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Abstract

I present a new syntactical method for proving the Interpolation Theorem for the impli-
cational fragment of intuitionistic logic and its substructural subsystems. This method, like
Prawitz’s, works on natural deductions rather than sequent derivations, and, unlike exist-
ing methods, always finds a ‘strongest’ interpolant under a certain restricted but reasonable
notion of what counts as an ‘interpolant’.
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1 Introduction

This work is motivated by the following problem in the simply typed λ-calculus:

Problem. Given a normal term T [�x,�y], find two normal terms S[�x] and P[z, �y] such
that P[S[�x], �y]�β T [�x,�y].

The question of how to solve this problem occupies a central place in a certain com-
putational model of acquisition of word meanings by children (Kanazawa 2001,
2003).1 Finding one solution to this problem is easy; any instance of the problem
has the following solution:

S[�x] = λw.w�x,

P[z, �y] = z(λ�x.T [�x,�y]).

However, there are many other solutions, and one particularly interesting class
of solutions, from the standpoint of the computational model mentioned above,
consists of those solutions that assign a ‘simplest’ type to S.

It turns out that standard syntactical proofs of the Interpolation Theorem for
intuitionistic logic provide algorithms for finding such solutions. There are two
well-known syntactical methods for proving the Interpolation Theorem, one by
Maehara (1960) (see Troelstra and Schwichtenberg 2000 for the history and details
of the method) and one by Prawitz (1965). Maehara’s method works by induction

1We cannot not go into any details in this paper, but very briefly, the model assumes that meanings
of words and sentences, as well as ways of combining word meanings to build sentence meanings
(called “meaning recipes”), are represented by typed λ-terms. Meanings of words and sentences
contain constants that represent “semantic primitives”, but meaning recipes are pure λ-terms without
constants. Suppose that a child encounters a sentence whose meaning T [�c, �d] (with constants �c, �d) is
clear to her but which contains one word new to her. If she can tell that constants �c come from the
unknown word and �d come from the rest of the sentence, then finding out the meaning of the unknown
word consists in finding an appropriate pair of terms S[�x], P[z, �y] such that P[S[�x],�y]�β T [�x,�y].
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on cut-free sequent derivations, and Prawitz’s method works by induction on nor-
mal natural deductions. In these methods, what is to be proved by induction is the
following statement:

Interpolation Theorem. If � Γ,Δ⇒ C, then there is a formula E such that

• � Γ⇒ E;

• � E,Δ⇒ C;

• all propositional variables in E appear both in Γ and in Δ,C.

A formula E satisfying the above conditions is called an interpolation formula to
the sequent Γ,Δ⇒ C with respect to the partition (Γ;Δ) of its antecedent. Implicit
in the inductive proof of this statement is an algorithm that, given a cut-free deriva-
tion/normal deduction D : Γ,Δ ⇒ C, finds two cut-free derivations/normal deduc-
tions D1 : Γ⇒ E and D0 : E,Δ⇒ C. Crucially, the two derivations/deductions D1

and D0 found by these methods in fact satisfy much stronger properties. Assuming
that Γ,Δ ⇒ C consists of implicational formulas, let T [�x,�y], S[�x], P[z, �y] be the
λ-terms corresponding to D ,D1,D0, respectively, where the types of the variables
�x are the formulas in Γ, the types of the variables �y are the formulas in Δ, and the
type of z is E. Then one has:

(i) P[S[�x], �y]�β T [�x,�y];

(ii) Both in D1 : Γ ⇒ E and in D0 : E,Δ ⇒ C, no occurrence of a propositional
variable inside E is linked to another such occurrence or originates in an
application of Weakening.

Condition (ii) is stated in terms of sequent calculus. In a cut-free sequent deriva-
tion, two occurrences of a propositional variable in the endsequent are linked to
each other if they originate ‘opposite to’ each other in an initial sequent. The con-
dition is invariant across cut-free derivations corresponding to the same normal
natural deduction that are W-normal in the sense of Mints (1996), and it can be
stated directly in terms of natural deduction as well. So (ii) is a property of the
λ-terms S, P. Condition (i) is emphasized by Čubrić (1994) for Prawitz’s method,
and condition (ii) is a strengthening of one of the conditions stated by Carbone
(1997) in terms of sequent calculus.

Deviating from standard terminology, we say that a normal term S[�x] is an
interpolant to a normal term T [�x,�y] (with respect to the partition (�x;�y) of its free
variables) if there exists a normal term P[z, �y] such that S, P satisfy the conditions
(i), (ii). The condition (i) simply says that S, P gives a solution to an instance T of
our problem. The condition (ii) gives a sense in which E is ‘simplest’. It implies
that in D1 and D0, any occurrence of a propositional variable inside E must be
linked to an occurrence outside E, from which the third condition on E in the
above statement of the Interpolation Theorem follows.

There are two complications, however. One complication is that the Interpola-
tion Theorem in fact fails to hold in the above form for the implicational fragment
of intuitionistic logic, which corresponds to the simply typed λ-calculus. Even
when Γ,Δ ⇒ C is a sequent consisting entirely of implicational formulas, the in-
terpolation formula E sometimes has to contain conjunction. An example of such
a sequent is

p1, p1→ p2, p1→ p3, p2→ p3→ p4 ⇒ p4.
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p2 ∧ p3 is an interpolation formula to this sequent with respect to the partition
(p1, p1→ p2, p1→ p3; p2→ p3→ p4) of its antecedent, but there is no interpolation
formula in the implicational fragment.2

A way of circumventing this problem has been proposed by Wroński (1984).
His idea is to use a sequence of formulas E1, . . . , Em in place of a single formula
E in the statement of the Interpolation Theorem. Although Wroński used this idea
to prove an Interpolation Theorem for BCK-logic, it can readily be extended to the
implicational fragment of intuitionistic logic.3 Thus, we have

Interpolation Theorem. If � Γ,Δ ⇒ C, then there is a sequence of formulas
E1, . . . , Em such that

• � Γ⇒ Ei for i = 1, . . . ,m;

• � E1, . . . , Em,Δ⇒ C;

• all propositional variables in E1, . . . , Em appear both in Γ and in Δ,C.

We call a sequence of formulas E1, . . . , Em satisfying the above conditions an inter-
polation sequence to Γ,Δ⇒ C with respect to the partition (Γ;Δ). Both Maehara’s
and Prawitz’s method can be easily modified to accommodate this change, as we
shall see in detail below. In the above example, we can take p2, p3 as the desired
interpolation sequence.

A second complication is that interpolants in the sense of (i), (ii) (modified to
allow sequences of terms S1, . . . , Sm in place of S) are by no means unique. In
fact, if one applies Maehara’s method (in the modified form) to different cut-free
sequent derivations corresponding to the λ-term T [�x,�y], one may obtain different
interpolants. Moreover, there are interpolants that one cannot find by Maehara’s
method no matter which cut-free derivation corresponding to T [�x,�y] one starts
with. As for Prawitz’s method, it finds one particular interpolant, but there does
not seem to be any good way of characterizing this interpolant except to say that it
is the one found by Prawitz’s method. In particular, both methods sometimes miss
interpolants that are ‘strongest’ in the sense that their types imply the types of all
other interpolants.

In section 3.5 of this paper, we give an algorithm for finding a strongest in-
terpolant. This algorithm works by induction on normal natural deductions, but is
otherwise quite different from Prawitz’s method.

Although we focus on intuitionistic logic, the results in this paper are designed
to relativize to substructural subsystems of intuitionistic implicational logic; hence
the plural “logics” in the title.4

2 Interpolation in Sequent Calculus

In this section, we describe our modification of Maehara’s method for the impli-
cational fragment of the sequent calculus LJ for intuitionistic logic, as formulated

2In relation to this, the condition (ii) must be restated in a somewhat weaker form when the
interpolation formula is allowed to contain conjunction. In sequent calculus, the present formulation
of (ii) can be maintained by adopting a multiplicative version of (∧⇒) in place of Gentzen’s (1935)
rules in LJ.

3Pentus (1997) used the same method to prove interpolation for the product-free Lambek calculus.
4See Ono 1998 for information on interpolation for substructural logics.
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by Gentzen (1935), and prove that the method satisfies conditions similar to (i) and
(ii) in section 1. For this purpose, we use a sequent calculus with λ-term labels,
which essentially encode a translation from LJ derivations to NJ deductions. In
this calculus, a sequent is of the form

x1 : A1, . . . , xn : An ⇒ T : C

where x1, . . . , xn are distinct variables, A1, . . . , An,C are formulas, and T is a term
whose free variables are among x1, . . . , xn. The antecedent of such a sequent is
treated as a set {x1 : A1, . . . , xn : An} of variable-labeled formulas. Such a set is
called a context. We assume that each variable is preassigned a type, so that x : A
is short for xA : A, etc. We use Γ,Δ, . . . to denote contexts. If Γ and Δ are contexts,
we write Γ,Δ to denote Γ ∪ Δ provided that Γ ∩ Δ = ∅.

LJ→.

Initial sequents.
x : A⇒ x : A

Operational rules for→.

Γ⇒ U : A y : B,Δ⇒ T : C
x : A→ B,Γ,Δ⇒ T [xU/y] : C

(→⇒)
x : A,Γ⇒ T : B

Γ⇒ λx.T : A→ B
(⇒→)

Structural rules.

y : A, z : A,Γ⇒ T : B
x : A,Γ⇒ T [x/y, x/z] : B Contraction

Γ⇒ T : B
x : A,Γ⇒ T : B

Weakening

Γ⇒ U : A x : A,Δ⇒ T : B
Γ,Δ⇒ T [U/x] : B Cut

In (→⇒), Contraction, and Weakening, x is required to be a fresh variable. By
the convention on the use of commas, comma-separated parts of antecedents in
these rules must be disjoint. Unlike in Gentzen’s original formulation, there is no
structural rule of Interchange because antecedents of sequents are treated as sets of
variable-labeled formulas.

If D is a derivation of Γ ⇒ T : C, we write D : Γ ⇒ T : C to express this fact.
The final occurrence of Γ⇒ T : C in D is called the endsequent of D .

Cut is eliminable from derivations in LJ→ in the sense that whenever one has a
derivation D : Γ⇒ T : C, one can find another derivation D ′ : Γ⇒ |T |β : C which
contains no application of Cut, where |T |β is the normal form of T . By leaving
out one or both of the structural rules of Contraction and Weakening from LJ→,
one obtains sequent systems for various substructural logics: the relevance logic
R→, which lacks Weakening; BCK-logic, which lacks Contraction; and BCI-logic,
which lacks both Contraction and Weakening.

We take for granted the notion of variable renaming. If D is a derivation of
Γ⇒ T : C and σ is a variable renaming, Dσ is a derivation of Γσ⇒ Tσ : C.

Since λ-term labels appearing in succedents in a derivation can always be re-
covered from the other information in the derivation, we sometimes omit those
labels. We may also occasionally allow ourselves to omit variable labels in the
antecedent for the sake of brevity, even though they are not redundant in the same
way.
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Lemma 1. The following rules are admissible:

Γ⇒ U : A y : B,Δ⇒ T : C
x : A→ B,Γ ∪ Δ⇒ T [xU/y] : C

(→⇒)† Γ⇒ U : A x : A,Δ⇒ T : B
Γ ∪ Δ⇒ T [U/x] : B

Cut†

where it is allowed that Γ ∩ Δ � ∅.

Proof. Let

Γ = Γ′, x1 : D1, . . . , xn : Dn,

Δ = Δ′, x1 : D1, . . . , xn : Dn,

where Γ′ ∩ Δ′ = ∅ and let y1, . . . , yn, z1, . . . , zn be fresh variables. Let σ =
[y1/x1, . . . , yn/xn], τ = [z1/x1, . . . , zn/xn], so that Γσ ∩ Δτ = ∅. If D1 and D2

are derivations of Γ⇒ U : A and y : B,Δ⇒ T : C, respectively, we have

D1σ
Γ′, y1 : D1, . . . , yn : Dn ⇒ Uσ : A

D2τ
y : B,Δ′, z1 : D1, . . . , zn : Dn ⇒ Tτ : C

x : A→ B,Γ′, y1 : D1, . . . , yn : Dn,Δ′, z1 : D1, . . . , zn : Dn ⇒ (Tτ)[x(Uσ)/y] : C
(→⇒)

x : A→ B,Γ′, x1 : D1, . . . , xn : Dn,Δ′ ⇒ T [xU/y] : C
Contr

The admissibility of Cut† is proved similarly. �

We adopt the following convention: When we write a derivation in which
(→⇒)† or Cut† is used, we mean a derivation in which these rules are eliminated
in the way described in the above proof.

2.1 Links in sequent calculus

We associate with each occurrence of a propositional variable in a LJ→ derivation
two ports, and call one the top port and the other the bottom port. We decorate LJ→
derivations with links connecting two ports as follows (p stands for an arbitrary
propositional variable):

Initial sequents.
x : A[p]⇒ x : A[p]

• We draw a link connecting the top port of an occurrence of p in A in the
antecedent with the top port of the corresponding occurrence of p in A in the
succedent.

Operational rules for→.

(→⇒).
Γ[p]⇒ U : A[p] y : B[p],Δ[p]⇒ T : C[p]

x : A[p]→ B[p],Γ[p],Δ[p]⇒ T [xU/y] : C[p]
(→⇒)

We draw a link between

• the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the left premise;

• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the right premise;
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• the top port of an occurrence of p in C in the conclusion and the bottom port
of the corresponding occurrence of p in C in the right premise;

• the top port of an occurrence of p in Γ in the conclusion and the bottom port
of the corresponding occurrence of p in Γ in the left premise;

• the top port of an occurrence of p in Δ in the conclusion and the bottom port
of the corresponding occurrence of p in Δ in the right premise.

(⇒→).
x : A[p],Γ[p]⇒ T : B[p]

Γ[p]⇒ λx.T : A[p]→ B[p]
(⇒→)

We draw a link between

• the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the premise;

• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

• the top port of an occurrence of p in Γ in the conclusion and the bottom port
of the corresponding occurrence of p in Γ in the premise.

Structural rules.

Contraction.

y : A[p], z : A[p],Γ[p]⇒ T : B[p]

x : A[p],Γ[p]⇒ T [x/y, x/z] : B[p]
Contraction

We draw a link between

• the top port of an occurrence of p in x : A in the conclusion and the bottom
port of the corresponding occurrence of p in y : A in the premise;

• the top port of an occurrence of p in x : A in the conclusion and the bottom
port of the corresponding occurrence of p in z : A in the premise;

• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

• the top port of an occurrence of p in Γ in the conclusion and the bottom port
of the corresponding occurrence of p in Γ in the premise.

Weakening.

Γ[p]⇒ T : B[p]

x : A,Γ[p]⇒ T : B[p]
Weakening

We draw a link between
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• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

• the top port of an occurrence of p in Γ in the conclusion and the bottom port
of the corresponding occurrence of p in Γ in the premise.

Cut.
Γ[p]⇒ U : A[p] x : A[p],Δ[p]⇒ T : B[p]

Γ[p],Δ[p]⇒ T [U/x] : B[p]
Cut

We draw a link between

• the bottom port of an occurrence of p in A in the left premise and the bottom
port of the corresponding occurrence of p in A in the right premise;

• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the right premise;

• the top port of an occurrence of p in Γ in the conclusion and the bottom port
of the corresponding occurrence of p in Γ in the left premise;

• the top port of an occurrence of p in Δ in the conclusion and the bottom port
of the corresponding occurrence of p in Δ in the right premise.

Definition 2. A path is a sequence of the form

(ρ−1 , o1, ρ
+
1 , . . . , ρ

−
n , on, ρ

+
n )

(n ≥ 1) such that

• for 1 ≤ i ≤ n, oi is an occurrence of a propositional variable and ρ−i and ρ+i
are distinct ports of oi;

• for 1 ≤ i ≤ n − 1, there is a link between ρ+i and ρ−i+1.

We say that a path (ρ−1 , o1, ρ
+
1 , . . . , ρ

−
n , on, ρ

+
n ) starts in o1 and ends in on. A

path goes through ports of various occurrences of the same propositional variable.
Two occurrences of a propositional variable are linked to each other if there is a
path that starts in one and ends in the other. Since the reverse πR of a path π is a
path, paths always come in pairs. We really think of π and πR as the same object,
but we have to distinguish them formally in order to talk about how different paths
correspond to each other.5

A maximal path is a path that is not a proper subpath of any other path. A
maximal path starts and ends either inside the endsequent or inside the principal
formula of an application of Weakening. In a cut-free derivation, at least one of the
endpoints of a maximal path must be inside the endsequent. A cycle is a path that
starts and ends in the same occurrence of a propositional variable. It is easy to see
that no cycle can occur in a cut-free derivation (cf. Carbone 1997).

Consider the following reduction steps for cut elimination:6

5Carbone’s (1997) notion of logical path is designed to pick out one path from each pair {π, πR}.
6These reduction steps are found in Borisavljević 1999, modulo the absence of Interchange.
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D1
Γ⇒ C

D2
D,Δ⇒ A

C→ D,Γ,Δ⇒ A
(→⇒) D3

A,Θ⇒ B
C→ D,Γ,Δ,Θ⇒ B

Cut

� D1
Γ⇒ C

D2
D,Δ⇒ A

D3
A,Θ⇒ B

D,Δ,Θ⇒ B
Cut

C→ D,Γ,Δ,Θ⇒ B
(→⇒)

(C1)

D1
Γ⇒ A

D2
A,Δ⇒ C

D3
D,Θ⇒ B

C→ D, A,Δ,Θ⇒ B
(→⇒)

C→ D,Γ,Δ,Θ⇒ B
Cut

�

D1
Γ⇒ A

D2
A,Δ⇒ C

Γ,Δ⇒ C
Cut D3

D,Θ⇒ B
C→ D,Γ,Δ,Θ⇒ B

(→⇒)
(C2)

D1
Γ⇒ A

D2
Δ⇒ C

D3
D, A,Θ⇒ B

C→ D, A,Δ,Θ⇒ B
(→⇒)

C→ D,Γ,Δ,Θ⇒ B
Cut

� D2
Δ⇒ C

D1
Γ⇒ A

D3
D, A,Θ⇒ B

D,Γ,Θ⇒ C
Cut

C→ D,Γ,Δ,Θ⇒ B
(→⇒)

(C3)

D1
Γ⇒ A

D2
C, A,Δ⇒ D

A,Δ⇒ C→ D
(⇒→)

Γ,Δ⇒ C→ D
Cut

�

D1
Γ⇒ A

D2
C, A,Δ⇒ D

C,Γ,Δ⇒ D
Cut

Γ,Δ⇒ C→ D
(⇒→)

(C4)

D1
A,Γ⇒ B

Γ⇒ A→ B
(⇒→)

D2
Δ⇒ A

D3
B,Θ⇒ C

A→ B,Δ,Θ⇒ C
(→⇒)

Γ,Δ,Θ⇒ C
Cut

� D2
Δ⇒ A

D1
A,Γ⇒ B

D3
B,Θ⇒ C

A,Γ,Θ⇒ C
Cut

Δ,Γ,Θ⇒ C
Cut

(C5)

D1
C,C,Γ⇒ A

C,Γ⇒ A
Contr D2

A,Δ⇒ B
C,Γ,Δ⇒ B

Cut
�

D1
C,C,Γ⇒ A

D2
A,Δ⇒ B

C,C,Γ,Δ⇒ B
Cut

C,Γ,Δ⇒ B
Contr

(C6)

D1
Γ⇒ A

D2
C,C, A,Δ⇒ B

C, A,Δ⇒ B
Contr

C,Γ,Δ⇒ B
Cut

�

D1
Γ⇒ A

D2
C,C, A,Δ⇒ B

C,C,Γ,Δ⇒ B
Cut

C,Γ,Δ⇒ B
Contr

(C7)

D1
Γ⇒ A

D2
A, A,Δ⇒ B

A,Δ⇒ B
Contr

Γ,Δ⇒ B
Cut

� D1
Γ⇒ A

D1
Γ⇒ A

D2
A, A,Δ⇒ B

A,Γ,Δ⇒ B
Cut

Γ,Δ⇒ B
Cut†

(C8)

D1
Γ⇒ A

C,Γ⇒ A
Weak D2

A,Δ⇒ B
C,Γ,Δ⇒ B

Cut
�

D1
Γ⇒ A

D2
A,Δ⇒ B

Γ,Δ⇒ B
Cut

C,Γ,Δ⇒ B
Weak

(C9)

D1
Γ⇒ A

D2
A,Δ⇒ B

C, A,Δ⇒ B
Weak

C,Γ,Δ⇒ B
Cut

�

D1
Γ⇒ A

D2
A,Δ⇒ B

Γ,Δ⇒ B
Cut

C,Γ,Δ⇒ B
Weak

(C10)

D1
Γ⇒ A

D2
Δ⇒ B

A,Δ⇒ B
Weak

Γ,Δ⇒ B
Cut

�
D2

Δ⇒ B
Γ,Δ⇒ B

Weak
(C11)

D1
Γ⇒ A A⇒ A

Γ⇒ A
Cut

�
D1

Γ⇒ A(C12)

A⇒ A
D1

A,Γ⇒ A
A,Γ⇒ A

Cut
�

D1
A,Γ⇒ A(C13)

Except for (C8) and (C11), there is a one-one correspondence between the maximal
paths in the original derivation and the derivation after the reduction. Let us write
D �	 D ′ just in case D reduces to D ′ by repeated applications of (C1), (C2), (C3),
(C4), (C5), (C6), (C7), (C9), (C10), (C12), (C13). Since this notion of reduction
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does not involve the problematic case (C8) of cut-elimination, it is clear that the
converse of the relation �	 ∩ � is well-founded, i.e., every reduction sequence
terminates.

Definition 3. A cut-free derivation in LJ→ is W-normal if none of the following
reduction steps is applicable to it:7

D1
Γ⇒ A

D,Γ⇒ A Weak D2
B,Δ⇒ C

A→ B,D,Γ,Δ⇒ C
(→⇒)

�

D1
Γ⇒ A

D2
B,Δ⇒ C

A→ B,Γ,Δ⇒ C
(→⇒)

D, A→ B,Γ,Δ⇒ C Weak

D1
Γ⇒ A

D2
B,Δ⇒ C

D, B,Δ⇒ C Weak

A→ B,Γ,D,Δ⇒ C
(→⇒)

�

D1
Γ⇒ A

D2
B,Δ⇒ C

A→ B,Γ,Δ⇒ C
(→⇒)

D, A→ B,Γ,Δ⇒ C Weak

D1
Γ⇒ A

D2
Δ⇒ C

B,Δ⇒ C Weak

A→ B,Γ,Δ⇒ C
(→⇒)

�
D2

Δ⇒ C
A→ B,Γ,Δ⇒ C Weak

D1
A,Γ⇒ B

C, A,Γ⇒ B Weak

C,Γ⇒ A→ B
(⇒→)

�

D1
A,Γ⇒ B

Γ⇒ A→ B
(⇒→)

C,Γ⇒ A→ B Weak

D1
Γ⇒ B

C,Γ⇒ B Weak

A,C,Γ⇒ B Weak

C,Γ⇒ A→ B
(⇒→)

�

D1
Γ⇒ B

A,Γ⇒ B Weak

Γ⇒ A→ B
(⇒→)

C,Γ⇒ A→ B Weak

D1
A, A,Γ⇒ B

C, A, A,Γ⇒ B Weak

C, A,Γ⇒ B Contr
�

D1
A, A,Γ⇒ B

A,Γ⇒ B Contr

C, A,Γ⇒ B Weak

D1
A,Γ⇒ B

A, A,Γ⇒ B Weak

A,Γ⇒ B Contr
�

D1
A,Γ⇒ B

Every cut-free derivation can be put into a W-normal form with the same λ-
term by repeatedly applying these reduction steps.

Definition 4. A cut-free derivation in LJ→ is WC-normal if it is W-normal and
moreover if none of the following reduction steps is applicable to it:8

D1
D,D,Γ⇒ A

D,Γ⇒ A Contr D2
B,Δ⇒ C

A→ B,D,Γ,Δ⇒ C
(→⇒)

�

D1
D,D,Γ⇒ A

D2
B,Δ⇒ C

A→ B,D,D,Γ,Δ⇒ C
(→⇒)

A→ B,D,Γ,Δ⇒ C Contr

7The present definition is not exactly the same as that found in Mints 1996 (restricted to the
implicational fragment), since the latter uses the additive version of (⇒→).

8Again this definition is slightly different from Mints 1996 due to the difference in the formulation
of (→⇒).
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D1
Γ⇒ A

D2
B,D,D,Δ⇒ C

B,D,Δ⇒ C Contr

A→ B,Γ,D,Δ⇒ C
(→⇒)

�

D1
Γ⇒ A

D2
B,D,D,Δ⇒ C

A→ B,Γ,D,D,Δ⇒ C
(→⇒)

A→ B,Γ,D,Δ⇒ C Contr

D1
Γ⇒ A

D2
B, B,Δ⇒ C

B,Δ⇒ C Contr

A→ B,Γ,Δ⇒ C
(→⇒)

�
D1

Γ⇒ A

D1
Γ⇒ A

D2
B, B,Δ⇒ C

A→ B,Γ, B,Δ⇒ C
(→⇒)

A→ B, A→ B,Γ,Δ⇒ C
(→⇒)†

A→ B,Γ,Δ⇒ C Contr

D1
C,C, A,Γ⇒ B

C, A,Γ⇒ B Contr

C,Γ⇒ A→ B
(⇒→)

�

D1
C,C, A,Γ⇒ B

C,C,Γ⇒ A→ B
(⇒→)

C,Γ⇒ A→ B Contr

D1
C,C,Γ⇒ B

C,Γ⇒ B Contr

A,C,Γ⇒ B Weak

C,Γ⇒ A→ B
(⇒→)

�

D1
C,C,Γ⇒ B

A,C,C,Γ⇒ B Weak

C,C,Γ⇒ A→ B
(⇒→)

C,Γ⇒ A→ B Contr

D1
An,C,C,Γ⇒ B

An,C,Γ⇒ B Contr

A,C,Γ⇒ B Contr

C,Γ⇒ A→ B
(⇒→)

�

D1
An,C,C,Γ⇒ B
A,C,C,Γ⇒ B Contr

C,C,Γ⇒ A→ B
(⇒→)

C,Γ⇒ A→ B Contr

Every cut-free W-normal derivation can be put into a WC-normal form with
the same λ-term by repeatedly applying these reduction steps.

2.2 Maehara’s method

Maehara’s (1960) method is the most commonly used syntactical method for prov-
ing interpolation (see Troelstra and Schwichtenberg 2000). We reformulate it using
Wroński’s (1984) idea of using sequences of formulas in place of single interpo-
lation formulas, and prove that the method satisfies stronger conditions than those
stated by the usual form of the Interpolation Theorem.

Notations. We will often have to refer to a large number of sequences, which
necessitates compact notations for representing them. In what follows, we will use
the following abbreviatory conventions:

en
1 abbreviates e1, . . . , en, where e is a letter (possibly with diacritics).

(e[i])n
i=1 abbreviates e[1], . . . , e[n], where e[i] is an expression containing i.

(e[i])i∈S abbreviates e[s1], . . . , e[sn], where e[i] is as above and

s1, . . . , sn lists the elements of S in increasing order.
�A→ B abbreviates A1→ · · · → An→ B if �A represents A1, . . . , An.

If R is a two-premise rule and �D represents D1, . . . ,Dn,

D0
�D

Γ⇒ C R abbreviates

D0 D1

...

R
Dn

Γ⇒ C R
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�D D0

Γ⇒ C R abbreviates D1

Dn D0

...

R

Γ⇒ C R

If e is any expression, we use
(e)◦

as a metavariable whose value is either an empty expression or e. When we use
the same expression (e)◦ more than once, the different occurrences of (e)◦ are not
necessarily intended to stand for the same thing.

Definition 5. Let Γ,Δ ⇒ T : C be a sequent such that T is normal. A sequence of
cut-free W-normal derivations (Di : Γi ⇒ Si :Ei)m

i=1 is said to be an LJ→-interpolant
to Γ,Δ ⇒ T : C with respect to the partition (Γ;Δ), if there exists a cut-free W-
normal derivation D0 : (zi : Ei)m

i=1,Δ0 ⇒ P : C such that the following conditions
hold:9

1. Γi ⊆ Γ (i = 1, . . . ,m);

2. Δ0 ⊆ Δ;

3. P[(Si/zi)m
i=1]�β T ;

4. In Di (i = 1, . . . ,m), every maximal path starting inside the succedent Ei of
the endsequent ends inside the antecedent Γi of the endsequent;

5. In D0, every maximal path starting inside (zi : Ei)m
i=1 in the endsequent ends

inside Δ0 or C in the endsequent.

In this case, we call D0 an auxiliary derivation for Dm
1 ,D , and we say that Dm

1 is
an interpolant to Γ,Δ⇒ T : C (with respect to the partition (Γ;Δ)) via D0.

Theorem 6. Given a cut-free derivation D : Γ,Δ ⇒ T : C, one can find an LJ→-
interpolant to Γ,Δ⇒ T : C with respect to the partition (Γ;Δ).

If Γ is a context, we let Γ− denote the multiset of formulas which is the result
of deleting all variables and colons from Γ. It is easy to see that Theorem 6 implies
the modification of the usual statement of the Interpolation Theorem mentioned in
section 1:

Lemma 7. If (Di : Γi ⇒ Si : Ei)m
i=1 is an LJ→-interpolant to Γ,Δ ⇒ T : C with

respect to the partition (Γ;Δ), then E1, . . . , Em is an interpolation sequence for
Γ−,Δ− ⇒ C with respect to the partition (Γ−;Δ−).

Proof of Theorem 6. We construct cut-free W-normal derivations (Di : Γi ⇒ Si :
Ei)m

i=1,D0 : (zi : Ei)m
i=1,Δ0 ⇒ P : C satisfying the conditions 1–5 of Definition 5 by

induction on cut-free derivation D : Γ,Δ ⇒ T : C. We choose to construct at each
step W-normal derivations that do not end in Weakening.

