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Abstract

| present a new syntactical method for proving the Interpolation Theorem for the impli-
cational fragment of intuitionistic logic and its substructural subsystems. This method, like
Prawitz’s, works on natural deductions rather than sequent derivations, and, unlike exist-
ing methods, always finds a ‘strongest” interpolant under a certain restricted but reasonable
notion of what counts as an ‘interpolant’.
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1 Introduction

This work is motivated by the following problem in the simply typed A-calculus:

Praoblem. Given a normal term T[X, y], find two normal terms S[X] and P[z, ¥] such
that P[S[X], ¥] »5 T[X,y].

The question of how to solve this problem occupies a central place in a certain com-
putational model of acquisition of word meanings by children (Kanazawa 2001,
2003).* Finding one solution to this problem is easy; any instance of the problem
has the following solution:

S[X] = Aw.wX,
Plz,y] = z(AXT[X,¥]).

However, there are many other solutions, and one particularly interesting class
of solutions, from the standpoint of the computational model mentioned above,
consists of those solutions that assign a ‘simplest’ type to S.

It turns out that standard syntactical proofs of the Interpolation Theorem for
intuitionistic logic provide algorithms for finding such solutions. There are two
well-known syntactical methods for proving the Interpolation Theorem, one by
Maehara (1960) (see Troelstra and Schwichtenberg 2000 for the history and details
of the method) and one by Prawitz (1965). Maehara’s method works by induction

1We cannot not go into any details in this paper, but very briefly, the model assumes that meanings
of words and sentences, as well as ways of combining word meanings to build sentence meanings
(called “meaning recipes”), are represented by typed A-terms. Meanings of words and sentences
contain constants that represent “semantic primitives”, but meaning recipes are pure A-terms without
constants. Suppose that a child encounters a sentence whose meaning T[C, dj (with constants €, d3 is
clear to her but which contains one word new to her. If she can tell that constants ¢ come from the
unknown word and d’come from the rest of the sentence, then finding out the meaning of the unknown
word consists in finding an appropriate pair of terms S[X], P[z, ¥] such that P[S[X], y] -3 T[X,V].



on cut-free sequent derivations, and Prawitz’s method works by induction on nor-
mal natural deductions. In these methods, what is to be proved by induction is the
following statement:

Interpolation Theorem. If + T, A = C, then there is a formula E such that

o - I'=E;
e -t E,A>C;
e all propositional variables in E appear both in I" and in A, C.

A formula E satisfying the above conditions is called an interpolation formula to
the sequent I', A = C with respect to the partition (I'; A) of its antecedent. Implicit
in the inductive proof of this statement is an algorithm that, given a cut-free deriva-
tion/normal deduction 2: I', A = C, finds two cut-free derivations/normal deduc-
tions 21: T = Eand %,: E,A = C. Crucially, the two derivations/deductions 2,
and %, found by these methods in fact satisfy much stronger properties. Assuming
that I', A = C consists of implicational formulas, let T[X,V], S[X], P[z,¥] be the
A-terms corresponding to 2, 1, %, respectively, where the types of the variables
X are the formulas in T, the types of the variables ¥ are the formulas in A, and the
type of z is E. Then one has:

(i) PISIX].Y] »p TIXY;

(if) Bothin 2;: T = Eandin %: E,A = C, no occurrence of a propositional
variable inside E is linked to another such occurrence or originates in an
application of Weakening.

Condition (ii) is stated in terms of sequent calculus. In a cut-free sequent deriva-
tion, two occurrences of a propositional variable in the endsequent are linked to
each other if they originate ‘opposite to’ each other in an initial sequent. The con-
dition is invariant across cut-free derivations corresponding to the same normal
natural deduction that are W-normal in the sense of Mints (1996), and it can be
stated directly in terms of natural deduction as well. So (ii) is a property of the
A-terms S, P. Condition (i) is emphasized by Cubri¢ (1994) for Prawitz’s method,
and condition (ii) is a strengthening of one of the conditions stated by Carbone
(1997) in terms of sequent calculus.

Deviating from standard terminology, we say that a normal term S[X] is an
interpolant to a normal term T[X, ] (with respect to the partition (X;y) of its free
variables) if there exists a normal term P[z, y] such that S, P satisfy the conditions
(i), (ii). The condition (i) simply says that S, P gives a solution to an instance T of
our problem. The condition (ii) gives a sense in which E is ‘simplest’. It implies
that in 21 and %, any occurrence of a propositional variable inside E must be
linked to an occurrence outside E, from which the third condition on E in the
above statement of the Interpolation Theorem follows.

There are two complications, however. One complication is that the Interpola-
tion Theorem in fact fails to hold in the above form for the implicational fragment
of intuitionistic logic, which corresponds to the simply typed A-calculus. Even
when I', A = C is a sequent consisting entirely of implicational formulas, the in-
terpolation formula E sometimes has to contain conjunction. An example of such
asequent is

P1, P1 — P2, P1 — P3, P2 = P3 = Pa = Pa.



p2 A ps is an interpolation formula to this sequent with respect to the partition
(p1, P1— P2, P1 — P3; P2 — P3 — pa) of its antecedent, but there is no interpolation
formula in the implicational fragment.?

A way of circumventing this problem has been proposed by Wronski (1984).
His idea is to use a sequence of formulas E;, ..., Ey, in place of a single formula
E in the statement of the Interpolation Theorem. Although Wronski used this idea
to prove an Interpolation Theorem for BCK-logic, it can readily be extended to the
implicational fragment of intuitionistic logic.® Thus, we have

Interpolation Theorem. If + T',A = C, then there is a sequence of formulas
Ei,..., Em such that

e+t ' Ejfori=1,...,m;
e El,...,Em,A:)C;
e all propositional variables in Ey, ..., Ey, appear both in T"and in A, C.

We call a sequence of formulas Eq, . . ., Ep, satisfying the above conditions an inter-
polation sequence to I', A = C with respect to the partition (I'; A). Both Maehara’s
and Prawitz’s method can be easily modified to accommodate this change, as we
shall see in detail below. In the above example, we can take p,, ps as the desired
interpolation sequence.

A second complication is that interpolants in the sense of (i), (ii) (modified to
allow sequences of terms S1,..., Sy in place of S) are by no means unique. In
fact, if one applies Maehara’s method (in the modified form) to different cut-free
sequent derivations corresponding to the A-term T[X,¥], one may obtain different
interpolants. Moreover, there are interpolants that one cannot find by Maehara’s
method no matter which cut-free derivation corresponding to T[X,y] one starts
with. As for Prawitz’s method, it finds one particular interpolant, but there does
not seem to be any good way of characterizing this interpolant except to say that it
is the one found by Prawitz’s method. In particular, both methods sometimes miss
interpolants that are “‘strongest’ in the sense that their types imply the types of all
other interpolants.

In section 3.5 of this paper, we give an algorithm for finding a strongest in-
terpolant. This algorithm works by induction on normal natural deductions, but is
otherwise quite different from Prawitz’s method.

Although we focus on intuitionistic logic, the results in this paper are designed
to relativize to substructural subsystems of intuitionistic implicational logic; hence
the plural “logics” in the title.*

2 Interpolation in Sequent Calculus

In this section, we describe our modification of Maehara’s method for the impli-
cational fragment of the sequent calculus LJ for intuitionistic logic, as formulated

2In relation to this, the condition (ii) must be restated in a somewhat weaker form when the
interpolation formula is allowed to contain conjunction. In sequent calculus, the present formulation
of (ii) can be maintained by adopting a multiplicative version of (A=) in place of Gentzen’s (1935)
rules in LJ.

3Pentus (1997) used the same method to prove interpolation for the product-free Lambek calculus.

4See Ono 1998 for information on interpolation for substructural logics.



by Gentzen (1935), and prove that the method satisfies conditions similar to (i) and
(i) in section 1. For this purpose, we use a sequent calculus with A-term labels,
which essentially encode a translation from LJ derivations to NJ deductions. In
this calculus, a sequent is of the form

X1: AL, ... % A= T:C

where X4, ..., Xy are distinct variables, A1, ..., A,, C are formulas, and T is a term
whose free variables are among X, ..., Xy. The antecedent of such a sequent is
treated as a set {X1 : A1,..., Xn : A} of variable-labeled formulas. Such a set is
called a context. We assume that each variable is preassigned a type, so that x : A
is short for x* : A, etc. We use T, A, . .. to denote contexts. If T and A are contexts,
we write I', A to denote ' U A provided thatT’' N A = @.

LIS,

Initial sequents.
X:A=X:A

Operational rules for —.

'=U:A y:BA=>T:C X:AAT=T:B

x:A—>B,F,A=>T[xU/y]:C(_)=>) 1“=>/lx.T:A—>B(:>_>)
Structural rules.
Az:AT=T:B . . .
Y Contraction [=>T7:8 Weakening

x:AT = T[x/y,x/z] : B X:Al'=T:B
I'sU:A x:AAA=>T:B
IA=T[U/x]:B

Cut

In (—=), Contraction, and Weakening, x is required to be a fresh variable. By
the convention on the use of commas, comma-separated parts of antecedents in
these rules must be disjoint. Unlike in Gentzen’s original formulation, there is no
structural rule of Interchange because antecedents of sequents are treated as sets of
variable-labeled formulas.

If Zisaderivationof ' = T : C, wewrite 2. T = T : C to express this fact.
The final occurrence of ' = T : C in Z is called the endsequent of 2.

Cut is eliminable from derivations in LJ_, in the sense that whenever one has a
derivation 2. T' = T : C, one can find another derivation 2. I" = [T|g : C which
contains no application of Cut, where [T|g is the normal form of T. By leaving
out one or both of the structural rules of Contraction and Weakening from LJ_,,
one obtains sequent systems for various substructural logics: the relevance logic
R_,, which lacks Weakening; BCK-logic, which lacks Contraction; and BCl-logic,
which lacks both Contraction and Weakening.

We take for granted the notion of variable renaming. If & is a derivation of
I' = T :C and o is a variable renaming, 2o is a derivation of 'oc = To : C.

Since A-term labels appearing in succedents in a derivation can always be re-
covered from the other information in the derivation, we sometimes omit those
labels. We may also occasionally allow ourselves to omit variable labels in the
antecedent for the sake of brevity, even though they are not redundant in the same
way.



Lemma 1. The following rules are admissible:

I'sU:A y:BLA=>T:C
X:A->BTUA=T[xU/y]:C

I'=sU:A xX:AAA=>T:B
FTUA=T[U/X]:B

Cut¥

(==)t

where it is allowed that I’ N A # @.

Proof. Let
F=0I",%x1:D1,...,%,: Dp,
A=A,%X;:Dq,...,% : Dp,

where T N A" = @ and let y1,...,¥n,21,...,2Zy be fresh variables. Let o =
[yi/X1,....¥n/Xal, T = [22/X1,...,Zn/Xn], SO that To N AT = @. If 21 and 2,
are derivationsof ' = U : Aand y : B,A = T : C, respectively, we have

Do Dot
I',y1:D1,...,¥n:Dh=>Uc:A y:B,A,z1:D1,...,2,:Dy=T1:C (5=)
X:A—B,I",y1:D1,...,Yn: Dy, A, 21:D1,...,2y : Dy = (T7)[x(Uo)/y] : C
X:A—B,T",x1:D1,...,%,: Dy, A" = T[xU/y] : C Contr
The admissibility of Cutf is proved similarly. |

We adopt the following convention: When we write a derivation in which
(—=)t or Cutt is used, we mean a derivation in which these rules are eliminated
in the way described in the above proof.

