding Connectives

The language of M has no connective, so M does not deal with complex formulas.
It would be interesting to see how M can be extended to languages with various
connectives. Here we consider two conjunctions, ∩ and •, which are interpreted as
intersection and composition, respectively. Let M be a model in the above sense.
The interpretation of a complex formula is given as follows. (Below, P , C, D (with
or without subscripts) range over (possibly complex) formulas.)

– [[D1 ∩D2]]M = [[D1]]M ∩ [[D2]]M .

– [[D1 •D2]]M = [[D1]]M ◦ [[D2]]M .

A sequent is now an expression of the form X ⇒ D, where X is a finite sequence of
(possibly complex) formulas, and D is a (possibly complex) formula. The definition
of truth and semantic consequence remains the same, except that we are now dealing
with complex formulas as well as atomic ones.

– M |= P1 . . . Pn ⇒ D if and only if range([[P1]]M ◦ · · · ◦ [[Pn]]M ) ⊆ fix([[D]]M ).

– Γ |= I iff for all M , M |= Γ implies M |= I.

The problem now is to find a complete set of rules governing the newly intro-
duced connectives.



2.1 Intersection

As usual, intersection is the easier one to deal with. It is quite straightforward to
extend M to the language with ∩ as its only connective. (Below, P [C] denotes a
formula with a specified subformula occurrence C.)

Calculus M(∩).

– Axioms: M(∩) has no axioms.

– Rules of Inference: M(∩) has the following rules of inference:

Left Monotonicity
X ⇒ D

P X ⇒ D

Left Cut
X ⇒ C X C Y ⇒ D

X Y ⇒ D

(∩ ⇒)
X Pi Y ⇒ D

X P1 ∩ P2 Y ⇒ D
i = 1, 2

(⇒ ∩1)
X ⇒ D1 X ⇒ D2

X ⇒ D1 ∩D2

(⇒ ∩2)
X ⇒ D1 ∩D2

X ⇒ Di
i = 1, 2

(Assoc. ∩ ⇒)
X P [((C1 ∩ C2) ∩ C3)] Y ⇒ D

X P [(C1 ∩ (C2 ∩ C3))] Y ⇒ D
↓↑ both ways

(Perm. ∩ ⇒)
X P [(C1 ∩ C2)] Y ⇒ D

X P [(C2 ∩ C1)] Y ⇒ D

(Contr. ∩ ⇒)
X P [(C ∩ C)] Y ⇒ D

X P [C] Y ⇒ D

The completeness of M(∩) can be shown by a minor modification of van Ben-
them’s (1991) construction. The finite model property of M(∩) is also obvious.

2.2 Composition

Let us now consider the language with • as its only connective. Although it is not
immediately obvious, the following set of rules turns out to constitute a complete
calculus for this language.

Calculus M(•).
– Axioms: M(•) has no axioms.

– Rules of Inference: M(•) has the following rules of inference:

Left Monotonicity
X ⇒ D

P X ⇒ D

Left Cut
X ⇒ C X C Y ⇒ D

X Y ⇒ D

(• ⇒1)
X P1 P2 Y ⇒ D

X P1 • P2 Y ⇒ D

(• ⇒2)
X P1 • P2 Y ⇒ D

X P1 P2 Y ⇒ D



(⇒ •1) X ⇒ D1 X ⇒ D2

X ⇒ D1 •D2

(⇒ •2) X D1 ⇒ D2 X ⇒ D1 •D3

X ⇒ (D1 •D2) •D3

(⇒ Assoc. •) X ⇒ D[((C1 • C2) • C3)]

X ⇒ D[(C1 • (C2 • C3))]
↓↑ both ways

Moreover, M(•) also enjoys the finite model property, and is therefore decidable.
This requires a slightly more elaborate argument than before.2

We prove the completeness and finite model property of M(•) in the following
three sections. Here, let us note

Lemma 2.1 The following rule is derivable in M(•):

(⇒ •3) X D1 ⇒ D2 X ⇒ D1

X ⇒ D1 •D2

Proof.