Induction Basis. D is an initial sequent x : A ⇒ x : A. Case 1. Γ = x : A and
Δ = ∅. Then we can take m = 1, D1 = D , and D0 = z1 : A⇒ z1 : A. Case 2. Γ = ∅
and Δ = x : A. Then we can take m = 0, D0 = D . In both cases, conditions 1–5 are
clearly satisfied.

9We require W-normality so that LJ→-interpolants translate into interpolants in natural deduction.
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Induction Step.
Case 1. The last inference of D is (→⇒):

D ′
Γ′,Δ′ ⇒ U : A

D ′′
y : B,Γ′′,Δ′′ ⇒ Q : C

x : A→ B,Γ′,Γ′′,Δ′,Δ′′ ⇒ Q[xU/y] : C
(→⇒)

where Γ′,Γ′′ ⊆ Γ and Δ′,Δ′′ ⊆ Δ. There are two subcases depending on whether
x : A→ B is in Γ.

Case 1.1. Γ = x : A → B,Γ′,Γ′′ and Δ = Δ′,Δ′′. We apply the induction
hypothesis to D ′ with respect to the partition (Δ′;Γ′) and to D ′′ with respect to
the partition (y : B,Γ′′;Δ′′). From D ′, we obtain n ≥ 0, (D ′i : Δ′i ⇒ S′i : Fi)n

i=1,
D0 : (wi : Fi)n

i=1,Γ
′
0 ⇒ P′ : A satisfying the required properties, namely:

(1) i. Δ′i ⊆ Δ′ (i = 1, . . . , n);

ii. Γ′0 ⊆ Γ′;
iii. P′[(S′i/wi)n

i=1]�β U;

iv. In D ′i (i = 1, . . . , n), every maximal path starting inside the succedent Fi

of the endsequent ends inside the antecedent Δ′i of the endsequent.

v. In D ′0, every maximal path starting inside (wi : Fi)n
i=1 in the endsequent

ends inside Γ′0 or A in the endsequent.

From D ′′, we obtain p ≥ 0, (D ′′i : Θi,Γ′′i ⇒ S′′i :Gi)
p
i=1, D ′′0 : (vi:Gi)

p
i=1,Δ

′′
0 ⇒ P′′:C

satisfying the required properties, namely:

(2) i. Θi ⊆ y : B and Γ′′i ⊆ Γ′′ (i = 1, . . . , p);

ii. Δ′′0 ⊆ Δ′′;
iii. P′′[(S′′i /vi)

p
i=1]�β Q;

iv. In D ′′i (i = 1, . . . , p), every maximal path starting inside the succedent Gi

of the endsequent ends inside the antecedent Θi,Γ′′i of the endsequent.

v. In D ′′0 , every maximal path starting inside (vi : Gi)
p
i=1 in the endsequent

ends inside Δ′′0 or C in the endsequent.

Let

P+ = { i | 1 ≤ i ≤ p,Θi = y : B },
P− = {1, . . . , p} − P+.

Let m = p, and let

Di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D ′0
(wi : Fi)n

i=1,Γ
′
0 ⇒ P′ : A

D ′′i
y : B,Γ′′i ⇒ S′′i : Gi

x : A→ B, (wi : Fi)n
i=1,Γ

′
0,Γ
′′
i ⇒ S′′i [xP′/y] : Gi

(→⇒)

x : A→ B,Γ′0,Γ
′′
i ⇒ λwn

1.S
′′
i [xP′/y] : Fn

1 →Gi
(⇒→)

for i ∈ P+,

D ′′i for i ∈ P−,

D0 =

((
D ′i

Δ′i ⇒ S′i : Fi

)n
i=1

)|P+ |
D ′′0

(vi : Gi)
p
i=1,Δ

′′
0 ⇒ P′′ : C

(zi : Fn
1 →Gi)i∈P+ , (vi : Gi)i∈P− ,Δ′1 ∪ · · · ∪ Δ′n,Δ′′0 ⇒ P′′[(ziS′n1/vi)i∈P+] : C

(→⇒)†
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We show that conditions 1–5 hold of D p
1 and D0. For condition 1, we have

(x : A→ B,Γ′0)◦,Γ′′i ⊆ x : A→ B,Γ′,Γ′′ by (1.ii) and (2.i)

= Γ

For condition 2, we have

Δ′1 ∪ · · · ∪ Δ′n,Δ′′0 ⊆ Δ′,Δ′′ by (1.i) and (2.ii)

= Δ

For condition 3, we have

P′′[(ziS
′n
1/vi)i∈P+][(λwn

1.S
′′
i [xP′/y]/zi)i∈P+ , (S′′i /vi)i∈P−]
= P′′[((λwn

1.S
′′
i [xP′/y])S′n1/vi)i∈P+][(S′′i /vi)i∈P−]

�β P′′[(S′′i [xP′/y][(S′i/wi)
n
i=1]/vi)i∈P+][(S′′i /vi)i∈P−]

= P′′[(S′′i [xP′[(S′i/wi)
n
i=1]/y]/vi)i∈P+][(S′′i /vi)i∈P−]

�β P′′[(S′′i [xU/y]/vi)i∈P+][(S′′i /vi)i∈P−] by (1.iii)

= P′′[(S′′i /vi)i∈P+][(S′′i /vi)i∈P−][xU/y]

�β Q[xU/y] by (2.iii).

Condition 4 holds of Di for i ∈ P− by (2.iv). To see that condition 4 holds
of Di for i ∈ P+, note that any maximal path in Di starting inside Fn

1 → Gi in the
endsequent must pass through an occurrence inside w j : F j in the endsequent of
D ′0 or an occurrence inside Gi in the endsequent of D ′′i . In the former case, (1v)
ensures that it must reach an occurrence inside Γ′0 or A in the endsequent of D ′0,
from where it reaches an occurrence inside x : A→ B or Γ′0 in the endsequent of
Di, terminating there. In the latter case, (2.iv) ensures that the path goes through
an occurrence inside y : B,Γ′′i in the endsequent of D ′′i , and it eventually ends up
inside x : A→ B or Γ′′i in the endsequent of Di.

Finally, let us show that condition 5 holds of D0. Any maximal path in D0

starting inside (vi :Gi)i∈P− in the endsequent of D0 must reach an occurrence inside
(vi : Gi)i∈P− in the endsequent of D ′′0 , from which it reaches an occurrence inside
Δ′′0 or C in the endsequent of D ′′0 by (2.iv). The path then ends inside Δ′′0 or C
in the endsequent of D0. If a maximal path in D0 starts in an occurrence inside
(zi : Fn

1 → Gi)i∈P+ , it must reach an occurrence inside Fi in the endsequent of D ′i
or an occurrence inside (vi : Gi)

p
i=1 in the endsequent of D ′′0 . In the former case,

it reaches an occurrence inside Δ′i in the endsequent of D ′i by (1.iv), and ends up
inside Δ′i in the endsequent of D0. In the latter case, the path reaches an occurrence
inside Δ′′0 or C in the endsequent of D ′′0 by (2v), and ends up inside an occurrence
inside Δ′′0 or C in the endsequent of D0.

Case 1.2. Γ = Γ′,Γ′′ and Δ = x : A → B,Δ′,Δ′′. We apply the induction
hypothesis to D ′ with respect to the partition (Γ′;Δ′) and to D ′′ with respect to
the partition (Γ′′; y : B,Δ′′). From D ′, we obtain n ≥ 0, (D ′i : Γ′i ⇒ S′i : Fi)n

i=1,
D ′0 : (wi : Fi)n

i=1,Δ
′
0 ⇒ P′ : A satisfying the required properties. From D ′′, we

obtain p ≥ 0, (D ′′i : Γ′′i ⇒ S′′i : Gi)
p
i=1, and D ′′0 : (vi : Gi)

p
i=1,Θ,Δ

′′
0 ⇒ P′′ : C

satisfying the required properties, where Θ ⊆ y : B and Δ′′0 ⊆ Δ′′.
We distinguish two subcases according to whether y : B ∈ Θ.
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Case 1.2.1. Θ = y : B. Let m = n + p, and let

Di =

⎧⎪⎪⎨⎪⎪⎩D
′
i for i = 1, . . . , n,

D ′′i−n for i = n + 1, . . . , n + p,

D0 =

D ′0
(wi : Fi)n

i=1,Δ
′
0 ⇒ P′ : A

D ′′0
(vi : Gi)r

i=1, y : B,Δ′′0 ⇒ P′′ : C

(wi : Fi)n
i=1, (zi : Gi)

p
i=1, x : A→ B,Δ′0,Δ

′′
0 ⇒ P′′[xP′/y] : C

(→⇒)

It is easy to see that conditions 1–5 hold of Dn+p
1 ,D0. We leave the proof of cor-

rectness to the reader here as well as in the remaining cases.
Case 1.2.2. Θ = ∅. Let m = p, and let

Di = D ′′i for i = 1, . . . , p

D0 = D ′′0 .

Case 2. The last inference of D is (⇒→):

D ′
x : A,Γ,Δ⇒ Q : B

Γ,Δ⇒ λx.Q : A→ B
(⇒→)

We apply the induction hypothesis to D ′ with respect to the partition (Γ; x : A,Δ).
We obtain n ≥ 0, (D ′i : Γi ⇒ S′i : Fi)n

i=1,D
′
0 : (wi : Fi)n

i=1,Θ,Δ0 ⇒ P′ : B satisfying
the required properties, where Θ ⊆ x : A and Δ0 ⊆ Δ.

Let m = n, and let Di = D ′i for i = 1, . . . , n. As for D0, we distinguish two
subcases.

Case 2.1. Θ = x : A. Let

D0 =

D ′0
(wi : Fi)n

i=1, x : A,Δ0 ⇒ P′ : B

(wi : Fi)n
i=1,Δ0 ⇒ λx.P′ : A→ B

(→⇒)

Case 2.2. Θ = ∅. Let

D0 =

D ′0
(wi : Fi)n

i=1,Δ0 ⇒ P′ : B

(wi : Fi)n
i=1, x : A,Δ0 ⇒ P′ : B

Weak

(wi : Fi)n
i=1,Δ0 ⇒ λx.P′ : A→ B

(→⇒)

Case 3. The last inference of D is Contraction:

D ′
y : A, z : A,Γ′,Δ′ ⇒ Q : C

x : A,Γ′,Δ′ ⇒ Q[x/y, x/z] : C
Contr

where Γ′ ⊆ Γ and Δ′ ⊆ Δ. There are two subcases depending on whether x : A ∈ Γ.
Case 3.1. Γ = x : A,Γ′ and Δ = Δ′. We apply the induction hypothesis to D ′

with respect to the partition (y : A, z : A,Γ′;Δ′). We obtain n ≥ 0, (D ′i : Θi,Γ′i ⇒
S′i : Fi)n

i=1, D ′0 : (wi : Fi)n
i=1,Δ

′
0 ⇒ P′ : C satisfying the required properties, where

Θi ⊆ y : A, z : A

Γ′i ⊆ Γ′
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for i = 1, . . . , n.
Let m = p, let

Di =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D ′i
y : A, z : A,Γ′i ⇒ S′i : F

x : A,Γ′i ⇒ S′i [x/y, x/z] : Fi
Contr

if Θi = y : A, z : A,

D ′i [x/y, x/z]
Γ′i[x/y, x/z]⇒ S′i [x/y, x/z] : Fi

otherwise,

for i = 1, . . . , n, and let
D0 = D ′0.

Case 3.2. Γ = Γ′ and Δ = x : A,Δ′. We apply the induction hypothesis to
D ′ with respect to the partition (Γ′; y : A, z : A,Δ′). We obtain n ≥ 0, (D ′i : Γ′i ⇒
S′i : Fi)n

i=1, D ′0 : (wi : Fi)n
i=1,Θ,Δ

′
0 ⇒ P′ : C satisfying the required properties, where

Θ ⊆ y : A, z : A and Δ′0 ⊆ Δ′.
Let m = n and let

Di = D ′i for i = 1, . . . , n.

As for D0, we distinguish two subcases.
Case 3.2.1. Θ = y : A, z : A. Let

D0 =

D ′0
y : A, z : A,Δ′0 ⇒ P′ : C

x : A,Δ′0 ⇒ P′[x/y, x/z] : C
Contr

Case 3.2.2. Θ � y : A, z : A. Let

D0 =
D ′0[x/y, x/z]

Θ[x/y, x/z],Δ′0 ⇒ P′[x/y, x/z] : C

Case 4. The last inference of D is Weakening:

D ′
Γ′,Δ′ ⇒ T : C

x : A,Γ′,Δ′ ⇒ T : C
Weak

where Γ′ ⊆ Γ,Δ′ ⊆ Δ. We apply the induction hypothesis to D ′ with respect to the
partition (Γ′;Δ′) and obtain n ≥ 0, (D ′i : Γ′i ⇒ S′i : Fi)n

i=1, and D ′0 : (wi : Fi)n
i=1,Δ

′
0 ⇒

P′ : C satisfying the required properties.
Let m = n, and let

Di = D ′i for i = 1, . . . , n,

D0 = D ′0. �

Remark. The input derivation D to the above method can be first turned into a
W-normal derivation without affecting the output derivations Dm

1 ,D0.

We can ascribe to the output derivations of Maehara’s method a slightly
stronger condition than condition 3 of Definition 5:
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Theorem 8. Suppose that, given D : Γ,Δ⇒ T : C and partition (Γ;Δ), Maehara’s
method returns (Di : Γi ⇒ Si : Ei)m

i=1,D0 : (zi : Ei)m
i=1,Δ0 ⇒ P : C. Let

C =

(
Di

Γi ⇒ Si : Ei

)m
i=1

D0
(zi : Ei)m

i=1,Δ0 ⇒ P : C

Γ1 ∪ · · · ∪ Γm,Δ0 ⇒ P[(Si/zi)m
i=1] : C

Cut†
Γ,Δ⇒ P[(Si/zi)m

i=1] : C Weak

Then C �	 D̂ for some cut-free W-normal derivation D̂ : Γ,Δ⇒ T : C.

Proof. It suffices to show that in Dm
1 and D0, no subformula of Ei in the endsequent

has an ancestor which is a principal formula of Contraction or Weakening. This
can be checked by induction easily. �

The above theorem does not necessarily hold with D̂ = D , even when D is
W-normal. However, we can show the following:

Theorem 9. Let D ,Dm
1 ,D0,C be as in Theorem 8. If D is WC-normal, then

Dm
1 ,D0 are all WC-normal, and C �	 D̂ for some WC-normal derivation

D̂ : Γ,Δ⇒ T : C that is identical to D modulo reordering within the final block of
applications of Contraction.

Proof. The theorem easily follows from the following claim (using (C6) and (C7)):

Claim. If D is a WC-normal derivation that does not end in Weakening or Con-
traction, then

1. Dm
1 ,D0 are WC-normal derivations that do not end in Weakening or Con-

traction;

2. Γ1, . . . ,Γm = Γ (Γi ∩ Γ j = ∅ for i � j, and Γ1 ∪ · · · ∪ Γm = Γ);

3. Δ0 = Δ;

4. (
Di

Γi ⇒ Si : Ei

)m
i=1 D0 : (zi : Ei)m

i=1,Δ⇒ P : C

Γ,Δ⇒ P[(Si/zi)m
i=1] : C Cut

�	 D .

The claim can be shown by straightforward induction on D . We omit the proof
in the interest of space. �

Remark. Let D be a cut-free derivation and let D̃ be a WC-normal form of it. The
results of applying Maehara’s method to D and D̃ may be different.

We note that Theorems 6, 8, and 9 relativize to R→, BCK-logic, and BCI-logic.
Conditions 1 and 2 of Definition 5 are strengthened for these substructural logics.
For R→, they are replaced by

1. Γ1 ∪ · · · ∪ Γm = Γ;

2. Δ0 = Δ.

For BCK-logic, the following condition is added to the original conditions 1 and 2:
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1+. Γi ∩ Γ j = ∅ for i � j.

For BCI-logic, the original conditions are replaced by the combination of the above
three conditions, or equivalently:

1. Γ1, . . . ,Γm = Γ;

2. Δ0 = Δ.

2.3 Which interpolants are computed by Maehara’s method?

The same provable sequent has many different cut-free derivations in general.
When Maehara’s method is applied to two different cut-free derivations of the same
labeled sequent Γ,Δ ⇒ T : C with respect to the same partition (Γ;Δ), one may
get LJ→-interpolants giving different interpolation sequences. The following is a
simple example, where we decorate each sequent with a semicolon indicating the
partition of the antecedent as well as with the interpolation sequence obtained by
Maehara’s method at the relevant step.

x1 : p1 ;
p1
=⇒ x1 : p1

u : p2 ;
p2
=⇒ u : p2 v : p3 ;

p3
=⇒ v : p3

x2 : p2→ p3 ; u : p2
p2→p3
=⇒ x2u : p3

(→⇒)

x1 : p1, x2 : p2→ p3 ; y1 : p1→ p2
p1,p2→p3
=⇒ x2(y1x1) : p3

(→⇒)

x1 : p1 ;
p1
=⇒ x1 : p1 u : p2 ;

p2
=⇒ u : p2

y1 : p1→ p2 ; x1 : p1
p1→p2
=⇒ y1x1 : p2

(→⇒)
v : p3 ;

p3
=⇒ v : p3

x1 : p1, x2 : p2→ p3 ; y1 : p1→ p2
(p1→p2)→p3
=⇒ x2(y1x1) : p3

(→⇒)

Systematically applying Maehara’s method to all cut-free derivations of a se-
quent with a given partition, one can in general find a large number of LJ→-
interpolants. One might ask whether all LJ→-interpolants may be found in this
way. The answer is negative.

Example 10. Consider the following sequent together with the indicated partition:

(3) x1:((p1→p2)→p5)→p6, x2:p3→p4, x3:p1 ; y1:p4→p5, y2:p2→p3 ⇒ x1(λu.y1(x2(y2(ux3)))):p6

The following WC-normal derivations satisfy the conditions 1–5 of Definition 5 (as
well as the condition in Theorem 8):

D1 =

x3 : p1 ⇒ x3 : p1 u4 : p2 ⇒ u4 : p2

u2 : p1→ p2, x3 : p1 ⇒ u2 x3 : p2
(→⇒) u5 : p5 ⇒ u5 : p5

u2 : p1→ p2, u1 : p2→ p5, x3 : p1 ⇒ u1(u2 x3) : p5
(→⇒)

u1 : p2→ p5, x3 : p1 ⇒ λu2.u1(u2 x3) : (p1→ p2)→ p5
(⇒→)

u6 : p6 ⇒ u6 : p6

u1 : p2→ p5, x1 : ((p1→ p2)→ p5)→ p6, x3 : p1 ⇒ x1(λu2.u1(u2 x3)) : p6
(→⇒)

x1 : ((p1→ p2)→ p5)→ p6, x3 : p1 ⇒ λu1.x1(λu2.u1(u2 x3)) : (p2→ p5)→ p6
(⇒→)

D2 = x2 : p3→ p4 ⇒ x2 : p3→ p4

D0 =

v1 : p2 ⇒ v1 : p2 v2 : p3 ⇒ v2 : p3

v1 : p2, y2 : p2→ p3 ⇒ y2v1 : p3
(→⇒) v3 : p4 ⇒ v3 : p4

v1 : p2, z2 : p3→ p4, y2 : p2→ p3 ⇒ z2(y2v1) : p4
(→⇒)

v4 : p5 ⇒ v4 : p5

v1 : p2, z2 : p3→ p4, y1 : p4→ p5, y2 : p2→ p3 ⇒ y1(z2(y2v1)) : p5
(→⇒)

z2 : p3→ p4, y1 : p4→ p5, y2 : p2→ p3 ⇒ λv1.y1(z2(y2v1)) : p2→ p5
(⇒→)

v5 : p6 ⇒ v5 : p6

z1 : (p2→ p5)→ p6, z2 : p3→ p4, y1 : p4→ p5, y2 : p2→ p3 ⇒ z1(λv1.y1(z2(y2v1))) : p6
(→⇒)
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However, there is no cut-free derivation of (3) on which Maehara’s method re-
turns these derivations. In fact, we can make a stronger claim: there is no cut-free
derivation of

(4) x1:((p1→p2)→p5)→p6, x2:p3→p4, x3:p1; y1:p4→p5, y2:p2→p3 ⇒ U :p6,

for any U, on which Maehara’s method returns derivations giving the interpolation
sequence:10

(p2→ p5)→ p6, p3→ p4.

Let us call the first part Γ of a partition (Γ;Δ) the selected part and the second
part Δ the unselected part. To see that our claim holds, note that, for Maehara’s
method to produce a multiple-formula interpolation sequence, a cut-free derivation
must have an application of (→⇒) that introduces a formula in the unselected
part somewhere on the rightmost branch of the derivation. Let D be a cut-free
derivation of (4). By the remark following Theorem 6, we can assume that D
is W-normal. Since λ-terms are immaterial, we omit all λ-term labels and work
with unlabeled sequents, treating antecedents of sequents as multisets of formulas.
Observe that since none of the following sequents

((p1→ p2)→ p5)→ p6, p3→ p4, p1, p4→ p5, p2→ p3 ⇒ p3,

((p1→ p2)→ p5)→ p6, p3→ p4, p1, p4→ p5, p2→ p3 ⇒ p4,

((p1→ p2)→ p5)→ p6, p3→ p4, p1, p4→ p5, p2→ p3 ⇒ p2,

are even classically valid, the last formula introduced by an operational inference
in D must be ((p1→ p2)→ p5)→ p6. So D must look like:

E1
Δ1 ; Γ1 ⇒ (p1→ p2)→ p5

E2
p6,Γ2 ; Δ2 ⇒ p6

((p1→ p2)→ p5)→ p6,Γ1,Γ2 ; Δ1,Δ2 ⇒ p6
(→⇒)

((p1→ p2)→ p5)→ p6, p3→ p4, p1 ; p4→ p5, p2→ p3 ⇒ p6
Contr, Weak

Here, Γ1 and Γ2 are multisets consisting of some of the formulas in ((p1→ p2)→
p5)→ p6, p3→ p4, p1, and Δ1 and Δ2 are multisets consisting of some of the formu-
las in p4→ p5, p2→ p3. Since D is W-normal, E2 is a W-normal derivation which
does not end in Weakening. It follows that p6 in E2 cannot have been introduced
by Weakening, and E2 must simply be an initial sequent p6 ⇒ p6 (Γ2 = Δ2 = ∅).
We have shown that the only operational inference on the rightmost branch of D
introduces ((p1→ p2)→ p5)→ p6 in the selected part of the partition.

With a slightly more complex example, one can show that Maehara’s method
sometimes misses LJ→-interpolants of length 1, including those satisfying the ad-
ditional condition in Theorem 8.

3 Interpolation in Natural Deduction

We define the set of deductions in the system NJ→ of natural deduction by induc-
tion, simultaneously with two functions: the function Ass(D) assigning contexts to
deductions and the function Endf(D) assigning formulas to deductions.

10By the Coherence Theorem (see Mints 2000), U must be the term in (3).
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NJ→.

Assumptions. If x is a variable and A a formula, D = x : A is a deduction, and
Ass(D) = {x : A} and Endf(D) = A.

Elimination. If D1 and D2 are deductions such that Endf(D1) = A → B, and
Endf(D2) = A, then

D = D1 D2

B →E

is a deduction, Ass(D) = Ass(D1) ∪ Ass(D2), and Endf(D) = B.

Introduction. If D1 is a deduction with Endf(D1) = B, then

D = D1

A→ B
→I, x

is a deduction, Ass(D) = Ass(D1) − {x : A}, and Endf(D) = A→ B.

Each occurrence in D of x : A ∈ Ass(D) is called an assumption. Each member
x : A of Ass(D) represents an assumption class, namely the set of all assumptions
in D of the form x : A. We say that the last inference in

D1

A→ B
→I, x

discharges all assumptions of the form x : A in D1. If x : A � Ass(D1), we say
that this inference is a vacuous application of →I, and say that the occurrence of
A in its conclusion is introduced by this inference. We assume that variables in
a deduction are so chosen that if a deduction D has a subdeduction of the above
form, x : A � Ass(D).

The occurrence of Endf(D) at the bottom of D is called the endformula of D .
If D is a deduction with Ass(D) = Γ, Endf(D) = C, we write D : Γ ⇒ C and

often depict D by
Γ
D
C

We follow the same convention on the use of commas in representing contexts as
in the case of LJ→.

The NJ→ deductions are in obvious correspondence with λ-terms. We take
for granted the notions of substitution, β-redex, β-reduction, normalization, and
normal form. When D1 : Γ ⇒ A, D2 : Δ ⇒ B and x is a variable of type A, we
write D2[D1/x] for the result of substituting D1 for x in D2. We write D1 �β D2

when D1 β-reduces to D2. We write |D |β for the normal form of D , and write
D1 =β D2 when |D1|β = |D2|β.

Consider a β-redex
.... D1

B
A→ B

→I, x
.... D2

A
B →E

occurring in some deduction D . We call the exhibited occurrence of A→B a redex
formula. Let D ′ be the result of contracting this β-redex in D . The β-reduction
step from D to D ′ is called erasing if x : A � Ass(D1); otherwise it is non-erasing.
If D1 has more than one assumption of the form x : A, then this β-reduction step is
called duplicating; otherwise non-duplicating.
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We use the abbreviatory conventions introduced in section 2.2. Moreover, we
adopt the following conventions.

Γ
Dn

1
Cn

1

abbreviates

⎛⎜⎜⎜⎜⎜⎝Γi
Di
Ci

⎞⎟⎟⎟⎟⎟⎠
n

i=1

if Γ1 ∪ · · · ∪ Γn = Γ.

Γ
D
B
�A→ B

→I, �u
abbreviates

Γ
D
B

An→ B
→I, un

...
An

2→ B

An
1→ B

→I, u1

if �A represents An
1 and �u represents un

1.

We now describe a method of transforming normal natural deductions into cut-
free LJ→-derivations, which is essentially the same as the transformation described
by Prawitz (1965) (see also Troelstra and Schwichtenberg 2000). If T is a λ-term,
let us write DT for the NJ→-deduction corresponding to T .

Lemma 11. Given a normal natural deduction D : Γ ⇒ C, one can construct a
cut-free W-normal LJ→-derivation g(D) : Γ⇒ P:C that does not end in Weakening
such that DP = D .

Proof. By induction on the height of D .
Induction Basis. D is an assumption x : C. Let g(D) = x : C ⇒ x : C.
Induction Step.
Case 1. The last inference of D is→I. D is of the form:

(x : A)◦,Γ
D ′
B

A→ B
→I, x

Case 1.1. x : A ∈ Ass(D ′). By the induction hypothesis, we have an LJ→-
derivation g(D ′) : x : A,Γ⇒ T : B. Let

g(D) =
g(D ′)

x : A,Γ⇒ T : B
Γ⇒ λx.T : A→ B

(⇒→)

Case 1.2. x : A � Ass(D ′). By the induction hypothesis, we have an LJ→-
derivation g(D ′) : Γ⇒ T : B. Let

g(D) =

g(D ′)
Γ⇒ T : B

x : A,Γ⇒ T : B Weak

Γ⇒ λx.T : A→ B
(⇒→)

Case 2. The last inference of D is →E. We analyze D as follows, tracing its
main branch:

x : Ck
1→C

Γ′
D ′
C1

Ck
2→C

→E

Γ′′
E k

2

Ck
2

C →E
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where {x : Ck
1→C} ∪ Γ′ ∪ Γ′′ = Γ. Letting xD ′ denote the deduction

x : Ck
1→C

Γ′
D ′
C1

Ck
2→C

→E

and D ′′ denote

y : Ck
2→C

Γ′′
E k

2

Ck
2

C →E

where y is a fresh variable, we can write

D = D ′′[xD ′/y].

By the induction hypothesis, we have LJ→-derivations g(D ′) : Γ′ ⇒ U : C1 and
g(D ′′) : y : Ck

2→C,Γ′′ ⇒ T : C.
Case 2.1. x : Ck

1→C � Γ′ ∪ Γ′′. Let

g(D) =
g(D ′)

Γ′ ⇒ U : C1

g(D ′′)
y : Ck

2→C,Γ′′ ⇒ T : C

x : Ck
1→C,Γ′ ∪ Γ′′ ⇒ T [xU/y] : C

(→⇒)†

Case 2.2. x : Ck
1→C ∈ Γ′ ∪ Γ′′. We write Γ0 for Γ′ ∪ Γ′′ − {x : Ck

1→C}. Let w
be a fresh variable, and let

g(D) =

g(D ′)[w/x]
Γ′[w/x]⇒ U[w/x] : C1

g(D ′′)[w/x]
y : Ck

2→C,Γ′′[w/x]⇒ T [w/x] : C

z : Ck
1→C,w : Ck

1→C,Γ0 ⇒ T [w/x][zU[w/x]/y] : C
(→⇒)†

x : Ck
1→C,Γ0 ⇒ T [xU/y] : C

Contr

This completes the construction of g(D). It is easy to check that g(D) satisfies
the required properties in all cases. �

3.1 Links in natural deduction

As in LJ→, we associate with each occurrence of a propositional variable in a
natural deduction two ports, which we call the top port and the bottom port. We
decorate natural deductions with links connecting two ports inductively as follows
(p stands for an arbitrary propositional variable):

Elimination rule.
A[p]→ B[p] A[p]

B[p]
→E

We draw a link between

• the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the major premise;
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• the bottom port of an occurrence of p in A in the major premise and the
bottom port of the corresponding occurrence of p in A in the minor premise.

Introduction rule.
x : A[p]....

B[p]

A[p]→ B[p]
→I, x

We draw a link between

• the top port of an occurrence of p in B in the conclusion of this inference
and the bottom port of the corresponding occurrence of p in B immediately
above;

• the top port of an occurrence of p in A in the conclusion of this inference and
the top port of the corresponding occurrence of p in each of the assumptions
x : A that are discharged by this inference.