2.1 Linksin sequent calculus

We associate with each occurrence of a propositional variable in a LJ_, derivation
two ports, and call one the top port and the other the bottom port. We decorate LJ_,
derivations with links connecting two ports as follows (p stands for an arbitrary
propositional variable):

Initial sequents.
x:Alp] = x: Alp]

e We draw a link connecting the top port of an occurrence of p in A in the
antecedent with the top port of the corresponding occurrence of p in A in the
succedent.

Operational rules for —.
(—>=).

Ip) = U Alp] ¥ BIpl Alp] = T :CIp)
(=)
x: ALP] — BIB]. T[pL. ALP] = T[XU/y] : C[p]

We draw a link between

e the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the left premise;

¢ the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the right premise;



e the top port of an occurrence of p in C in the conclusion and the bottom port
of the corresponding occurrence of p in C in the right premise;

e the top port of an occurrence of p in T in the conclusion and the bottom port
of the corresponding occurrence of p in T in the left premise;

o the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the right premise.

(=-).
x:A[p]l,T'[p] = T : B[p]

I'[p] = AX.T : A[p] = B[?:)]

(=-)

We draw a link between

¢ the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the premise;

o the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

¢ the top port of an occurrence of p in I' in the conclusion and the bottom port
of the corresponding occurrence of p in T in the premise.

Structural rules.
Contraction.

y: A[|/O],Z Alp],T'[p] = T : B[p]

— — Contraction
x: A[p],T'[p] = T[x/y,x/z] : B[p]

We draw a link between

o the top port of an occurrence of p in x : A in the conclusion and the bottom
port of the corresponding occurrence of p iny : A in the premise;

e the top port of an occurrence of p in x : A in the conclusion and the bottom
port of the corresponding occurrence of p in z: A in the premise;

e the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

o the top port of an occurrence of p in I' in the conclusion and the bottom port
of the corresponding occurrence of p in T in the premise.

Weakening.
['[p] = T : B[p]

\\ \\ Weakening
X:AT[p] =T :B[p]

We draw a link between



e the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the premise;

e the top port of an occurrence of p in T in the conclusion and the bottom port
of the corresponding occurrence of p in T in the premise.

Cut.
[[p] = U :A[p] x:A[pl,Alp] = T :B[p]
|

Cut
[[pl, Alp] = T[U/x] : B[p]

We draw a link between

¢ the bottom port of an occurrence of p in A in the left premise and the bottom
port of the corresponding occurrence of p in A in the right premise;

e the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the right premise;

e the top port of an occurrence of p in T in the conclusion and the bottom port
of the corresponding occurrence of p in T in the left premise;

o the top port of an occurrence of p in A in the conclusion and the bottom port
of the corresponding occurrence of p in A in the right premise.

Definition 2. A path is a sequence of the form

(pIa Ol’p-]'_—s LR ’pas Onvp;)
(n > 1) such that

e for 1 <i < n, oj is an occurrence of a propositional variable and p;” and p;
are distinct ports of o;;

e for1 <i<n-1, thereisalink between p;” and p; ,.

We say that a path (o7, 01,07, ...,05,0n,08) starts in 01 and ends in o,. A
path goes through ports of various occurrences of the same propositional variable.
Two occurrences of a propositional variable are linked to each other if there is a
path that starts in one and ends in the other. Since the reverse 7R of a path r is a
path, paths always come in pairs. We really think of 7 and zR as the same object,
but we have to distinguish them formally in order to talk about how different paths
correspond to each other.®

A maximal path is a path that is not a proper subpath of any other path. A
maximal path starts and ends either inside the endsequent or inside the principal
formula of an application of Weakening. In a cut-free derivation, at least one of the
endpoints of a maximal path must be inside the endsequent. A cycle is a path that
starts and ends in the same occurrence of a propositional variable. It is easy to see
that no cycle can occur in a cut-free derivation (cf. Carbone 1997).

Consider the following reduction steps for cut elimination:®

5Carbone’s (1997) notion of logical path is designed to pick out one path from each pair {r, 2%}.
These reduction steps are found in Borisavljevi¢ 1999, modulo the absence of Interchange.



D D, D .@3

I'=>C DA=A / / DA=>A AO=>B
C) ESprasa ) A,®93:>BC ~ r%c D.AO=B C)“t
—=
CoDIAOSB ut CoDTAG=B
Dy 7 7 Dy
7 AAA=>C D,O6=B '=s=A AA=C 17,
% , , , A
©) 1 2A CobAreSE ) W rasc U pesp
Cut (—=)
CoDT.AO=B CoDT.AO=B
@z 93 @1 @3
A=>C DA B 5. T=A DA B
(C3) F%A C:i>DA’Ab®:B (5=) AZZC :>DFG;:’,~®C:> Cut
AA, cut T, (o)
CoDT.AO=B CoDT.AO=B
g C,AL A=D I'=sA CAA=D
€4 rZa Adscob ™) T eraso
R
rTA=>CoD ut A>CoD
(C5)

2 D P 7 7
AT=B (=-) A=A B,®=>C(_):>) - Dy AT=B B,®=>CCt
r>A-B ASBAO=C A=A ATO=C u

IA,0=C u AT,0=C u
@1 @1 92
C.C.T=A CCT=>A AA=B
(C6) C.r= A conr AA%=>B ~ CCrAsB oM
CT.A>B Cut CIrA=pB conr
P N D
7 C,C,AA=>B '=>A C,CCAA=B
(€7 r=A C,A,AzBCC?ntr ~ CCTA=B tC“t
CIA=B u Crasg ~oW
D 72 Dy
2 AAASB 9, T=A AAASB
©8) r=A A,A:BCC;)”” ™ r=aA A,F,A:BCuﬂ_CUt
rLA—B u rLA—B
.,@1 91 92
I'=A D, '=>A AA=>B
(C9) 7C’F:>AWeak A’A:’BCI “ —Tasp  Cu
C.,TLA=B u C.T.A S B Neak
Dy 2 D
AA=B '>A AA=B
(¢19 r2a caasBMk ~ raop oo
cra=s M CT.a=B e
D>
; %
(c11) Pl AaopWeak ~ A=B
=2 2o P cut IA— B e
I''A=B
_@1 91
(C12) rsA A=A ~ I'=A
T Tr=A M
.@1 @1
(C13) AsA AT=A ~ms AT = A
AT = A ut

Except for (C8) and (C11), there is a one-one correspondence between the maximal
paths in the original derivation and the derivation after the reduction. Let us write
92 -, 9’ justin case & reduces to &’ by repeated applications of (C1), (C2), (C3),
(C4), (C5H), (C6), (C7), (C9), (C10), (C12), (C13). Since this notion of reduction



does not involve the problematic case (C8) of cut-elimination, it is clear that the
converse of the relation -, N # is well-founded, i.e., every reduction sequence
terminates.

Definition 3. A cut-free derivation in LJ_, is W-normal if none of the following
reduction steps is applicable to it:’

71 2 B@:C
r=A D I'= A=
QF:AWMKBA:CC*ﬁ ™ ASBT.ASC O

ASBDTI.A=C D.ASB.I.A= C VeaK

D> 7 Dy

D B A=C I'=>A BA=C

rsaA Q&A:Cxﬁg 2 Ae&RAzcﬁxﬁ

ASBTI.D.A=C D.A-BT.A=C '

D
D
D A=C Wi
———~= Weak A=C
[=A BA=SC ” AHB?A:CWMK
A-BT.A=C 1
A DN 5 7
I = AIl'=>B
QAFﬁng; ~ r:AﬁBﬁ;ﬁ
CIT>ASB CT=>A-B
.@18 @1
I'= I'=>8B
Qr:Bwﬁa Ar:Bﬂfi)
AC.I'=>B (=) I'=A—->B Weak
C.I'=A—-B C.,T=>A->B
.@1 -@1
AAT =B AAT =B
QAAF:B?% Ar:B&Ti
CAI=B ~onr C.AT =B '
7
2
AT =B 1
AATSEWeak w AT=B
AT =B com

Every cut-free derivation can be put into a W-normal form with the same A-
term by repeatedly applying these reduction steps.

Definition 4. A cut-free derivation in LJ_, is WC-normal if it is W-normal and
moreover if none of the following reduction steps is applicable to it:®

.@1 -@1 -@2
D.D.I=A . Dy w DDI=A BASC
D.I = A mrBA:C@ﬂ” A-BDDT.A=C .~

ASBDT.,A=C A>BDT.A=C oW

"The present definition is not exactly the same as that found in Mints 1996 (restricted to the
implicational fragment), since the latter uses the additive version of (=-).

8 Again this definition is slightly different from Mints 1996 due to the difference in the formulation
of (-=).



Dy D 9

2
9, BDDA=C_ . T=A &QDA:CHﬁ)
r=A &QAﬁchg; A>BI.D.D.A=C
ASBTI.D.A=C ASBTI.D.A=C ~on
%! F%ABB% C
7 = ,B,A =
2\ MContr ~ I'=>A A-BI,BBA=C (==)
r=A BA=C ) AsBASBTASC ()i
A—->BT,A=C : — Contr
> A—-BTI A=C
,@1 @1
CCAT=B ., CCAI=B _
QAFﬁB(gS CCr=A-8B
CI=A>B CIToAoB ~OW
@1 @1
C.,C.I'=8B C,C.T=18B
cr=g Ac.Cr =8
AQFﬁB(iH) CCr=A-B
CI=A—>B CI=oA-B “OW
.@1 @1
ALCCI=B . A.C.CI'=B
ACT=8 o, Accr-os ‘ig“_ﬂ)
AQF:B(ii) CCr=A-8
CI=>A>B CI=AoB o

Every cut-free W-normal derivation can be put into a WC-normal form with
the same A-term by repeatedly applying these reduction steps.

2.2 Maehara’s method

Maehara’s (1960) method is the most commonly used syntactical method for prov-
ing interpolation (see Troelstra and Schwichtenberg 2000). We reformulate it using
Wronski’s (1984) idea of using sequences of formulas in place of single interpo-
lation formulas, and prove that the method satisfies stronger conditions than those
stated by the usual form of the Interpolation Theorem.

Notations. We will often have to refer to a large number of sequences, which
necessitates compact notations for representing them. In what follows, we will use
the following abbreviatory conventions:

€] abbreviates e,...,e, whereeisa letter (possibly with diacritics).
(e[i])l., abbreviates e[1],...,e[n], where €fi] is an expression containing i.
(€efi])ies abbreviates €[s1],...,€[sn], where €[i] is as above and
S1,...,Sp lists the elements of S in increasing order.
A— B abbreviates A; —---— A, —> B if Arepresents Aq,...,An.