X ⇒ D1

X ⇒ D1 X D1 ⇒ D2 Left Cut
X ⇒ D2 (⇒ •1)

X ⇒ D1 •D2

Remark (⇒ •1) and (⇒ •3) can be thought of as special cases of (⇒ •2), where
D1 and D3 are ‘empty’, respectively.

3 Calculus Mµ

In proving the completeness and finite model property of M(•), it is convenient to
work with an equivalent calculus Mµ with multiple succedents, whose language has
no connective. An Mµ sequent is of the form X ⇒ Y , where X is a finite sequence
of atomic formulas and Y is a non-empty finite sequence of atomic formulas.

Calculus Mµ.

– Axioms: Mµ has no axioms.

– Rules of Inference: Mµ has three rules of inference:

Left Monotonicity
X ⇒ Y

p X ⇒ Y

Left Cut
X ⇒ Y X Y Z ⇒ W

X Z ⇒ W

(⇒ •) X Y ⇒ Z X ⇒ Y W

X ⇒ Y Z W

The definition of truth for Mµ sequents is as follows:

– M |= p1 . . . pn ⇒ d1 . . . dm if and only if range([[p1]]M◦· · ·◦[[pn]]M ) ⊆ fix([[d1]]M◦
· · · ◦ [[dm]]M ).

2That M(•) is decidable is perhaps mildly surprising, as it is easy to show that the corresponding
calculus for dynamic inference (van Benthem 1991) with composition is undecidable. See Section 8.



If I is an M(•) sequent, let I] be the Mµ sequent which results from erasing
all occurrences of • and parentheses in I.

Lemma 3.1 M |= I if and only if M |= I].

Lemma 3.2 Γ `M(•) I if and only if Γ] `Mµ I], where Γ] = {J ] | J ∈ Γ }.

By the above lemmas, to show the completeness and finite model property of
M(•), it is enough to show the completeness and finite model property of Mµ. In
what follows, we write ` for `Mµ.

4 Completeness

Given a finite set Γ of Mµ sequents, we construct a model MΓ such that for all Mµ
sequents I, MΓ |= I if and only if Γ ` I.

Definition For any finite set Γ of Mµ sequents, MΓ is the model such that

– |MΓ| consists of all finite sequences X of atomic formulas and all expressions
of the form X | Y , where X is a non-empty finite sequence of atomic formulas
and Y is any finite sequence of atomic formulas.

– For α, β ∈ |MΓ|, 〈α, β〉 ∈ [[p]]MΓ if and only if one of the following holds:

(i) β = α p

(ii) α = X and β = X p | for some X.

(iii) α = X Y , β = X, and Γ ` X ⇒ Y p for some X, Y .

(iv) α = X | Y Z, β = X | Y , and Γ ` X Y ⇒ Z p for some X, Y , Z.

In what follows, α, β, γ (with or without subscripts) range over elements of
|MΓ|. We use Λ to denote the empty expression (which is in |MΓ|). For every
α ∈ |MΓ|, let (α)† = X Y if α = X | Y , and (α)† = X if α = X. Let lh(α) be the
number of occurrences of atomic formulas in (α)†.

Definition An expression of the form

α0
d1−→ · · · dn−→ αn

is called a path (from α0 to αn) (in MΓ) if 〈α0, α1〉 ∈ [[d1]]MΓ , . . . , 〈αn−1, αn〉 ∈
[[dn]]MΓ . The label of this path is d1 . . . dn.

The bar | in X | Y ∈ |MΓ| is there to indicate that there is no way to get back

from X | Y to an initial segment X ′ of X. If α0 (= X | Y )
d1−→ · · · dn−→ αn is a

path, X | is an initial segment of each αi (0 ≤ i ≤ n).

Definition A path α0
d1−→ · · · dn−→ αn is called non-shrinking if lh(α0) ≤ lh(αi) for

0 ≤ i ≤ n. A non-shrinking path α0
d1−→ · · · dn−→ αn is called a loop if n ≥ 1 and α0

= αn. A minimal loop is a loop with no proper subloop (i.e., a loop such that no
proper subpath of it is a loop).

If α0
d1−→ · · · dn−→ αn is a non-shrinking path, α0 is an initial segment of each αi

(0 ≤ i ≤ n). The following lemma is straightforward.