The notions of path, maximal path, and cycle are understood in exactly the
same way as in the case of sequent calculus. Two occurrences of a propositional
variable in a natural deduction are linked to each other if there is a path that starts in
one and ends in the other. The relation of being linked to is reflexive and symmet-
ric, but not transitive. Our definition of links is slightly different from the similar
definition of connection in Hirokawa 1993. A maximal path starts and ends either
in an occurrence inside an assumption, an occurrence inside the endformula, or
an occurrence inside a formula occurrence introduced by a vacuous application of
→I. In a normal deduction, at least one of the endpoints of a maximal path must
be of one of the first two types. It is not difficult to see that no cycle can occur in a
normal deduction.

Example 12. In the following natural deduction, we refer to different occurrences
of p by the numbers attached to them:

x : (
[1]
p → q)→ (

[2]
p → q)→ p y : p→ q

(p→ q)→ p
→E

y : p→ q

p
→E

( p
[3]
→ q)→ p

→I, y

In this deduction, both [1] and [2] are linked to [3], but [1] is not linked to [2].

If D : Γ⇒ T :C is a cut-free LJ→-derivation, then we write n(D) for the normal
natural deduction DT .

Lemma 13. Let D : Γ ⇒ T : C be a cut-free W-normal LJ→-derivation that does
not end in Weakening. Then n(D) : Γ ⇒ C, and there is an onto function f from
the maximal paths in n(D) to the maximal paths in D such that for every maximal
path π in n(D):
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1. if π starts (ends) in an occurrence of p in a formula occurrence A[p] intro-
duced by a vacuous application of →I, then f (π) starts (ends) in the cor-
responding occurrence of p in a formula occurrence A[p] introduced by an
application of Weakening;

2. if π starts (ends) in an occurrence of p in an assumption x : A[p], then
f (π) starts (ends) in the corresponding occurrence of p in x : A[p] in the
antecedent of the endsequent;

3. if π starts (ends) in an occurrence of p in the endformula C[p], then f (π)
starts (ends) in the corresponding occurrence of p in the succedent C[p] of
the endsequent.

Let us call an occurrence of a propositional variable that appears inside a redex
formula a redex-internal occurrence.

Lemma 14. Suppose that an NJ→-deduction D : Γ ⇒ C reduces to D ′ : Γ ⇒ C
by a sequence of non-erasing β-reduction steps. Then there is a function f from
the set of maximal paths in D ′ to the set of maximal paths in D such that for every
maximal path π in D ′:

1. if π starts (ends) in an occurrence of p in a formula occurrence A[p] intro-
duced by a vacuous application of →I in D ′, then f (π) starts (ends) in the
corresponding occurrence of p in a formula occurrence A[p] introduced by
a vacuous application of →I in D;

2. if π starts (ends) in an occurrence of p in an assumption x : A[p] of D ′, then
f (π) starts (ends) in the corresponding occurrence of p in an assumption
x : A[p] of D;

3. if π starts (ends) in an occurrence of p in the endformula C[p] of D ′, then
f (π) starts (ends) in the corresponding occurrence of p in the endformula
C[p] of D;

4. if π contains k redex-internal occurrences, then f (π) contains at least k
redex-internal occurrences.

Proof. Clearly, it suffices to consider the case of one-step β-reduction. Suppose
that D reduces to D ′ in one non-erasing β-reduction step. We can depict D and D ′
as follows:
(5)

D =

. . . x : A . . . x : A . . ..... D1

B
A→ B

→I, x
.... D2

A
B →E
....

D ′ =
. . .

.... D2

A . . .

.... D2

A . . ..... D1

B....

In general, D1 has n ≥ 1 occurrences of x : A; the above figure represents the case
where n = 2.

We can map each occurrence o′ of a propositional variable and its top and bot-
tom ports ρ′t , ρ′b in the dotted parts of D ′ (i.e., those that are not inside the exhibited
occurrences of A and B) to the corresponding occurrence and ports o, ρt, ρb in the
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dotted parts of D in an obvious way. As for the remaining propositional variable
occurrences and their ports, we consider two cases.

Case 1. D1 is an assumption x : A. Then the situation looks like

D =

x : A[p[3]]

A[p[2]]→ A[p[4]]
→I, x

.... D2

A[p[1]]

A[p[5]]
→E

....

D ′ =

.... D2

A[p]....

Consider an occurrence o′ of p inside the exhibited occurrence of A in D ′. Let ρ′t
and ρ′b be its top port and bottom port, respectively. We map a subpath (ρ′t , o′, ρ′b)
of a maximal path in D ′ to

(ρ[1]
t , [1], ρ[1]

b , ρ
[2]
b , [2], ρ[2]

t , ρ
[3]
t , [3], ρ[3]

b , ρ
[4]
t , [4], ρ[4]

b , ρ
[5], [5], ρ[5]

b )

where ρ[i]
t , ρ

[i]
b are the top and bottom ports of the occurrence of p indicated by [i]

in the above figure. The reverse subpath (ρ′b, o
′, ρ′t) is mapped to the reverse of the

above sequence.
Case 2. D1 ends in →E or →I. In this case, the exhibited occurrences of A

and B in (5) are all distinct. Let us consider an occurrence o′ of p inside the i-th
exhibited occurrence of A in D ′. We depict the case where i = 2:

D =

. . . x : A . . . x : A[p[3]] . . ..... D1

B[p[4]]

A[p[2]]→ B[p[5]]
→I, x

.... D2

A[p[1]]

B[p[6]]
→E

....

D ′ =
. . .

.... D2

A . . .

.... D2

A[p] . . ..... D1

B[p]....

Let ρ′t and ρ′b be the top and bottom port of o′, respectively. We write ρ[i]
t and ρ[i]

b
for the top and bottom port of the occurrence of p indicated by [i] in the above
figure. We map a subpath (ρ′t , o′, ρ′b) to

(ρ[1]
t , [1], ρ[1]

b , ρ
[2]
b , [2], ρ[2]

t , ρ
[3]
t , [3], ρ[3]

b ).

The reverse subpath (ρ′b, o
′, ρ′t) is mapped to the reverse sequence. Now let us

consider an occurrence o′ of p inside the exhibited occurrence of B in D ′. Let ρ′t
and ρ′b be its top and bottom port, respectively. We map a subpath (ρ′t , o′, ρ′b) to

(ρ[4]
t , [4], ρ[4]

b , ρ
[5]
t , [5], ρ[5]

b , ρ
[6]
t , [6], ρ[6]

b ).

The reverse subpath (ρ′b, o
′, ρ′t) is mapped to the reverse sequence.

We have described a way of mapping every maximal path π in D ′ to a sequence
f (π). It is not difficult to see that f (π) is a maximal path in D and satisfies the
requirements of the lemma. We leave the details to the reader. �

The function f in Lemma 14 need not be onto. For example, consider the
following deduction D :
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x : q→ r→ s
y : (p→ p)→ q u : p→ p

q →E

r→ s →E
z : (p→ p)→ r u : p→ p

r →E
s →E

(p→ p)→ s
→I, u v : p

p→ p →I, v

s →E

There is a maximal path starting in the first occurrence of p in y : (p→ p)→ q
and ending in the second occurrence of p in z : (p→ p)→ r in D , but there is no
corresponding path in |D |β:

x : q→ r→ s
y : (p→ p)→ q

v : p
p→ p →I, v

q →E

r→ s →E
z : (p→ p)→ r

v : p
p→ p →I, v

r →E
s →E

We can show the following:

Lemma 15. Let D and D ′ be as in Lemma 14. If D has no non-trivial path that
starts and ends inside the same redex formula, then there is an onto function f from
the set of maximal paths in D ′ to the set of maximal paths in D that satisfies the
conditions 1–4 in Lemma 14.

Proof. By part 4 of Lemma 14, it suffices to prove the lemma in the case of one-
step non-erasing β-reduction. We sketch a proof that the function f described in
the proof of Lemma 14 is onto. Suppose that π is a maximal path in D . There are
two cases to consider.

Case 1. π does not contain any occurrence inside the exhibited occurrences of
x : A on the left-hand side of (5). Then π does not contain any occurrences inside
the exhibited occurrences of A. The construction of f matches a subpath of π that
does not go inside the dotted part of D2 with a unique path in D ′. By matching
subpaths of π that are inside the dotted part of D2 with corresponding subpaths in
the dotted part of the first copy of D2 in D ′, one can form a maximal path π′ of D ′
such that f (π′) = π.

Case 2. π contains an occurrence inside the exhibited occurrences of x : A on
the left-hand side of (5). Then π contains just one such occurrence, by assumption.
Suppose that it is inside the i-th exhibited occurrence of x : A. According to the
construction of f , any subpath of π that goes neither inside the dotted part of D2

nor inside the exhibited occurrences of A is matched with a unique path in D ′.
Case 2.1. Case 1 of the proof of Lemma 14 holds. By matching subpaths of

π that are either wholly inside the dotted part of D2 or wholly inside the exhibited
occurrences of A with corresponding paths in D2 in D ′, one can form a maximal
path π′ of D ′ such that f (π′) = π.

Case 2.2. Case 2 of the proof of Lemma 14 holds. By matching subpaths of
π that are either wholly inside the dotted part of D2 or wholly inside the exhibited
occurrences of A with corresponding paths in the i-th copy of D2 in D ′, one can
form a maximal path π′ of D ′ such that f (π′) = π. �

3.2 Interpolants

Let us say that an assumption of D belongs to Γ ⊆ Ass(D) if it belongs to some
assumption class in Γ.
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Definition 16. Let D : Γ,Δ ⇒ C be a normal deduction. A sequence of normal
deductions (Di : Γi ⇒ Ei)m

i=1 is an interpolant to D with respect to the partition
(Γ;Δ) if and only if there is a normal deduction D0 : (zi : Ei)m

i=1,Δ⇒ C such that

(I1) Γ1 ∪ · · · ∪ Γm = Γ;

(I2) D0[(Di/zi)m
i=1]�β D ;

(I3) In Di (i = 1, . . . ,m), every maximal path that starts inside the endformula Ei

ends inside an assumption;

(I4) In D0, every maximal path that starts inside an assumption zi : Ei ends inside
the endformula C or inside an assumption belonging to Δ.

We call the deduction D0 an auxiliary deduction for Dm
1 ,D , and say that Dm

1 is an
interpolant to D (with respect to the partition (Γ;Δ)) via D0.

Remark. We can replace condition (I1) of Definition 16 by a weaker one, namely
“Γi ⊆ Γ for each i”, without changing the notion of interpolant. This is because the
weaker condition together with condition (I2) implies condition (I1).

The following is a natural deduction version of Lemma 7.

Lemma 17. If (Di : Γi ⇒ Ei)m
i=1 is an interpolant to D : Γ,Δ ⇒ C with respect to

the partition (Γ;Δ), then E1, . . . , Em is an interpolation sequence for Γ−,Δ− ⇒ C
with respect to the partition (Γ−;Δ−).

The converse of Lemma 17 does not hold; see section 4 for an example.
In general, an interpolant may have more than one auxiliary deduction.

Example 18. Let

D =
x1 : q→ r

y : p→ p→ p→ q x2 : p
p→ p→ q →E x2 : p

p→ q →E x2 : p
q →E

r →E

D1 = x1 : q→ r

u : p→ p→ q x2 : p
p→ q →E x2 : p

q →E
r →E

(p→ p→ q)→ r
→I, u

Then D1 is an interpolant to D with respect to (x1 : q→ r, x2 : p; y : p→ p→ p→ q)
via

z1 : (p→ p→ q)→ r

y : p→ p→ p→ q u : p
p→ p→ q →E u : p

p→ q →E v : p
q →E

p→ q →I, v

p→ p→ q →I, u

r →E

as well as via

z1 : (p→ p→ q)→ r

y : p→ p→ p→ q u : p
p→ p→ q →E v : p

p→ q →E v : p
q →E

p→ q →I, v

p→ p→ q →I, u

r →E
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For a different type of example, see Example 42.

Let D : Γ ⇒ T : C be a cut-free LJ→-derivation. Clearly, Lemma 13 implies
that if (Di : Γi ⇒ Si : Ei)m

i=1 is an LJ→-interpolant to Γ,Δ ⇒ T : C with respect
to the partition (Γ;Δ) via an auxiliary derivation D0 : (zi : Ei)m

i=1,Δ0 ⇒ P : C, then
(n(Di))m

i=1 is an interpolant to n(D) : Γ1 ∪ · · · ∪ Γm,Δ0 ⇒ C with respect to the
partition (Γ1 ∪ · · · ∪ Γm;Δ0).11 Thus, one can read off an interpolant from the
output of Maehara’s method.

Let D : Γ,Δ⇒ C be a normal deduction and T be the λ-term corresponding to
it. If a sequence of normal deductions Dm

1 is an interpolant to D with respect to the
partition (Γ;Δ), then (g(D))m

i=1 is an LJ→-interpolant to Γ,Δ ⇒ T : C with respect
to the same partition. This is another easy consequence of Lemma 13.

We now state some general properties of interpolants.

Lemma 19. Suppose that (Di : Γi ⇒ Ei)m
i=1 is an interpolant to D : Γ,Δ⇒ C with

respect to the partition (Γ;Δ) via an auxiliary deduction D0 : (zi : Ei)m
i=1,Δ ⇒ C.

Then every reduction sequence from D0[(Di/zi)m
i=1] to D consists entirely of non-

erasing β-reduction steps.

Proof. We claim that if D0[(Di/zi)m
i=1] = C0 �β C , then C has no redex-internal

occurrence that is linked to an occurrence in a formula occurrence introduced by a
vacuous application of→I. Then no erasing β-reduction can be applied to C , and
the lemma follows. We prove our claim by induction on the number of β-reduction
steps. It is clear that C0 satisfies the required condition by the definition of an
interpolant. Now assume that Ci satisfies the condition and Ci β-reduces to Ci+1 in
one step. This β-reduction step must be non-erasing, so let f be the function from
the set of maximal paths in Ci+1 to the set of maximal paths in Ci as described in
the proof of Lemma 14. Let π be a maximal path in Ci+1 that starts or ends in an
occurrence in a formula occurrence introduced by a vacuous application of →I.
Then, by condition 1 of Lemma 14, f (π) is a maximal path in Ci that starts or ends
in an occurrence in a formula occurrence introduced by a vacuous application of
→I. Since Ci satisfies the condition, f (π) contains no redex-internal occurrence.
Then by condition 4 of Lemma 14, π cannot contain any redex-internal occurrence,
either. Therefore, Ci+1 also satisfies the condition. �

The following is an easy consequence of Lemma 19. Let #D denote the number
of assumptions in D .

Lemma 20. Let D ,Dm
1 ,D0 be as in Lemma 19. Then #D1+ · · ·+#Dm+#D0−m ≤

#D .

Lemma 21. Let D ,Dm
1 ,D0 be as in Lemma 19. Then there is a function from

the set of maximal paths in D onto the set of maximal paths in D0[(Di/zi)m
i=1] that

satisfies the conditions 1–4 in Lemma 14.

Proof. By the definition of an interpolant, D0[(Di/zi)m
i=1] has no path that contains

more than one redex-internal occurrence. Since, by Lemma 19, any reduction se-
quence from D0[(Di/zi)m

i=1] to D consists entirely of non-erasing β-reduction steps,
the lemma follows from Lemma 15. �

11This will not hold if we drop the requirement of W-normality from the definition of LJ→-
interpolant.
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Lemma 22. Let Dm
1 be an interpolant to D : Γ,Δ⇒ C with respect to the partition

(Γ;Δ) via D0. Then the combined size of Dm
1 ,D0 is bounded by a computable

function of the size of D .12

Proof. Since a maximal path in a normal deduction cannot contain a cycle,
Lemma 21 implies that the number of assumptions discharged by a single appli-
cation of →I in Dm

1 ,D0 is bounded by the number of maximal paths in D . The
lemma then follows from a result by Dougherty and Wierzbicki (2002). �

Theorem 23. The problem of determining whether Dm
1 is an interpolant to

D : Γ,Δ⇒ C with respect to the partition (Γ;Δ) is decidable.

3.3 Prawitz’s method

As we did with Maehara’s method, we reformulate Prawitz’s (1965) method for the
implicational fragment using sequences of formulas in place of formulas. We shall
see that Prawitz’s interpolant is just one of the interpolants found by Maehara’s
method, so it gives nothing new.

Theorem 24. Given a normal deduction D : Γ,Δ⇒ C, one can find an interpolant
to D with respect to the partition (Γ;Δ).

Proof. By induction on D . At each step we construct Dm
1 ,D0 satisfying the con-

ditions (I1)–(I4) of Definition 16. We also prove that these deductions satisfy the
additional condition:

(*) If the main branch of D leads to an assumption belonging to Γ, then m = 1.

Induction Basis. D is x : C. Case 1. Γ = {x : C},Δ = ∅. Take m = 1 and let D1

be D , and D0 be z1 : C, where z1 is a fresh variable. Case 2. Γ = ∅,Δ = {x : C}.
Take m = 0 and let D0 be D .

Induction Step.
Case 1. The last inference of D is→I. D is of the form:

(y : A)◦,Γ,Δ
D ′
B

A→ B
→I, y

where A→ B = C. Apply the induction hypothesis to D ′ : (y : A)◦,Γ,Δ ⇒ B with
respect to the partition (Γ; (y : A)◦,Δ), and obtain normal deductions (D ′i : Γi ⇒
Ei)m

i=1 and D ′0 : (zi : Ei)m
i=1, (y : A)◦,Δ ⇒ B with the required properties. Let Di be

D ′i (i = 1, . . . ,m), and let D0 be the following deduction:

(zi : Ei)m
i=1, (y : A)◦,Δ
D ′0
B

A→ B
→I, y

It is easy to see that Dm
1 ,D0 satisfy the required properties.

12Note that, in general, there is no bound on the size of D ′ such that D ′ reduces to D by a sequence
of non-erasing β-reduction steps.
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Case 2. The last inference of D is →E. We analyze D as in the proof of
Lemma 11:

x : Ck
1→C

Γ′,Δ′
D ′
C1

Ck
2→C

→E

Γ′′,Δ′′
E k

2

Ck
2

C →E

Here, Γ′ ∪ Γ′′ ⊆ Γ and Δ′ ∪ Δ′′ ⊆ Δ. Letting xD ′ denote the deduction

x : Ck
1→C

Γ′,Δ′
D ′
C1

Ck
2→C

→E

and D ′′ denote

y : Ck
2→C

Γ′′,Δ′′
E k

2

Ck
2

C →E

where y is a fresh variable, we can write

D = D ′′[xD ′/y].

There are two subcases as to whether x : Ck
1→C is in Γ or in Δ.

Case 2.1. x :Ck
1→C is in Δ. We apply the induction hypothesis to D ′ : Γ′,Δ′ ⇒

C1 with respect to the partition (Γ′;Δ′), and to D ′′ : y : Ck
2→ C,Γ′′,Δ′′ ⇒ C with

respect to the partition (Γ′′; y : Ck
2→C,Δ′′), and obtain normal deductions with the

required properties:

(D ′i : Γ′i ⇒ Fi)
n
i=1, D ′0 : (wi : Fi)

n
i=1,Δ

′ ⇒ C1

(D ′′i : Γ′′i ⇒ Gi)
p
i=1, D ′′0 : (vi : Gi)

p
i=1, y : Ck

2→C,Δ′′ ⇒ C

We assume that variables have been chosen in such a way that wn
1 and vp

1 are pair-
wise distinct. Let m = n + p, and let

Dm
1 = D ′n1,D ′′

p
1 .

We let D0 : (wi : Fi)n
i=1, (vi : Gi)

p
i=1, {x : Ck

1 → C} ∪ Δ′ ∪ Δ′′ ⇒ C be D ′′0 [xD ′0/y],
where xD ′0 is

x : Ck
1→C

(wi : Fi)n
i=1,Δ

′
D ′0
C1

Ck
2→C

→E

Now we check that Dm
1 and D0 satisfy conditions (I1)–(I4) of Definition 16. We

can easily show conditions (I1) and (I2) using the induction hypothesis. Clearly,
Dm

1 satisfy condition (I3) by induction hypothesis. To show that D0 satisfies con-
dition (I4), consider an arbitrary maximal path π in D0 that starts inside wi : Fi or
vi : Gi. If π starts inside wi : Fi, it starts inside D ′0. By induction hypothesis, π must
end inside some assumption in Δ′ or exit D ′0 through C1. If the latter, π ends inside
x : Ck

1 → C. Now suppose that π starts inside vi : Gi. By induction hypothesis, π
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either ends inside some assumption in Δ′′, ends inside the endformula C, or exit
D ′′0 through Ck

2→C, entering xD ′0. If the last case obtains, π ends inside x :Ck
1→C.

We have shown that D0 satisfies condition (I4).
Case 2.2. x:Ck

1→C is in Γ. Apply the induction hypothesis to D ′ : Γ′,Δ′ ⇒ C1

with respect to the partition (Δ′;Γ′), and to D ′′ : y:Ck
2→C,Γ′′,Δ′′ ⇒ C with respect

to the partition (y :C2→C,Γ′′;Δ′′), and obtain normal deductions with the required
properties:

(D ′i : Δ′i ⇒ Fi)
n
i=1, D ′0 : (wi : Fi)

n
i=1,Γ

′ ⇒ C1

D ′′1 : y : Ck
2→C,Γ′′ ⇒ G1, D ′′0 : v1 : G1,Δ

′′ ⇒ C

where v1 is distinct from any of wn
1. Note that the main branch of D ′′ leads to

y : Ck
2→C, so the additional condition (*) is satisfied. Let xD ′0 be the deduction

x : Ck
1→C

(wi : Fi)n
i=1,Γ

′
D ′0
C1

Ck
2→C

→E

Let m = 1 and let D1 : {x : C1 → C2} ∪ Γ′ ∪ Γ′′ ⇒ Fn
1 → G1 be the following

deduction
(wi : Fi)n

i=1, {x : Ck
1→C} ∪ Γ′ ∪ Γ′′

D ′′1 [xD ′0/y]
G1

Fn
1 →G1

→I,wn
1

and let D0 : z1 : Fn
1 → G1,Δ′ ∪ Δ′′ ⇒ C be D ′′0 [z1D ′n1/v1], where z1D ′n1 is the

following normal deduction:

z1 : Fn
1 →G1

Δ′
D ′n1
Fn

1

G1
→E

We leave to the reader the proof that Dm
1 ,D0 satisfy the required properties. �

By constructing LJ→-derivations g(D), (g(Di))m
i=1, g(D0) along with Dm

1 ,D0 in
the above proof, we can show the following:

Theorem 25. If Prawitz’s method produces Dm
1 , D0 given input deduction

D : Γ,Δ ⇒ C and partition (Γ;Δ), then Maehara’s method produces sequent
derivations (g(Di))m

i=1, g(D0) given input derivation g(D) and partition (Γ;Δ).

We have already noted that Maehara’s method provides more interpolants than
Prawitz’s method (section 2.3). Interpolants found by Prawitz’s method are among
those that satisfy a strengthening of the condition in Lemma 19.

Theorem 26. Let D : Γ,Δ ⇒ C be a normal deduction, and let (Di : Γi ⇒
Ei)m

i=1,D0 : (zi : Ei)m
i=1,Δ ⇒ C be the result of applying Prawitz’s method to D

with respect to the partition (Γ;Δ). Then every reduction sequence from

(zi : Ei)m
i=1,Δ

D0
C

Em
1 →C

→I, zm
1

⎛⎜⎜⎜⎜⎜⎝Γi
Di
Ei

⎞⎟⎟⎟⎟⎟⎠
m

i=1

C →E
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to D consists entirely of non-erasing, non-duplicating β-reduction steps.

Theorem 26 may seem similar to Theorem 8, but not all interpolants found by
Maehara’s method satisfy the condition in Theorem 26.

3.4 Ordering interpolants

Let us say that Dm
1 is an ∅-interpolant to D : Γ ⇒ C (via D0) if Dm

1 is an inter-
polant to D with respect to the partition (Γ;∅) (via D0).

Lemma 27 (Substitution). Let (Di : Γi ⇒ Ei)m
i=1 be an interpolant to D : Γ,Δ ⇒

C with respect to the partition (Γ;Δ) via D0 : (zi:Ei)m
i=1,Δ⇒ C. If (Ei : Θi ⇒ Fi)n

i=1

is an ∅-interpolant to D j via E0 : (wi : Fi)n
i=1 ⇒ E j, then D j−1

1 ,E
n

1 ,D
m
j+1 is an

interpolant to D with respect to the partition (Γ;Δ) via |D0[E0/z j]|β : (zi:Ei)
j−1
i=1 , (wi:

Fi)n
i=1, (zi : Ei)m

i= j+1,Δ⇒ C.

Proof. Conditions (I1)–(I3) of Definition 16 are clearly satisfied by D j−1
1 ,E

n
1 ,D

m
j+1

and |D0[E0/z j]|β. As for condition (I4), Lemma 14 implies that it suffices to show
that condition (I4) holds of D0[E0/z j]. Consider any maximal path π in D0[E0/z j].
If π starts inside an assumption wi : Fi, then it must reach an occurrence inside E j

since E0 satisfies condition (I4). From there, π follows a path in D0, terminating
either inside an assumption belonging to Δ or inside the endformula C, since D0

satisfies condition (I4). Now suppose π starts inside an assumption zi : Ei (i � j).
Then π stays within D0 and again ends either inside an assumption belonging to Δ
or inside the endformula C, for the same reason. �

Lemma 28 (Contraction). Suppose that for some m ≥ 2, (Di : Γi ⇒ Ei)m
i=1 is

an interpolant to D : Γ,Δ ⇒ C with respect to the partition (Γ;Δ) via D0 : (zi :
Ei)m

i=1,Δ ⇒ C. If Di = D j for some i, j such that i � j, then D j−1
1 ,D

m
j+1 is an

interpolant to D with respect to the partition (Γ;Δ) via D0[zi : Ei/z j].

Lemma 29 (Pruning). Let (Di : Γi ⇒ Ei)m
i=1 be an interpolant to D : Γ,Δ ⇒ C

with respect to the partition (Γ;Δ) via D0 : (zi : Ei)m
i=1,Δ ⇒ C, where m ≥ 2.

If for some i, j such that i � j, Γi = Γ j and Di is an ∅-interpolant to D j via

E : zi :Ei ⇒ E j, then D j−1
1 ,D

m
j+1 is an interpolant to D with respect to the partition

(Γ;Δ) via |D0[E /z j]|β.
Definition 30. Let (Ei : Θi ⇒ Ei)m

i=1 and Let (Fi : Ξi ⇒ Fi)n
i=1 be two sequences

of normal deductions such that
⋃m

i=1 Θi =
⋃n

i=1 Ξi. We say that E m
1 is stronger than

F n
1 if there are n subsets S1, . . . , Sn of {1, . . . ,m} such that

1. S1 ∪ · · · ∪ Sn = {1, . . . ,m};
2. for j = 1, . . . , n, (Ei)i∈S j is an ∅-interpolant to F j.

We say that E m
1 is strictly stronger than F n

1 if E m
1 is stronger than F n

1 and if
moreover F n

1 is not stronger than E m
1 .

Clearly, the relation “is stronger than” is reflexive, and Lemmas 27 and 28
imply that it is also transitive. If E m

1 is stronger than F n
1 and F n

1 is an interpolant
to D : Γ,Δ⇒ C with respect to the partition (Γ;Δ), then E m

1 is an interpolant to D
with respect to the partition (Γ;Δ).
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Example 31. Take the following normal deduction of (3) of Example 10:

x1 : ((p1→ p2)→ p5)→ p6

y1 : p4→ p5

x2 : p3→ p4

y2 : p2→ p3

u : p1→ p2 x3 : p1
p2

→E

p3
→E

p4
→E

p5
→E

(p1→ p2)→ p5
→I, u

p6
→E

Let Γ = {x1 : ((p1 → p2)→ p5)→ p6, x2 : p3 → p4, x3 : p1} and Δ = {y1 : p4 →
p5, y2 : p2→ p3 }. The result of applying Prawitz’s method to this deduction with
respect to the partition (Γ;Δ) is D1,D0:

D1 =

x1 : ((p1→ p2)→ p5)→ p6

v1 : ((p2→ p3)→ p4)→ p5

x2 : p3→ p4

v2 : p2→ p3

u : p1→ p2 x3 : p1
p2

→E

p3
→E

p4
→E

(p2→ p3)→ p4
→I, v2

p5
→E

(p1→ p2)→ p5
→I, u

p6
→E

(((p2→ p3)→ p4)→ p5)→ p6
→I, v1

D0 =

z1 : (((p2→ p3)→ p4)→ p5)→ p6

y1 : p4→ p5

v : (p2→ p3)→ p4 y2 : p2→ p3
p4

→E

p5
→E

((p2→ p3)→ p4)→ p5
→I, v

p6
→E

Another interpolant is E1,E2, with an auxiliary deduction E0:

E1 = x2 : p3→ p4

E2 = x1 : ((p1→ p2)→ p5)→ p6

v : p2→ p5

u : p1→ p2 x3 : p1
p2

→E

p5
→E

(p1→ p2)→ p5
→I, u

p6
→E

(p2→ p5)→ p6
→I, v

E0 =

z2 : (p2→ p5)→ p6

y1 : p4→ p5

z1 : p3→ p4

y2 : p2→ p3 v : p2
p3

→E

p4
→E

p5
→E

p2→ p5
→I, v

p6
→E

E1,E2 is an ∅-interpolant to D1 via the following auxiliary deduction:

z2 : (p2→ p5)→ p6

v1 : ((p2→ p3)→ p4)→ p5

z1 : p3→ p4

v3 : p2→ p3 v2 : p2
p3

→E

p4
→E

(p2→ p3)→ p4
→I, v3

p5
→E

p2→ p5
→I, v2

p6
→E

(((p2→ p3)→ p4)→ p5)→ p6
→I, v1

Since (((p2→p3)→p4)→p5)→p6 does not imply either p3→p4 or (p2→p5)→p6,
we conclude that E1,E2 is a strictly stronger interpolant than D1. Note, incidentally,
that E1,E2,E0 also satisfies the condition in Theorem 26.
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Let us prove a general fact illustrated by the above example. Let Γ ⊆ Ass(D)
and let A be the set of assumptions of D belonging to Γ. We say that Γ is discon-
nected in D if there is a proper subset A1 of A such that no propositional variable
occurrence inside an assumption in A1 is linked to a propositional variable occur-
rence inside an assumption in A − A1. Otherwise we say that Γ is connected in
D .