If R is a two-premise rule and 9 represents 21, ..., Zn,

R Do D R
% 7 abbreviates :
T=C*" : I

I'=>C

10



N -@n -@O R
7 Y R abbreviates 9 :
r=c Tsc R

If eis any expression, we use
(e)°

as a metavariable whose value is either an empty expression or e. When we use
the same expression (€)° more than once, the different occurrences of (€)° are not
necessarily intended to stand for the same thing.

Definition 5. LetT,A = T : C be a sequent such that T is normal. A sequence of
cut-free W-normal derivations (%;: T'i = S;: Ei);'il is said to be an LJ_,-interpolant
to I, A = T : C with respect to the partition (I'; A), if there exists a cut-free W-
normgl derivation %: (z; : Ei){il,Ao = P : C such that the following conditions
hold:

1. icr(=1,...,m);
2. Ag CA;
3. PISi/z)2 ] »p T,

4. In 2 (i =1,...,m), every maximal path starting inside the succedent E; of
the endsequent ends inside the antecedent I'; of the endsequent;

5. In %, every maximal path starting inside (z; : E;)", in the endsequent ends
inside Ag or C in the endsequent.

In this case, we call %y an auxiliary derivation for 2", 2, and we say that @{“ is
an interpolantto I', A = T : C (with respect to the partition (I'; A)) via %.

Theorem 6. Given a cut-free derivation 2: I',A = T : C, one can find an LJ_,-
interpolantto I', A = T : C with respect to the partition (I"; A).

If T is a context, we let T~ denote the multiset of formulas which is the result
of deleting all variables and colons from I. It is easy to see that Theorem 6 implies
the modification of the usual statement of the Interpolation Theorem mentioned in
section 1:

Lemma7. If (Z: T = S: Ei)?ll is an LJ_,-interpolantto ', A = T : C with
respect to the partition (I'; A), then E4,..., En is an interpolation sequence for
I'", A~ = C with respect to the partition (I'"; A7).

Proof of Theorem 6. We construct cut-free W-normal derivations (Z;: Ti = S; :
E)l,. Zo: (zi - Ei);. Ao = P : C satisfying the conditions 1-5 of Definition 5 by
induction on cut-free derivation Z: I', A = T : C. We choose to construct at each
step W-normal derivations that do not end in Weakening.

Induction Basis. Z is an initial sequent x: A = x: A. Case 1. ' = x: Aand
A=o. Thenwecantakem=1, 21 = Y, and Yy =21: A= 71 A. Case2. T = @
and A = x: A. Then we can take m = 0, 2 = 2. In both cases, conditions 1-5 are
clearly satisfied.

®We require W-normality so that LJ_, -interpolants translate into interpolants in natural deduction.

11



Induction Step.
Case 1. The last inference of Z is (—»=):
!’ @II
I'AN=U:A y:BI”"AN'=Q:C
X:A-BII”,AN, AN = Q[xU/y]:C

(==)

where I, I c T"and A’, A”” C A. There are two subcases depending on whether
X:A—-BisinT.

Case 1.1. T' = x: A—- B,I", I and A = A’,A”. We apply the induction
hypothesis to 2’ with respect to the partition (A’;T”) and to 2" with respect to
the partition (y : B,I"";A”). From &', we obtainn > 0, (Z/: A] = S{ : F)L,,
Do (Wi @ Fy)L,, Ty = P’ Asatisfying the required properties, namely:

(1) L ACAN(i=1,...,n)
i eI,
iii. P[(S{/wi)iL,] =»p U;
iv. InZ/ (i =1,...,n), every maximal path starting inside the succedent F;
of the endsequent ends inside the antecedent A{ of the endsequent.
v. In 7, every maximal path starting inside (w; : F;)_, in the endsequent
ends inside I'; or A in the endsequent.
From 2", weobtainp > 0, (Z/: ©,T} = S/":Gi)_,, 7§ : (vi:Gi)!_,, Ay = P”:C
satisfying the required properties, namely:
(2 i.@cy:BandI{ cI”(i=1,...,p);
i Af C A7,
iii. P”[(S{’/Vi)ipzl] »5 Q;
iv. Ing” (i =1,...,p), every maximal path starting inside the succedent G;
of the endsequent ends inside the antecedent ©;, I';” of the endsequent.
v. In g, every maximal path starting inside (v; : Gi)i'D:1 in the endsequent
ends inside A or C in the endsequent.

Let

P*={i|1<i<p,® =y:B},
P~ ={1,...,p} - P*.

Letm = p, and let

2 74
(Yvi : Fi)i“zl,rg? = nP' : A: y: B. r, = ,s;' :.Gi (5m) foriepr
7 - x:A— B, (w:F)L, T,V = S[xP'/y] : G o)
X:A— B, T(,T{ = Aw].§[xP’/y] : F] — G;j
Z forie P,
srl) oo,
o = A= SiFifiy (Vi :G).Ay = P”:C

—=)F
(zi : F] = Gi)icp+, (Vi : Gi)iep-, AL U --- U A}, AY = P”[(2iS] /Vi)iep+] : C (==)

12



We show that conditions 1-5 hold of @1" and 2. For condition 1, we have

(x:A— B, Iy IV cx:A—B,I',T” by (Lii) and (2.i)
=T

For condition 2, we have

A U---UA,LAY C N, A" by (L) and (2.ii)
=A

For condition 3, we have

P [(ziS'1/Vi)iep+ 1[(AWL.S]' [XP’ /Y]/Zi)iep+ . (S]' /ViJiep-]
= P"[((Awy.S{"[XP’ /Y])S"1/Vi)ier+11(S;’ /Vi)icp-]
g P"[(S][XP" /YII(S; /wi)izy 1/Vidier+1I(S{’ /Vi)iep-]
= P"[(S{"[XP"[(S{ /wi)iZ11/Y1/Vidier+L(S{’ /Vi)icp-]
- P”[(S{"[xU/y1/Vi)icp+ 1[(S’ /Vi)icp-1 by (L.iii)
= P"I(S]" Vi)ier+11(S" /Vi)ier-11XU /Y]
-»g Q[xU/y] by (2.iii).

Condition 4 holds of Z; for i € P~ by (2.iv). To see that condition 4 holds
of @; for i € P*, note that any maximal path in & starting inside Fg‘ — Gj in the
endsequent must pass through an occurrence inside wj : Fj in the endsequent of
9 or an occurrence inside G; in the endsequent of &”. In the former case, (1v)
ensures that it must reach an occurrence inside IyorA in the endsequent of &,
from where it reaches an occurrence inside x : A — B or I in the endsequent of
2, terminating there. In the latter case, (2.iv) ensures that the path goes through
an occurrence inside y : B, I'j" in the endsequent of Z;”, and it eventually ends up
inside x : A — B or I'}” in the endsequent of Z;.

Finally, let us show that condition 5 holds of Z,. Any maximal path in %
starting inside (v; : Gj)icp- in the endsequent of 2y must reach an occurrence inside
(vi : Gj)iep- in the endsequent of &/, from which it reaches an occurrence inside
Ay or C in the endsequent of & by (2.iv). The path then ends inside Ay or C
in the endsequent of %. If a maximal path in %, starts in an occurrence inside
(zi : F;‘ — Gj)iep+, it must reach an occurrence inside F; in the endsequent of &/
or an occurrence inside (v; : Gi)i'oz1 in the endsequent of Z;’. In the former case,
it reaches an occurrence inside A; in the endsequent of & by (1.iv), and ends up
inside A in the endsequent of %. In the latter case, the path reaches an occurrence
inside A or C in the endsequent of %" by (2v), and ends up inside an occurrence
inside Aj or C in the endsequent of %.

Case 1.2. T =I",T” and A = x: A — B,A’,A”. We apply the induction
hypothesis to 2’ with respect to the partition (I'"; A’) and to 2" with respect to
the partition (I"’;y : B,A”). From &, we obtainn > 0, (Z/: T| = S/ : F)L,,
Z§. (wi : Fi)L,, Ay = P’ A satisfying the required properties. From 2", we
obtain p > 0, (Z": I = §': Gi)ip:l, and 7§+ (vi :Gi)ip:l,@,Ag = P”:C
satisfying the required properties, where ® Cy: Band Ay € A”.

We distinguish two subcases according to whethery : B € ©.

13



Case1.21.® =y:B. Letm=n+ p, and let

= {@i’ fori=1,...,n,
1= 44 H
', fori=n+1,....,n+p,
7 7
o= WitF)L,Ap=P 1A (vi:Gj)_,y:BAf=P":C
(Wi Fi)'y, @GP x: A— B, AL AY = P[P /y] : C

(==)

It is easy to see that conditions 1-5 hold of @f*p, Zo. We leave the proof of cor-
rectness to the reader here as well as in the remaining cases.
Case 1.2.2. ®© = @. Letm = p, and let

=9 fori=1,...,p
Do =Y.
Case 2. The last inference of Z is (=—):

x:AAT’ULA=>Q:B
A= AX.Q:A—

= (=)

We apply the induction hypothesis to 2’ with respect to the partition (T'; x : A, A).
We obtainn >0, (Z/: Ti = S - Fi)L;, 75 (Wi : Fi)L;,0,A¢ = P’ : B satisfying
the required properties, where ® C x: Aand Ag C A.

Letm =n,and let %, = &/ fori = 1,...,n. As for %, we distinguish two
subcases.

Case 2.1. ® = x: A. Let

%
Do= Wi:tF)lL,,x:A,Ag =P :B

(Wi Fi)L;, A0 = AXP" :A—>B (==)
Case2.2. ® = @. Let
7
(Wi : Fi)L;, A0 = P":B
P = (Wi Fi) . x:AAg= P’ :B Weak
(Wi Fi);, Ao = AX.P":A— B (==)

Case 3. The last inference of 2 is Contraction:
y:AZ:AT,AN=0Q:C
X: AT, N = Q[x/y,x/z]: C

Contr

where IV C T'and A’ C A. There are two subcases depending on whether x: A € T.
Case 3.1. T = x: A,TV and A = A’. We apply the induction hypothesis to 2’
with respect to the partition (y : A,z : A,T";A’). We obtainn > 0, (Z{: ©;,T] =
S Fi)L,, Z§: (wit Fy)L,, Ay = P’ C satisfying the required properties, where
OiCy: Az A
ricr

14



fori=1,...,n.
Letm = p, let
D!
y:Az:AT; =S .F if@=y:Az:A
x: AT = S/[x/y,x/z] : F;

2] [x/y. x/1]

T/[x/y, x/z] = S{[x/y, x/2] : Fi otherwise,

fori=1,...,n,and let
Do = Y.

Case 3.2. T =T"and A = x: A A’. We apply the induction hypothesis to
2’ with respect to the partition (I";y : A,z : A,A’). We obtainn >0, (Z/: T} =
S FiiLy, 7§ (Wit Fi)L,, ©, Ay = P’ C satisfying the required properties, where
@gy:A,z:AandAégA’.
Letm =nand let
=9 fori=1,...,n.

As for &, we distinguish two subcases.
Case3.2.1. ©=y:Az:A Let
2
Do= YAZIAA=>P:C
XA, Ay = P[x/y,x/z] : C

Contr

Case3.22.©0Cy:Az:A Let

Zlx1y, x/]

%o = B[x/y, x/z], Ay = P'[x/y,x/z] : C

Case 4. The last inference of & is Weakening:
I'AN=T:C
X:AI',NN=>T:C

Weak

where IV C T, A’ C A. We apply the induction hypothesis to 2’ with respect to the
partition (I"; A") and obtainn > 0, (7} : T} = S{:Fi)L,, and 7§ (wi:Fi)L,, Ay =
P’ . C satisfying the required properties.