Lemma 4.1 Let α and β be elements of |MΓ| such that β = αγ for some γ ∈ |MΓ|.
Then there exists a unique shortest path from α to β, and the label of this path is
(γ)†.

Lemma 4.2 A non-shrinking path from α to β that does not contain a loop is the
shortest path from α to β.

Proof. Let
α0

d1−→ · · · dn−→ αn (1)

be a non-shrinking path. (1) is the shortest path from α0 to αn if and only if
lh(αi+1) = lh(αi) + 1 for 0 ≤ i < n. Suppose that (1) is not the shortest path
from α0 to αn, so that for some i such that 0 ≤ i < n, lh(αi) ≥ lh(αi+1). Pick the
smallest such i. Then (1) must begin with

α0 (= α γ0)
d1−→ α0 γ1

d2−→ · · · di−→ α0 γi

where (γk)† = d1 . . . dk (0 ≤ k ≤ i), and αi+1 must be α0 γj for some j such that
0 ≤ j ≤ i. Thus,

α0 γj

dj+1−→ · · · di−→ α0 γi
di+1−→ α0 γj

is a loop, which is contained in (1).

Lemma 4.3 If α0
d1−→ · · · dn−→ αn is a minimal loop, then Γ ` (α0)† ⇒ d1 . . . dn.

Proof. The path α0
d1−→ · · · dn−1−→ αn−1 is non-shrinking and does not contain a

loop, so by Lemma 4.2, it is the shortest path from α0 to αn−1. Then it must be
that αn−1 = α0 d1 . . . dn−1, and the lemma follows.

Lemma 4.4 If α0
d1−→ · · · dn−→ αn is a loop, then Γ ` (α0)† ⇒ d1 . . . dn.

Proof. By induction on the number k of proper subloops in α0
d1−→ · · · dn−→ αn.

Case 1. k = 0. By Lemma 4.3.

Case 2. k ≥ 1. Take the leftmost minimal subloop αi
di+1−→ · · · dj−→ αj (= αi)

of α0
d1−→ · · · dn−→ αn. The path α0

d1−→ · · · di−→ αi is non-shrinking and does not
contain a loop, so by Lemma 4.2, it is the shortest path from α0 to αi. Note that
αi = α0γ for some γ. Then, by Lemma 4.1, d1 . . . di = (γ)†, so (αi)† = (α0)†d1 . . . di.
Hence by Lemma 4.3,

Γ ` (α0)† d1 . . . di ⇒ di+1 . . . dj (2)

Moreover, α0
d1−→ · · · di−→ αi (= αj)

dj+1−→ · · · dn−→ αn is a loop with no more than
k − 1 subloops, so by the induction hypothesis,

Γ ` (α0)† ⇒ d1 . . . di dj+1 . . . dn (3)

From (2) and (3), we get

Γ ` (α0)† ⇒ d1 . . . di di+1 . . . dj dj+1 . . . dn

by (⇒ •).



Corollary 4.5 If

α0
d1−→ · · · dn−→ αn

is a path and α0 = αn = X | for some X, then

Γ ` X ⇒ d1 . . . dn.

Proof. Every path that starts from X | must be non-shrinking, so α0
d1−→ · · · dn−→

αn is a loop.

Lemma 4.6 If Γ ` I, then MΓ |= I.
Proof. Assume that Γ ` p1 . . . pn ⇒ d1 . . . dm and there is a path

α0
p1−→ · · · pn−→ αn.

Given the construction of MΓ, it suffices to show

Γ ` (αn)† ⇒ d1 . . . dm (4)

for, then, there is a loop

αn
d1−→ αn d1

d2−→ · · · dm−1−→ αn d1 . . . dm−1
dm−→ αn.