Lemma 32. Let D : Γ,Δ ⇒ C be a normal deduction. Γ is disconnected in D if
and only if there is an interpolant Dm

1 to D with respect to the partition (Γ;Δ) with
m ≥ 2.

Proof. The “if” direction easily follows from Lemmas 14 and 19. The “only if”
direction may be proved using Lemma 15. We omit the details. �

Lemma 33. Let Dm
1 and E n

1 be as in Lemma 27. If n ≥ 2, then D j−1
1 ,E

n
1 ,D

m
j+1 is

a strictly stronger interpolant than Dm
1 .

Proof. Suppose that Dm
1 is stronger than D j−1

1 ,E
n

1 ,D
m
j+1. Then there are subsets

S j−1
1 ,T

n
1 , S

m
j+1 of {1, . . . ,m} such that S1∪· · ·∪S j−1∪T1∪· · ·∪Tn∪S j+1∪· · ·∪Sm =

{1, . . . ,m} and for i = 1, . . . , j − 1, j + 1, . . . ,m, (Dk)k∈Si is an ∅-interpolant to Di,
and for i = 1, . . . , n, (Dk)k∈Ti is an ∅-interpolant to Ei. We derive a contradiction
by constructing an infinite sequence j0, j1, j2, . . . of elements of {1, . . . ,m} such
that j0 = j and for each k ≥ 0, jk ∈ S jk+1 (which implies #D jk ≤ #D jk+1 by
Lemma 20), and jk+1 � { j0, . . . , jk}. We construct j0, j1, j2, . . . by induction. First
set j0 = j. Suppose that we have constructed j0, . . . , jk (k ≥ 0). Since E n

1 is an
∅-interpolant to D j, Lemma 20 implies #Ei < #D j for each i. By the induction
hypothesis, #D j = #D j0 ≤ #D jk , which implies that jk � Ti for any i (again by
Lemma 20). Hence there is a jk+1 ∈ {1, . . . , j− 1, j+ 1, . . . ,m} such that jk ∈ S jk+1 .
We have jk+1 � j0, so suppose that jk+1 = jl for some l such that 1 ≤ l ≤ k.
Then { jl−1, jk} ⊆ S jl . Since jl−1 � jk, this implies that #D jk < #D jl by Lemma 20.
But #D jl ≤ #D jk by induction hypothesis, a contradiction. So we have shown
jk+1 � { j0, . . . , jk}. �

Lemma 34. If (Di : Γi ⇒ Ei)m
i=1 is an interpolant to D : Γ,Δ⇒ C (with respect to

the partition (Γ;Δ)) such that D j is disconnected, then there is a strictly stronger
interpolant to D than Dm

1 .

Let us say that a deduction D is connected if Ass(D) is connected in D .

Lemma 35. Every normal deduction D : Γ,Δ ⇒ C has an interpolant (Di : Γi ⇒
Ei)m

i=1 (with respect to the partition (Γ;Δ)) such that each Di is connected.

Example 36. Let D be the following deduction (we omit rule labels→E and→I):

y1 : p5→ p5→ p4

x1 : (p1→ p4)→ p5

y2 : p2→ p3→ p4

x2 : p1→ p2 v : p1

p2

p3→ p4

x3 : p1→ p3 v : p1

p3

p4

p1→ p4
v

p5

p5→ p6

x1 : (p1→ p4)→ p5

y3 : p3→ p2→ p4

x3 : p1→ p3 v : p1

p3

p2→ p4

x2 : p1→ p2 v : p1

p2

p4

p1→ p4
v

p5
p6

Let Γ = {x1 : (p1→ p4)→ p5, x2 : p1→ p2, x3 : p1→ p3} and Δ = {y1 : p5→ p5→
p6, y2 : p2→ p3→ p4, y3 : p3→ p2→ p4}. Given input deduction D and partition
(Γ;Δ), Prawitz’s method produces an interpolant of length 2:
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D1 =
x1 : (p1→ p4)→ p5

u2 : p2→ p3→ p4

x2 : p1→ p2 v : p1

p2

p3→ p4

x3 : p1→ p3 v : p1

p3

p4

p1→ p4
v

p5

(p2→ p3→ p4)→ p5
u2

D2 =
x1 : (p1→ p4)→ p5

u3 : p3→ p2→ p4

x3 : p1→ p3 v : p1

p3

p2→ p4

x3 : p1→ p2 v : p1

p2

p4

p1→ p4
v

p5

(p3→ p2→ p4)→ p5
u3

However, either of the above two deductions by itself is a strictly stronger inter-
polant.

The above example is an illustration of the following general fact:

Lemma 37. Let Dm
1 be as in Lemma 29. Then D j−1

1 ,D
m
j+1 is a strictly stronger

interpolant than Dm
1 .

3.5 The new method

Definition 38. Let Dm
1 be an interpolant to D : Γ,Δ⇒ C with respect to the parti-

tion (Γ;Δ). We say that Dm
1 is a strongest interpolant to D with respect to (Γ;Δ) if

Dm
1 is stronger than every interpolant to D with respect to (Γ;Δ).

It is not immediately clear whether one can always find a strongest interpolant
when given a normal deduction together with a partition. We present a new method
for constructing interpolants which works by induction on D : Γ,Δ⇒ C and finds
a strongest interpolant at every step. In particular, each component Di : Γi ⇒ Ei of
the constructed interpolant is connected.

In the method we are about to describe, we make use of the following
procedure, called pruning, which turns a sequence of deductions (Ďi : Γ̌i ⇒
Ěi)m̌

i=1,D0 : (ži : Ěi)m̌
i=1,Δ ⇒ C satisfying (I1)–(I4) (with respect to D and (Γ;Δ))

into another such sequence Dm
1 ,D0. Let

M̌ = { i | 1 ≤ i ≤ m̌ and there is no j < i such that Ď j is an ∅-interpolant to Ďi },
and let

(Di : Γi ⇒ Ei)
m
i=1 = (Ďi)i∈M̌.

Prepare fresh variables zm
1 of types Em

1 , respectively. For i = 1, . . . , m̌, let μ(i)
be the least j such that D j is an ∅-interpolant to Ďi (such a j always exists), and
let Mi : zμ(i) : Eμ(i) ⇒ Ěi be an auxiliary deduction for Dμ(i), Ďi. Then we define
prune(Ď m̌

1 , Ď0) to be Dm
1 ,D0, where

D0 = |Ď0[(Mi/ži)
m̌
i=1]|β : (zi : Ei)

m
i=1,Δ⇒ C.

This ‘definition’ does not uniquely determine D0 because the choice of auxiliary
deduction Mi is not unique in general. We will later give an explicit construction
of Mi along with an algorithm for determining whether Ď j is an ∅-interpolant to
Ďi, which is designed to work for a restricted class of deductions that are actually
encountered in our method.

Lemma 39. Let Ď m̌
1 be an interpolant to D with respect to (Γ;Δ) via Ď0, and let

Dm
1 ,D0 = prune(Ď m̌

1 , Ď0). Then
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1. Dm
1 is an interpolant to D with respect to the partition (Γ;Δ) via D0.

2. Di is not an ∅-interpolant to D j if 1 ≤ i < j ≤ m.13

Lemma 40. Let (Di : Γi ⇒ Ei)m
i=1 be an interpolant to a normal deduction

D : Γ,Δ⇒ C with respect to the partition (Γ;Δ) via D0 : (zi : Ei)m
i=1,Δ⇒ C.

1. D0 ends in→I only if D ends in→I;

2. If the main branch of D leads to some y : B ∈ Δ, then the main branch of D0

leads to y : B;

3. If the main branch of D leads to some x : A ∈ Γ, then for some i, the main
branch of D0 leads to zi : Ei and the main branch of Di leads to x : A.

Definition 41. Let Di : Γi ⇒ Ei be a normal deduction satisfying condition (I3)
of Definition 16 and let D0 : (zi : Ei)m

i=1,Δ ⇒ C be a normal deduction satisfying
condition (I4) of Definition 16 with respect to the partition ((zi : Ei)m

i=1;Δ). We
say that D0 is long for Di (with respect to zi : Ei) if D0[I /zi] �β D0 for every
I : zi : Ei ⇒ Ei such that Di is an ∅-interpolant to itself via I .

Example 42. Let

D1 =
x1 : q→ r

u : p→ q x2 : p
q →E

r →E
(p→ q)→ r

→I, u
D0 = y : ((p→ q)→ r)→ s

z1 : (p→ q)→ r u : p→ q
r →E

(p→ q)→ r
→I, u

r →E

Then D0 is not long for D1 with respect to z1 : (p→ q)→ r. To see this, let I be
the η-long form of z1 : (p→ q)→ r:

I = z1 : (p→ q)→ r

u : p→ q v : p
q →E

p→ q →I, v

r →E
(p→ q)→ r

→I, u

While D1 is an ∅-interpolant to itself via I , we do not have D0[I /z1] �β D0.
The deduction

D̃0 =
y : ((p→ q)→ r)→ s

z1 : (p→ q)→ r
u : p→ q v : p

p→ q →I, v

r →E
(p→ q)→ r

→I, u

r →E

(= |D0[I /z1]|β)

satisfies condition (I4) of Definition 16 with respect to (z1 : (p→ q)→ r; y : ((p→
q)→ r)→ s) and we have

D̃0[D1/z1] =β D0[D1/z1].

It is easy to see that D̃0 is long for D1 with respect to z1 : (p→ q)→ r.

13The definition of prune allows for the possibility that D j is an ∅-interpolant to Di for i < j. In
our method, however, it will always be the case that Ďi is an ∅-interpolant to Ď j if and only if Ď j is
an ∅-interpolant to Ďi, so that Dm

1 has no two distinct deductions such that one is an ∅-interpolant to
the other.
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Example 43. Let

D1 = x1 : q→ r

u : p→ p→ q x2 : p
p→ q →E x2 : p

q →E
r →E

(p→ p→ q)→ r
→I, u

D0 =
z1 : (p→ p→ q)→ r

u : p→ p→ q v : p
p→ q →E w : p

q →E

p→ q →I,w

p→ p→ q →I, v

r →E
(p→ p→ q)→ r

→I, u

(D0 is the η-long form of z1 : (p→ p→ q)→ r.) Then D1 is an ∅-interpolant to
itself via D0, but D0 is not long for D1 with respect to z1 : (p→ p→ q)→ r. To see
this, note that D1 is an ∅-interpolant to itself via

J =
z1 : (p→ p→ q)→ r

u : p→ p→ q v : p
p→ q →E w : p

q →E

p→ q →I, v

p→ p→ q →I,w

r →E
(p→ p→ q)→ r

→I, u

but
D0[J /z1]�β J �β D0.

It is not difficult to see that there is no deduction I : z1 : (p → p → q) → r ⇒
(p→ p→ q)→ r such that D1 is an ∅-interpolant to itself via I and I is long for
D1.

Lemma 44. Suppose that Dm
1 is an interpolant to D : Γ,Δ ⇒ C with respect to

(Γ;Δ).

1. There is an auxiliary deduction D0 for Dm
1 ,D such that D and D0 have

identical final blocks of applications of →I; that is to say, if D is of the form

Γ,Δ, ((ui : Ai)◦)n
i=1

D−
B

An
1→ B

→I, un
1

where D− does not end in→I, then D0 is of the form

(zi : Ei)m
i=1,Δ, ((ui : Ai)◦)n

i=1
D−0
B

An
1→ B

→I, un
1

2. Suppose that D0 : (zi : Ei)m
i=1,Δ ⇒ C is an auxiliary deduction for Dm

1 ,D
such that the main branch of D0 leads to z1 : E1. If D0 is long for D1 with
respect to z1 : E1, then D and D0 have identical final blocks of applications
of →I.

Theorem 45. Given a normal deduction D : Γ,Δ ⇒ C, one can find a strongest
interpolant to D with respect to the partition (Γ;Δ).
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Proof. We first describe the construction of Dm
1 ,D0 from D , proving that Dm

1 ,D0

satisfies conditions (I1)–(I4) of Definition 16.14 We do this by induction on D . The
main difference from Prawitz’s method is that in our method, assumption classes
never switch sides in the partition of contexts over the course of induction and the
construction of interpolants proceeds independently of the construction of auxiliary
deductions. It will always be trivial to check condition (I1) of Definition 16 (see
the remark following Lemma 19), so we will not bother to prove it explicitly.We
construct (Di : Γi ⇒ Ei)m

i=1,D0 : (zi : Ei)m
i=1,Δ ⇒ C in such a way that if the main

branch of D0 leads to some zi : Ei, then i = 1.
Induction Basis. D is an assumption. This case is treated exactly as in Prawitz’s

method.
Induction Step.
Case 1. The last inference of D is →I. This case is treated exactly as in

Prawitz’s method.
Case 2. The last inference of D is→E. D is of the form

Γ′,Δ′
D ′

C′′ →C

Γ′′,Δ′′
D ′′
C′′

C →E

where Γ′ ∪ Γ′′ = Γ and Δ′ ∪ Δ′′ = Δ. This case is broken up into four
subcases, depending not only on where the main branch of D ′ leads to, but
also on where the main branch of D ′′ leads to. In each subcase, we construct
(Ďi : Γ̌i ⇒ Ěi)m̌

i=1, Ď0 : (ži : Ěi)m̌
i=1,Δ ⇒ C using the induction hypothesis, and then

obtain Dm
1 ,D0 = prune(Ď m̌

1 , Ď0). (The exact identity of D0 will be indeterminate
until we completely specify the function prune.)

We first apply the induction hypothesis to D ′ with respect to the partition
(Γ′;Δ′) and obtain

(D ′i : Γ′i ⇒ Fi)
n
i=1, D ′0 : (wi : Fi)

n
i=1,Δ

′ ⇒ C′′ →C.

This will be used in all subcases. By Lemma 40, D ′0 cannot end in→I.
Case 2.1. The main branch of D ′ leads to an assumption belonging to Δ′. By

Lemma 40, the main branch of D ′0 must also lead to an assumption belonging to
Δ′. Apply the induction hypothesis to D ′′ with respect to the partition (Γ′′;Δ′′) and
obtain

(D ′′i : Γ′′i ⇒ Gi)
p
i=1, D ′′0 : (vi : Gi)

p
i=1,Δ

′′ ⇒ C′′.

We can assume that wn
1 and vp

1 are pairwise distinct. Let

Ď m̌
1 = D ′n1,D ′′

p
1 ,

and let Ď0 : (wi : Fi)n
i=1, (vi : Gi)

p
i=1,Δ⇒ C be the following deduction:

Ď0 =

(wi : Fi)n
i=1,Δ

′
D ′0

C′′ →C

(vi : Gi)
p
i=1,Δ

′′
D ′′0
C′′

C →E

14Since we know from Maehara’s and Prawitz’s results that an interpolant always exists, the fact
that Dm

1 is an interpolant is a consequence of the fact that Dm
1 is stronger than any interpolant, which

we will prove later. However, it is convenient to know that Dm
1 is an interpolant when describing the

construction of Dm
1 .
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Now let Dm
1 ,D0 = prune(Ď m̌

1 , Ď0).
We now show that Dm

1 ,D0 satisfies conditions (I1)–(I4) of Definition 16. By
part 1 of Lemma 39, it suffices to show the same for Ď m̌, Ď0. The first three con-
ditions are easy to check. Let us check condition (I4). Note that since D ′0 does
not end in→I, any maximal path in D ′0 that starts inside the endformula C′′ → C
must end inside an assumption belonging to Δ′. Consider any maximal path π in
Ď0 that starts inside some wi : Fi. By the induction hypothesis and the property
just mentioned, π must end inside an assumption belonging to Δ′. Now consider
any maximal path π in Ď0 that starts inside some vi : Gi. π must either stay within
D ′′0 and end inside an assumption belonging to Δ′′ or reach the endformula C′′ of
D ′′0 . In the latter case, πmust end in an assumption belonging to Δ′ by the property
mentioned above.

Case 2.2. The main branch of D ′ leads to an assumption belonging to Γ′. By
Lemma 40, the main branch of D ′0 must lead to w1 : F1. Since D ′0 does not end in
→I, D ′0 must have the following form:

(6) D ′0 = w1 : Ck
1→C′′ →C

(wi : Fi)i∈N ,Δ′
C k

1

Ck
1

C′′ →C
→E

where F1 = Ck
1→C′′ →C and

{1} ∪ N = {1, . . . , n}.
It is easy to see that each Ci satisfies the following condition, for otherwise D ′0
would violate condition (I4):

(A) Every maximal path in Ci starting inside the endformula Ci or some w j : F j

must end inside an assumption belonging to Δ′.

Write Al
1→ B for C′′, so that

(7) D ′′ =

Γ′′,Δ′′, ((u j : A j)◦)l
j=1

B
B

Al
1→ B

→I, ul
1

where B does not end in→I. Apply the induction hypothesis to B with respect to
the partition (Γ′′, ((u j : A j)◦)l

j=1;Δ′′) and obtain

(Bi : Γ′′i , ((u j : A j)
◦)l

j=1 ⇒ Gi)
p
i=1, B0 : (vi : Gi)

p
i=1,Δ

′′ ⇒ B,

where
⋃p

i=1 Γ
′′
i = Γ′′, and wn

1 and vp
1 are pairwise distinct. By Lemma 40, B0 does

not end in→I.
Case 2.2.1. The main branch of D ′′ leads to an assumption belonging to Δ′′.

By Lemma 40, the main branch of B0 also leads to an assumption belonging to
Δ′′.

Let l̂ be the least that satisfies the following condition:

(8) For every j such that l̂ + 1 ≤ j ≤ l, there is an a j (1 ≤ a j ≤ p) satisfying:
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i. Ba j = u j : A j;

ii. u j : A j � Ass(Bi) for i � a j.

Let

P = {1, . . . , p} − { a j | l̂ + 1 ≤ j ≤ l },
B̂0 = B0[(u j : A j/va j)

l
j=l̂+1

] : (vi : Gi)i∈P, (u j : A j)
l
j=l̂+1
,Δ′′ ⇒ B.

It is easy to see that (Bi)i∈P is an interpolant to B with respect to the partition
(Γ′′, ((u j : A j)◦)l̂

j=1; (u j : A j)l
j=l̂+1
,Δ′′) via B̂0.

We have seen that B0 does not end in →I and the main branch of B0 leads
to an assumption belonging to Δ′′. Since B0 satisfies condition (I4) by induction
hypothesis, we have the following:

(B) Every maximal path in B̂0 that starts inside the endformula B, some u j : A j

(l̂ + 1 ≤ j ≤ l), or some vi : Gi ends inside an assumption belonging to Δ′′.

Case 2.2.1.1. l̂ = 0. Let

Ď m̌
1 = D ′n1, (Bi)i∈P,

and let Ď0 : (wi : Fi)n
i=1, (vi : Gi)i∈P,Δ⇒ C be the following deduction:

(9) Ď0 =

(wi : Fi)n
i=1,Δ

′
D ′0

(Al
1→ B)→C

(vi : Gi)i∈P, (u j : A j)l
j=1,Δ

′′

B̂0
B

Al
1→ B

→I, ul
1

C →E

We let Dm
1 ,D0 = prune(Ď m̌

1 , Ď0).15

We have to show that condition (I4) is satisfied by Ď0. This easily follows from
(B).

Case 2.2.1.2. l̂ ≥ 1. Let

P+ = { i ∈ P | Ass(Bi) contains at least one of (u j : A j)
l̂
j=1 },

P− = P − P+.

Let D̂1 : Γ′1 ∪
⋃

i∈P+ Γ′′i ⇒ Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→ C be the following

deduction:
(10)

D̂1 =

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C (û j : C j)k
j=1

(Al
1→ B)→C

→E

v̂ : (Gi)i∈P+ → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

→I, ûk
1, v̂

15The sequence Dm
1 ,D0 constructed this way turns out to be the same as the result one obtains if

one applies the construction of Case 2.1.
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Note that D̂1 normalizes in at most k non-erasing β-reduction steps. Let

Ď m̌
1 = |D̂1|β, (D ′i )i∈N , (Bi)i∈P− .

Let Ď0 : ž1 : Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→ C, (wi : Fi)i∈N , (vi : Gi)i∈P− ,Δ ⇒ C be

the following deduction:
(11)

Ď0 =
ž1 : Ck

1→ ((Gi)i∈P+ → Al
l̂+1
→ B)→C

(wi : Fi)i∈N ,Δ′

C k
1

Ck
1

((Gi)i∈P+ → Al
l̂+1
→ B)→C

→E

(vi : Gi)i∈P+ , (vi : Gi)i∈P− , (uj : Aj)l
j=l̂+1
,Δ′′

B̂0
B

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+ , ul
l̂+1

C →E

where C k
1 is as in (6). Now let Dm

1 ,D0 = prune(Ď m̌
1 , Ď0).16

Let us show that Ď m̌
1 , Ď0 satisfies conditions (I1)–(I4) of Definition 16. Since

D̂1 reduces to Ď1 by non-erasing β-reduction steps, Lemma 14 implies that it suf-
fices to show that these conditions are satisfied by D̂1, Ďm

2 , Ď0. Condition (I1) is
obvious. That condition (I2) is satisfied can be seen as follows:

Ď0[D̂1/ž1, (D
′
i /wi)i∈N , (Bi/vi)i∈P− ]

�β

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
i∈N Γ′i ,Δ

′

C k
1 [(D ′i /wi)i∈N]

Ck
1

(Al
1→ B)→C

→E

(vi : Gi)i∈P+ ,
⋃

i∈P− Γ′′i , (uj : Aj)l
j=l̂+1
,Δ′′

B̂0[(Bi/vi)i∈P− ]
B

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+ , ul
l̂+1

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

�β

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
i∈N Γ′i ,Δ

′

C k
1 [(D ′i /wi)i∈N]

Ck
1

(Al
1→ B)→C

→E

⋃
i∈P+ Γ′′i , ((uj : Aj)◦)l̂

j=1,
⋃

i∈P− Γ′′i , (uj : Aj)l
l̂+1
,Δ′′

B̂0[(Bi/vi)i∈P+ , (Bi/vi)i∈P− ]
B

Al
l̂+1
→ B

→I, ul
l̂+1

Al
1→ B

→I, ul̂
1

C →E

=

Γ′,Δ′
D0[(D ′i /wi)n

i=1]
(Al

1→ B)→C

Γ′′, ((uj : Aj)◦)l
j=1,Δ

′′

B̂0[(Bi/vi)
p
i=1]

B

Al
1→ B

→I, ul
1

C →E

�β (by induction hypothesis)

Γ′,Δ′
D ′

(Al
1→ B)→C

Γ′′, ((uj : Aj)◦)l
j=1,Δ

′′

B
B

Al
1→ B

→I, ul
1

C →E

= D .

16Two remarks about this construction. One can apply this construction to Case 2.2.1.1, producing
a weaker interpolant. If one uses P̃+ such that P+ ⊂ P̃+ ⊆ P in place of P+ in this construction, one
still gets an interpolant, but then D1 becomes disconnected.
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As for condition (I3), induction hypothesis takes care of (D ′i )i∈N , (Bi)i∈P− , so
it remains to check D̂1. Let π be a maximal path in D̂1 that starts inside its end-
formula. If π starts inside Ck

1, it passes through the endformula of D ′1 and ends
inside an assumption belonging to Γ′1. If π starts inside (Gi)i∈P+ , it enters some Bi

(i ∈ P+) through its endformula and either ends inside an assumption belonging to
Γ′′i or exits Bi through some u j : A j (1 ≤ j ≤ l̂). In the latter case, π then trav-
els a link associated with the last→E step, enters D ′1 through its endformula, and
ends inside an assumption belonging to Γ′1. If π starts inside Al

l̂+1
→ B, it travels a

link associated with the last→E step and enters D ′1 through its endformula, ending
inside an assumption belonging to Γ′1. If π starts inside C, it directly enters D ′1
through its endformula and ends inside an assumption belonging to Γ′1.

To show that condition (I4) is satisfied, consider any maximal path π in Ď0 that
starts inside an assumption belonging to ž1 : Ck

1→ ((Gi)i∈P+→ Al
l̂+1
→ B)→C, (wi :

Fi)i∈N , (vi : Gi)i∈P− . If π starts inside an assumption belonging to (wi : Fi)i∈N , then,
by (A), π stays within some Ci and ends inside an assumption belonging to Δ′. If
π starts inside an assumption belonging to (vi : Gi)i∈P− , then, by (B), π stays within
B̂0 and ends inside an assumption belonging to Δ′′. Now suppose that π starts
inside ž1 : Ck

1 → ((Gi)i∈P+ → Al
l̂+1
→ B)→ C. If π starts inside Ck

1, then it enters
some Ci through its endformula and ends inside an assumption belonging to Δ′, by
(A). If π starts inside (Gi)i∈P+ → Al

l̂+1
→ B, then it enters B̂0 through some vi : Gi

(i ∈ P+), some u j : A j (l̂ + 1 ≤ j ≤ l), or its endformula B, and in all three cases
ends inside an assumption belonging to Δ′′, by (B). If π starts inside C, then it ends
inside the endformula C of Ď0.

Case 2.2.2. The main branch of D ′′ leads to an assumption belonging to Γ′′ or
to some u j : A j. By Lemma 40, the main branch of B0 must lead to v1 : G1. Since
B0 does not end in →I, G1 must have the form Hq

1 → B, and B0 must have the
following form:

(12) B0 = v1 : Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎝(v j : G j) j∈Pi ,Δ
′′
i

Hi
Hi

⎞⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

where

{1} ∪ P1 ∪ · · · ∪ Pq = {1, . . . , p},
Δ′′1 ∪ · · · ∪ Δ′′q = Δ′′.

Since B0 satisfies condition (I4) of Definition 16, each Hi satisfies the following
condition:

(C) Every maximal path in Hi that starts inside the endformula Hi or some v j :G j

must end inside an assumption belonging to Δ′′i .

For i = 1, . . . , q, let

P+i = { j ∈ Pi | Ass(B j) contains a least one of (u j : A j)
l
j=1 },

P−i = Pi − P+i ,
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and then let

P+ = P+1 ∪ · · · ∪ P+q ,

P− = P−1 ∪ · · · ∪ P−q .

Let D̂1 : Γ′1 ∪Γ′′1 ∪
⋃

i∈P+ Γ′′i ⇒ Ck
1→ ((G j) j∈P+i →Hi)

q
i=1→C be the following

deduction:
(13)

D̂1 =

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C (û j : C j)k
j=1

(Al
1→ B)→C

→E

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝v̂i : (G j) j∈P+i → Hi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1

B j

G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

Hi
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

→I, ûk
1, v̂

q
1

Note that D̂1 normalizes in at most k + q non-erasing β-reduction steps. Let

Ď m̌
1 = |D̂1|β, (D ′i )i∈N , (Bi)i∈P− .

Let Ď0 : ž1 : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→ C, (wi : Fi)i∈N , (vi : Gi)i∈P− ,Δ ⇒ C be the

following deduction:
(14)

Ď0 =
ž1 : Ck

1→ ((G j) j∈P+i → Hi)
q
i=1→C

(wi : Fi)i∈N ,Δ′

C k
1

Ck
1

((G j) j∈P+i → Hi)
q
i=1→C

→E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v j : G j) j∈P+i , (v j : G j) j∈P−i ,Δ

′′
i

Hi
Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

C →E

where C k
1 and Hi are as in (6) and (12), respectively. Now let Dm

1 ,D0 =

prune(Ď m̌
1 , Ď0).

We show that D̂1, (D ′i )i∈N , (Bi)i∈P− , Ď0 satisfies conditions (I2)–(I4) of Defini-
tion 16. We start with condition (I2):

Ď0[D̂1/ž1, (D
′
i /wi)i∈N , (Bi/vi)i∈P− ]

�β

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
i∈N Γ′i ,Δ

′

C k
1 [(D ′i /wi)i∈N]

Ck
1

(Al
1→ B)→C

→E

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈P+i ,
⋃

j∈P−i Γ
′′
j ,Δ

′′
i

Hi[(B j/v j) j∈P−i ]
Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1

B j

G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

Hi
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

�β

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
i∈N Γ′i ,Δ

′

C k
1 [(D ′i /wi)i∈N]

Ck
1

(Al
1→ B)→C

→E

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⋃

j∈Pi
Γ′′j , ((uh : Ah)◦)l

h=1,Δ
′′
i

Hi[(B j/v j) j∈Pi ]
Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

Al
1→ B

→I, ul
1

C →E
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=

⋃n
i=1 Γ

′
i ,Δ
′

D ′0[(D ′i /wi)n
i=1]

(Al
1→ B)→C

⋃p
i=1 Γ

′′
i , ((uj : Aj)◦)l

j=1,Δ
′′

B0[(Bi/vi)
p
i=1]

B

Al
1→ B

→I, ul
1

C →E

�β (by induction hypothesis)

Γ′,Δ′
D ′

(Al
1→ B)→C

Γ′′,Δ′′, ((uj : Aj)◦)l
j=1

B
B

Al
1→ B

→I, ul
1

C →E

= D

Next we need to show that condition (I3) of Definition 16 holds of D̂1. Let π be
a maximal path in D̂1 that starts inside the endformula Ck

1→((G j) j∈P+i →Hi)
q
i=1→C.