Letm =n, and let

=9 fori=1,...,n,
.@0296. O

Remark. The input derivation 2 to the above method can be first turned into a
W-normal derivation without affecting the output derivations 2", %.

We can ascribe to the output derivations of Maehara’s method a slightly
stronger condition than condition 3 of Definition 5:

15



Theorem 8. Suppose that, given : I', A = T : C and partition (T'; A), Maehara’s

method returns (%;: Ti = Si : Ei){;, %o (zi - Ei) ;. Ao = P : C. Let

el e
v I = Si:Eiliz1 (ZiZEi)?ll,AO:PZCCt
= u
TL U Ulm Ao = PG/ C 1
Weak

A= P[(Si/Zi)F;l] :C
Then € —», & for some cut-free W-normal derivation #: T,A = T : C.

Proof. Itsuffices to show that in 2" and %y, no subformula of E; in the endsequent
has an ancestor which is a principal formula of Contraction or Weakening. This
can be checked by induction easily. O

The above theorem does not necessarily hold with 9 = 92, even when & is
W-normal. However, we can show the following:

Theorem 9. Let 2, 2", %,%¢ be as in Theorem 8. If & is WC-normal, then
97", 7o are all WC-normal, and ¢ -», % for some WC-normal derivation
9:T,A = T :C that is identical to 2 modulo reordering within the final block of
applications of Contraction.

Proof. The theorem easily follows from the following claim (using (C6) and (C7)):

Claim. If & is a WC-normal derivation that does not end in Weakening or Con-
traction, then

1. 97", 9y are WC-normal derivations that do not end in Weakening or Con-
traction;

2. Tq,....Tn=TF@inTj=0ofori# jandT U.---Uly =T);
3. Ag = A,
4, .
r=%:c)
I = Si:Eiliz1 .@02(ZiZEi)£1,A=>PZC >y, 9.
T.A = P[(Si/z)",]:C Cut

The claim can be shown by straightforward induction on 2. We omit the proof
in the interest of space. O

Remark. Let 2 be a cut-free derivation and let .@ be a WC-normal form of it. The
results of applying Maehara’s method to & and £ may be different.

We note that Theorems 6, 8, and 9 relativize to R_,, BCK-logic, and BCI-logic.
Conditions 1 and 2 of Definition 5 are strengthened for these substructural logics.
For R_,, they are replaced by

1. IHu---ully =T
2. Ao = A

For BCK-logic, the following condition is added to the original conditions 1 and 2:

16



1. IinTj=wofori=+].
For BCl-logic, the original conditions are replaced by the combination of the above
three conditions, or equivalently:
1. Iy,....Th =T;

2. Ao = A

2.3 Which interpolants are computed by Maehara’s method?

The same provable sequent has many different cut-free derivations in general.
When Maehara’s method is applied to two different cut-free derivations of the same
labeled sequent ', A = T : C with respect to the same partition (I'; A), one may
get LJ_,-interpolants giving different interpolation sequences. The following is a
simple example, where we decorate each sequent with a semicolon indicating the
partition of the antecedent as well as with the interpolation sequence obtained by
Maehara’s method at the relevant step.

. P2 T
U:pz2; = Uu:ip2 VvVipz, = V:IpP3

(—=)
R ) . sy P27ps :
X1:P1; = X1:p1 X2 P2—>P3;UlpP2 = XaU:p3

P1,p2—Pp3
X1:P1, X2:P2—=P3;y1:iP1—= P2 = Xa(YiXy): ps

(==)

P P2
X1:P1; = Xg:iP1 Uip2; = uUip2

P1—p2 (_):>) 3
YiiP1— P2 X1:P1 = YiX1:pP2 Vips; = VIips

] . L (P1—p2)—p3 )
X1:P1, X2iP2—=P3iyiipi—= P2 = Xo(yiX1) i ps

(—==)

Systematically applying Maehara’s method to all cut-free derivations of a se-
guent with a given partition, one can in general find a large number of LJ_,-
interpolants. One might ask whether all LJ_,-interpolants may be found in this
way. The answer is negative.

Example 10. Consider the following sequent together with the indicated partition:
(3) Xx1:((P1—P2)—Ps)—Pe. X2:P3—>Pa, X31P1 ; Y1:Pa—Ps, Y2:P2— Ps = Xa(AU.y1(Xa(Y2(UX3)))): Ps
The following WC-normal derivations satisfy the conditions 1-5 of Definition 5 (as
well as the condition in Theorem 8):

X3 P1 = X3:P1 Ug:P2=Us:P2 (=)
Uz 1 P1 — P2, X3 P1 = UaX3: P2 u5:p5$u5:p5(_):>)
Up Py — P2, Uz i P2 = Ps, X3 1 P1 = Ur(UaX3) : Ps (=)
Up i P2 = Ps, X3 @ P1 = AUz.U1(U2X3) : (P1 — P2) = Ps Us : Ps = Us : Ps

D =

=
Us 2 P2 = Ps, X1 & ((P1 = P2) = Ps) = Pes Xa : Pr = X1 (AU.U1(UzXa)) : Ps (:(_T; :
X1 - ((P1 = P2) = Ps) = Pe, X3 : P1 = AUp. X1 (AUz.U1 (U2X3)) 2 (P2 = Ps) — P
Do= Xp P3— Pas= X2 P3— Pa
ViiP2=ViipP2 V2:IP3= V23 (=)
ViiP2, Y2:P2— Pz = YaV1: Ps V3:p4=>v3:p4(_>:’)
P Vi P2, 225 Ps— Pa, Y2 i P2 = P3 = Zo(YaV1) : Pa V4@ Ps = Vg iPs (5=)
0~ ViiP2, 220 P3— Pas YiiPa— Ps, Yo i P2 = P3 = Ya(za(YaVa)) 1 Ps (=)
25 P3— Pa, Y1:Pa— Ps, Y2 P2 — P3 = AV1.Y1(Za(Y2V1)) P2 — Ps Vs : Ps = Vs Pe

21 (P2 = Ps) = Pes 22 P3 — Pa, Y1: Pa— Ps, Y2 & P2 — Pz = 21(AV1.Y1(22(Y2V1))) © Ps ==)
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However, there is no cut-free derivation of (3) on which Maehara’s method re-
turns these derivations. In fact, we can make a stronger claim: there is no cut-free
derivation of

(4) X1:((p1—P2)—Ps)— Ps, X2:P3— P4, X3:P1;Y1:Pa—Ps, Y2:P2—P3 = U:ps,

for any U, on which Maehara’s method returns derivations giving the interpolation
sequence:*0

(P2 — Ps) — Ps, P3 — Pa.

Let us call the first part T of a partition (I'; A) the selected part and the second
part A the unselected part. To see that our claim holds, note that, for Maehara’s
method to produce a multiple-formula interpolation sequence, a cut-free derivation
must have an application of (—=) that introduces a formula in the unselected
part somewhere on the rightmost branch of the derivation. Let 2 be a cut-free
derivation of (4). By the remark following Theorem 6, we can assume that 2
is W-normal. Since A-terms are immaterial, we omit all A-term labels and work
with unlabeled sequents, treating antecedents of sequents as multisets of formulas.
Observe that since none of the following sequents

((p1 = p2) = Ps) = Pe, P3 = P4, P1, P4 — Ps, P2 — P3 = P3,
((p1 = p2) = Ps) = Pe, P3 = P4, P1, P4 — Ps, P2 = P3 = P4,
((p1 = p2) = Ps) = Pe, P3 — P4, P1, P4 — Ps, P2 — P3 = P2,

are even classically valid, the last formula introduced by an operational inference
in 2 must be ((p1 — p2) — Ps) — Pe. SO0 2 must look like:

& &
Ap ;T = (p1—p2) = Ps  Pe.I2; A2 = pe (o)
((p1 = p2) = Ps) = pe. I'1, T2 ; A1, A2 = pPe

((p1 = p2) = Ps) = Pe, P3 — Pa, P1; Pa — Ps, P2 — P3 = Pe

Contr, Weak

Here, I'; and I', are multisets consisting of some of the formulas in ((p1 — p2) —
Ps) — Ps, P3 — Pa, P1, and A; and A, are multisets consisting of some of the formu-
las in ps — ps, P2 — p3. Since Z is W-normal, & is a W-normal derivation which
does not end in Weakening. It follows that pg in & cannot have been introduced
by Weakening, and &> must simply be an initial sequent ps = ps (I'2 = A = @).
We have shown that the only operational inference on the rightmost branch of
introduces ((p1 — p2) — Pps) — Ps in the selected part of the partition.

With a slightly more complex example, one can show that Maehara’s method
sometimes misses LJ_,-interpolants of length 1, including those satisfying the ad-
ditional condition in Theorem 8.

3 Interpolation in Natural Deduction

We define the set of deductions in the system NJ_, of natural deduction by induc-
tion, simultaneously with two functions: the function Ass(2) assigning contexts to
deductions and the function Endf(2) assigning formulas to deductions.

0By the Coherence Theorem (see Mints 2000), U must be the term in (3).

18



NJ.

Assumptions. If x is a variable and A a formula, 2 = x: A is a deduction, and
Ass(2) = {x: A} and Endf(2) = A.

Elimination. If 21 and 2, are deductions such that Endf(2;) = A — B, and
Endf(2,) = A, then
D = 7@1 2 —E
B
is a deduction, Ass(2) = Ass(Z1) U Ass(2»), and Endf(2) = B.

Introduction. If 2, is a deduction with Endf(2,) = B, then

D
A— B

is a deduction, Ass(2) = Ass(21) — {x : A}, and Endf(2) = A — B.

-, X

Each occurrence in & of x: A € Ass(2) is called an assumption. Each member
X : A of Ass(Z) represents an assumption class, namely the set of all assumptions
in 2 of the form x : A. We say that the last inference in

DN
A—B

-, X

discharges all assumptions of the form x: Ain 2;. If x: A ¢ Ass(Z1), we say
that this inference is a vacuous application of — 1, and say that the occurrence of
A in its conclusion is introduced by this inference. We assume that variables in
a deduction are so chosen that if a deduction & has a subdeduction of the above
form, x : A ¢ Ass(2).
The occurrence of Endf(2) at the bottom of & is called the endformula of 2.
If & is a deduction with Ass(2) =T, Endf(Z) = C, we write 2: ' = C and

often depict 2 by
r

9
C

We follow the same convention on the use of commas in representing contexts as
in the case of LJ_,.

The NJ_, deductions are in obvious correspondence with A-terms. We take
for granted the notions of substitution, B-redex, B-reduction, normalization, and
normal form. When 2,: T = A, 2,: A = B and x is a variable of type A, we
write Z,[21/x] for the result of substituting &, for x in Z,. We write 71 -»g 2>
when 2 B-reduces to Z,. We write |Z|g for the normal form of 2, and write
D =B 9, when |@1|ﬁ = |@2|'3.