Since Γ ` p1 . . . pn ⇒ d1 . . . dm by assumption, Γ ` (α0)† p1 . . . pn ⇒ d1 . . . dm by
Left Monotonicity. Note that, by Lemma 4.1, (α0)† is the label of the shortest path
from Λ to α0, and so (α0)† p1 . . . pn is the label of a path from Λ to αn. Thus, to
prove (4), it suffices to show that if there is a path

β0 (= Λ)
c1−→ · · · cl−→ βl (5)

and
Γ ` c1 . . . cl ⇒ d1 . . . dm (6)

then
Γ ` (βl)† ⇒ d1 . . . dm (7)

We prove this by induction on the number k of loops in (5).
Case 1. k = 0. Then, by Lemma 4.2, (5) is the shortest path from Λ to βl and,

by Lemma 4.1, c1 . . . cl = (βl)†. So (6) is (7).
Case 2. k ≥ 1. Take a leftmost loop

βi
ci+1−→ · · · cj−→ βj (= βi)

in (5). Since by Lemma 4.2 β0
c1−→ · · · ci−→ βi must be the shortest path from

β0 (= Λ) to βi, c1 . . . ci = (βi)† by Lemma 4.1. By Lemma 4.4, then,

Γ ` c1 . . . ci ⇒ ci+1 . . . cj (8)

From (6) and (8),
Γ ` c1 . . . ci cj+1 . . . cl ⇒ d1 . . . dm

by Left Cut. But

β0 (= Λ)
c1−→ · · · ci−→ βi (= βj)

cj+1−→ · · · cl−→ βl

is a path with no more than k− 1 loops, so the induction hypothesis applies to give
(7).



Theorem 1 MΓ |= I if and only if Γ ` I.

Proof. The if direction is Lemma 4.6, and the only if direction follows from
Corollary 4.5, noting that p1 . . . pn |∈ range([[p1]]MΓ ◦ · · · ◦ [[pn]]MΓ), and the fact
that every path starting from Λ must be non-shrinking (to take care of the case of
empty antecedent).

5 Filtration

That Mµ has the finite model property can be shown by the method of filtration.
Let a finite set Γ of Mµ sequents and an Mµ sequent p1 . . . pN ⇒ d1 . . . dL

be given, and suppose that M |= Γ and M 6|= p1 . . . pN ⇒ d1 . . . dL. Below, we
shall describe a method of constructing a finite model M0 such that M0 |= Γ and
M0 6|= p1 . . . pN ⇒ d1 . . . dL.

In this section, we write
x

q−→ y

to mean 〈x, y〉 ∈ [[q]]M . Let P be the (finite) set of atomic formulas that appear in
Γ ∪ {p1 . . . pN ⇒ d1 . . . dL}.

Definition Let w ∈ |M | be such that w ∈ range([[p1]]M ◦ · · · ◦ [[pN ]]) and w 6∈
fix([[d1]]M ◦ · · · ◦ [[dL]]M ). For each natural number n, define an equivalence relation
≡n on |M | by induction as follows. For every x, y ∈ |M |,

x ≡0 y iff x = y = w or x 6= w, y 6= w

x ≡n+1 y iff (i) x ≡n y and
(ii) for all z ∈ |M | and all q ∈ P,

if z
q−→ x, then for some v ∈ |M |,

v
q−→ y and z ≡n v

and vice versa.

Lemma 5.1 For each n, ≡n has only finitely many equivalence classes.

Proof. Induction on n. The basis n = 0 is obvious. For the induction step, assume
that ≡n has f(n) equivalence classes. The clause (ii) of the definition of ≡n+1 can
be rewritten as

{ 〈q, [z]≡n〉 | q ∈ P, z ∈ |M |, z q−→ x } = { 〈q, [z]≡n〉 | q ∈ P, z ∈ |M |, z q−→ y }.

([z]≡n = { v ∈ |M | | z ≡n v }.) This makes it clear that ≡n+1 has at most
f(n) · 2card(P)·f(n) equivalence classes. (card(A) is the cardinality of A.)

Lemma 5.2 Let k ≤ n. If

x0 ≡n y0
c1−→ x1 ≡n y1

c2−→ · · · ck−→ xk ≡n yk,

then there are z0, . . . , zk such that

x0 ≡n−k z0
c1−→ z1

c2−→ · · · ck−→ zk ≡n yk.

Proof. Induction on k. The case k = 0 is obvious. Let k ≥ 1 and suppose

x0 ≡n y0
c1−→ x1 ≡n y1

c2−→ · · · ck−→ xk ≡n yk.