If π starts inside Ck
1, then π enters D ′1 through its endformula and ends inside an

assumption belonging to Γ′1. If π starts inside some (G j) j∈P+i , then π passes through
v̂i : (G j) j∈P+i → Hi, enters some B j ( j ∈ P+i ) through its endformula, and either
ends inside an assumption belonging to Γ′′j or exits B j through some u j : A j. If the
latter, π travels a link associated with the last →E step and enters D ′1 through its
endformula, ending inside an assumption belonging to Γ′1. If π starts inside some
Hi, then π passes through v̂i : (G j) j∈P+i →Hi, enters B1 through its endformula, and
either ends inside an assumption belonging to Γ′′1 or exits B1 through some u j : A j.
If the latter, π travels a link associated with the last→E step and enters D ′1 through
its endformula, ending inside an assumption belonging to Γ′1. If π starts inside C,
then it directly enters D ′1 through its endformula and ends inside an assumption
belonging to Γ′1.

Finally, we show that Ď0 satisfies condition (I4) of Definition 16. Let π be
a maximal path in Ď0 that starts inside an assumption belonging to ž1 : Ck

1 →
((G j) j∈P+i → Hi)

q
i=1 → C, (wi : Fi)i∈N , (vi : Gi)i∈P− . If π starts inside an assumption

belonging to (wi :Fi)i∈N , then, by (A), π stays within some Ci and ends inside an as-
sumption belonging to Δ′. If π starts inside an assumption belonging to (vi :Gi)i∈P− ,
then, by (C), π stays within some Hi and ends inside an assumption belonging to
Δ′′. Now suppose that π starts inside ž1 : Ck

1 → ((G j) j∈P+i → Hi)
q
i=1 → C. If π

starts inside Ck
1, then π enters some Ci through its endformula and ends inside an

assumption belonging to Δ′, by (A). If π starts inside some (G j) j∈P+i → Hi, then
π enters Hi through some v j : G j or its endformula Hi, and in both cases ends in-
side an assumption belonging to Δ′′i , by (C). If π starts inside C, it ends inside the
endformula C of Ď0.

This completes the description of the new method and the proof that it always
outputs an interpolant together with an auxiliary deduction for it. We next prove
some facts about deductions that can be components of interpolants constructed by
the new method. Let

� =
⋃
{ {D1, . . . ,Dm} | Dm

1 ,D0 is a possible output of the new method }

Note that all deductions Ďi that are constructed in Case 2 of the Induction Step of
the new method are in �.

Claim A. Let Ď be a deduction in �.
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1. Ď is connected.

2. Suppose that Ď is of the form

Γ̌, (ûi : Ci)k
i=1

Ď−
C

Ck
1→C

→I, ûk
1

where Ď− does not end in→I. Then

• For each i = 1, . . . , k, there is exactly one assumption of the form ûi :Ci

in Ď−.

• If the maximal subdeduction of Ď− which does not end in →I and
whose main branch leads to ûi : Ci is

ûi : (Ci, j)
ri
j=1→Ci,0

Σi, j

Ci, j
Ci, j

Ci,0
→E

where Ci = (Ci, j)
ri
j=1→Ci,0, then

– each Ci, j is in �;

– Σi, j does not contain any ûh : Ch but contains some assumption
discharged in Ď−; and

– Ci, j is not an ∅-interpolant to Ci,h if j < h.

3. If every maximal path in Ď that starts inside an assumption ends inside the
endformula Ě, then Ď is an assumption.

All three properties can be easily checked by induction.

Claim B. Let Ď be a deduction in �. Let a normal deduction D̃ : Γ̌⇒ Ẽ be given.
Then

1. One can determine whether D̃ is an ∅-interpolant to Ď , and if so, produce a
deduction M : z̃ : Ẽ ⇒ Ě such that

(a) D̃ is an ∅-interpolant to Ď via M; and

(b) M is long for D̃ .

2. If D̃ is an ∅-interpolant to Ď , then Ď is an ∅-interpolant to D̃ .

We prove the claim by induction on the construction of Ď .
Induction Basis. Ď is first constructed in Case 1 of the Induction Basis of the

new method, i.e., Ď = x : C. Then the only interpolant to Ď is Ď itself, and the
only auxiliary deduction for Ď , Ď , up to the choice of variable, is z̃ : C. If D̃ = Ď ,
we let E = z̃ : C. Clearly E [E /̃z] = E and all the conditions are satisfied.

Induction Step.
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Case 1. Ď is first constructed in Case 2.2.1.2 of the Induction Step of the new
method, i.e., Ď is the normal form of (10), repeated below:

(10)

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C (û j : C j)k
j=1

(Al
1→ B)→C

→E

v̂ : (Gi)i∈P+ → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

→I, ûk
1, v̂

Let k̂ (0 ≤ k̂ ≤ k) be such that

(15) D ′1 =

Γ′1, (ûi : Ci)k̂
i=1

D ′1
−

Ck
k̂+1
→ (Al

1→ B)→C

Ck
1→ (Al

1→ B)→C
→I, ûk̂

1

where D ′1
− does not end in→I. Then

Ď =

Γ′1, (ûi : Ci)k̂
i=1

D ′1
−

Ck
k̂+1
→ (Al

1→ B)→C (ûi : Ci)k
i=k̂+1

(Al
1→ B)→C

→E

v̂ : (Gi)i∈P+ → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

→I, ûk
1, v̂

We can show that D̃ is an ∅-interpolant to Ď if and only if D̃ is the normal
form of a deduction of the form
(16)

Γ′1
D̃ ′1

C̃k
1→ (Al

1→ B)→C (̃ui : C̃i)k
i=1

(Al
1→ B)→C

→E

ũk+1 : G̃|P
+ |

1 → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′ρ(i), ((uj : Aj)◦)l̂

j=1

G̃i

G̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+ |

i=1

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

(C̃π(i))k+1
i=1 →C

→I, (̃uπ(i))k+1
i=1

where π is a permutation of {1, . . . , k + 1}, D̃ ′1 is an ∅-interpolant to D ′1, C̃k+1 =

G̃|P
+ |

1 → Al
l̂+1
→ B, ρ is a bijection from {1, . . . , |P+|} to P+, and for i = 1, . . . , |P+|,

G̃i is an ∅-interpolant to Bρ(i).
We first prove the “only if” direction of this statement. Suppose that D̃ is an

∅-interpolant to Ď via E . Since Ď is connected by part 1 of Claim A, Lemma 32
implies that E can have only one assumption. By part 1 of Lemma 44, we may
assume that E is of the following form:

E = z̃ : F̃k̃
1→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Θi

F̃i

F̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̃

i=1

C →E

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

→I, ûk
1, v̂
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where
Θ1 ∪ · · · ∪Θk̃ = (ûi : Ci)

k
i=1, v̂ : (Gi)i∈P+ → Al

l̂+1
→ B.

Since E satisfies condition (I4) of Definition 16 (with respect to (̃z : F̃k̃
1 → C;∅)),

each F̃i must satisfy condition (I3) of Definition 16. This implies that Θi � ∅ for
each i. Moreover, by part 2 of Claim A and Lemma 19, it is not difficult to see that

|Θi| = 1 for each i,

Θi ∩Θ j = ∅ if i � j.

So k̃ = k+1. By part 3 of Lemma 40, the main branch of D̃ leads to an assumption
belonging to Γ′1. Now we show that D̃ must end in at least k̃ applications of →I.

Suppose not. Then, since E [D̃ /̃z] �β Ď , the subdeduction of (10) whose endfor-
mula is Al

1 → B must be F̃k̃. Then, for i ∈ P+, Ass(Bi) ⊆ { u j : A j | 1 ≤ j ≤ l̂ }.
Since F̃k̃ satisfies (I3) and each Bi is connected by part 1 of Claim A, each Bi

has only one assumption and every maximal path in Bi that starts inside its only
assumption must end inside its endformula. By part 3 of Claim A, it follows that
Bi = u j : A j for some j such that 1 ≤ j ≤ l̂. Since Bp

1 ,B0 is an output of the
pruning procedure, Bi � B j for i � j, by part 2 of Lemma 39. Hence for each
j = 1, . . . , l̂, there is a unique i such that Bi = u j : A j. By the definition of l̂, this
contradicts the assumption that l̂ ≥ 1. Therefore, D̃ must end in k̃ applications of
→I. This means that D̃ must be of the following form:

D̃ =

Γ′1, (̃ui : C̃i)k
i=1

D̃ ′
(Al

1→ B)→C

⋃
i∈P+ Γ′′i , ũk+1 : C̃k+1

D̃ ′′
Al

1→ B

C →E

(C̃π(i))k+1
i=1 →C

→I, (̃uπ(i))k+1
i=1

where π is a permutation of {1, . . . , k + 1}, F̃i = C̃π(i), and

Θi =

⎧⎪⎪⎨⎪⎪⎩ûπ(i) : Cπ(i) if 1 ≤ π(i) ≤ k,

v̂ : (Gi)i∈P+ → Al
l̂+1
→ B if π(i) = k + 1.

We have to show that D̃ ′ and D̃ ′′ have the required form. Let C̃i = F̃π−1(i), so that

C̃i : ûi : Ci ⇒ C̃i for i = 1, . . . , k,

C̃k+1 : v̂ : (Gi)i∈P+ → Al
l̂+1
→ B⇒ C̃k+1.

Let us first consider D̃ ′. Since E [D̃ /̃z]�β Ď ,

D̃ ′[(C̃i/̃ui)
k
i=1]�β

Γ′1, (ûi : Ci)k̂
i=1

D ′1
−

Ck
k̂+1
→ (Al

1→ B)→C (ûi : Ci)k
i=k̂+1

(Al
1→ B)→C

→E

This means that, for i = k̂ + 1, . . . , k, ûi : Ci cannot appear as the major premise of
→E in C̃i. Therefore, for i = k̂ + 1, . . . , k,

C̃i = Ci, C̃i = ûi : Ci,
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and D̃ ′ must have the following form:

D̃ ′ =

Γ′1, (̃ui : C̃i)k̂
i=1

D̃ ′1
−

Ck
k̂+1
→ (Al

1→ B)→C (̃ui : C̃i)k
i=k̂+1

(Al
1→ B)→C

→E

It follows that
D̃ ′[(C̃i/̃ui)

k̂
i=1]�β D ′1

−.

Let

D̃ ′1 =

Γ′1, (̃ui : C̃i)k̂
i=1

D̃ ′1
−

Ck
k̂+1
→ (Al

1→ B)→C

C̃k
1→ (Al

1→ B)→C
→I, ũk̂

1

Then
Γ′1
D̃ ′1

C̃k
1→ (Al

1→ B)→C (̃ui : C̃i)k
i=1

(Al
1→ B)→C

→E

�β D̃ ′

and it is easy to see that D̃ ′1 is an interpolant to D ′1 via

E ′ = w̃ : C̃k
1→ (Al

1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ûi : Ci

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̂

i=1

Ck
k̂+1
→ (Al

1→ B)→C
→E

Ck
1→ (Al

1→ B)→C
→I, ûk̂

1

Let us now turn to D̃ ′′. Since E [D̃ /̃z]�β Ď , we have

(17) D̃ ′′[C̃k+1/̃uk+1]�β
v̂ : (Gi)i∈P+ → Al

l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((u j : A j)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

D̃ ′′ must have the following form:

D̃ ′′ = ũk+1 : G̃ñ
1→ Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃i, ((u j : A j)◦)̃l

j=1

G̃i

G̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ñ

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ũl
1

where l̃ ≤ l̂. Since D̃ satisfies condition (I3) of Definition 16, each G̃i must, too.
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We show that l̃ = l̂. Suppose l̃ < l̂. Then C̃k+1 must have the following form:

C̃k+1 =

v̂ : (Gi)i∈P+ → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎝ Ξi
E ′′i
Gsi

⎞⎟⎟⎟⎟⎟⎟⎠
|P+ |

i=1

Al
l̂+1
→ B

→E

Al
l̃+1
→ B

→I, ul̂
l̃+1

G̃ñ
1→ Al

l̃+1
→ B

→I, ṽñ
1

where (si)
|P+ |
i=1 lists the elements of P+ in increasing order and

|P+ |⋃
i=1

Ξi = (̃vi : G̃i)̃
n
i=1, (u j : A j)

l̂
j=̃l+1
.

Since C̃k+1 satisfies condition (I3) of Definition 16, each E ′′i must satisfy con-
dition (I4) of Definition 16 (with respect to (Ξi;∅)). By (17), it follows that, if
Ξi = (̃v j : G̃ j) j∈J1 , (u j : A j) j∈J2 , then (G̃ j) j∈J1 , (u j : A j) j∈J2 is an ∅-interpolant to
Bsi via E ′′i . Since Bsi is connected by part 1 of Claim A, Lemma 32 implies that
|Ξi| = 1 for each i = 1, . . . , |P+|. Since l̂ ≥ l̃ + 1, there is an i such that ul̂ : Al̂ = Ξi.
Since ul̂ : Al̂ is an ∅-interpolant to Bsi via E ′′i , we see that Bsi = E ′′i and every
maximal path in Bi that starts inside its only assumption ends inside its endfor-
mula. By part 3 of Claim A, it follows that Bsi = ul̂ : Al̂. Now take any h � i. Since
Bsi � Bsh , the above argument shows that ul̂ : Al̂ � Ass(Bsh), which contradicts
the definition of l̂.

We have shown that l̃ = l̂. Now C̃k+1 must have the following form:

C̃k+1 =
v̂ : (Gi)i∈P+ → Al

l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎝ Ξi
E ′′i
Gsi

⎞⎟⎟⎟⎟⎟⎟⎠
t

i=1

G̃ñ
p̃+1→ Al

l̂+1
→ B

→E

G̃ñ
1→ Al

l̂+1
→ B

→I, ṽp̃
1

where t ≤ |P+|, p̃ ≤ ñ, G̃ñ
p̃+1 = (Gsi)

|P+ |
i=t+1, and

t⋃
i=1

Ξi = (̃vi : G̃i)
p̃
i=1.

Again, it is easy to see that we must have |Ξi| = 1, and if Ξi = ṽ j : G̃ j, then G̃ j is an
∅-interpolant to Bsi via E ′′i , which, by the induction hypothesis, implies that Bsi

is an ∅-interpolant to G̃ j. Since, by part 2 of Lemma 39, Bi is not an ∅-interpolant
to B j if i < j, it follows that Ξi ∩ Ξ j = ∅ if i � j. Therefore, t = p̃ and |P+| = ñ.
By (17), G̃i = Bsi for t+1 ≤ i ≤ |P+|. Thus, there is a bijection ρ from {1, . . . , |P+|}
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to P+ such that

D̃ ′′ = ũk+1 : G̃|P
+ |

1 → Al
l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′ρ(i), ((u j : A j)◦)l̂

j=1

G̃i

G̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+ |

i=1

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

where for i = 1, . . . , |P+|, G̃i is an ∅-interpolant to Bρ(i). We have shown that D̃ ′′
has the required form. This proves the “only if” direction of the above statement.

Now suppose that D̃ is the normal form of (16). We will produce an auxiliary
deduction M for D̃ , Ď that is long for D̃ , thereby proving the “if” direction of
the above statement, and moreover prove that Ď is an ∅-interpolant to D̃ . By the
induction hypothesis, let M ′ : w̃1 : C̃k

1 → (Al
1 → B)→ C ⇒ Ck

1 → (Al
1 → B)→ C

be an auxiliary deduction for D̃ ′1,D
′
1 that is long for D̃ ′1, and for i = 1, . . . , |P+|, let

Ni : ṽi : G̃i ⇒ Gρ(i) be an auxiliary deduction for G̃i,Bρ(i) that is long for G̃i. By
part 2 of Lemma 44 and part 2 of Claim A, wee can see that M ′ must be of the
following form:

M ′ =
w̃1 : C̃k̂

1→Ck
k̂+1
→ (Al

1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ûσ(i) : Cσ(i)

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̂

i=1

Ck
k̂+1
→ (Al

1→ B)→C
→E

Ck
1→ (Al

1→ B)→C
→I, ûk̂

1

where k̂ is as in (15), C̃k
k̂+1
= Ck

k̂+1
, and σ is a permutation of {1, . . . , k̂ }. Let

C̃i = ûi : Ci for i = k̂ + 1, . . . , k,

C̃k+1 =
v̂ : (Gi)i∈P+ → Al

l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ṽρ−1(i) : G̃ρ−1(i)

Nρ−1(i)
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

G̃|P
+ |

1 → Al
l̂+1
→ B

→I, (̃vi)
|P+ |
i=1

(Recall that C̃k+1 = G̃|P
+ |

1 →Al
l̂+1
→B.) Let M : z̃:(C̃π(i))k+1

i=1→C ⇒ Ck
1→((Gi)i∈P+→

Al
l̂+1
→ B)→C be the following deduction:

M =

z̃ : (C̃π(i))k+1
i=1 →C (C̃π(i))k+1

i=1

C →E

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

→I, ûk
1, v̂

Then it is easy to see that D̃ is an ∅-interpolant to Ď via M . To prove that M is
long for D̃ , we use the induction hypothesis that M ′ and Ni are long for D̃ ′ and
G̃i, respectively. We leave the tedious but straightforward proof to the reader.
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It remains to prove that Ď is an ∅-interpolant to D̃ . By the induction hypoth-
esis, D ′1 is an ∅-interpolant to D̃ ′1 via some M̌ ′ : w1 : Ck

1 → (Al
1 → B) → C ⇒

C̃k
1→ (Al

1→B)→C, and for i = 1, . . . , |P+|, Bρ(i) is an ∅-interpolant to G̃i via some
ˇNi : vρ(i) : Gρ(i) ⇒ G̃i. By part 1 of Lemma 44, we may assume that M̌ ′ ends in k̂

applications of→I. Since M ′[M̌ ′[D ′1/wi]/w̃1]�β D ′1, part 2 of Claim A implies
that M̌ ′ must be of the following form:

M̌ ′ =
w1 : Ck

1→ (Al
1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝̃uτ(i) : C̃τ(i)
Či
Ci

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̂

i=1

Ck
k̂+1
→ (Al

1→ B)→C
→E

C̃k̂
1→Ck

k̂+1
→ (Al

1→ B)→C
→I, ũk̂

1

where τ is a permutation of {1, . . . , k̂}. Let

Či = ũi : Ci for i = k̂ + 1, . . . , k,

Čk+1 =
ũk+1 : G̃|P

+ |
1 → Al

l̂+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎝
vρ(i) : Gρ(i)

ˇNi

G̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
|P+ |

i=1

Al
l̂+1
→ B

→E

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

Then let M̌ : ž :Ck
1→ ((Gi)i∈P+→Al

l̂+1
→B)→C ⇒ (C̃π(i))k+1

i=1 →C be the following
deduction:

M̌ =

ž : Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C Č k+1

1

C →E

(C̃π(i))k+1
i=1 →C

→I, (̃uπ(i))k+1
i=1

It is easy to see that Ď is an ∅-interpolant to D̃ via M̌ .
Case 2. Ď is first constructed in Case 2.2.2 of the Induction Step of the new

method, i.e., Ď is the normal form of (13), repeated below:
(13)

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C (û j : C j)k
j=1

(Al
1→ B)→C

→E

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝v̂i : (G j) j∈P+i → Hi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1

B j

G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

Hi
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

→I, ûk
1, v̂

q
1

Let k̂ and D ′1
− be as in (15). Let B̌ be the normal form of the subdeduction of (13)

whose endformula is B. Let Ȟi be the maximal subdeduction of B̌ which does
not end in →I and whose main branch leads to v̂i : (G j) j∈P+i → Hi. (By part 2 of
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Claim A, Ȟi is unique.) Ȟi is of the form

Ȟi = v̂i : (G j) j∈P+i → (Hi, j)
ri
j=1→ Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1
B j
G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ψi, j

Ȟi, j
Hi, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ri

j=1

Hi,0
→E

where
Hi = (Hi, j)

ri
j=1→ Hi,0.

By part 2 of Claim A, Ȟ1, . . . , Ȟq do not overlap with each other and each Ȟi, j is
a deduction in �. If we write B[Ȟ1, . . . , Ȟq] for B̌, then
(18)

Ď =

Γ′1, (ûi : Ci)k̂
i=1

D ′1
−

Ck
k̂+1
→ (Al

1→ B)→C (ûi : Ci)k
i=k̂+1

(Al
1→ B)→C

→E

Γ′′1 ,
⋃

j∈P+ Γ′′j , ((u j : A j)◦)l
j=1, (v̂i : (G j) j∈P+i → Hi)

q
i=1

B[Ȟ1, . . . , Ȟq]
B

Al
1→ B

→I, ul
1

C →E

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

→I, ûk
1, v̂

q
1

Let (si, j)
|P+i |
j=1 list the elements of P+i in increasing order. We can show that D̃

is an ∅-interpolant to Ď if and only if D̃ is the normal form of a deduction of the
form

(19)

Γ′1
D̃ ′1

C̃k
1→ (Al

1→ B)→C (̃ui : C̃i)k
i=1

(Al
1→ B)→C

→E

Γ′′1 ,
⋃

j∈P+ Γ′′j , ((u j : A j)◦)l
j=1, (̃ui : C̃i)

k+q
i=k+1

B[H̃1, . . . , H̃q]
B

Al
1→ B

→I, ul
1

C →E

(C̃π(i))
k+q
i=1 →C

→I, (̃uπ(i))
k+q
i=1

where π is a permutation of {1, . . . , k + q}, D̃ ′1 is an ∅-interpolant to D ′1,

B[H̃1, . . . , H̃q] is the result of replacing Ȟ1, . . . , Ȟq in B[Ȟ1, . . . , Ȟq] by
H̃1, . . . , H̃q, respectively, and for i = 1, . . . , q,

C̃k+i = (G̃i, j)
|P+i |+ri

j=1 → Hi,0,

H̃i =
ũk+i : (G̃i, j)

|P+i |+ri

j=1 → Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Φi, j

G̃i, j

G̃i, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+i |+ri

j=1

Hi,0
→E

and there is a permutation ρi of {1, . . . , |P+i | + ri} such that

G̃i, j is an ∅-interpolant to

⎧⎪⎪⎨⎪⎪⎩Bsi,ρi( j) if 1 ≤ ρi( j) ≤ |P+i |,
Ȟi,ρi( j)−|P+i | if |P+i | + 1 ≤ ρi( j) ≤ |P+i | + ri.

We first prove the “only if” direction of this statement. Suppose that D̃ is an
∅-interpolant to Ď via E . Since Ď is connected by part 1 of Claim A, Lemma 32
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implies that E can have only one assumption. By part 1 of Lemma 44, we may
assume that E is of the following form:

E = z̃ : F̃k̃
1→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Θi

F̃i

F̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̃

i=1

C →E

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

→I, ûk
1, v̂

q
1

where
Θ1 ∪ · · · ∪Θk̃ = (ûi : Ci)

k
i=1, (v̂i : (G j) j∈P+i → Hi)

q
i=1.

Since E satisfies condition (I4) of Definition 16 (with respect to (̃z : F̃k̃
1 → C;∅)),

each F̃i must satisfy condition (I3) of Definition 16. This implies that Θi � ∅ for
each i. Moreover, by part 2 of Claim A and Lemma 19, it is not difficult to see that

|Θi| = 1 for each i,

Θi ∩Θ j = ∅ if i � j.

So k̃ = k+q. By part 3 of Lemma 40, the main branch of D̃ leads to an assumption
belonging to Γ′1. Note that F̃k̃ cannot be the subdeduction of (18) whose endfor-
mula is Al

1→ B. For, if that subdeduction satisfies condition (I3) of Definition 16,

its main branch must lead to an assumption belonging to Γ′′1 � ∅. Therefore, D̃
must be of the following form:

D̃ =

Γ′1, (̃ui : C̃i)k
i=1

D̃ ′
(Al

1→ B)→C

Γ′′1 ∪
⋃

j∈P+ Γ′′j , (̃ui : C̃i)
k+q
i=k+1

D̃ ′′
Al

1→ B

C →E

(C̃π(i))
k+q
i=1 →C

→I, (̃uπ(i))
k+q
i=1

where π is a permutation of {1, . . . , k + q}, F̃i = C̃π(i), and

Θi =

⎧⎪⎪⎨⎪⎪⎩ûπ(i) : Cπ(i) if 1 ≤ π(i) ≤ k,

v̂π(i)−k : (G j) j∈P+
π(i)−k
→ Hπ(i)−k if k + 1 ≤ π(i) ≤ k + q.

We have to show that D̃ ′ and D̃ ′′ have the required form. Let C̃i = F̃π−1(i), so that

C̃i : ûi : Ci ⇒ C̃i for i = 1, . . . , k,

C̃k+i : v̂i : (G j) j∈P+i → Hi ⇒ C̃k+i for i = 1, . . . , q.

Exactly as in Case 1, we can show

Γ′1
D̃ ′1

C̃k
1→ (Al

1→ B)→C (̃ui : C̃i)k
i=1

(Al
1→ B)→C

→E

�β D̃ ′

where D̃ ′1 is an ∅-interpolant to D ′1.
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We turn to D̃ ′′. Since E [D̃ /̃z] �β Ď , the main branch of D̃ ′′ must lead to an
assumption belonging to Γ′′ and D̃ ′′ must be of the following form

D̃ ′′ =

Γ′′1 ∪
⋃

j∈P+ Γ′′j , ((u j : A j)◦)l
j=1, (̃ui : C̃i)

k+q
i=k+1

B̃
B

Al
1→ B

→I, ul
1

We have
B̃[(C̃i/̃ui)

k+q
i=k+1]�β B[Ȟ1, . . . , Ȟq].

Since C̃k+i satisfies condition (I3) of Definition 16, the main branch of C̃k+i leads
to v̂i : (G j) j∈P+i → (Hi, j)

ri
j=1→ Hi,0. Then it is not difficult to see that

B̃ = B[H̃1, . . . , H̃q],

where, for each i = 1, . . . , q, H̃i is of the form

H̃i = ũk+i : (G̃i, j)̃
ni
j=1→ Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Φi, j

G̃i, j

G̃i, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ñi

j=1

Hi,0
→E

and
H̃i[C̃k+i/̃uk+i]�β Ȟi.

Since D̃ satisfies condition (I3) of Definition 16, each G̃i, j does, too. For i =

1, . . . , q, C̃k+i must have the following form:

C̃k+i =
v̂i : (Gsi, j)

|P+i |
j=1→ (Hi, j)

ri
j=1→ Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Ξi, j

E ′′i, j
Gi, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
ti

j=1

(G̃i, j)̃
ni

j=p̃i+1→ Hi,0
→E

(G̃i, j)̃
ni
j=1→ Hi,0

→I, (̃vi, j)
p̃i

j=1

where ti ≤ |P+i | + ri, p̃i ≤ ñi, and

(Gi, j)
ti
j=1, (G̃i, j)̃

ni

j=p̃i+1 = (Gsi, j)
|P+i |
j=1, (Hi, j)

ri
j=1,

ti⋃
j=1

Ξi, j = (̃vi, j : G̃i, j)
p̃i

j=1.

Since C̃k+i satisfies condition (I3) of Definition 16, each E ′′i, j must satisfy condition
(I4) of Definition 16 with respect to (Ξi, j;∅). For h = 1, . . . , ti, let Ji,h = { j |
ṽi, j : G̃i, j ∈ Ξi, j }. Since H̃i[C̃k+i/̃uk+i]�β Ȟi, we have

(20) (G̃i, j) j∈Ji,h is an ∅-interpolant to

⎧⎪⎪⎨⎪⎪⎩Bsi,h via E ′′i,h if h ≤ |P+i |,
Ȟi,h−|P+i | via E ′′i,h if h > |P+i |.
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Since Bsi,h and Ȟi,h−|P+i | are connected by part 1 of Claim A, Lemma 32 implies
that |Ji,h| = 1. By part 2 of Claim A and the induction hypothesis, we can see
that Ji,h ∩ Ji,h′ = ∅ if h � h′. Therefore, ti = p̃i and ñi = |P+i | + ri. For h =
ti + 1, . . . , |P+i | + ri, define

(21) G̃i,h =

⎧⎪⎪⎨⎪⎪⎩Bsi,h if h ≤ |P+i |,
Ȟi,h−|P+i | if h > |P+i |.

Combining (20) and (21), we conclude that there is a permutation ρi of
{1, . . . , |P+i | + ri} such that

G̃i, j is an ∅-interpolant to

⎧⎪⎪⎨⎪⎪⎩Bsi,ρi( j) if 1 ≤ ρi( j) ≤ |P+|,
Ȟi,ρi( j)−|P+i | if |P+i | + 1 ≤ ρi( j) ≤ |P+i | + ri.

We have shown that D̃ ′′ has the required form. This proves the “only if” direction
of the above statement.

Conversely, suppose that D̃ is the normal form of (19). By the induction hy-
pothesis, let M ′ : w̃1 : C̃k

1→ (Al
1→ B)→C ⇒ Ck

1→ (Al
1→ B)→C be an auxiliary

deduction for D̃ ′1,D
′
1 that is long for D̃ ′1, and for i = 1, . . . , q, let Ni, j : ṽi, j : G̃i, j ⇒

Gsi,ρi( j) be an auxiliary deduction for G̃i, j,Bsi,ρi( j) (in case 1 ≤ ρi( j) ≤ |P+i |) or an

auxiliary deduction for G̃i, j, Ȟi,ρi( j)−|P+i | (in case |P+i | + 1 ≤ ρi( j) ≤ |P+i | + ri) that is

long for G̃i, j. As in the previous case, we can see that M ′ must be of the following
form:

M ′ =
w̃1 : C̃k̂

1→Ck
k̂+1
→ (Al

1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ûσ(i) : Cσ(i)

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̂

i=1

Ck
k̂+1
→ (Al

1→ B)→C
→E

Ck
1→ (Al

1→ B)→C
→I, ûk̂

1

where C̃k
k̂+1
= Ck

k̂+1
and σ is a permutation of {1, . . . , k̂ }. Let

C̃i = ûi : Ci for i = k̂ + 1, . . . , k,

C̃k+i =
v̂i : (G j) j∈P+i → (Hi, j)

ri
j=1→ Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ṽi,ρ−1

i ( j) : G̃i,ρ−1
i ( j)

Ni,ρ−1
i ( j)

Gsi, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+i |

j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ṽi,ρ−1

i ( j) : G̃i,ρ−1
i ( j)

Ni,ρ−1
i ( j)

Hi, j−|P+i |

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+i |+ri

j=|P+i |+1

Hi,0
→E

(G̃i, j)
|P+i |+ri

j=1 → Hi,0

→I, (̃vi, j)
|P+i |+ri

j=1

for i = 1, . . . , q.