Consider a g-redex

7
_B —l, X

A— B
B

2,
A—>E

occurring in some deduction 2. We call the exhibited occurrence of A— B a redex
formula. Let 2’ be the result of contracting this g-redex in 2. The g-reduction
step from & to &’ is called erasing if x: A ¢ Ass(Z1); otherwise it is non-erasing.
If 21 has more than one assumption of the form x : A, then this g-reduction step is
called duplicating; otherwise non-duplicating.
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We use the abbreviatory conventions introduced in section 2.2. Moreover, we
adopt the following conventions.

Fn Iri\"
9% abbreviates (@i) iffyU.---UT, =T.
C1 Ci i=1
r
9
r S
9 . n— B =1 tn e o
B | abbreviates if A'represents A} and U represents u}.
> - :
A—B A) - B
m —| ,Up

We now describe a method of transforming normal natural deductions into cut-
free LJ_,-derivations, which is essentially the same as the transformation described
by Prawitz (1965) (see also Troelstra and Schwichtenberg 2000). If T is a A-term,
let us write Zr for the NJ_,-deduction corresponding to T.

Lemma 11. Given a normal natural deduction 2: T" = C, one can construct a
cut-free W-normal LJ_,-derivation g(2): T = P:C that does not end in Weakening
such that Zp = 2.

Proof. By induction on the height of 2.
Induction Basis. Z is an assumption x: C. Letg(%) = x:C = x:C.
Induction Step.
Case 1. The last inference of Z is —1. Z is of the form:
(x:A)°,T
9/
B

A58 -, X

Case 1.1. x: A € Ass(2’). By the induction hypothesis, we have an LJ_,-
derivation g(2’): x: A,T = T : B. Let

9(Z2’)
92)= x:AT=T:B
I'=> AXT:A—>B

(=-)

Case 1.2. x: A ¢ Ass(Z’). By the induction hypothesis, we have an LJ_,-
derivation g(2’): T = T : B. Let

o

_ =>T:

9(7) = X:AT=T :BWeak
(=-)

I'=>AxT:A—>B

Case 2. The last inference of & is —E. We analyze & as follows, tracing its
main branch:

l"/
k 9/ r//
x:Ci—-C C; £ (gﬂzk
ckosc - ck
c —E
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where {x:C¥ — C}UI" UT” =T. Letting X2’ denote the deduction

I
x:Ck-Cc C; c
ckoc

and 2” denote
F’l:
&)
y:Ck—>cCc ck
——— -F

where y is a fresh variable, we can write
9 = 9"[x2'y].
By the induction hypothesis, we have LJ_,-derivations g(¢’): I" = U : C; and

9(2"):y:Ck—>CI”=T:C.
Case2.1. x:Ck > C ¢ I UT”. Let

9(2") 9(Z")
9(2)= I"=U:C; y:Ck>CI”"=T:C

x:Ck>C,I"uI” = T[xU/y]: C

(o=)t

Case 2.2. x:Ck—C e TV UT”. We write Tp for I’ UT” — {x:CX - C}. Letw
be a fresh variable, and let

9(2")[w/x] 9(2”)[w/x]
I'[w/x] = U[w/x]:C1 y:Ck—>C,T"[w/x] = T[w/x]:C
z:Ck>C,w:Ck—>C, Ty = Tw/X][zU[w/x]/y] : C
x:CX—C,Ip = T[xU/y]:C

9(2) = (—=)t
tr

This completes the construction of g(2). It is easy to check that g(2) satisfies
the required properties in all cases. |

3.1 Linksin natural deduction

As in LJ_,, we associate with each occurrence of a propositional variable in a
natural deduction two ports, which we call the top port and the bottom port. We
decorate natural deductions with links connecting two ports inductively as follows
(p stands for an arbitrary propositional variable):

Elimination rule.
A[p] — B[p] A[p]
[ R

B[p]

—E

We draw a link between

o the top port of an occurrence of p in B in the conclusion and the bottom port
of the corresponding occurrence of p in B in the major premise;
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e the bottom port of an occurrence of p in A in the major premise and the
bottom port of the corresponding occurrence of p in A in the minor premise.

Introduction rule.
x: Alp]

ﬁm

A[p] — B[p]

We draw a link between

e the top port of an occurrence of p in B in the conclusion of this inference
and the bottom port of the corresponding occurrence of p in B immediately
above;

e the top port of an occurrence of p in A in the conclusion of this inference and
the top port of the corresponding occurrence of p in each of the assumptions
X : A that are discharged by this inference.

The notions of path, maximal path, and cycle are understood in exactly the
same way as in the case of sequent calculus. Two occurrences of a propositional
variable in a natural deduction are linked to each other if there is a path that starts in
one and ends in the other. The relation of being linked to is reflexive and symmet-
ric, but not transitive. Our definition of links is slightly different from the similar
definition of connection in Hirokawa 1993. A maximal path starts and ends either
in an occurrence inside an assumption, an occurrence inside the endformula, or
an occurrence inside a formula occurrence introduced by a vacuous application of
— 1. In a normal deduction, at least one of the endpoints of a maximal path must
be of one of the first two types. It is not difficult to see that no cycle can occur in a
normal deduction.

Example 12. In the following natural deduction, we refer to different occurrences
of p by the numbers attached to them:

[ [2]
Xi(F‘)—WJ)—’(E)—WI)*p yiﬁ)—>q

/ —)E
(?—>Q)—>p

(p—a)—p
(3]
In this deduction, both [1] and [2] are linked to [3], but [1] is not linked to [2].

If 2: T = T:Cisacut-free LJ_,-derivation, then we write n(Z) for the normal
natural deduction Zr.

Lemmal3. Let 2: T' = T : C be a cut-free W-normal LJ_,-derivation that does
not end in Weakening. Then n(2): T = C, and there is an onto function f from
the maximal paths in n(2) to the maximal paths in & such that for every maximal
path 7 in n(2):
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1. if & starts (ends) in an occurrence of p in a formula occurrence A[p] intro-
duced by a vacuous application of —I, then f(x) starts (ends) in the cor-
responding occurrence of p in a formula occurrence A[p] introduced by an
application of Weakening;

2. if & starts (ends) in an occurrence of p in an assumption x : A[p], then
f () starts (ends) in the corresponding occurrence of p in x: A[p] in the
antecedent of the endsequent;

3. if & starts (ends) in an occurrence of p in the endformula C[p], then f(r)
starts (ends) in the corresponding occurrence of p in the succedent C[p] of
the endsequent.

Let us call an occurrence of a propositional variable that appears inside a redex
formula a redex-internal occurrence.

Lemma 14. Suppose that an NJ_,-deduction Z: T = C reducesto 2': T = C
by a sequence of non-erasing g-reduction steps. Then there is a function f from
the set of maximal paths in 2’ to the set of maximal paths in & such that for every
maximal path 7 in 2’:

1. if & starts (ends) in an occurrence of p in a formula occurrence A[p] intro-
duced by a vacuous application of —1 in &’, then f(rr) starts (ends) in the
corresponding occurrence of p in a formula occurrence A[p] introduced by
a vacuous application of —1in Z;

2. if mstarts (ends) in an occurrence of p in an assumption x: A[p] of Z’, then
f () starts (ends) in the corresponding occurrence of p in an assumption
x: A[p] of Z;

3. if & starts (ends) in an occurrence of p in the endformula C[p] of 2’, then
f () starts (ends) in the corresponding occurrence of p in the endformula
Clp] of Z;

4. if m contains k redex-internal occurrences, then f(r) contains at least k
redex-internal occurrences.

Proof. Clearly, it suffices to consider the case of one-step g-reduction. Suppose
that 2 reduces to &’ in one non-erasing S-reduction step. We can depict 2 and &’
as follows:

©) XA XA
: ..5.91 : 592 5@2
B "D RS A ... A .
9 = A—>B_)I’X A 9" = @1
B —E B

In general, 21 has n > 1 occurrences of x : A; the above figure represents the case
where n = 2.

We can map each occurrence o’ of a propositional variable and its top and bot-
tom ports py, oy, in the dotted parts of 2’ (i.e., those that are not inside the exhibited
occurrences of A and B) to the corresponding occurrence and ports o, oy, pp in the
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dotted parts of Z in an obvious way. As for the remaining propositional variable
occurrences and their ports, we consider two cases.
Case 1. 2 is an assumption x : A. Then the situation looks like

x: AlpP] 7,
_ AP - A[p] T Afpl]
- A[pN]

:@2

9 I e o= Al

Consider an occurrence o’ of p inside the exhibited occurrence of A in &’. Let pf
and pj, be its top port and bottom port, respectively. We map a subpath (of, 0", py)
of a maximal path in 2’ to

(M, 120, o5, o2, 120, o1, B, 31, o, oM, 141, 2, 0B, [51, 1)

where pt[l], pg] are the top and bottom ports of the occurrence of p indicated by [i]
in the above figure. The reverse subpath (o, 0’, of) is mapped to the reverse of the
above sequence.

Case 2. 27 ends in —E or —1. In this case, the exhibited occurrences of A
and B in (5) are all distinct. Let us consider an occurrence o’ of p inside the i-th
exhibited occurrence of A in 2’. We depict the case where i = 2:

x:A ... x:A[pt] ' _
L N Do 7
9 B[p[4]] @2 g - AL .: @A[p]
AlpH] - BIp] Al ) Blo]

B[p[G]]

Let p; and pj be the top and bottom port of o', respectively. We write pt[i] and pg]
for the top and bottom port of the occurrence of p indicated by [i] in the above
figure. We map a subpath (of, 0’, p;) to

(P{l], [1]’p£1]’p|t:)2]’ [2]’p1|::2]’p1!3]’ [3]’p!‘:)3])

The reverse subpath (pj, 0", pt) is mapped to the reverse sequence. Now let us
consider an occurrence o’ of p inside the exhibited occurrence of B in 2’. Let p;
and p;, be its top and bottom port, respectively. We map a subpath (pf, 0", pf) to

f", 141,17, 1, 81,57, 7, 61, ).

The reverse subpath (o, 0", pf) is mapped to the reverse sequence.

We have described a way of mapping every maximal path = in 2’ to a sequence
f(7). It is not difficult to see that f(x) is a maximal path in & and satisfies the
requirements of the lemma. We leave the details to the reader. O

The function f in Lemma 14 need not be onto. For example, consider the
following deduction Z:
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y:(pop)—ogq uip—op
X:q—>r—s q
r—s

—E . .
Z. r u:
T (p—>p)—>r_)E pop

S vip
hopos pop bV
S —E

There is a maximal path starting in the first occurrence of piny: (p —» p) —q
and ending in the second occurrence of pinz: (p — p) — r in &, but there is no
corresponding path in |Z|s:

vip
y:(p—>p)—>q PP vip
X:iqor—s q B 2ipopor pop b
r-s —E T —E

S —E

—l,v

\'

We can show the following:

Lemma 15. Let 2 and 2’ be as in Lemma 14. If 2 has no non-trivial path that
starts and ends inside the same redex formula, then there is an onto function f from
the set of maximal paths in 2’ to the set of maximal paths in & that satisfies the
conditions 1-4 in Lemma 14.