By induction hypothesis, there are z1, . . . , zk such that

x1 ≡n−k+1 z1
c2−→ · · · ck−→ zk ≡n yk.

Since n− k + 1 ≥ 1 and y0
c1−→ x1 and x1 ≡n−k+1 z1, there must be a z0 such that

z0
c1−→ z1 and y0 ≡n−k z0. Since x0 ≡n y0, we have x0 ≡n−k z0.

Corollary 5.3 Let k ≤ n. If

w = x0 ≡n y0
c1−→ x1 ≡n y1

c2−→ · · · ck−→ xk ≡n yk = w,

then there are z0, . . . , zk such that

w = z0
c1−→ z1

c2−→ · · · ck−→ zk = w.

Definition For each n, define a model M/≡n as follows:

– |M/≡n| = { [x]≡n
| x ∈ |M | }.

– [[q]]M/≡n
= { 〈[x]≡n , [y]≡n〉 | 〈x, y〉 ∈ [[q]]M }.

By Lemma 5.1, M/≡n is a finite model for each n.
Let K be the maximal length of antecedents in Γ.

Lemma 5.4 If n ≥ K, M/≡n |= Γ.

Proof. Let c1 . . . ck ⇒ q1 . . . qj ∈ Γ, and let [yk]≡n
∈ range([[c1]]M/≡n

◦ · · · ◦
[[ck]]M/≡n

). Then there must be y0, x1, y1, . . . , xk−1, yk−1, xk such that

y0
c1−→ x1 ≡n y1

c2−→ · · · ck−→ xk ≡n yk.

k ≤ K ≤ n. Then, by Lemma 5.2, there are z0, . . . , zk such that

z0
c1−→ · · · ck−→ zk ≡n yk.

Since M |= Γ, there must be v0, . . . , vj such that

zk = v0
q1−→ · · · qj−→ vj = zk.

It follows that [yk]≡n ∈ fix([[q1]]M/≡n
◦ · · · ◦ [[qj ]]M/≡n

).

Lemma 5.5 If n ≥ L, [w]≡n
6∈ fix([[d1]]M/≡n

◦ · · · ◦ [[dL]]M/≡n
).

Proof. Immediate from Corollary 5.3 and the assumption about w.

Theorem 2 If n ≥ max(K, L), then M/≡n is a finite model such that M/≡n |= Γ
and M/≡n 6|= p1 . . . pN ⇒ d1 . . . dL.

Proof. By Lemmas 5.1, 5.4, 5.5, and the fact that [w]≡n
∈ range([[p1]]M/≡n

◦ · · · ◦
[[pN ]]M/≡n

).



6 Reduction to Propositional Dynamic Logic with
Intersection

Decidability of Mµ can also be shown by a translation into propositional dynamic
logic with intersection, which is known to be decidable (Danecki 1985). In what
follows, I assume familiarity with propositional dynamic logic.

Definition Let tr(p1 . . . pn ⇒ d1 . . . dm) = [p1] · · · [pn]〈(d1; · · · ; dm) ∩ (>)?〉>. Let
tr({I1, . . . , Ik}) = tr(I1) ∧ · · · ∧ tr(Ik).

Lemma 6.1 Let I be an Mµ sequent. M |= I in mixed inference if and only if
M |= tr(I) in propositional dynamic logic with intersection.

Lemma 6.2 Let Γ be a finite set of Mµ sequents, I be an Mµ sequent, and
q1, . . . , ql be the atomic formulas occurring in Γ ∪ {I}. Then Γ |= I in mixed
inference if and only if |= [(q1 ∪ · · · ∪ ql)∗]tr(Γ) → tr(I) in propositional dynamic
logic with intersection.

Proof. The if direction is clear. For the only if direction, assume that M, w |=
[(q1 ∪ · · · ∪ ql)∗]tr(Γ) and M, w |= ¬tr(I). Let M0 be the submodel of M whose
states are those that can be reached from w via (q1 ∪ · · · ∪ ql)∗. Then M0 |= tr(Γ)
and M0, w |= ¬tr(I). This means that M0 |= Γ and M0 6|= I, so Γ 6|= I.