Then let M : z̃ : (C̃π(i))
k+q
i=1 → C ⇒ Ck

1→ ((G j) j∈P+i → Hi)
q
i=1→ C be the following

deduction:

M =

z̃ : (C̃π(i))
k+q
i=1 →C (C̃π(i))

k+q
i=1

C →E

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

→I, ûk
1, v̂

q
1
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Then it is easy to see that D̃ is an ∅-interpolant to Ď via M . To prove that M is
long for D̃ , we use the induction hypothesis that M ′ and Ni, j are long for D̃ ′1 and

G̃i, j, respectively. We leave the tedious but straightforward proof to the reader.
It remains to prove that Ď is an ∅-interpolant to D̃ . By the induction hypoth-

esis, D ′1 is an ∅-interpolant to D̃ ′1 via some M̌ ′ : w1 : Ck
1 → (Al

1 → B) → C ⇒
C̃k

1 → (Al
1 → B) → C, and for i = 1, . . . , q and j = 1, . . . , |P+i | + ri, Bρi( j) is an

∅-interpolant to G̃i, j via some ˇNi, j : vsi,ρi( j) : Gsi,ρi( j) ⇒ G̃i, j if 1 ≤ ρi( j) ≤ |P+i | and

Ȟi,ρi( j)−|P+i | is an ∅-interpolant to G̃i, j via some ˇNi, j : yi,ρi( j)−|P+i | : Hi,ρi( j)−|P+i | ⇒ G̃i, j

if |P+i | + 1 ≤ ρi( j) ≤ |P+i | + ri. As in the previous case, we may assume that M̌ ′ is
of the following form:

M̌ ′ =
w1 : Ck

1→ (Al
1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎝̃uτ(i) : C̃τ(i)
Či
Ci

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k̂

i=1

Ck
k̂+1
→ (Al

1→ B)→C
→E

C̃k̂
1→Ck

k̂+1
→ (Al

1→ B)→C
→I, ũk̂

1

where τ is a permutation of {1, . . . , k̂}. Let

Či = ũi : Ci for i = k̂ + 1, . . . , k,

Čk+i =
ũk+i : (G̃i, j)

|P+i |+ri

j=1 → Hi,0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(vsi,ρi( j) : Gsi,ρi( j) )

◦, (yi,ρi( j)−|P+i | : Hi,ρi( j)−|P+i |)
◦

ˇNi, j

G̃i, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|P+i |+ri

j=1

Hi,0
→E

(G j) j∈P+i → (Hi, j)
ri
j=1→ Hi,0

→I, (v j) j∈P+i , (yi, j)
ri
j=1

for i = 1, . . . , q.

Then let M̌ : ž : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→ C ⇒ (C̃π(i))

k+q
i=1 → C be the following

deduction:

M̌ =

ž : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C Č k+q

1

C →E

(C̃π(i))
k+q
i=1 →C

→I, (̃uπ(i))
k+q
i=1

It is easy to see that Ď is an ∅-interpolant to D̃ via M̌ . This completes the proof
of Claim B.

We have described an algorithm that, given an arbitrary normal deduction D̃
and a deduction Ď which is among the deductions Ď m̌

1 constructed during the

course of the new method, determines whether D̃ is an ∅-interpolant to Ď , and
if so, computes a particular auxiliary deduction M for D̃ , Ď . We can use this algo-
rithm to compute μ(i) and Mi used in the definition of the function prune. We will
assume that Mi : zμ(i) : Eμ(i) ⇒ Ěi is the deduction returned by the above algorithm
on input Dμ(i), Ďi. In particular, for each i, we have the following:

(22) Dμ(i) is an ∅-interpolant to Ďi via Mi.
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(23) Mi is long for Dμ(i).

Note that part 2 of Lemma 39 and part 2 of Claim B together imply that the
interpolant Dm

1 constructed by the new method satisfies the following property:

(24) If i � j, Di is not an ∅-interpolant to D j.

From (22) and (24), we also get:

(25) If Ďi is an ∅-interpolant to D j, then j = μ(i).

As a consequence of part 1 of Claim A and part 2 of Claim B, we know that
Dm

1 is a maximally strong interpolant to D in the sense that no interpolant to D
is strictly stronger than it. This is still short of establishing that Dm

1 is in fact a
strongest interpolant, which we are now going to prove.

Claim C. Let (Di : Γi ⇒ Ei)m
i=1,D0 : (zi : Ei)m

i=1,Δ ⇒ C be the deductions that
the new method outputs when given deduction D : Γ,Δ ⇒ C together with the
partition (Γ;Δ) as input. Suppose that (D̃i : Γ̃i ⇒ Ẽi)m̃

i=1 is another interpolant to D

with respect to the partition (Γ;Δ) via D̃0 : (̃zi : Ẽi)m̃
i=1,Δ⇒ C. Then one can find m̃

subsets S1, . . . , Sm̃ of {1, . . . ,m} and m̃ normal deductions (Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃
i=1

satisfying the following conditions:

1. S1 ∪ · · · ∪ Sm̃ = {1, . . . ,m};
2. For i = 1, . . . , m̃, (D j) j∈Si is an ∅-interpolant to D̃i via Ei;

3. D̃0[(Ei/̃zi)m̃
i=1]�β D0;

4. For each i = 1, . . . , m̃ and for each j ∈ Si, Ei is long for D j with respect to
z j : E j.

Note that conditions 1–2 simply say that Dm
1 is stronger than D̃ m̃

1 .

We prove the claim by induction on D , following mostly the description of the
construction of Dm

1 ,D0. It suffices to prove conditions 2–4, because condition 1
easily follows from condition 3.

Induction Basis. D is x : C.
Case 1. Γ = {x : C},Δ = ∅. We have m = 1, D1 = D , and D0 = z1 : C. By

Lemma 19, m̃ = 1, and by Lemma 40, D̃0 does not end in→I, and the main branch
of D̃0 leads to z̃1. It follows that D̃0 = z̃1 : C and D̃1 = D . So the claim holds with
E1 = z1 : C.

Case 2. Γ = ∅,Δ = {x : C}. We have m = 0 and D0 = D . We must have m̃ = 0
and the claim holds trivially.

Induction Step.
Case 1. The last inference of D is→I. D is of the form:

D =

(y : A)◦,Γ,Δ
D ′
B

A→ B
→I, y

where A→ B = C. We have Dm
1 = D ′m1 and

D0 =

(zi : Ei)m
i=1, (y : A)◦,Δ
D ′0
B

A→ B
→I, y
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where D ′m1 ,D ′0 is the output of the new method on input D ′, (Γ; (y : A)◦,Δ). We
have two subcases to consider.

Case 1a. D̃0 ends in→I. Then D̃0 is of the form

D̃0 =

(̃zi : Ẽi)m̃
i=1, (y : A)◦,Δ
D̃ ′0
B

A→ B
→I, y

Then it is easy to check that D̃ m̃
1 is an interpolant to D ′ with respect to the partition

(Γ; (y : A)◦,Δ) via D̃ ′0. The induction hypothesis then gives sets Sm̃
1 and deductions

E m̃
1 with the necessary properties.

Case 1b. D̃0 does not end in→I. Then D̃0 must look like the following:

D̃0 =
z̃1 : C̃k̃

1→ A→ B

(̃z1 : Ẽ1)◦, (̃zi : Ẽi)m̃
i=2,Δ

C̃ k̃
1

C̃k̃
1

A→ B →E

where Ẽ1 = C̃k̃
1→ A→ B. D̃1 must have the following form:

D̃1 =

Γ̃1, (̃ui : C̃i)̃k
i=1, y : A

D̃−1
B

C̃k̃
1→ A→ B

→I, ũ̃k
1, y

Let

D̃ ′0 =

(̃zi : Ẽi)m̃
i=1,Δ

D̃0
A→ B y : A

B →E

Then D̃ ′0 is a normal deduction and it is easy to see that D̃ m̃
1 is an interpolant to D ′

with respect to the partition (Γ; y : A,Δ) via D̃ ′0. By the induction hypothesis, we
have subsets Sm̃

1 of {1, . . . ,m} and deductions (Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃
i=1 such that

(26) i. S1 ∪ · · · ∪ Sm̃ = {1, . . . ,m};
ii. for i = 1, . . . , m̃, (D j) j∈Si is an ∅-interpolant to D̃i via Ei;

iii. D̃ ′0[(Ei/̃zi)m̃
1 ]�β D ′0;

iv. for each i = 1, . . . , m̃ and for each j ∈ Si, Ei is long for Di with respect to
z j : E j.

Only condition 3 remains to be proved. By (26.iv) and part 2 of Lemma 44, E1

must look as follows:

E1 =

(z j : E j) j∈S1 , (̃ui : C̃i)̃k
i=1, y : A

E −1
B

C̃k̃
1→ A→ B

→I, ũ̃k
1, y
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Then it is not hard to see that D̃0[(Ei/̃zi)m̃
i=1]�β D0.

Case 2. The last inference of D is→E. D is of the form

D =

Γ′,Δ′
D ′

C′′ →C

Γ′′,Δ′′
D ′′
C′′

C →E

where Γ′ ∪ Γ′′ = Γ and Δ′ ∪ Δ′′ = Δ.
In each of the following subcases, we have Dm

1 ,D0 = prune(Ď m̌
1 , Ď0). We let

μ(i) and Mi be as in the definition of prune(Ď m̌
1 , Ď0).

Case 2.1. The main branch of D ′ leads to an assumption belonging to Δ′. Then
by Lemma 40, the main branch of D̃0 leads to an assumption belonging to Δ′, and
D̃0 must look like the following, where M′ ∪ M′′ = {1, . . . , m̃}:

(27) D̃0 =

(̃zi : Ẽi)i∈M′ ,Δ′

D̃ ′0
C′′ →C

(̃zi : Ẽi)i∈M′′ ,Δ′′

D̃ ′′0
C′′

C →E

It is easy to see that (D̃i)i∈M′ is an interpolant to D ′ with respect to the partition
(Γ′;Δ′) via D̃ ′0, and (D̃i)i∈M′′ is an interpolant to D ′′ with respect to the parti-

tion (Γ′′;Δ′′) via D̃ ′′0 . Applying the induction hypothesis to D ′ and D ′′, we ob-
tain subsets (S′i )i∈M′ of {1, . . . , n}, subsets (S′′i )i∈M′′ of {1, . . . , p}, and deductions
(E ′i : (w j : F j) j∈S′i ⇒ Ẽi)i∈M′ , (E ′′i : (v j : G j) j∈S′′i ⇒ Ẽi)i∈M′′ such that

(28) i.
⋃

i∈M′ S
′
i = {1, . . . , n};

ii. for each i ∈ M′, (D ′j) j∈S′i is an ∅-interpolant to D̃i via E ′i ;

iii. D̃ ′0[(E ′i /̃zi)i∈M′]�β D ′0;

iv. for each i ∈ M′ and for each j ∈ S′i , E ′i is long for D ′j with respect to
w j : F j;

(29) i.
⋃

i∈M′′ S
′′
i = {1, . . . , p};

ii. for each i ∈ M′′, (D ′′j ) j∈S′′i is an ∅-interpolant to D̃i via E ′′i ;

iii. D̃ ′′0 [(E ′′i /̃zi)i∈M′′]�β D ′′0 ;

iv. for each i ∈ M′′ and for each j ∈ S′′i , E ′′i is long for D ′′j with respect to
v j : G j.

The output Dm
1 ,D0 of the new method is the result of applying the pruning

procedure to (Ďi : Γ̌i ⇒ Ěi)m̌
i=1, Ď0 : (ži : Ěi)m̌

i=1,Δ⇒ C, where

Ď m̌
1 = D ′n1,D ′′

p
1 ,

(ži : Ěi)
m̌
i=1 = (wi : Fi)

n
i=1, (vi : Gi)

p
i=1,

as described in Case 2.1 of the new method. Let μ(i) and Mi be as in the description
of prune(Ď m̌

1 , Ď0). For i = 1, . . . , n, we have μ(i) = i and Di = D ′i is an ∅-
interpolant to itself via Mi. For i = 1, . . . , p, Dμ(n+i) is an ∅-interpolant to D ′′i via
Mn+i.
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We define subsets Sm̃
1 of {1, . . . ,m} and deductions (Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃

i=1 as
follows:

Si =

⎧⎪⎪⎨⎪⎪⎩S
′
i if i ∈ M′,
{ μ(n + j) | j ∈ S′′i } if i ∈ M′′ − M′,

Ei =

⎧⎪⎪⎨⎪⎪⎩|E
′

i [(M j/w j) j∈S′i ]|β if i ∈ M′,
|E ′′i [(Mn+ j/v j) j∈S′′i ]|β if i ∈ M′′ − M′.

We show that Sm̃
1 and E m̃

1 satisfy conditions 2–4.
Condition 2 follows from (28.ii) and (29.ii), using the property of Mi men-

tioned above. Condition 4 is a consequence of (23).
It remains to prove condition 3. Since D0 = |Ď0[(Mi/ži)m̌

i=1]|β, D0 is the normal
form of

(zi : Ei)n
i=1,Δ

′
D ′0[(Mi/wi)n

i=1]
C′′ →C

(zμ(n+i) : Eμ(n+i))
p
i=1,Δ

′′

D ′′0 [(Mn+i/vi)
p
i=1]

C′′
C →E

Since D̃0 is of the form (27), it suffices to show

D̃ ′0[(Ei/̃zi)i∈M′] =β D ′0[(Mi/wi)
n
i=1],(30)

D̃ ′′0 [(Ei/̃zi)i∈M′′] =β D ′′0 [(Mn+i/vi)
p
i=1].(31)

We can show (30) as follows:

D̃ ′0[(Ei/̃zi)i∈M′] =β D̃ ′0[(E ′i [(M j/w j) j∈S′i ]/̃zi]i∈M′]

= D̃ ′0[(E ′i /̃zi)i∈M′][(Mi/wi)
n
i=1] by (28.i)

=β D ′0[(Mi/wi)
n
i=1] by (28.iii).

It remains to prove (31). Since (D̃i)i∈M′′ is an interpolant to D ′′ with respect to the
partition (Γ′′;Δ′′) via D̃ ′′0 , condition 2 implies that

(32) (D j) j∈⋃i∈M′′ Si is an interpolant to D ′′ with respect to the partition (Γ′′;Δ′′) via
the normal form of D̃ ′′0 [(Ei/̃zi)i∈M′′] : (z j : E j) j∈⋃i∈M′′ Si ,Δ

′′ ⇒ C′′.

Applying the induction hypothesis again to D ′′ with respect to (32) and not-
ing Lemma 32, we obtain elements (τ( j)) j∈⋃i∈M′′ Si of {1, . . . , p} and deductions
(T j : vτ( j) : Gτ( j) ⇒ E j) j∈⋃i∈M′′ Si such that

(33) i. { τ( j) | j ∈ ⋃i∈M′′ Si } = {1, . . . , p};
ii. D ′′τ( j) is an ∅-interpolant to D j via T j for each j ∈ ⋃i∈M′′ Si;

iii. D̃ ′′0 [(Ei/̃zi)i∈M′′][(T j/z j) j∈⋃i∈M′′ Si]�β D ′′0 .

By (33.ii) and part 2 of Claim B, for j ∈ ⋃i∈M′′ Si, we have μ(n + τ( j)) = j and
D j is an ∅-interpolant to D ′′τ( j) via Mn+τ( j) : z j : E j ⇒ Gτ( j). It follows that D j is
an ∅-interpolant to itself via the normal form of T j[Mn+τ( j)/vτ( j)] : z j : E j ⇒ E j.
Hence by condition 4,

(34) Ei[(T j[Mn+τ( j)/vτ( j)]/z j) j∈Si]�β Ei for i ∈ M′′.
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Now

D̃ ′′0 [(Ei/̃zi)i∈M′′] =β D̃ ′′0 [(Ei[(T j[Mn+τ( j)/vτ( j)]/z j) j∈Si]/̃zi)i∈M′′] by (34)

= D̃ ′′0 [(Ei[(T j/z j) j∈Si]/̃zi)i∈M′′][(Mn+i/vi)
p
i=1] by (33.i)

= D̃ ′′0 [(Ei/̃zi)i∈M′′][(T j/z j) j∈⋃i∈M′′ Si][(Mn+i/vi)
p
i=1]

�β D ′′0 [(Mn+i/vi)
p
i=1] by (33.iii)

We have proved condition 3.
Case 2.2. The main branch of D ′ leads to an assumption belonging to Γ′. Then

by Lemma 40, the main branch of D̃0 leads to some z̃i : Ẽi, say z̃1 : Ẽ1. Since D̃0

cannot end in→I, D̃0 must have the following form:

(35) D̃0 =
z̃1 : C̃k̃

1→C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̃z j : Ẽ j) j∈Mi , Δ̃i

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
k̃

i=1

C →E

where C̃k̃
1→C = Ẽ1 and

{1} ∪ M1 ∪ · · · ∪ Mk̃ = {1, . . . , m̃},
Δ̃1 ∪ · · · ∪ Δ̃k̃ = Δ.

Since D̃0 satisfies condition (I4) of Definition 16, each C̃i must satisfy the following
condition:

(D) Every maximal path in C̃i that starts inside the endformula C̃i or some z̃ j : Ẽ j

must end inside an assumption belonging to Δ̃i.

D̃1 must have the following form:

(36) D̃1 =

Γ̃1, (̃ui : C̃i)̃
k1
i=1

D̃−1
C̃k̃

k̃1+1
→C

C̃k̃
1→C

→I, ũ̃k1
1

where 0 ≤ k̃1 ≤ k̃ and D̃−1 does not end in→I.

Case 2.2a. k̃1 < k̃. Then Lemma 40 (part 3) implies that C̃k̃ = C′′, and it is
easy to see the following, using (D):

(37) a. Δ̃k̃ = Δ′′;

b. (D̃ j) j∈Mk̃
is an interpolant to D ′′ with respect to (Γ′′;Δ′′) via C̃k̃;

c. Δ̃1 ∪ · · · ∪ Δ̃k̃−1 = Δ′;

d. (D̃ j) j∈{1}∪⋃k̃−1
i=1 Mi

is an interpolant to D ′ with respect to (Γ′;Δ′) via

D̃ ′0 =
z̃1 : C̃k̃−1

1 →C′′ →C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̃z j : Ẽ j) j∈Mi , Δ̃i

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
k̃−1

i=1

C′′ →C
→E
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By (D), the main branch of C̃k̃ leads to an assumption belonging to Δ′′. It follows
that the main branch of D ′′ leads to an assumption belonging to Δ′′, i.e., Case 2.2.1
of the description of the new method applies.

Using (D) again, we can see that C̃k̃ must be of the form

C̃k̃ =

(̃zi : Ẽi)i∈Mk̃
, (u j : A j)l

j=1,Δ
′′

B̃0
B

Al
1→ B

→I, ul
1

where every maximal path in B̃0 starting inside some u j : A j ends inside an as-
sumption belonging to Δ′′. Therefore,

(38) (D̃ j) j∈Mk̃
, (u j:A j)l

j=1 is an interpolant to B with respect to (Γ′′, (u j:A j)l
j=1;Δ′′)

via B̃0[(̃y j : A j/u j)l
j=1] : (̃zi : Ẽi)i∈Mk̃

, (̃y j : A j)l
j=1,Δ

′′ ⇒ B.

Let

M′ = {1} ∪
k̃−1⋃
i=1

Mi, M′′ = Mk̃.

We apply the induction hypothesis to D ′ with respect to (37.d) and to B with
respect to (38). It is easy to see that l̂ = 0, i.e., Case 2.2.1.1 of the description of the
new method applies, and we obtain subsets (S′i )i∈M′ of {1, . . . , n}, subsets (S′′i )i∈M′′

of P, and deductions (E ′i : (w j : F j) j∈S′i ⇒ Ẽi)i∈M′ , (E ′′i : (v j : G j) j∈S′′i ⇒ Ẽi)i∈M′′

such that

(39) i.
⋃

i∈M′ S
′
i = {1, . . . , n};

ii. for each i ∈ M′, (D ′j) j∈S′i is an ∅-interpolant to D̃i via E ′i ;

iii. D̃ ′0[(E ′i /̃zi)i∈M′]�β D ′0;

iv. for each i ∈ M′ and for each j ∈ S′i , E ′i is long for D ′j with respect to
w j : F j;

(40) i.
⋃

i∈M′′ S
′′
i = P;

ii. for each i ∈ M′′, (B j) j∈S′′i is an ∅-interpolant to D̃i via E ′′i ;

iii. B̃0[(E ′′i /̃zi)i∈M′′]�β B̂0;

iv. for each i ∈ M′′ and for each j ∈ S′′i , E ′′i is long for B j with respect to
v j : G j.

The output Dm
1 ,D0 of the new method is the result of applying the pruning

procedure to (Ďi : Γ̌i ⇒ Ěi)m̌
i=1, Ď0 : (ži : Ěi)m̌

i=1,Δ⇒ C, where

Ď m̌
1 = D ′n1, (Bi)i∈P,

(ži : Ěi)
m̌
i=1 = (wi : Fi)

n
i=1, (vi : Gi)i∈P,

as described in Case 2.2.1.1 of the new method. Let p1, . . . , ps list the elements of
P in increasing order, so that m̌ = n+ s. Let μ(i) and Mi be as in the description of
prune(Ď m̌

1 , Ď0). For i = 1, . . . , n, we have μ(i) = i and Di = D ′i is an ∅-interpolant
to itself via Mi. For i = 1, . . . , s, Dμ(n+i) is an ∅-interpolant to Bpi via Mn+i.
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We define subsets Sm̃
1 of {1, . . . ,m} and deductions (Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃

i=1 as
follows:

Si =

⎧⎪⎪⎨⎪⎪⎩S
′
i if i ∈ M′,
{ μ(n + j) | p j ∈ S′′i } if i ∈ M′′ − M′,

Ei =

⎧⎪⎪⎨⎪⎪⎩|E
′

i [(M j/w j) j∈S′i ]|β if i ∈ M′,
|E ′′i [(Mn+ j/vp j)p j∈S′′i ]|β if i ∈ M′′ − M′.

The proof of conditions 2–4 is entirely analogous to Case 2.1. We leave the details
to the reader.

Case 2.2b. k̃1 = k̃. In this case D̃1 must look like

(41) D̃1 =

Γ̃′1, (̃ui : C̃i)i∈K′
D̃ ′1

(Al
1→ B)→C

Γ̃′′1 , (̃ui : C̃i)i∈K′′
D̃ ′′1

Al
1→ B

C →E

C̃k̃
1→C

→I, ũ̃k
1

where

Γ̃′1 ∪ Γ̃′′1 = Γ̃1,

K′ ∪ K′′ = {1, . . . , k̃}.

By Lemma 40, the main branch of D̃ ′1 leads to an assumption belonging to Γ̃′1.

Since D̃ ′1 does not end in→I and since D̃1 satisfies condition (I3) of Definition 16,
we have

(E) Every maximal path in D̃ ′1 starting inside the endformula (Al
1 → B)→ C or

some ũi : C̃i leads to an assumption belonging to Γ̃′1.

Since D̃0[(D̃i/̃zi)m̃
i=1]�β D , we have

D̃ ′1[(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′]�β D ′,(42)

D̃ ′′1 [(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′′]�β D ′′,(43)

which implies that ⋃
i∈K′

Δ̃i = Δ′,
⋃
i∈K′′

Δ̃i = Δ′′.

Let

M′ =
⋃
i∈K′

Mi, M′′ =
⋃
i∈K′′

Mi.(44)

Then we have

{1} ∪ M′ ∪ M′′ = {1, . . . , m̃},
Γ̃′1 ∪

⋃
i∈M′

Γ̃i = Γ′, Γ̃′′1 ∪
⋃

i∈M′′
Γ̃i = Γ′′.

62



Let

Ã =

Γ̃′1, (̃ui : C̃i)i∈K′
D̃ ′1

(Al
1→ B)→C

(C̃i)i∈K′ → (Al
1→ B)→C

→I, (ũi)i∈K′
(45)

D̃ ′0 = w̃1 : (C̃i)i∈K′ → (Al
1→ B)→C

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̃z j : Ẽ j) j∈Mi , Δ̃i

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
i∈K′

(Al
1→ B)→C

→E

(46)

where C̃i are as in (35). We show

(47) Ã , (D̃i)i∈M′ is an interpolant to D ′ with respect to (Γ′;Δ′) via D̃ ′0.

Firstly,

D̃ ′0[Ã /w̃1, (D̃ j/̃z j) j∈M′]�β D̃ ′1[(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′]
�β D ′ by (42).

Secondly, Ã satisfies condition (I3) of Definition 16 by (E). Finally, the property
(D) ensures that D̃ ′0 satisfies condition (I4) of Definition 16. So we have shown
(47).

By the induction hypothesis, we have subsets T, (S′i )i∈M′ of {1, . . . , n} and de-
ductions F : (w j : F j) j∈T ⇒ (C̃i)i∈K′ → (Al

1→ B)→C, (E ′i : (w j : F j) j∈S′i ⇒ Ẽi)i∈M′

such that

(48) i. T ∪⋃i∈M′ S
′
i = {1, . . . , n};

ii. a. (D ′j) j∈T is an ∅-interpolant to Ã via F ;

b. for each i ∈ M′, (D ′j) j∈S′i is an ∅-interpolant to D̃i via E ′i ;

iii. D̃ ′0[F /w̃1, (E ′i /̃zi)i∈M′]�β D ′0;

iv. a. for each j ∈ T , F is long for D ′j with respect to w j : F j;
b. for each i ∈ M′ and for each j ∈ S′i , E ′i is long for D ′j with respect to

w j : F j.

By (48.ii.a), (48.iv.a), and part 2 of Lemma 44, Ã and F have identical final
blocks of applications of→I. Since Ã satisfies condition (I3) of Definition 16, it
follows from (48.ii.a) and Lemma 21 that F also satisfies condition (I3). By (12),
(46), and (48.iii), then, F must be of the following form:

(49) F = w1 : Ck
1→ (Al

1→ B)→C

(w j : F j) j∈T− , (̃u j : C̃ j) j∈K′
Ĉ k

1

Ck
1

(Al
1→ B)→C

→E

(C̃ j) j∈K′ → (Al
1→ B)→C

→I, (̃u j) j∈K′

where

{1} ∪ T− = T,(50)
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T− ∪
⋃
i∈M′

S′i = N.(51)

Let F− : (wi : Fi)i∈T , (̃u j : C̃ j) j∈K′ ⇒ (Al
1→B)→C be the following deduction:

(52) F− =
w1 : Ck

1→ (Al
1→ B)→C

(w j : F j) j∈T− , (̃u j : C̃ j) j∈K′
Ĉ k

1

Ck
1

(Al
1→ B)→C

→E

Since F satisfies condition (I4) of Definition 16, each Ĉi must satisfy the fol-
lowing condition:

(F) Every maximal path in Ĉi that starts inside the endformula Ci or some w j : F j

must end inside some ũ j : C̃ j.

Since F [(D ′j/w j) j∈T ]�β Ã ,

(53) F−[(D ′j/w j) j∈T ] =

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
j∈T− Γ′j, (̃u j : C̃ j) j∈K′
Ĉ k

1 [(D ′j/w j) j∈T−]
Ck

1

(Al
1→ B)→C

→E

�β D̃ ′1

Also, by (48.iv.a), we have

(54) For j ∈ T , if D ′j is an ∅-interpolant to itself via I : w j : F j ⇒ F j, then
F−[I /w j]�β F−.

Case 2.2b.1. The main branch of D ′′ leads to an assumption belonging to Δ′′,
i.e., Case 2.2.1 of the description of the new method applies. Then (43) implies
that the main branch of D̃ ′′1 must lead to some ũi1 : C̃i1 (i1 ∈ K′′), and D̃ ′′1 must
have the following form:

(55) D̃ ′′1 = ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃′′1,i, (̃u j : C̃ j) j∈K′′i , ((u j : A j)◦)̃l

j=1

H̃i

H̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ũl
1

where

Γ̃′′1,1 ∪ · · · ∪ Γ̃′′1,̃q = Γ̃′′1 ,

{i1} ∪ K′′1 ∪ · · · ∪ K′′q̃ = K′′.

By (43), C̃i1 must have the following form:

(56) C̃i1 =

(̃z j : Ẽ j) j∈Mi1
, Δ̃i1 , (x̃i : H̃i)

q̃
i=1, (u j : A j)l

j=̃l+1

C̃ −i1
B

Al
l̃+1
→ B

→I, ul
l̃+1

H̃q̃
1 → Al

l̃+1
→ B

→I, x̃q̃
1
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Since D̃1 satisfies condition (I3) of Definition 16, each H̃i must satisfy the
following condition:

(G) Every maximal path in H̃i that starts inside the endformula H̃i or some ũ j :C̃ j

must end inside an assumption belonging to Γ̃′′1,i or some u j : A j.

Let

(57) D̃ ′′1
− = ũi1 : H̃q̃

1 → Al
l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃′′1,i, (̃u j : C̃ j) j∈K′′i , ((u j : A j)◦)̃l

j=1

H̃i

H̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q̃

i=1

Al
l̃+1
→ B

→E

By (43), we get

(58) D̃ ′′1
−[(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′′]�β

Γ′′,Δ′′, ((u j : A j)◦)l̂
j=1, (u j : A j)l

j=l̂+1

B
B

Al
l̃+1
→ B

→I, ul
l̃+1

where B is as in (7).
For i = 1, . . . , q̃, let

(59) B̃i =

Γ̃′′1,i, (̃u j : C̃ j) j∈K′′i , ((u j : A j)◦)̃l
j=1

H̃i

H̃i

(C̃ j) j∈K′′i → H̃i

→I, (̃u j) j∈K′′i

Let B̃0 : (̃vi : (C̃ j) j∈K′′i → H̃i)
q̃
i=1, (̃zi : Ẽi)i∈M′′ , (̃y j : A j)l

j=̃l+1
,Δ′′ ⇒ B be the following

deduction:
(60)

B̃0 =

(̃z j : Ẽ j) j∈Mi1
, Δ̃i1

C̃i1

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝̃vi : (C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̃zh : Ẽh)h∈M j , Δ̃ j

C̃ j

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E
(̃y j : Aj)l

j=̃l+1

B →E

where C̃ j are as in (35). Note that B̃0 normalizes in at most q̃ + l − l̃ non-erasing
β-reduction steps (use (D)). We show

(61) B̃q̃
1 , (D̃i)i∈M′′ , (u j : A j)l

j=̃l+1
is an interpolant to B with respect to the partition

(Γ′′, ((u j : A j)◦)l
j=1;Δ′′) via |B̃0|β.