Proof. By part 4 of Lemma 14, it suffices to prove the lemma in the case of one-
step non-erasing B-reduction. We sketch a proof that the function f described in
the proof of Lemma 14 is onto. Suppose that r is a maximal path in 2. There are
two cases to consider.

Case 1. & does not contain any occurrence inside the exhibited occurrences of
X : A on the left-hand side of (5). Then & does not contain any occurrences inside
the exhibited occurrences of A. The construction of f matches a subpath of x that
does not go inside the dotted part of %, with a unique path in 2’. By matching
subpaths of x that are inside the dotted part of %, with corresponding subpaths in
the dotted part of the first copy of 2, in Z’, one can form a maximal path =” of &’
such that f(n’) = x.

Case 2. 7 contains an occurrence inside the exhibited occurrences of x : A on
the left-hand side of (5). Then 7 contains just one such occurrence, by assumption.
Suppose that it is inside the i-th exhibited occurrence of x : A. According to the
construction of f, any subpath of x that goes neither inside the dotted part of 2,
nor inside the exhibited occurrences of A is matched with a unique path in &’.

Case 2.1. Case 1 of the proof of Lemma 14 holds. By matching subpaths of
n that are either wholly inside the dotted part of %, or wholly inside the exhibited
occurrences of A with corresponding paths in %, in ’, one can form a maximal
path n” of &’ such that f(n’) = n.

Case 2.2. Case 2 of the proof of Lemma 14 holds. By matching subpaths of
n that are either wholly inside the dotted part of %, or wholly inside the exhibited
occurrences of A with corresponding paths in the i-th copy of 2, in 2, one can
form a maximal path 7’ of 2’ such that f(n’) = x. O

3.2 Interpolants

Let us say that an assumption of 2 belongs to T' C Ass(2) if it belongs to some
assumption class in T
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Definition 16. Let 2: T',A = C be a normal deduction. A sequence of normal
deductions (Z;: Ty = E;)L, is an interpolant to 2 with respect to the partition
(T; A) if and only if there is a normal deduction %: (z; : Ei)!",, A = C such that

i=1’
(1) TqU---Uy =T;
(12) 20[(2i/2)21] 5 2;

(13) InZ; (i =1,...,m), every maximal path that starts inside the endformula E;
ends inside an assumption;

(14) In 29, every maximal path that starts inside an assumption z; : E; ends inside
the endformula C or inside an assumption belonging to A.

We call the deduction % an auxiliary deduction for 21", &, and say that 2" is an
interpolant to & (with respect to the partition (T"; A)) via %p.

Remark. We can replace condition (1) of Definition 16 by a weaker one, namely
“T'j ¢ T for each i”, without changing the notion of interpolant. This is because the
weaker condition together with condition (12) implies condition (11).

The following is a natural deduction version of Lemma 7.

Lemmal?. If (%: 1= Ei){il is an interpolantto 2: T', A = C with respect to
the partition (T"; A), then Eg, ..., En, is an interpolation sequence forI'',A~ = C
with respect to the partition (I'"; A™).

The converse of Lemma 17 does not hold; see section 4 for an example.
In general, an interpolant may have more than one auxiliary deduction.
Example 18. Let

y:p=p—>p—Qq X2:p
_)

P> p—q E x:p
7 = P> ~E x:p
X1iq—or q —E
r —E
U:p—>p—gq Xo:p
pP—4 ~E %ip
D= X1:qQ—=>r q —E
r —E

—l,u
(pop—og—r
Then 2 is an interpolant to 2 with respectto (x;:q—r, X2 :p;y:p—p—p—0Q)

via ) ]
yipop-op—og uip
-

P=Pp=q E u:p
P=0 —E v:p
q —E
—p_>qel,v
21 (popog)—r pop—gq b
r —E
as well as via
Y:PoPopog uip
P—=p—q —E vip
pP=0 —E yvip
q —E
—p_)q—>|,v
21:(popog) o pop—g U
r —E
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For a different type of example, see Example 42.

Let Z: T = T :C be a cut-free LJ_,-derivation. Clearly, Lemma 13 implies
that if (. Ti = Sj: Ej), is an LJ,-interpolant to ', A = T : C with respect
to the partition (T'; A) via an auxiliary derivation %: (z; : Ej);,Ao = P : C, then
(n(Zi)), is an interpolant to n(Z): I'y U --- U 'y, Ag = C with respect to the
partition (I'y U --- U I'm; Ag).1* Thus, one can read off an interpolant from the
output of Maehara’s method.

Let 2: T',A = C be anormal deduction and T be the A-term corresponding to
it. If a sequence of normal deductions 27" is an interpolant to & with respect to the
partition (I'; A), then (g(2)), is an LJ_,-interpolant to I', A = T : C with respect
to the same partition. This is another easy consequence of Lemma 13.

We now state some general properties of interpolants.

Lemma 19. Suppose that (Z;: T'i = E;), is an interpolantto Z: T', A = C with
respect to the partition (I'; A) via an auxiliary deduction %: (zi : Ej),.A = C.
Then every reduction sequence from %o[(Zi/z),] to & consists entirely of non-

erasing B-reduction steps.

Proof. We claim that if Z[(Zi/zi)",] = 6o —-p €, then & has no redex-internal
occurrence that is linked to an occurrence in a formula occurrence introduced by a
vacuous application of —1. Then no erasing g-reduction can be applied to %, and
the lemma follows. We prove our claim by induction on the number of 8-reduction
steps. It is clear that %y satisfies the required condition by the definition of an
interpolant. Now assume that %; satisfies the condition and %; B-reduces to %1 in
one step. This B-reduction step must be non-erasing, so let f be the function from
the set of maximal paths in %j,1 to the set of maximal paths in %; as described in
the proof of Lemma 14. Let 7 be a maximal path in %1 that starts or ends in an
occurrence in a formula occurrence introduced by a vacuous application of —I.
Then, by condition 1 of Lemma 14, f(r) is a maximal path in % that starts or ends
in an occurrence in a formula occurrence introduced by a vacuous application of
—1. Since %; satisfies the condition, f(r) contains no redex-internal occurrence.
Then by condition 4 of Lemma 14, 7 cannot contain any redex-internal occurrence,
either. Therefore, %;.1 also satisfies the condition. O

The following is an easy consequence of Lemma 19. Let #% denote the number
of assumptions in &.

Lemma20. Let 9, .@{“, Yy beasinlLemmall. Then#%1 +-- - +#9Pm+#Z5—m <
#9.

Lemma 21. Let 2, 9", % be as in Lemma 19. Then there is a function from
the set of maximal paths in & onto the set of maximal paths in %[(Zi/z);,] that
satisfies the conditions 1-4 in Lemma 14.

Proof. By the definition of an interpolant, Zo[(Zi/z)[" ] has no path that contains
more than one redex-internal occurrence. Since, by Lemma 19, any reduction se-
quence from Zo[(Zi/z);",]1to Z consists entirely of non-erasing g-reduction steps,
the lemma follows from Lemma 15. O

UThis will not hold if we drop the requirement of W-normality from the definition of LJ_-
interpolant.
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Lemma22. Let 2" be aninterpolantto Z: T', A = C with respect to the partition
(I'; A) via Zp. Then the combined size of 2", %, is bounded by a computable
function of the size of 2.12

Proof. Since a maximal path in a normal deduction cannot contain a cycle,
Lemma 21 implies that the number of assumptions discharged by a single appli-
cation of — I in 2", %, is bounded by the number of maximal paths in 2. The
lemma then follows from a result by Dougherty and Wierzbicki (2002). o

Theorem 23. The problem of determining whether 2" is an interpolant to
2: T, A = C with respect to the partition (T; A) is decidable.

3.3 Prawitz’'smethod

As we did with Maehara’s method, we reformulate Prawitz’s (1965) method for the
implicational fragment using sequences of formulas in place of formulas. We shall
see that Prawitz’s interpolant is just one of the interpolants found by Maehara’s
method, so it gives nothing new.

Theorem 24. Given a normal deduction 2: T, A = C, one can find an interpolant
to & with respect to the partition (T'; A).

Proof. By induction on &. At each step we construct 2", 2 satisfying the con-
ditions (11)—(14) of Definition 16. We also prove that these deductions satisfy the
additional condition:

(*) If the main branch of & leads to an assumption belonging to T, thenm = 1.

Induction Basis. Zisx:C.Case 1. T = {x:C},A=@. Takem = 1 and let %,
be 2, and %, be z; : C, where z; is a fresh variable. Case 2. I’ = @,A = {x: C}.
Take m = 0 and let 9 be 2.

Induction Step.

Case 1. The last inference of 2 is —1. & is of the form:

(y:A°T,A
@I
B

- = _>|’y

A—>B

where A — B = C. Apply the induction hypothesis to 2’: (y: A)°,T,A = B with
respect to the partition (I'; (y : A)°, A), and obtain normal deductions (Z/: I'i =
Ei)l, and Z;: (zi - Ei),. (y : A)°, A = B with the required properties. Let Z; be
2} (i=1,...,m), and let %, be the following deduction:

@:E)",. (v: A)°, A
Dy
B

— >y

A—B

It is easy to see that 2", 2 satisfy the required properties.

12Note that, in general, there is no bound on the size of 2’ such that 2’ reduces to 2 by a sequence
of non-erasing B-reduction steps.
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Case 2. The last inference of & is -E. We analyze Z as in the proof of
Lemma 11:

I, A
9, P/I,A/I
x:Ck—>C C1—>E &x
Ck—>cC ck
C —E

Here, IV UT” Cc T and A’ UA” C A. Letting X2’ denote the deduction

', A
k Z’
X: Cl —-C C1 £
ckoc
and 2’ denote
I“II’AII
k
&,
y:Ck—-C  CX
—E

C

where y is a fresh variable, we can write
9 = 9"[x2']y].

There are two subcases as to whether x : C'1< — CisinTorinA.
Case 2.1. x:C'f—>C isin A. We apply the induction hypothesisto 2": T",A’ =
C, with respect to the partition (I"; A’), and to 27 y : C'Z‘ — C,T”,A” = C with
respect to the partition (I'”;y: C'2< — C, A”), and obtain normal deductions with the
required properties:
(2. Ti=F)L,, Z§: Wi:F)L,A=Cq
(2T =G\, ZY: i:G),y:Ck—>CA" =C

We assume that variables have been chosen in such a way that w) and vf are pair-
wise distinct. Letm =n + p, and let

m _ /n 7P
=97, 9.

We let Zo: (Wi @ Fi)l, (vi : Gi){_,, (X : CX 5 CUA UA” = C be Z}[xZ/Y],
where xZ is

7
x:Ck—C C1 =
cksc -

Now we check that 2} and % satisfy conditions (11)—(14) of Definition 16. We
can easily show conditions (I11) and (12) using the induction hypothesis. Clearly,
97" satisfy condition (I3) by induction hypothesis. To show that % satisfies con-
dition (14), consider an arbitrary maximal path z in % that starts inside w; : F; or
Vi : Gj. If m starts inside w; : F;, it starts inside Z;. By induction hypothesis, = must
end inside some assumption in A’ or exit &, through C;. If the latter, 7 ends inside
X C'; — C. Now suppose that n starts inside v; : Gj. By induction hypothesis, 7
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either ends inside some assumption in A”, ends inside the endformula C, or exit
¢ through Cg —C, entering xZ;. If the last case obtains, & ends inside x: C'i —C.
We have shown that % satisfies condition (14).