7 Deterministic Models

Let us call a model M = 〈|M |, R0, R1, R2, . . .〉 where each Ri is a partial function
a deterministic model . It is interesting to consider mixed inference with respect
to the class of deterministic models, because of the close connection with update
semantics of Veltman (1991).3

In the simple case where there is no connective and the succedent of the sequent
is a single formula, addition of the following rule to M results in a calculus complete
with respect to deterministic models. Let us call the resulting calculus U.

Cautious Monotonicity
X ⇒ c X Y ⇒ d

X c Y ⇒ d

In the multiple succedent case (which is equivalent to having composition), more
rules become necessary:

Cautious Monotonicity
X ⇒ Y X Z ⇒ W

X Y Z ⇒ W

(⇒ •−1)
X Y ⇒ Z X ⇒ Y Z W

X ⇒ Y W

Rotation
X ⇒ Y Z

X Y ⇒ Z Y

The calculus which results from adding the above three rules to Mµ is called Uµ.
Uµ can be shown to be complete with respect to deterministic models. I state the
necessary results without proof.

Definition For any finite set Γ of multiple-succedent sequents, MUµ
Γ is the model

such that
3A difference between update semantics and mixed inference with respect to deterministic

models is that Reflexivity P ⇒ P holds in the former, but not in the latter.



– |MUµ
Γ | = {X | X is a finite sequence of atomic formulas and

¬∃X1X2X3(X = X1 X2 X3 ∧X2 6= Λ ∧ Γ `Uµ X1 ⇒ X2) }.

– [[p]]MUµ
Γ

= { 〈X, X p〉 | X, X p ∈ |MUµ
Γ | } ∪

{ 〈X Y,X〉 | X Y ∈ |MUµ
Γ |,Γ ` X ⇒ Y p }.

Lemma 7.1 In MUµ
Γ , the interpretation of each atomic formula is a total function.

Below, I write

X
d1 . . . dn−→ Y

to mean 〈X, Y 〉 ∈ [[d1]]MUµ
Γ
◦ · · · ◦ [[dn]]MUµ

Γ
.

Lemma 7.2 If Λ W−→ X, then Γ ∪ {X ⇒ Y } `Uµ W ⇒ Y for any Y .

Lemma 7.3 If X
Y−→ X, then Γ `Uµ X ⇒ Y .

Lemma 7.4 If MUµ
Γ |= X ⇒ Y , then Γ `Uµ X ⇒ Y .

Lemma 7.5 If Λ W−→ X, then Γ ∪ {W ⇒ Y } `Uµ X ⇒ Y for any Y .

Lemma 7.6 If Γ `Uµ X ⇒ Y and X ∈ |MUµ
Γ |, then X

Y−→ X.

Lemma 7.7 If Γ `Uµ X ⇒ Y , then MUµ
Γ |= X ⇒ Y .

Theorem 3 Γ `Uµ X ⇒ Y if and only if MUµ
Γ |= X ⇒ Y .

Theorem 3 shows that Uµ is complete with respect to models where the inter-
pretation of each atomic formula is a total function.

The calculus U for the single succedent case is decidable. As in the case of
M, this is easy to see by translation into first-order logic, noting that the partial
functionality of the relevant relations can be expressed by universal first-order sen-
tences. On the other hand, I have been unable to prove the decidability of Uµ.
The method of filtration used in Section 5 does not necessarily lead to deterministic
models, so proof of the finite model property would require additional work.4

8 Other Styles of Inference

Let us consider the styles of inference determined by the following stipulations:

(a) M |= P1 . . . Pn ⇒ C if and only if [[P1]]M ◦ · · · ◦ [[Pn]]M ⊆ [[C]]M .

(b) M |= P1 . . . Pn ⇒ C if and only if range([[P1]]M ◦ · · · ◦ [[Pn]]M ) ⊆ dom([[C]]M ).

(c) M |= P1 . . . Pn ⇒ C if and only if dom([[P1]]M ◦ · · · ◦ [[Pn]]M ) ⊆ dom([[C]]M ).