Firstly,

B̃0[(B̃i/̃vi)
q̃
i=1, (D̃i/̃zi)i∈M′′ , (u j : Aj/̃y j)

l
j=̃l+1

]

65



�β

⋃
j∈Mi1

Γ̃ j, Δ̃i1

C̃i1 [(D̃ j/̃z j) j∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ̃′′1,i, ((u j : Aj)◦)̃l
j=1

B̃i

(C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

h∈Mj
Γ̃h, Δ̃ j

C̃ j[(D̃h/̃zh)h∈Mj ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E
(u j : Aj)l

j=̃l+1

B →E

�β (by (59))

⋃
j∈Mi1

Γ̃ j, Δ̃i1

C̃i1 [(D̃ j/̃z j) j∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃′′1,i,
⋃

j∈K′′i
⋃

h∈Mj
Γ̃h,
⋃

j∈K′′i Δ̃ j, ((u j : Aj)◦)̃l
j=1

H̃i[(C̃ j[(D̃h/̃zh)h∈Mj ]/̃u j) j∈K′′i ]

H̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q̃

i=1

Al
l̃+1
→ B

→E
(u j : Aj)l

j=̃l+1

B →E

= (by (57))

Γ′′,Δ′′, ((u j : Aj)◦)l̂
j=1

D̃ ′′1
−[(C̃i[(D̃ j/̃z j) j∈Mi ]/̃ui)i∈K′′ ]

Al
l̃+1
→ B (u j : Aj)l

j=̃l+1

B →E

�β (by (58))

Γ′′,Δ′′, ((u j : Aj)◦)l̂
j=1, (u j : Aj)l

j=l̂+1

B
B

Al
l̃+1
→ B

→I, ul
l̃+1 (u j : Aj)l

j=̃l+1

B →E

�β

B.

Secondly, the property (G) ensures that each B̃i satisfies condition (I3) of Def-
inition 16. Finally, the property (D) ensures that B̃0 satisfies condition (I4) of
Definition 16. So we have shown (61).

Case 2.2b.1.1. l̂ = 0, i.e., Case 2.2.1.1 of the description of the new method
applies. Applying the induction hypothesis to B with respect to (61), we obtain
subsets Vq̃

1 , (S
′′
i )i∈M′′ of P, deductions (Gi : (v j:G j) j∈Vi , ((va j :A j)◦)̃l

j=1 ⇒ (C̃ j) j∈K′′i →
H̃i)

q̃
i=1, and deductions (E ′′i : (v j : G j) j∈S′′i ⇒ Ẽi)i∈M′′ such that

(62) i.
⋃q̃

i=1 Vi ∪⋃i∈M′′ S
′′
i = P;

ii. a. for each i = 1, . . . , q̃, (B j) j∈Vi , ((u j : A j)◦)̃l
j=1 is an ∅-interpolant to

B̃i via Gi;
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b. for each i ∈ M′′, (B j) j∈S′′i is an ∅-interpolant to D̃i via E ′′i ;

iii. B̃0[(Gi/̃vi)
q̃
i=1, (E

′′
i /̃zi)i∈M′′ , (va j /̃y j)l

j=̃l+1
]�β B0;

iv. a. for i = 1, . . . , q̃ and for j ∈ Vi, Gi is long for B j with respect to
v j : G j;

b. for i ∈ M′′ and for j ∈ S′′i , E ′′i is long for B j with respect to v j : G j.

Let G̃i = Gi[(u j : A j/va j )̃
l
j=1]. Since Gi satisfies condition (I4) of Definition 16,

we have

(H) Every maximal path in G̃i that starts inside some v j : G j ( j ∈ Vi) or u j : A j

(1 ≤ j ≤ l̃) must end inside the endformula (C̃ j) j∈K′′i → H̃i.

Note that since B̃i satisfies condition (I3) of Definition 16, it follows from (62.ii.a)
and Lemma 21 that Gi also satisfies condition (I3).

Let V =
⋃q̃

i=1 Vi. Let Ê1 : (w j : F j) j∈T , (v j : G j) j∈V ⇒ C̃k̃
1→C be the following

deduction:

(63) Ê1 =

(wj : F j) j∈T , (̃uj : C̃ j) j∈K′
F −

(Al
1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Vi , ((uj : Aj)◦ )̃l
j=1

G̃i

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

C →E

C̃k̃
1→C

→I, ũk̃
1

where F− is as in (52). Since G̃i satisfies condition (I3), Ê1 normalizes by a se-
quence of non-erasing β-reduction steps. We can show

(64) (D ′j) j∈T , (B j) j∈V is an ∅-interpolant to D̃1 via |Ê1|β.

That Ê1 satisfies condition (I4) of Definition 16 can be checked using (F) and (H).
It remains to show Ê1[(D ′j/w j) j∈T , (B j/v j) j∈V ]�β D̃1.

Ê1[(D ′j/wj) j∈T , (B j/v j) j∈V ]

=

⋃
j∈T Γ′j, (̃uj : C̃ j) j∈K′
F −[(D ′j/wj) j∈T ]

(Al
1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋃
j∈Vi

Γ′′j , ((uj : Aj)◦ )̃l
j=1

G̃i[(B j/v j) j∈Vi ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

C →E

C̃k̃
1→C

→I, ũk̃
1
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�β (by (53))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋃
j∈Vi

Γ′′j , ((uj : Aj)◦ )̃l
j=1

G̃i[(B j/v j) j∈Vi ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (62.ii.a))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ̃′′1,i, ((uj : Aj)◦ )̃l
j=1

B̃i

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (59))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃′′1,i, (̃uj : C̃ j) j∈K′′i , ((uj : Aj)◦ )̃l

j=1

H̃i

H̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

C →E

C̃k̃
1→C

→I, ũk̃
1

= (by (41) and (55))

D̃1

The output Dm
1 ,D0 of the new method is the result of applying the pruning

procedure to (Ďi : Γ̌i ⇒ Ěi)m̌
i=1, Ď0 : (ži : Ěi)m̌

i=1,Δ⇒ C, where

Ď m̌
1 = D ′n1, (Bi)i∈P,

(ži : Ěi)
m̌
i=1 = (wi : Fi)

n
i=1, (vi : Gi)i∈P,

as described in Case 2.2.1.1 of the new method. Let p1, . . . , ps list the elements of
P in increasing order, so that m̌ = n+ s. Let μ(i) and Mi be as in the description of
prune(Ď m̌

1 , Ď0). For i = 1, . . . , n, μ(i) = i and Di = D ′i is an ∅-interpolant to itself
via Mi. For i = 1, . . . , s, Dμ(n+i) is an ∅-interpolant to Bpi via Mn+i. We define
subsets Sm̃

1 of {1, . . . ,m} and deductions Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃
i=1 as follows:

Si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T ∪ { μ(n + j) | p j ∈ V } if i = 1,

S′i if i ∈ M′ − {1},
{ μ(n + j) | p j ∈ S′′i } if i ∈ M′′ − M′ − {1}.
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Ei =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Ê1[(M j/w j) j∈T , (Mn+ j/vp j)p j∈V ]|β if i = 1,

|E ′i [(M j/w j) j∈S′i ]|β if i ∈ M′ − {1},
|E ′′i [(Mn+ j/vp j)p j∈S′′i ]|β if i ∈ M′′ − M′ − {1}.

(Ê1,E ′i ,E
′′

i are given in (63), (48), and (62), respectively.) We show that Sm̃
1 and

E m̃
1 satisfy conditions 2–4.

Condition 2 follows from (64), (48.ii.b), and (62.ii.b), using the property of Mi

mentioned above. Condition 4 easily follows from (23).
It remains to prove condition 3. From (35) and (63), we see that

D̃0[(Ei/̃zi)
m̃
i=1] =β D̃0[Ê1[(M j/w j) j∈T , (Mn+ j/vp j)p j∈V ]/̃z1, (Ei/̃zi)

m̃
i=2]

�β L̃ R̃
C →E

where

L̃ =

(z j : E j) j∈T∪⋃i∈M′ Si ,Δ
′

F −[(M j/wj) j∈T , (C̃ j[(Eh/̃zh)h∈M j ]/̃uj) j∈K′ ]
(Al

1→ B)→C

R̃ =

(zh : Eh)h∈⋃ j∈Mi1
S j , Δ̃i1

C̃i1 [(E j/̃z j) j∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(zμ(n+ j) : Eμ(n+ j))p j∈Vi , ((uj : Aj)◦ )̃l
j=1

G̃i[(Mn+ j/vp j )p j∈Vi ]

(C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(zg : Eg)g∈⋃h∈M j

Sh , Δ̃ j

C̃ j[(Eh/̃zh)h∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
1→ B

→I, ul̃
1

Since D0 = |Ď0[(Mi/ži)m̌
i=1]|β, where Ď0 is given in (9), D0 is the normal form of

(wi : Fi)n
i=1,Δ

′
D ′0[(Mi/wi)n

i=1]

(Al
1→ B)→C

(zμ(n+i) : Eμ(n+i))pi∈P, (u j : A j)l
j=1,Δ

′′

B̂0[(Mn+i/vpi)pi∈P]
B

Al
1→ B

→I, ul
1

C →E

By (56) and (60),

R̃

=β

(z j : E j) j∈⋃i∈Mi1
Si , Δ̃i1

C̃i1 [(Ei/̃zi)i∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(zμ(n+ j) : Eμ(n+ j))p j∈Vi , ((uj : Aj)◦ )̃l
j=1

G̃i[(Mn+ j/vp j )p j∈Vi ]

(C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(zg : Eg)g∈⋃h∈M j

Sh , Δ̃ j

C̃ j[(Eh/̃zh)h∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E
(uj : Aj)l

l̃+1

B →E

Al
1→ B

→I, ul
1

=β

(zh : Eh)h∈{ μ(n+ j)|p j∈V }∪⋃i∈M′′ Si , (uj : Aj)l
j=1,Δ

′′

B̃0[(G̃i[(Mn+ j/vp j )p j∈Vi ]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (uj : Aj/̃y j)l

j=̃l+1
]

B

Al
1→ B

→I, ul
1
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So it suffices to show

F−[(M j/w j) j∈T , (C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′] =β D ′0[(Mi/wi)
n
i=1](65)

and

B̃0[(Gi[(Mn+ j/vp j)p j∈Vi]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

] =β B0[(Mn+i/vpi)pi∈P].

(66)

We first show (65). By (47), (48.ii.a), and condition 2,

(67) (D ′j) j∈T , (D j) j∈⋃i∈M′ Si is an interpolant to D ′ with respect to (Γ′;Δ′) via the

normal form of D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′] : (w j : F j) j∈T , (z j : E j) j∈⋃i∈M′ Si ,Δ
′ ⇒

(Al
1→ B)→C.

Note that

(68) D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′]�β F−[(C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′].

Applying the induction hypothesis again to (67) and noting Lemma 32, we ob-
tain elements (ρ( j)) j∈⋃i∈M′ Si of {1, . . . , n} and deductions (I j : w j : F j ⇒ F j) j∈T ,
(P j : wρ( j) : Fρ( j) ⇒ E j) j∈⋃i∈M′ Si such that

(69) i. T ∪ { ρ( j) | j ∈ ⋃i∈M′ Si } = {1, . . . , n};
ii. a. D ′j is an ∅-interpolant to itself via I j for each j ∈ T ;

b. D ′ρ( j) is an ∅-interpolant to D j via P j for each j ∈ ⋃i∈M′ Si;

iii. D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′][(I j/w j) j∈T , (P j/z j) j∈⋃i∈M′ Si]�β D ′0.

By (25), (69.ii.b) implies that for j ∈ ⋃i∈M′ Si, μ(ρ( j)) = ρ( j) = j and D j is an
∅-interpolant to itself via the normal form of P j[M j/w j] : z j : E j ⇒ E j. Thus,

(70) T ∪
⋃
i∈M′

Si = {1, . . . , n},

and

(71) Ei[(P j[M j/w j]/z j) j∈Si]�β Ei for i ∈ M′.

Also, by (69.ii.a) and (48.iv.a),

(72) F [(I j/w j) j∈T ]�β F .

Now we can show (65) as follows:

F−[(M j/w j) j∈T , (C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′]

=β D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′][(M j/w j) j∈T ] by (68)

=β D̃ ′0[F [(I j/w j) j∈T ]/w̃1, (Ei[(P j[M j/w j]/z j) j∈Si]/̃zi)i∈M′][(M j/w j) j∈T ] by (71) and (72)

= D̃ ′0[F [(I j/w j) j∈T ]/w̃1, (Ei[(P j/z j) j∈Si]/̃zi)i∈M′][(M j/w j)
n
j=1] by (70)

= D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′][(I j/w j) j∈T , (P j/z j) j∈⋃i∈M′ Si][(M j/w j)
n
j=1]

�β D ′0[(M j/w j)
n
j=1] by (69.iii).

We now turn to (66). By (61), (62.ii.a) and condition 2,
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(73) (B j) j∈V , (D j) j∈⋃i∈M′′ Si , (u j : A j)l
j=1 is an interpolant to B with respect to

(Γ′′, (u j : A j)l
j=1;Δ′′) via the normal form of B̃0[(Gi/̃vi)

q̃
i=1, (Ei/̃zi)i∈M′′ , (va j :

A j/̃y j)l
j=̃l+1

] : (v j : G j) j∈V , (z j : E j) j∈⋃i∈M′′ Si , (va j : A j)l
j=1,Δ

′′ ⇒ B.

Applying the induction hypothesis again to B with respect to (73) and not-
ing Lemma 32, we obtain elements (τ( j)) j∈⋃i∈M′′ Si of {1, . . . , s} and deductions
(I j : v j : G j ⇒ G j) j∈V , (T j : vpτ( j) : Gpτ( j) ⇒ E j) j∈⋃i∈M′′ Si such that

(74) i. V ∪ { pτ( j) | j ∈ ⋃i∈M′′ Si } = P;

ii. a. B j is an ∅-interpolant to itself via I j for each j ∈ V;

b. Bpτ( j) is an ∅-interpolant to D j via T j for j ∈ ⋃i∈M′′ Si;

iii. B̃0[(Gi/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j :A j)l

j=̃l+1
][(I j/v j) j∈V , (T j/z j) j∈⋃i∈M′′ Si]�β

B0.

By (25), (74.ii.b) implies that for j ∈ ⋃i∈M′′ Si, μ(n + τ( j)) = j and D j is an
∅-interpolant to Bpτ( j) via Mn+τ( j) : z j : E j ⇒ Gpτ( j) . It follows that D j is an ∅-
interpolant to itself via the normal form of T j[Mn+τ( j)/vpτ( j) ] : z j : E j ⇒ E j. Hence
by condition 4,

(75) Ei[(T j[Mn+τ( j)/vpτ( j) ]/z j) j∈Si]�β Ei for i ∈ M′′.

Also, by (74.ii.a) and (62.iv.a),

(76) Gi[(I j/v j) j∈Vi]�β Gi for i = 1, . . . , q̃.

Now we can show (66) as follows:

B̃0[(Gi[(Mn+ j/vp j)p j∈Vi]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

]

= B̃0[(Gi/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

][(Mn+ j/vp j)p j∈V ]

=β B̃0[(Gi[(I j/v j) j∈Vi]/̃vi)
q̃
i=1, (Ei[(T j[Mn+τ( j)/vpτ( j) ]/z j) j∈Si]/̃zi)i∈M′′ , (va j : A j/̃y j)l

j=̃l+1
]

[(Mn+ j/vp j)p j∈V ] by (75) and (76)

= B̃0[(Gi[(I j/v j) j∈Vi]/̃vi)
q̃
i=1, (Ei[(T j/z j) j∈Si]/̃zi)i∈M′′ , (va j : A j/̃y j)l

j=̃l+1
][(Mn+ j/vp j)p j∈P]

by (74.i)

= B̃0[(Gi/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

][(I j/v j) j∈V , (T j/z j) j∈⋃i∈M′′ Si][(Mn+ j/vp j)p j∈P]

�β B0[(Mn+ j/vp j)p j∈P] by (74.iii).

Case 2.2b.1.2. l̂ ≥ 1, i.e., Case 2.2.1.2 of the description of the new method
applies. Applying the induction hypothesis to B with respect to (61), we conclude

l̂ ≤ l̃,

and obtain subsets Uq̃
1 of P+, subsets Vq̃

1 , (S
′′
i )i∈M′′ of P−, deductions (Gi : (v j :

G j) j∈Ui∪Vi , ((va j : A j)◦)̃l
j=l̂+1

⇒ (C̃ j) j∈K′′i → H̃i)
q̃
i=1, and deductions (E ′′i : (v j :

G j) j∈S′′i ⇒ Ẽi)i∈M′′ such that

(77) i. a.
⋃q̃

i=1 Ui = P+;
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b.
⋃q̃

i=1 Vi ∪⋃i∈M′′ S
′′
i = P−;

ii. a. for each i = 1, . . . , q̃, (B j) j∈Ui∪Vi , ((u j : A j)◦)̃l
j=l̂+1

is an ∅-interpolant

to B̃i via Gi;

b. for each i ∈ M′′, (B j) j∈S′′i is an ∅-interpolant to D̃i via E ′′i ;

iii. B̃0[(Gi/̃vi)
q̃
i=1, (E

′′
i /̃zi)i∈M′′ , (va j : A j/̃y j)l

j=̃l+1
]�β B0;

iv. a. for i = 1, . . . , q̃ and for j ∈ Ui ∪ Vi, Gi is long for B j with respect to
v j : G j;

b. for i ∈ M′′ and for j ∈ S′′i , E ′′i is long for B j with respect to v j : G j.

Let G̃i = Gi[(u j : A j/va j )̃
l
j=l̂+1

]. Since Gi satisfies condition (I4) of Definition 16,

we have

(I) Every maximal path in G̃i that starts inside some v j :G j ( j ∈ Ui∪Vi) or u j : A j

(l̂ + 1 ≤ j ≤ l̃) must end inside the endformula (C̃ j) j∈K′′i → H̃i.

Note that since B̃i satisfies condition (I3) of Definition 16, it follows from (77.ii.a)
and Lemma 21 that Gi also satisfies condition (I3).

Let V =
⋃q̃

i=1 Vi. Let Ê1 : ž1 :Ck
1→ ((Gi)i∈P+→Al

l̂+1
→B)→C, (w j : F j) j∈T− , (v j :

G j) j∈V ⇒ C̃k̃
1→C be the following deduction:

(78) Ê1 =

ž1 : Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

(wj : F j) j∈T− , (̃uj : C̃ j) j∈K′
Ĉ k

1

Ck
1

((Gi)i∈P+ → Al
l̂+1
→ B)→C

→E

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui∪Vi , ((uj : Aj)◦ )̃l
j=l̂+1

G̃i

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

C →E

C̃k̃
1→C

→I, ũk̃
1

where Ĉ k
1 is as in (49) and i1 is defined immediately above (55). Since G̃i satisfies

condition (I3), Ê1 normalizes by a sequence of non-erasing β-reduction steps. We
can show

(79) |D̂1|β, (D ′j) j∈T− , (B j) j∈V is an ∅-interpolant to D̃1 via |Ê1|β.

That Ê1 satisfies condition (I4) of Definition 16 can be checked using (F) and (I).
It remains to show Ê1[D̂1/ž1, (D ′j/w j) j∈T− , (B j/v j) j∈V ]�β D̃1.

Ê1[D̂1/ž1, (D
′
j/wj) j∈T− , (B j/v j) j∈V ]
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=

Γ′1 ∪
⋃

i∈P+ Γ′′i
D̂1

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

⋃
j∈T− Γ′j, (̃uj : C̃ j) j∈K′

Ĉ k
1 [(D ′j/wj) j∈T− ]

Ck
1

((Gi)i∈P+ → Al
l̂+1
→ B)→C

→E

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui ,
⋃

j∈Vi
Γ′′j , ((uj : Aj)◦ )̃l

j=l̂+1

G̃i[(B j/v j) j∈Vi ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (10))

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
j∈T− Γ′j, (̃uj : C̃ j) j∈K′

Ĉ k
1 [(D ′j/wj) j∈T− ]

Ck
1

(Al
1→ B)→C

→E

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui ,
⋃

j∈Vi
Γ′′j , ((uj : Aj)◦ )̃l

j=l̂+1

G̃i[(B j/v j) j∈Vi ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (53))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui ,
⋃

j∈Vi
Γ′′j , ((uj : Aj)◦ )̃l

j=l̂+1

G̃i[(B j/v j) j∈Vi ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

⎛⎜⎜⎜⎜⎜⎜⎜⎝Γ
′′
i , ((uj : Aj)◦)l̂

j=1

Bi
Gi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
i∈P+

Al
l̂+1
→ B

→E

Al
1→ B

→I, ul̂
1

C →E

C̃k̃
1→C

→I, ũk̃
1
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�β

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⋃
j∈Ui

Γ′′j , ((uj : Aj)◦)l̂
j=1,
⋃

j∈Vi
Γ′′j , ((uj : Aj)◦ )̃l

j=l̂+1

G̃i[(B j/v j) j∈Vi ][(B j/v j) j∈Ui ]

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

Al
1→ B

→I, ul̂
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (77.ii.a))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Γ̃′′1,i, ((uj : Aj)◦ )̃l
j=1

B̃i

(C̃ j) j∈K′′i → H̃i (̃uj : C̃ j) j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

Al
1→ B

→I, ul̂
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (59))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

ũi1 : H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ̃′′1,i, (̃uj : C̃ j) j∈K′′i , ((uj : Aj)◦ )̃l

j=1

H̃i

H̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

Al
1→ B

→I, ul̂
1

C →E

C̃k̃
1→C

→I, ũk̃
1

= (by (41) and (55))

D̃1

The output Dm
1 ,D0 of the new method is the result of applying the pruning

procedure to (Ďi : Γ̌i ⇒ Ei)m̌
i=1, Ď0 : (ži : Ěi)m̌

i=1,Δ⇒ C, where

Ď m̌
1 = |D̂1|β, (D ′i )i∈N , (Bi)i∈P− ,

(ži : Ěi)
m̌
i=1 = ž1 : Ck

1→ ((Gi)i∈P+ → Al
l̂+1
→ B)→C, (wi : Fi)i∈N , (vi : Gi)i∈P− ,

as described in Case 2.2.1.2 of the new method. Let n1, . . . , nr and p1, . . . , ps list
the elements of N and P−, respectively, in increasing order, so that m̌ = 1 + r + s.
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Let μ(i) and Mi be as in the description of prune(Ď m̌
1 , Ď0). We have μ(1) = 1 and

D1 = Ď1 = |D̂1|β is an ∅-interpolant to itself via M1. For i = 1, . . . , r, Dμ(1+i)

is an ∅-interpolant to Ď1+i = D ′ni
via M1+i. For i = 1, . . . , s, Dμ(1+r+i) is an ∅-

interpolant to Ď1+r+i = Bpi via M1+r+i. We define subsets Sm̃
1 of {1, . . . ,m} and

deductions Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃
i=1 as follows:

Si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{1} ∪ { μ(1 + j) | n j ∈ T− } ∪ { μ(1 + r + j) | p j ∈ V } if i = 1,

{ μ(1 + j) | n j ∈ S′i } if i ∈ M′ − {1},
{ μ(1 + r + j) | p j ∈ S′′i } if i ∈ M′′ − M′ − {1}.

Ei =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Ê1[M1/ž1, (M1+ j/wn j)n j∈T− , (M1+r+ j/vp j)p j∈V ]|β if i = 1,

|E ′i [(M1+ j/wn j)n j∈S′i ]|β if i ∈ M′ − {1},
|E ′′i [(M1+r+ j/vp j)p j∈S′′i ]|β if i ∈ M′′ − M′ − {1}.

(Ê1,E ′i ,E
′′

i are given in (78), (48), and (77), respectively.) We show that Sm̃
1 and

E m̃
1 satisfy conditions 2–4.

Condition 2 follows from (79), (48.ii.b), and (77.ii.b), using the property of Mi

mentioned above. Condition 4 easily follows from (23).
It remains to prove condition 3. From (35) and (78), we see that

D̃0[(Ei/̃zi)
m̃
i=1] =β D̃0[Ê1[M1/ž1, (M1+ j/wn j)n j∈T− , (M1+r+ j/vp j)p j∈V ]/̃z1, (Ei/̃zi)

m̃
i=2]

�β

z1 : Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

M1

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C L̃ k

1

((Gi)i∈P+ → Al
l̂+1
→ B)→C

→E
R̃

C →E

where

L̃ k
1 =

(zh : Eh)h∈{ μ(1+ j)|n j∈T− }∪⋃i∈M′ Si ,Δ
′

Ĉ k
1 [(M1+ j/wn j )n j∈T− , (C̃ j[(Ei/̃zi)i∈M j ]/̃uj) j∈K′ ]

Ck
1

R̃ =

(z j : E j) j∈⋃i∈Mi1
Si , Δ̃i1

C̃i1 [(Ei/̃zi)i∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui , (zμ(1+r+ j) : Eμ(1+r+ j))p j∈Vi , ((uj : Aj)◦ )̃l
j=l̂+1

G̃i[(M1+r+ j/vp j )p j∈Vi ]

(C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(zg : Eg)g∈⋃h∈M j

Sh , Δ̃ j

C̃ j[(Eh/̃zh)h∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E

Al
l̂+1
→ B

→I, ul̃
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

Since D0 = |Ď0[(Mi/ži)m̌
i=1]|β, where Ď0 is given in (11), D0 is the normal form of

z1 : Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C

M1

Ck
1→ ((Gi)i∈P+ → Al

l̂+1
→ B)→C L k

1

((Gi)i∈P+ → Al
l̂+1
→ B)→C

→E
R

C →E
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where

L k
1 =

(zμ(1+i) : Eμ(1+i))ni∈N ,Δ′

C k
1 [(M1+i/wni)ni∈N]

Ck
1

R =

(vi : Gi)i∈P+ , (zμ(1+r+i) : Eμ(1+r+i))pi∈P− , (u j : A j)l
j=l̂+1
,Δ′′

B̂0[(M1+r+i/vpi)pi∈P−]
B

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+ , ul
l̂+1

By (56) and (60),

R̃

=β

(z j : E j) j∈⋃i∈Mi1
Si , Δ̃i1

C̃i1 [(Ei/̃zi)i∈Mi1
]

H̃q̃
1 → Al

l̃+1
→ B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈Ui , (zμ(1+r+ j) : Eμ(1+r+ j))p j∈Vi , ((uj : Aj)◦ )̃l
j=l̂+1

G̃i[(M1+r+ j/vp j )p j∈Vi ]

(C̃ j) j∈K′′i → H̃i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(zg : Eg)g∈⋃h∈M j

Sh , Δ̃ j

C̃ j[(Eh/̃zh)h∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′i

H̃i

→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q̃

i=1

Al
l̃+1
→ B

→E
(uj : Aj)l

l̃+1

B →E

Al
l̂+1
→ B

→I, ul
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

=β

(vi : Gi)i∈P+ , (zh : Eh)h∈{ μ(1+r+ j)|p j∈V }∪⋃i∈M′′ Si , (uj : Aj)l
j=l̂+1
,Δ′′

B̃0[(G̃i[(M1+r+ j/vp j )p j∈Vi ]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (uj : Aj/̃y j)l

j=̃l+1
]

B

Al
l̂+1
→ B

→I, ul
l̂+1

(Gi)i∈P+ → Al
l̂+1
→ B

→I, (vi)i∈P+

So it suffices to show

Ĉ k
1 [(M1+ j/wn j)n j∈T− , (C̃ j[(Ei/̃zi)i∈M j]/̃u j) j∈K′] =β C k

1 [(M1+i/wni)ni∈N],(80)

and

B̃0[(Gi[(M1+r+ j/vp j)p j∈Vi]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

] =β B0[(M1+r+i/vpi)pi∈P−].
(81)

We first show (80). By (47), (48.ii.a), and condition 2, we get

(82) (D ′j) j∈T , (D j) j∈⋃i∈M′ Si is an interpolant to D ′ with respect to (Γ′;Δ′) via the

normal form of D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′] : (w j : F j) j∈T , (z j : E j) j∈⋃i∈M′ Si ,Δ
′ ⇒

(Al
1→ B)→C.

Applying the induction hypothesis again to D ′ with respect to (82) and noting
Lemma 32, we obtain elements (ρ̂( j)) j∈⋃i∈M′ Si of {1, . . . , n} and deductions (I j : w j:
F j ⇒ F j) j∈T , (P j : wρ̂( j) : Fρ̂( j) ⇒ E j) j∈⋃i∈M′ Si such that

(83) i. T ∪ { ρ̂( j) | j ∈ ⋃i∈M′ Si } = {1, . . . , n};
ii. a. D ′j is an ∅-interpolant to itself via I j for each j ∈ T ;
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b. D ′ρ̂( j) is an ∅-interpolant to D j via P j for each j ∈ ⋃i∈M′ Si;

iii. D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′][(I j/w j) j∈T , (P j/z j) j∈⋃i∈M′ Si]�β D ′0.

By (48.iv.a),

(84) F [(I j/w j) j∈T ]�β F .