Case 2.2. x:C'{—>C isinT. Apply the induction hypothesisto 2’: T",A’ = C;
with respect to the partition (A’; T”), and to 2" : y:C'§—>C, I'”,A” = C with respect
to the partition (y:C, —C,T"””; A”), and obtain normal deductions with the required
properties:

(Z]: AN = F)iLy, Z5: (wi:Fy)L,,.T" = Cy
2y y:CEk5C " =Gy, ZY:vi:GL,A" =C

where vy is distinct from any of w}. Note that the main branch of " leads to
y: C'Z‘ — C, so the additional condition (*) is satisfied. Let xZ{ be the deduction

(it Fi),, T

7

x:Ck—cC Ci
cksc ~F

Letm = 1land let 21: {x:C;1 —» C}UI" UT” = F] — G be the following
deduction
(Wi F)L,(x:Ck->Cclur ur”
21 [xZ;1y]

G

Fg — Gl
and let Zp: 71 : F] —» G1,A” UA” = C be Z{[212'}/v1], where 2, 2] is the
following normal deduction:

-1, wj

A/

7'7

z1:F] -Gy F]
Gy

We leave to the reader the proof that 2", % satisfy the required properties. o

—E

By constructing LJ_,-derivations g(2), (9(Z)),. 9(%) along with 2", 7 in
the above proof, we can show the following:

Theorem 25. If Prawitz’s method produces 2", %, given input deduction
2:.T,A = C and partition (I'; A), then Maehara’s method produces sequent

derivations (9(Z)) ;. 9(%) given input derivation g(2) and partition (I'; A).

We have already noted that Maehara’s method provides more interpolants than
Prawitz’s method (section 2.3). Interpolants found by Prawitz’s method are among
those that satisfy a strengthening of the condition in Lemma 19.

Theorem 26. Let 2: T,A = C be a normal deduction, and let (%: T =
E)l,. Zo: (zi - E))2;.A = C be the result of applying Prawitz’s method to 2
with respect to the partition (I'; A). Then every reduction sequence from

(zi: Ei)ﬂl,A
Do ri\"
—mL 1,27 (%]
El'"—=C Ei/i-1
C -k
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to Z consists entirely of non-erasing, non-duplicating -reduction steps.

Theorem 26 may seem similar to Theorem 8, but not all interpolants found by
Maehara’s method satisfy the condition in Theorem 26.

3.4 Orderinginterpolants

Let us say that " is an @-interpolant to : T = C (via %) if 2" is an inter-
polant to & with respect to the partition (T'; @) (via %).

Lemma 27 (Substitution). Let (Z;: I'i = E;)", be an interpolantto 7. T',A =
C with respect to the partition (I'; A) via %o : (zi:Ei);.A = C. If (&: ©; = F)[,
is an g-interpolant to % via &p: (w; : Fi)L; = Ej, then .@f‘l,éaln,.@ﬂl is an
interpolant to & with respect to the partition (I'; A) via | Zo[60/2;]|5 (zi:Ei)ij;ll, (w;:
Fi)?:l’ (zi: Ei)?lj+l’A = C.

Proof. Conditions (11)—(13) of Definition 16 are clearly satisfied by @1‘_1, &7, 9?11
and |Z[&0/2;]|s. As for condition (14), Lemma 14 implies that it suffices to show
that condition (14) holds of Zy[£p/2;]. Consider any maximal path & in Zo[é0/z;].
If 7 starts inside an assumption w; : Fj, then it must reach an occurrence inside E;
since & satisfies condition (14). From there, & follows a path in %, terminating
either inside an assumption belonging to A or inside the endformula C, since %
satisfies condition (14). Now suppose r starts inside an assumption z; : E;j (i # j).
Then x stays within & and again ends either inside an assumption belonging to A

or inside the endformula C, for the same reason. O

Lemma 28 (Contraction). Suppose that for some m > 2, (%;: Ii = Ej), is
an interpolant to Z: I', A = C with respect to the partition (I'; A) via Zp: (z; :
E),.A = C. If & = ; for some i, j such that i # j, then 91‘_1,.@;‘11 is an
interpolant to & with respect to the partition (I'; A) via %[z : Ei/zj].

Lemma 29 (Pruning). Let (%;: T = E;){", be an interpolantto 2: T',A = C
with respect to the partition (I';A) via %: (zi : E))’;.A = C, where m > 2.
If for some i, j such that i # j, Iy = I'; and Z; is an @-interpolant to Z; via
& 7i:Ej = Ej, then .@1’_1, Qj”ll is an interpolant to & with respect to the partition
(T A) via |Zo[ £ /2]ls.

Definition 30. Let (&i: ©; = E;)[, and Let (%: 5 = Fj)_; be two sequences
of normal deductions such that [, ©; = [, Ei. We say that &]" is stronger than
91” if there are n subsets Sq,...,S, of {1,..., m} such that

1. SiU---US,={1,...,m};
2. for j=1,....n, (&)ies; Is an @-interpolant to 7.

We say that &" is strictly stronger than .77} if &" is stronger than .7 and if
moreover %" is not stronger than &7".

Clearly, the relation *is stronger than” is reflexive, and Lemmas 27 and 28
imply that it is also transitive. If &" is stronger than .7 and .%" is an interpolant
to 7. T, A = C with respect to the partition (T'; A), then &" is an interpolant to &
with respect to the partition (T; A).
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Example 31. Take the following normal deduction of (3) of Example 10:

Uu:pr—p2 Xz:pz1

Yo i P2 — P3 P2 £ —E
X2 1 P3 = P4 LN -
Y1:Ps— Ps p4_>E -
L_)l’u
X1 1 ((pr— P2) = ps) = P (P1— P2) — Ps
—E

Pe

LetT = {X1 : ((P1 = P2) = Ps) — P6, X2 : P3 — Pa, X3 : P1}and A = {y1 : ps —
Ps, Y2 : P2 — p3}. The result of applying Prawitz’s method to this deduction with
respect to the partition (T'; A) is 21, %o:
U:pr—p2 X3:p:
V21 P2— Ps3 p2 E

X21P3 = Pa Ps -
Pa —E
P = v1:((p2— Ps) = Pa) 2 Ps (P2 — P3) = Ps

Ps
X1 ((P1 = P2) 2 Ps) @ Ps (P1— P2) — Ps :
Ps

(P2 > P3) = Pa) = Ps) = Ps

—E

-1, Vs
—E

l,u
E

I,vi

Vi(P2—Ps) > Pa Y2iP2— Ps
Y1:Ps— Ps P4 E
To = Ps —l,v
211 (((p2 = p3) = pa) = Pps) = Ps (P2 = P3) = pa) = Ps _)E’
Ps

Another interpolant is &1, &, with an auxiliary deduction &p:

—E

1= X2:P3— P4

U:pPpr—pP2 X3:pP1

Vip2 = Ps P2 £ —E
& = P —>Iu_>
2= X1:((pr— P2) = Ps) = Ps (p1 — p2) = Ps —>E,
L_ﬂ’v
(P2 — ps) — ps
Y2:P2—>P3 V:ip2 E
211 Pp3— Py LR -
& = Y1:P4—>Ps P4 -
0= Ps —E
Zp 1 (p2 — Ps) — Pes p2—>p5:||z’v

Ps
&1, & is an g-interpolant to 2 via the following auxiliary deduction:

V3.P2—>P3 V2:.P2

Z1:P3— Pa Ps - —E
L_ﬂ’vs
Vi ((p2 — P3) = Pa) = ps (P2 — P3) — Pa E
Ps
2,1 (P2 = Ps) = Pe pz—>p5:|'5"’2

Ps _
(((p2 = p3) — p4a) — Ps) — Ps

l,vq
Since (((p2— p3)— P4)— Ps)— Ps does not imply either p3 — p4 or (p2— Ps)— P,

we conclude that &1, &> is a strictly stronger interpolant than &;. Note, incidentally,
that &1, &, & also satisfies the condition in Theorem 26.
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Let us prove a general fact illustrated by the above example. Let T C Ass(2)
and let A be the set of assumptions of 2 belonging to I'. We say that T" is discon-
nected in & if there is a proper subset A; of A such that no propositional variable
occurrence inside an assumption in A; is linked to a propositional variable occur-
rence inside an assumption in A — A;. Otherwise we say that T" is connected in
9.

Lemma 32. Let Z: T',A = C be a normal deduction. T is disconnected in & if
and only if there is an interpolant ;" to & with respect to the partition (T'; A) with
m> 2.

Proof. The “if” direction easily follows from Lemmas 14 and 19. The “only if”
direction may be proved using Lemma 15. We omit the details. O

Lemma 33. Let 2" and &' be as in Lemma 27. If n > 2, then 2/, &7, 77 is
a strictly stronger interpolant than 2"

Proof. Suppose that 2" is stronger than .@1'_1,51”, -@Fll- Then there are subsets
I TD, ST of (1,...,mysuch that Sy U---USj 1 UT U+ - UTqUS i U---USy =
{1,....mpandfori=1,...,j- 1 j+1,....m, (%)kes is an @-interpolant to %,
and fori = 1,...,n, (Zk)ket; IS an @-interpolant to &;. We derive a contradiction
by constructing an infinite sequence jo, j1, j2,... Of elements of {1,...,m} such
that jo = j and for each k > 0, jx € Sj,,, (which implies #2;, < #9,,, by
Lemma 20), and jk+1 € {jo, ..., jk}. We construct jo, j1, j2,... by induction. First
set jo = j. Suppose that we have constructed jo, ..., jk (k > 0). Since &7 is an
o-interpolant to 2, Lemma 20 implies #& < #2; for each i. By the induction
hypothesis, #%7; = #%j, < #%j,, which implies that j. ¢ T; for any i (again by
Lemma 20). Hence thereisa jk+1 € {1,...,j—1,jJ+1,...,m}such that j; € Sj,.,.
We have jki1 # Jo, SO suppose that jyx.1 = ji for some I suchthat 1 < | < k.
Then {ji_1, jk} € Sj,. Since ji-1 # jk, this implies that #2;, < #2;, by Lemma 20.
But #7;, < #9;, by induction hypothesis, a contradiction. So we have shown
Jke1 € Los- -+ Jk- O

Lemma34. If (%;: Ty = Ej) isaninterpolantto #: T', A = C (with respect to
the partition (I"; A)) such that ; is disconnected, then there is a strictly stronger
interpolant to & than 2.

Let us say that a deduction Z is connected if Ass(2) is connected in 2.

Lemma 35. Every normal deduction 2: T',A = C has an interpolant (%;: T} =
Ei), (with respect to the partition (T'; A)) such that each Z; is connected.