The first notion (a), called dynamic inference in van Benthem 1991, is axiom-
atized as follows. The first calculus L is for the single succedent (connective-free)
case, and the second calculus Lµ is for the multiple succedent case.

4Note also that the problem of whether or not a formula of propositional dynamic logic with
intersection has a deterministic model is Σ1

1-hard (Harel 1983).



Calculus L.

– Axiom: Reflexivity p ⇒ p

– Rule of Inference:

Cut
X ⇒ c Y c Z ⇒ d

Y X Z ⇒ d

Calculus Lµ.

– Axiom: Reflexivity X ⇒ X

– Rule of Inference:

Cut
X ⇒ Y Z Y W ⇒ V

Z X W ⇒ V

One can extract from Lµ the calculus L(•) for dynamic inference with composition.
L and L(•) are fragments of the Lambek calculus, and the completeness of L and
L(•) (or Lµ) is a consequence of the known strong completeness of the Lambek
calculus with respect to relational semantics (Mikulás 1992).

The problem ‘Γ `L X ⇒ d?’ is decidable in O(n5) time, while the problem
‘Γ `Lµ X ⇒ Y ?’ (or, equivalently, ‘Γ `L(•) X ⇒ D?’) is undecidable. This follows
from the observation that the first problem is equivalent to the universal membership
problem for context-free grammars, and the second to that for semi-Thue systems
(Type 0 grammars). That is, if we reverse the arrows of sequents, single-succedent
sequents behave just like rules of context-free grammars, and multiple-succedent
sequents behave just like unrestricted rewriting rules. Reflexivity and Cut have the
effect of taking the reflexive transitive closure of one-step rewriting, and derivations
in the two calculi precisely correspond to the derivations in the respective types
of grammars. The undecidability of Lµ (or, equivalently, of L(•)) contrasts with
the situation with mixed inference and the other two styles of inference considered
below.

The remaining two styles of inference, (b) and (c), are axiomatized by the fol-
lowing calculi Gµ and Eµ, respectively (in the multiple succedent case).5

Calculus Gµ.

– Axioms: Gµ has no axioms.

– Rules of Inference:

Left Monotonicity
X ⇒ Y

p X ⇒ Y

Right Anti-Monotonicity
X ⇒ Y d

X ⇒ Y

(⇒ •3) X Y ⇒ Z X ⇒ Y

X ⇒ Y Z

Calculus Eµ.

– Axiom: Reflexivity X ⇒ X

5The style of inference given by (b) is related to dynamic predicate logic of Groenendijk and
Stokhof (1991).



– Rules of Inference:

Right Monotonicity
X ⇒ Y

X p ⇒ Y

Right Cut
X ⇒ Y Z Y ⇒ W

Z X ⇒ W

The completeness of Gµ and of Eµ can be shown by a canonical model construction.
Here, I only note the definitions of canonical models.

Definition For any finite set Γ of multiple-succedent sequents, MGµ
Γ is the model

such that

– |MGµ
Γ | consists of all finite sequences X of atomic formulas and all expressions

of the form X | Y where X and Y are finite sequences of atomic formulas.

– For α, β ∈ |MGµ
Γ |, 〈α, β〉 ∈ [[p]]MGµ

Γ
if and only if one of the following holds:

(i) α = X and β = X p for some X.

(ii) α = X and β = X p | for some X.

(iii) α = X | Y , β = X | Y p, and Γ `Gµ X ⇒ Y p for some X, Y .

Definition For any finite set Γ of multiple-succedent sequents, MEµ
Γ is the model

such that

– |MEµ
Γ | consists of all expressions of the form X | Y where X and Y are finite

sequences of atomic formulas.

– For α, β ∈ |MEµ
Γ |, 〈α, β〉 ∈ [[p]]MEµ

Γ
if and only if α = X | Y , β = X | Y p, and

Γ `Eµ X ⇒ Y p for some X, Y .

The finite model property of Gµ can be proved in exactly the same way as for
Mµ, using the same definition of ≡n. As for Eµ, a minor modification (using the
‘forward’ version of ≡n) works. Also, the decidability of Gµ and Eµ can be shown
by reduction to propositional dynamic logic (this time using only regular program
constructions).
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