We have

D̃ ′0[F /w̃1, (Ei/̃zi)i∈M′ ][(I j/wj) j∈T , (P j/z j) j∈⋃i∈M′ Si ]

= D̃ ′0[F [(I j/wj) j∈T ]/w̃1, (Ei[(P j/z j) j∈Si ]/̃zi)i∈M′ ]

�β D̃ ′0[F /w̃1, (Ei[(P j/z j) j∈Si ]/̃zi)i∈M′ ] by (84)

=

w1 : Ck
1→ (Al

1→ B)→C

(wj : F j) j∈T− , (̃uj : C̃ j) j∈K′
Ĉ k

1

Ck
1

(Al
1→ B)→C

→E

(C̃ j) j∈K′ → (Al
1→ B)→C

→I, (̃uj) j∈K′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(wρ̂(h) : Fρ̂(h))h∈⋃i∈M j

Si , Δ̃ j

C̃ j[(Ei[(Ph/zh)h∈Si ]/̃zi)i∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′

(Al
1→ B)→C

→E

by (46) and (49)

�β w1 : Ck
1→ (Al

1→ B)→C

(wh : Fh)h∈T−∪{ ρ̂( j)| j∈⋃i∈M′ Si },Δ
′

Ĉ k
1 [(C̃ j[(Ei[(Ph/zh)h∈Si ]/̃zi)i∈M j ]/̃uj) j∈K′ ]

Ck
1

(Al
1→ B)→C

→E

Therefore, by (6) and (83.iii),

(85) Ĉ k
1 [(C̃ j[(Ei[(Ph/zh)h∈Si]/̃zi)i∈M j]/̃u j) j∈K′]�β C k

1 ,

which implies that

(86) T− ∪ { ρ̂( j) | j ∈
⋃
i∈M′

Si } = N.

Let (ρ( j)) j∈⋃i∈M′ Si be such that ρ̂( j) = nρ( j) for each j ∈ ⋃i∈M′ Si. By (86),

(87) T− ∪ { nρ( j) | j ∈
⋃
i∈M′

Si } = N.

By (25), (83.ii.b) implies that for j ∈ ⋃i∈M′ Si, μ(1 + ρ( j)) = j and D j is an
∅-interpolant to D ′nρ( j)

via M1+ρ( j) : z j : E j ⇒ Fnρ( j) . It follows that D j is an ∅-
interpolant to itself via the normal form of P j[M1+ρ( j)/wnρ( j) ] : z j :E j ⇒ E j. Hence
by condition 4,

(88) Ei[(P j[M1+ρ( j)/wnρ( j) ]/z j) j∈Si]�β Ei for i ∈ M′.

Now we can show (80) as follows:

Ĉ k
1 [(M1+ j/wn j)n j∈T− , (C̃ j[(Ei/̃zi)i∈M j]/̃u j) j∈K′]

=β Ĉ k
1 [(M1+ j/wn j)n j∈T− , (C̃ j[(Ei[(Ph[M1+ρ(h)/wnρ(h) ]/zh)h∈Si]/̃zi)i∈M j]/̃u j) j∈K′] by (88)

= Ĉ k
1 [(C̃ j[(Ei[(Ph/zh)h∈Si]/̃zi)i∈M j]/̃u j) j∈K′][(M1+ j/wn j)n j∈N] by (87)

�β C k
1 [(M1+ j/wn j)n j∈N] by (85).

We now turn to (81). By (61), (77.ii.a), and condition 2,
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(89) (B j) j∈P+∪V , (D j) j∈⋃i∈M′′ Si , (u j : A j)l
j=l̂+1

is an interpolant to B with respect to

(Γ′′, ((u j :A j)◦)l
j=1;Δ′′) via the normal form of B̃0[(Gi/̃vi)

q̃
i=1, (Ei/̃zi)i∈M′′ , (va j :

A j/̃y j)l
j=̃l+1

] : (v j : G j) j∈P+∪V , (z j : E j) j∈⋃i∈M′′ Si , (va j : A j)l
j=̃l+1

⇒ B.

Applying the induction hypothesis again to B with respect to (89) and not-
ing Lemma 32, we obtain elements (τ( j)) j∈⋃i∈M′′ Si of {1, . . . , s} and deductions
(I j : v j : G j ⇒ G j) j∈P+∪V , (T j : vpτ( j) : Gpτ( j) ⇒ E j) j∈⋃i∈M′′ Si such that

(90) i. V ∪ { pτ( j) | j ∈ ⋃i∈M′′ Si } = P−;

ii. a. B j is an ∅-interpolant to itself via I j for j ∈ P+ ∪ V;
b. Bpτ( j) is an ∅-interpolant to D j via T j for j ∈ ⋃i∈M′′ Si;

iii. B̃0[(Gi/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j :A j/̃y j)l

j=̃l+1
][(I j/v j) j∈P+∪V , (T j/z j) j∈⋃i∈M′′ Si]�β

B0.

By (25), (90.ii.b) implies that for j ∈ ⋃i∈M′′ Si, μ(1 + r + τ( j)) = j and D j is
an ∅-interpolant to Bpτ( j) via M1+r+τ( j) : z j : E j ⇒ Gpτ( j) . It follows that D j is an
∅-interpolant to itself via the normal form of T j[M1+r+τ( j)/vpτ( j) ] : z j : E j ⇒ E j.
Hence by condition 4,

(91) Ei[(T j[M1+r+τ( j)/vpτ( j) ]/z j) j∈Si]�β Ei for i ∈ M′′.

Also, by (90.ii.a) and (77.iv.a),

(92) Gi[(Ip j/vp j)p j∈Ui∪Vi]�β Gi for i = 1, . . . , q̃.

Now we can show (81) as follows:

B̃0[(Gi[(M1+r+ j/vp j)p j∈Vi]/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)

l
j=̃l+1

]

=β B̃0[(Gi[(Ip j/vp j)p j∈Ui∪Vi][(M1+r+ j/vp j)p j∈Vi]/̃vi)
q̃
i=1,

(Ei[(T j[M1+r+τ( j)/vpτ( j) ]/z j) j∈Si]/̃zi)i∈M′′ , (va j : A j/̃y j)l
j=̃l+1

] by (91) and (92)

= B̃0[(Gi[(Ip j/vp j)p j∈Ui∪Vi]/̃vi)
q̃
i=1, (Ei[(T j/z j) j∈Si]/̃zi)i∈M′′ , (va j : A j/̃y j)l

j=̃l+1
]

[(M1+r+ j/vp j)p j∈P−] by (90.i)

= B̃0[(Gi/̃vi)
q̃
i=1, (Ei/̃zi)i∈M′′ , (va j : A j/̃y j)l

j=̃l+1
][(Ip j/vp j)p j∈P+∪V , (T j/z j) j∈⋃i∈M′′ Si]

[(M1+r+ j/vp j)p j∈P−]
�β B0[(M1+r+ j/vp j)p j∈P−] by (90.iii)

Case 2.2b.2. The main branch of D ′′ leads to an assumption belonging to Γ′′
or to some u j : A j, i.e., Case 2.2.2 of the description of the new method applies.
Then (D) and (43) imply that the main branch of D̃ ′′1 must lead to an assumption

belonging to Γ̃′′1 or to some u j : A j, and D̃ ′′1 must have the following form:

(93) D̃ ′′1 =

Γ̃′′1 , (̃ui : C̃i)i∈K′′ , ((u j : A j)◦)l
j=1

D̃ ′′1
−

B

Al
1→ B

→I, ul
1

where D̃ ′′1
− does not end in→I. Since D̃1 satisfies condition (I3) of Definition 16,

D̃ ′′1
− must satisfy the following condition:
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(J) Every maximal path in D̃ ′′1
− that starts inside the endformula B or some

ũ j : C̃ j must end inside an assumption belonging to Γ̃′′1 or some u j : A j.

From (43) we obtain

(94) D̃ ′′1
−[(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′′]�β B.

Let

B̃ =

Γ̃′′1 , (̃ui : C̃i)i∈K′′ , ((u j : A j)◦)l
j=1

D̃ ′′1
−

B

(C̃i)i∈K′′ → B
→I, (̃ui)i∈K′′

(95)

B̃0 =
ṽ1 : (C̃i)i∈K′′ → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(̃z j : Ẽ j) j∈Mi , Δ̃i

C̃i

C̃i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
i∈K′′

B →E

(96)

where C̃i are as in (35). We show

(97) B̃, (D̃ j) j∈M′′ is an interpolant to B with respect to (Γ′′, ((u j : A j)◦)l
j=1;Δ′′) via

B̃0.

Firstly,

B̃0[B̃/̃v1, (D̃ j/̃z j) j∈M′′]�β D̃ ′′1
−[(C̃i[(D̃ j/̃z j) j∈Mi]/̃ui)i∈K′′]

�β B by (94).

Secondly, B̃ satisfies condition (I3) of Definition 16 by (J). Finally, the property
(D) ensures that B̃0 satisfies condition (I4) of Definition 16. So we have shown
(97).

By the induction hypothesis, we have subsets W, (S′′i )i∈M′′ of {1, . . . , p} and
deductions G : (v j : G j) j∈W ⇒ (C̃i)i∈K′′ → B, (E ′′i : (v j : G j) j∈S′′i ⇒ Ẽi)i∈M′′ such
that

(98) i. W ∪⋃i∈M′′ S
′′
i = {1, . . . , p};

ii. a. (B j) j∈W is an ∅-interpolant to B̃ via G ;

b. for each i ∈ M′′, (B j) j∈S′′i is an ∅-interpolant to D̃i via E ′′i ;

iii. B̃0[G /̃v1, (E ′′i /̃zi)i∈M′′]�β B0;

iv. a. for j ∈ W, G is long for B j with respect to v j : G j;
b. for i ∈ M′′ and for j ∈ S′′i , E ′′i is long for B j with respect to v j : G j.

By (98.ii.a), (98.iv.a), and part 2 of Lemma 44, B̃ and G have identical final
blocks of applications of→I. Since B̃ satisfies condition (I3) of Definition 16, it
follows from (98.ii.a) and Lemma 21 that G also satisfies condition (I3). By (12),
(95), and (98.iii), then, G must be of the following form:

(99) G = v1 : Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v j : G j) j∈Wi , (̃u j : C̃ j) j∈K′′i

Ĥi
Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

(C̃ j) j∈K′′ → B
→I, (̃u j) j∈K′′
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where

{1} ∪W1 ∪ · · · ∪Wq = W,

K′′1 ∪ · · · ∪ K′′q = K′′,(100)

Wi ∪
⋃
j∈K′′i

⋃
h∈M j

S′′h = Pi.

Since G satisfies condition (I4) of Definition 16, each Ĥi must satisfy the fol-
lowing condition:

(K) Every maximal path in Ĥi that starts inside the endformula or some v j : G j

must end inside some ũ j : C̃ j.

Since G [(Bi/vi)i∈W]�β B̃ by (98.ii.a),
(101)
Γ′′1 , ((u j : A j)◦)l

j=1

B1
Hq

1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

j∈Wi
Γ′′j , ((u j : A j)◦)l

j=1, (̃u j : C̃ j) j∈K′′i
Ĥi[(B j/v j) j∈Wi]

Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

�β D̃ ′′1
−

By (98.ii.b), S′′i ⊆ P− for i ∈ M′′, so we have

P+i ⊆ Wi.

Let
Vi = Wi − P+i ,

so that

Wi = Vi ∪ P+i ,(102)

P−i = Vi ∪
⋃
j∈K′′i

⋃
h∈M j

S′′h .(103)

Let V =
⋃q

i=1 Vi and let U = W − V . We have

P− = V ∪
⋃

i∈M′′
S′′i ,

U ∪ P− = {1, . . . , p}.

Let E1 : ž1 : Ck
1→ ((G j) j∈P+i →Hi)

q
i=1→C, (w j : F j) j∈T− , (v j : G j) j∈V ⇒ C̃k̃

1→C
be the following normal deduction:

(104) E1 =

ž1 : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

(wj : F j) j∈T− , (̃uj : C̃ j) j∈K′
Ĉ k

1

Ck
1

((G j) j∈P+i → Hi)
q
i=1→C

→E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v j : G j) j∈P+i ∪Vi , (̃uj : C̃ j) j∈K′′i

Ĥi
Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

C →E

C̃k̃
1→C

→I, ũk̃
1

where Ĉ k
1 is as in (49). We show
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(105) |D̂1|β, (D ′j) j∈T− , (B j) j∈V is an ∅-interpolant to D̃1 via E1.

That E1 satisfies condition (I4) of Definition 16 can be checked using (F) and
(K). It remains to show E1[D̂1/ž1, (D ′j/w j) j∈T− , (B j/v j) j∈V ]�β D̃1.

E1[D̂1/ž1, (D
′
j/wj) j∈T− , (B j/v j) j∈V ]

=

Γ′1 ∪ Γ′′1 ∪
⋃

i∈P+ Γ′′i
D̂1

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

⋃
j∈T− Γ′j, (̃uj : C̃ j) j∈K′

Ĉ k
1 [(D ′j/wj) j∈T− ]

Ck
1

((G j) j∈P+i → Hi)
q
i=1→C

→E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v j : G j) j∈P+i ,

⋃
j∈Vi

Γ′′j , (̃uj : C̃ j) j∈K′′i
Ĥi[(B j/v j) j∈Vi ]

Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (13))

Γ′1
D ′1

Ck
1→ (Al

1→ B)→C

⋃
j∈T− Γ′j, (̃uj : C̃ j) j∈K′

Ĉ k
1 [(D ′j/wj) j∈T− ]

Ck
1

(Al
1→ B)→C

→E

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈P+i ,
⋃

j∈Vi
Γ′′j , (̃uj : C̃ j) j∈K′′i

Ĥi[(B j/v j) j∈Vi ]
Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1

B j

G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

Hi
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β (by (53))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(v j : G j) j∈P+i ,
⋃

j∈Vi
Γ′′j , (̃uj : C̃ j) j∈K′′i

Ĥi[(B j/v j) j∈Vi ]
Hi

(G j) j∈P+i → Hi

→I, (v j) j∈P+i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Γ′′j , ((uh : Ah)◦)l

h=1

B j

G j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈P+i

Hi
→E

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

C̃k̃
1→C

→I, ũk̃
1

�β

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

Γ′′1 , ((uj : Aj)◦)l
j=1

B1

Hq
1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⋃

j∈Vi∪P+i
Γ′′j , ((uj : Aj)◦) j=1, (̃uj : C̃ j) j∈K′′i
Ĥi[(B j/v j) j∈Vi∪P+i

]
Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

Al
1→ B

→I, ul
1

C →E

C̃k̃
1→C

→I, ũk̃
1
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�β (by (102) and (101))

Γ̃′1, (̃uj : C̃ j) j∈K′

D̃ ′1
(Al

1→ B)→C

Γ̃′′1 , (̃ui : C̃i)i∈K′′ , ((uj : Aj)◦)l
j=1

D̃ ′′1
−

B

Al
1→ B

→I, ul
1

C →E

C̃k̃
1→C

→I, ũk̃
1

= (by (41) and (93))

D̃1

The output Dm
1 ,D0 of the new method is the result of applying the pruning

procedure to (Ďi : Γ̌i ⇒ Ei)m̌
i=1, Ď0 : (ži : Ei)m̌

i=1,Δ⇒ C, where

Ďm
1 = |D̂1|β, (D ′i )i∈N , (Bi)i∈P− ,

(ži : Ei)
m̌
i=1 = ž1 : Ck

1→ ((G j) j∈P+i → Hi)
q
i=1→C, (wi : Fi)i∈N , (vi : Gi)i∈P− ,

as described in Case 2.2.2 of the new method. Let n1, . . . , nr and p1, . . . , ps list
the elements of N and P−, respectively, in increasing order, so that m̌ = 1 + r + s.
Let μ(i) and Mi be as in the description of prune(Ď m̌

1 , Ď0). We have μ(1) = 1 and
D1 = Ď1 = |D̂1|β is an ∅-interpolant to itself via M1. For i = 1, . . . , r, Dμ(1+i)

is an ∅-interpolant to Ď1+i = D ′ni
via M1+i. For i = 1, . . . , s, Dμ(1+r+i) is an ∅-

interpolant to Ď1+r+i = Bpi via M1+r+i. We define subsets Sm̃
1 of {1, . . . ,m} and

deductions Ei : (z j : E j) j∈Si ⇒ Ẽi)m̃
i=1 as follows:

Si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{1} ∪ { μ(1 + j) | n j ∈ T− } ∪ { μ(1 + r + j) | p j ∈ V } if i = 1,

{ μ(1 + j) | n j ∈ S′i } if i ∈ M′ − {1},
{ μ(1 + r + j) | p j ∈ S′′i } if i ∈ M′′ − M′ − {1}.

Ei =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|Ê1[M1/ž1, (M1+ j/wn j)n j∈T− , (M1+r+ j/vp j)p j∈V ]|β if i = 1,

|E ′i [(M1+ j/wn j)n j∈S′i ]|β if i ∈ M′ − {1},
|E ′′i [(M1+r+ j/vp j)p j∈S′′i ]|β if i ∈ M′′ − M′ − {1}.

(Ê1,E ′i ,E
′′

i are given in (104), (48), and (98), respectively.) We show that Sm̃
1 and

E m̃
1 satisfy conditions 2–4.

Condition 2 follows from (105), (48.ii.b), and (98.ii.b), using the property of
Mi mentioned above. Condition 4 easily follows from (23).

It remains to prove condition 3. From (35) and (104), we see that

D̃0[(Ei/̃zi)
m̃
i=1] =β D̃0[Ê1[M1/ž1, (M1+ j/wn j)n j∈T− , (M1+r+ j/vp j)p j∈V ]/̃z1, (Ei/̃zi)

m̃
i=2]

�β

z1 : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

M1

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C L̃ k

1

((G j) j∈P+i → Hi)
q
i=1→C

→E
R̃q

1

C →E

where

L̃ k
1 =

(zh : Eh)h∈{ μ(1+ j)|n j∈T− }∪⋃i∈M′ Si ,Δ
′

Ĉ k
1 [(M1+ j/wn j)n j∈T− , (C̃ j[(Ei/̃zi)i∈M j]/̃u j) j∈K′]

Ck
1
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R̃i =

(v j : G j) j∈P+i , (zg : Eg)g∈{ μ(1+r+ j)|p j∈Vi }∪⋃h∈M j
Sh ,
⋃

j∈K′′i Δ̃ j

Ĥi[(M1+r+ j/vp j)p j∈Vi , (C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′′i ]
Hi

(G j) j∈P+i → Hi
→I, (v j) j∈P+i

for i = 1, . . . , q.

Since D0 = |Ď0[(Mi/ži)m̌
i=1]|β, where Ď0 is given in (14), D0 is the normal form of

z1 : Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C

M1

Ck
1→ ((G j) j∈P+i → Hi)

q
i=1→C L k

1

((G j) j∈P+i → Hi)
q
i=1→C

→E
Rq

1

C →E

where

L k
1 =

(zμ(1+i) : Eμ(1+i))ni∈N ,Δ′

C k
1 [(M1+i/wni)ni∈N]

Ck
1

Ri =

(v j : G j) j∈P+i , (zμ(1+r+ j) : Eμ(1+r+ j))p j∈P−i ,Δ
′′
i

Hi[(M1+r+ j/vp j)p j∈P−i ]
Hi

(G j) j∈P+i → Hi
→I, (v j) j∈P+i

for i = 1, . . . , q.

So it suffices to show

Ĉ k
1 [(M1+ j/wn j)n j∈T− , (C̃ j[(Ei/̃zi)i∈M j]/̃u j) j∈K′] =β C k

1 [(M1+i/wni)ni∈N],(106)

and

Ĥi[(M1+r+ j/vp j)p j∈Vi , (C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′′i ] =β Hi[(M1+r+ j/vp j)p j∈P−i ]

(107)

for i = 1, . . . , q.
We can prove (106) in exactly the same way as (80) of Case 2.2b.1.2.
We prove (107). By (97), (98.ii.a), and condition 2, we get

(108) (B j) j∈W , (D j) j∈⋃i∈M′′ Si is an interpolant to B with respect to (Γ′′, ((u j :
A j)◦)l

j=1;Δ′′) via the normal form of B̃0[G /̃v1, (Ei/̃zi)i∈M′′] : (v j :G j) j∈W , (z j :
E j) j∈⋃i∈M′′ Si ,Δ

′′ ⇒ B.

Applying the induction hypothesis again to B with respect to (108) and not-
ing Lemma 32, we obtain elements (τ̂( j)) j∈⋃i∈M′′ Si of {1, . . . , p} and deductions
(I j : v j : G j ⇒ G j) j∈W , (T j : vτ̂( j) : Gτ̂( j) ⇒ E j) j∈⋃i∈M′′ Si such that

(109) i. W ∪ { τ̂( j) | j ∈ ⋃i∈M′′ Si } = {1, . . . , p};
ii. a. B j is an ∅-interpolant to itself via I j for each j ∈ W;

b. Bτ̂( j) is an ∅-interpolant to D j via T j for each j ∈ ⋃i∈M′′ Si;

iii. B̃0[G /̃v1, (Ei/̃zi)i∈M′′][(I j/v j) j∈W , (T j/z j) j∈⋃i∈M′′ Si]�β B0.
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By (98.iv.a),

(110) G [(I j/v j) j∈W]�β G .

We have

B̃0[G /̃v1, (Ei/̃zi)i∈M′′ ][(I j/v j) j∈W , (T j/z j) j∈⋃i∈M′′ Si ]

= B̃0[G [(I j/v j) j∈W ]/̃v1, (Ei[(T j/z j) j∈Si ]/̃zi)i∈M′′ ]

�β B̃0[G /̃v1, (Ei[(T j/z j) j∈Si ]/̃zi)i∈M′′ ] by (110)

=
v1 : Hq

1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v j : G j) j∈Wi , (̃uj : C̃ j) j∈K′′i

Ĥi
Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

(C̃ j) j∈K′′ → B
→I, (̃uj) j∈K′′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(vτ̂(g) : Gτ̂(g))g∈⋃h∈M j

Sh , Δ̃ j

C̃ j[(Eh[(Tg/zg)g∈Sh ]/̃zh)h∈M j ]

C̃ j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
j∈K′′

B →E

by (96) and (99)

�β
v1 : Hq

1 → B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(v f : G f ) f∈Wi∪{ τ̂(g)|g∈⋃ j∈K′′i

⋃
h∈M j

Sh },
⋃

j∈K′′i Δ̃ j

Ĥi[(C̃ j[(Eh[(Tg/zg)g∈Sh ]/̃zh)h∈M j ]/̃uj) j∈K′′i ]
Hi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

i=1

B →E

Therefore, by (12) and (109.iii),

(111) Ĥi[(C̃ j[(Eh[(Tg/zg)g∈Sh]/̃zh)h∈M j]/̃u j) j∈K′′i ]�β Hi,

which implies that

(112) Vi ∪ { τ̂(g) | g ∈
⋃
j∈K′′i

⋃
h∈M j

Sh } = P−i .

Let (τ( j)) j∈⋃i∈M′′ Si be such that τ̂( j) = pτ( j) for each j ∈ ⋃i∈M′′ Si. By (112),

(113) Vi ∪ { pτ(g) | g ∈
⋃
j∈K′′i

⋃
h∈M j

Sh } = P−i .

By (25), (109.ii.b) implies that for j ∈ ⋃i∈M′′ Si, μ(1 + r + τ( j)) = j and D j is
an ∅-interpolant to Bpτ( j) via M1+r+τ( j) : z j : E j ⇒ Gpτ( j) . It follows that D j is an
∅-interpolant to itself via the normal form of T j[M1+r+τ( j)/vpτ( j) ] : z j : E j ⇒ E j.
Hence by condition 4,

(114) Ei[(T j[M1+r+τ( j)/vpτ( j) ]/z j) j∈Si]�β Ei for i ∈ M′′.

Now we can show (107) as follows:

Ĥi[(M1+r+ j/vp j)p j∈Vi , (C̃ j[(Eh/̃zh)h∈M j]/̃u j) j∈K′′i ]

=β Ĥi[(M1+r+ j/vp j)p j∈Vi , (C̃ j[(Eh[(Tg[M1+r+τ(g)/vpτ(g) ]/zg)g∈Sh]/̃zh)h∈M j]/̃u j) j∈K′′i ]

by (44), (100), and (114)

= Ĥi[(C̃ j[(Eh[(Tg/zg)g∈Sh]/̃zh)h∈M j]/̃u j) j∈K′′i ][(M1+r+ j/vp j)p j∈P−i ] by (113)

�β Hi[(M1+r+ j/vp j)p j∈P−i ] by (111).

This concludes the proof of Claim C. �
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Remark. Using the algorithm given in the proof of Claim B, it is not hard to see
that the function prune can be computed in polynomial time. Since the complexity
of the new method is clearly dominated by the complexity of prune, it follows that
the new method itself can be implemented to run in polynomial time.

Example 46. Consider the following normal deduction D : x1 : ((p1→ p2)→ p5)→
p6, y1 : p4→ p5, x2 : p3→ p4, y2 : p2→ p3, x3 : p1 ⇒ p6 from Example 31:

x1 : ((p1→ p2)→ p5)→ p6

y1 : p4→ p5

x2 : p3→ p4

y2 : p2→ p3

u : p1→ p2 x3 : p1

p2
→E

p3
→E

p4
→E

p5
→E

(p1→ p2)→ p5
→I, u

p6
→E

Let us see how the new method works on this deduction with respect to the partition

(x1 : ((p1→ p2)→ p5)→ p6, x2 : p3→ p4, x3 : p1 ; y1 : p4→ p5, y2 : p2→ p3).

Let D (i) the subdeduction whose endformula is pi. We list the λ-terms (along with
their type) corresponding to the interpolants computed by the new method when
given D (i) (together with the relevant partition) as input:

D (2) by Case 2.2.2. ux3 : p2

D (3) by Case 2.1. ux3 : p2

D (4) by Case 2.2.1.1. x2 : p3→ p4, ux3 : p2

D (5) by Case 2.1. x2 : p3→ p4, ux3 : p2

D (6) by Case 2.2.1.2. λv.x1(λu.v(ux3)) : (p2→ p5)→ p6, x2 : p3→ p4

The output of the new method on D is the sequence E1,E2,E0 of Example 31. (In
this example, the pruning procedure does not affect the outcome.)

Remark. We note that Theorem 45 relativizes to substructural logics (BCI-logic,
BCK-logic, R→). Condition (I1) of Definition 16 is strengthened to “Γ1, . . . ,Γm =

Γ” in the case of BCI- and BCK-logic. These logics do not require the pruning
procedure, and the proof of Theorem 45 is accordingly greatly simplified.

Remark. We may choose to treat deductions modulo η-equality, as is often done
in typed λ-calculus. This will simplify the proof of Theorem 45 in many places.
In particular, Cases 2.2.1.1 and 2.2.1.2 of the Induction Step of the new method
will no longer need to be distinguished. Of course, the resulting statement of the
theorem will become weaker.

4 Discussion

We have presented a new algorithm for computing an interpolant to a given normal
natural deduction D (with respect to a partition of its set of assumptions) in the im-
plicational fragment of intuitionistic logic. From among many interpolants to D ,
this algorithm picks out a strongest one in a certain natural sense, but our notion of
an “interpolant”, given by Definition 16, is somewhat restricted because not all in-
terpolation sequences (in the sense of section 1) can be obtained from interpolants.
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For instance, consider the following deduction:

D = y1 : r→ r→ s
x : (p→ q)→ r y2 : p→ q

r →E

r→ s →E
x : (p→ q)→ r

y3 : q
p→ q →I

r →E
s →E

The one-formula sequence (p→ q)→ r is an interpolation sequence to (p→ q)→
r, r→r→s, p→q, q⇒ s with respect to the partition ((p→q)→r; r→r→s, p→q, q).
The associated deductions

D1 = x : (p→ q)→ r

D0 = D[z1 : (p→ q)→ r/x]

satisfy conditions (I1), (I2), and (I3) of Definition 16, but not (I4), so D1 does not
count as an interpolant. Up to βη-equality, there is only one interpolant to D (with
respect to the partition in question), namely D1,D2, where

D2 =
x : (p→ q)→ r

v : q
p→ q →I

r →E
q→ r →I, v

This interpolant gives an interpolation sequence (p→ q)→ r, q→ r which is more
complex than the above interpolation sequence (p→q)→ r. A weaker definition of
an interpolant is conceivable under which (the sequence consisting of) D1 counts as
an ‘interpolant’ to D , but interpolants in such a weaker sense cannot be constructed
inductively. (Note that x : (p→q)→r is not an ‘interpolant’ in any reasonable sense
to the immediate subdeduction of D whose endformula is r.) Our definition of an
interpolant (Definition 16) is the one that is naturally extracted from the existing
syntactical methods for proving interpolation.

It may also be worth mentioning that the interpolation sequence associated
with a strongest interpolant may not be one of the simplest ones among all the
interpolation sequences obtained from interpolants. For instance,

D =
x : p→ p→ q y : p

p→ q →E y : p
q →E

has an interpolant

x : p→ p→ q u : p
p→ q →E u : p

q →E

p→ q →I, u

which is strictly less strong than the strongest interpolant:

x : p→ p→ q.

The main result of this paper should be compared to a result in Pitts 1992,
which states that the set of interpolation formulas to a given sequent Γ,Δ ⇒ C in
intuitionistic propositional logic has a least and a greatest element with respect to
the usual preorder given by

A ≤ B iff � A⇒ B.
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This result by Pitts is different from our main result in a number of respects. Firstly,
Pitts’ proof of his result does not take into account ‘intensional’ properties of in-
terpolants as expressed in our condition (I2) of Definition 16 or condition 3 of
Definition 5.17 Secondly, Pitts’ result essentially depends on the presence of con-
junction and disjunction and it does not specialize to the implicational fragment of
intuitionistic logic. Thirdly, his result makes essential use of Weakening and does
not relativize to substructural logics. Looking from the opposite angle, since not
all interpolation sequences are obtained from interpolants in the sense of Defini-
tion 16, our main result does not imply that Pitts’ result holds of the implicational
fragment of intuitionistic logic.
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