Example 36. Let & be the following deduction (we omit rule labels —E and —1):

X2PL—P2 Vipa

X2:iP1— P2 Vipa

Y21 P2 — P3 — Pg p2 X3:P1—P3 Vips X3:P1—P3 Vips
p3 — pa p3 Yy3:P3— P2 — P4 p3
P4 p2 — ps p2
X1:(pL—pa)—>Ps PLoPa P
Y1:Ps— Ps — Pa Ps X1 :(P1— pa)—Ps P1— Pa
Ps — Pe Ps
Ps

LetI" = {X1 : (P1 — Pa) = Ps, X2 P1— P2, X3: p1— P} and A = {y1 : ps > ps —
Pe, Y2 : P2 = P3 — P4, Y3 : P3 — P2 — P4}. Given input deduction 2 and partition
(T'; A), Prawitz’s method produces an interpolant of length 2:
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X2 iPp1— P2 Vip1 X3:P1—P3 Vip

X3:p1—P2 Vip1

Uz ip2 — P3 — pa P2 X3:P1—Pp3 VipL Uz :p3— p2 — pa P3
P3 — Pa p3 p2 — pa p2
@12 Pa v @2: 2 v
X1:(PL—> pa) > Ps Pr— Pa X1:(PL—> Pa) > Ps P1— Pa
Ps Ps
R - — Y — U3
(P2 = p3 — pa) = ps (p3 — p2 — pa) = ps

However, either of the above two deductions by itself is a strictly stronger inter-
polant.

The above example is an illustration of the following general fact:

Lemma 37. Let 2" be as in Lemma 29. Then @f‘l, .@E‘[‘ﬂ is a strictly stronger
interpolant than Z;".

3.5 Thenew method

Definition 38. Let 2" be an interpolant to &: T', A = C with respect to the parti-
tion (T'; A). We say that 2/ is a strongest interpolant to 2 with respect to (T'; A) if
97" is stronger than every interpolant to & with respect to (I'; A).

It is not immediately clear whether one can always find a strongest interpolant
when given a normal deduction together with a partition. We present a new method
for constructing interpolants which works by induction on 2: T', A = C and finds
a strongest interpolant at every step. In particular, each component %;: T'; = E; of
the constructed interpolant is connected.

In the method we are about to describe, we make use of the following
procedure, called pruning, which turns a sequence of deductions (Qi: I =
E)M,. Z: (% : E)M,A = C satisfying (11)—(14) (with respect to 2 and (T; A))
into another such sequence 2", %. Let

M = {i|1<i<mandthereisno j < isuch that &; is an @-interpolant to % },

and let 3

(Zi: Ti = By = (Diew-
Prepare fresh variables z]' of types EY", respectively. Fori = 1,....m, let u(i)
be the least j such that 9 is an @-interpolant to Z; (such a j always exists), and
let A L ZuGi).; E.@ = Ei be an auxiliary deduction for %), Zi. Then we define
prune(2", %) to be 2", 9y, where

Do = | Dol(Ai/E)1p: (zi - EDMy, A = C.

This “definition” does not uniquely determine %y because the choice of auxiliary
deduction .#; is not unique in general. We will later give an explicit construction
of .#; along with an algorithm for determining whether @j is an @-interpolant to
Z;, which is designed to work for a restricted class of deductions that are actually
encountered in our method.

Lemma 39. Let 2" be an interpolant to & with respect to (I'; A) via %o, and let
I, Do = prune(Z, ). Then
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1. 27" is an interpolant to 2 with respect to the partition (I'; A) via %.
2. Z;isnotan g-interpolantto Z; if 1 <i< j<m.!3

Lemma 40. Let (%i: I = E;)I, be an interpolant to a normal deduction
2 T, A = C with respect to the partition (I'; A) via % (z; : Ei){;,A = C.

1. ZJyendsin —lonlyif Z endsin —l;

2. If the main branch of & leads to somey: B € A, then the main branch of %
leadstoy: B;

3. If the main branch of & leads to some x : A € T, then for some i, the main
branch of 2, leads to z; : Ej and the main branch of &; leads to x : A.

Definition 41. Let ;: T = E; be a normal deduction satisfying condition (13)
of Definition 16 and let %: (z; : E;)[,, A = C be a normal deduction satisfying
condition (14) of Definition 16 with respect to the partition ((z; : Ei);;A). We
say that % is long for Z; (with respect to z; : E;) if Z[-#/zi] -5 %o for every

# . zi : E; = Ej such that & is an @-interpolant to itself via .7.

Example42. Let

u:p—Qq x2:p z1:(p—>Qg)—>r u:p—g
9 X1:q—or q £ —E 9 r 0 —E
= - = — —l,
. N SN "Tyipowon-os (pogor
(p—q)—r r -

Then % is not long for &, with respect to z; : (p — q) — r. To see this, let .7 be
the n-long formof z; : (p—q) — r:

u:p—gq v:p_)E

q
I=n:(p>q—>r p—q
r —-E

—l,u

(p—q)—r

While 2, is an @-interpolant to itself via .#, we do not have %[.%/21] »p Zb.
The deduction

u:p—q Vv:p N

— z1:(p—>q)—r p—q
Do

I,v
-k (= %[5 121]15)

—l,u

—E

= r
w«pﬁm—wrrs (p—q)—r

satisfies condition (14) of Definition 16 with respectto (z1: (p—q) —r;y: ((p —
g) — r) — s) and we have

Dol P/ 11] =5 Dol Z1/24].

It is easy to see that Dy is long for &1 with respecttoz; : (p—q) — .

13The definition of prune allows for the possibility that 2; is an @-interpolant to Z; for i < j. In
our method, however, it will always be the case that & is an @-interpolant to &; if and only if Z; is
an g-interpolant to &, so that 27" has no two distinct deductions such that one is an @-interpolant to
the other.
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Example 43. Let
u:p—p—q Vv:p

Uu:p—p—q X:p pP—q —E w:p
=4 —E y:p q —E
Dy = X iqor q —E g, = pﬁq”W
r NG n:(popog)or popog oY
(pop—og—r r -k
—lu
(pop—og —r

(% is the n-long form of z; : (p — p — q) — r.) Then % is an @-interpolant to
itself via 2, but 2, is not long for 21 with respecttoz;: (p— p—q) —r. To see
this, note that & is an @-interpolant to itself via

u:p—>p—>q v:p

7= p—q "
z1:(p—>p—o>qQ)—>r p—op—>q

r —E

(p—=p—=0)—>r

—l,u

but
%[//zl] »g £ #3 Do.
It is not difficult to see that there is no deduction .#:z;:(p—>p—Qq) > r =

(p— p— q) — rsuch that 2, is an @-interpolant to itself via .# and .# is long for
N.

Lemma 44. Suppose that 2" is an interpolant to #: T', A = C with respect to
(T; A).

1. There is an auxiliary deduction 2, for 2", 2 such that 2 and %, have
identical final blocks of applications of —1; that is to say, if Z is of the form
LA, ((ui s AL,
-

—1,uf

AT —B
where 2~ does not end in —1, then % is of the form

(zi - By, A ((ui s AL,
Py
B

n
7—>I,u1

A’l‘—>B

2. Suppose that Zp: (z;i : Ei){’;,A = C is an auxiliary deduction for 2", 7
such that the main branch of % leads to z; : E;. If % is long for 21 with
respect to z; : E;, then 2 and %, have identical final blocks of applications

of —I.

Theorem 45. Given a normal deduction 2. I',A = C, one can find a strongest
interpolant to 2 with respect to the partition (T'; A).
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Proof. We first describe the construction of 21", %, from 2, proving that 21", %
satisfies conditions (11)—(14) of Definition 16.1* We do this by induction on 2. The
main difference from Prawitz’s method is that in our method, assumption classes
never switch sides in the partition of contexts over the course of induction and the
construction of interpolants proceeds independently of the construction of auxiliary
deductions. It will always be trivial to check condition (1) of Definition 16 (see
the remark following Lemma 19), so we will not bother to prove it explicitly.We
construct (Z;: Ty = E),, % (zi : Ei){;,A = C in such a way that if the main
branch of &, leads to some z; : Ej, theni = 1.
Induction Basis. & is an assumption. This case is treated exactly as in Prawitz’s
method.
Induction Step.
Case 1. The last inference of 2 is —I1. This case is treated exactly as in
Prawitz’s method.
Case 2. The last inference of Z is —»E. Z is of the form
N T7,A
74 7
c’"-Cc cC”

c —E

where I UT” = T and A’ UA” = A. This case is broken up into four
subcases, depending not only on where the main branch of 2’ leads to, but
also on where the main branch of 2’ leads to. In each subcase, we construct
(%:Ti = E)M,, %: (Zi: E)M,, A = C using the induction hypothesis, and then
obtain 2", Z = prune(Z, %). (The exact identity of Zp will be indeterminate
until we completely specify the function prune.)

We first apply the induction hypothesis to 2’ with respect to the partition

(I'’; A’) and obtain
(Z]: T =F), Z5 wi:F)L,AN=C">C.

This will be used in all subcases. By Lemma 40, Z; cannot end in —1.

Case 2.1. The main branch of 2’ leads to an assumption belonging to A’. By
Lemma 40, the main branch of Z; must also lead to an assumption belonging to
A’. Apply the induction hypothesis to 2’ with respect to the partition (I'""; A””) and
obtain

(2T =G)L., Z:(vi:G) A" =C".
We can assume that w{ and v‘f are pairwise distinct. Let

SmMo_ N ”p
M= 9 P,

and let 7 (wi s F)L s (vi :Gi)ipzl,A = C be the following deduction:

(w; Fi)/?zl,A, (Vi ZGi)ip’:l,A”
Dy = ‘@0 ‘@0
C/I - C C//

C

14Since we know from Maehara’s and Prawitz’s results that an interpolant always exists, the fact
that 27" is an interpolant is a consequence of the fact that 2" is stronger than any interpolant, which
we will prove later. However, it is convenient to know that 27" is an interpolant when describing the
construction of 2",

—E
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Now let 2", Zo = prune(Z7, %).

We now show that 2", % satisfies conditions (11)-(I4) of Definition 16. By
part 1 of Lemma 39, it suffices to show the same for @m, @0. The first three con-
ditions are easy to check. Let us check condition (I14). Note that since % does
not end in —1, any maximal path in & that starts inside the endformula C” — C
must end inside an assumption belonging to A’. Consider any maximal path z in
P, that starts inside some w; : Fj. By the induction hypothesis and the property
just mentioned, = must end inside an assumption belonging to A’. Now consider
any maximal path 7 in 920 that starts inside some v; : G;. & must either stay within
¢’ and end inside an assumption belonging to A” or reach the endformula C” of
24 Inthe latter case, = must end in an assumption belonging to A’ by the property
mentioned above.

Case 2.2. The main branch of 2’ leads to an assumption belonging to I'". By
Lemma 40, the main branch of Z; must lead to w; : F;. Since % does not end in
—1, 2, must have the following form:

(w; : Fi)geN,A/
(51
wy:Ck—>C”>C ck
C// — C

(6) Dy =

—E

where F; = CX— C” - C and
{I13UN={1,...,n}L

It is easy to see that each 4 satisfies the following condition, for otherwise 7
would violate condition (14):

(A) Every maximal path in %;j starting inside the endformula C; or some w; : F;
must end inside an assumption belonging to A’.

Write Al — B for C”, so that
I A7, (U Ay

™ 9" = 3
Al - B

I
—>I,u1

where % does not end in —1. Apply the induction hypothesis to % with respect to
the partition (I, ((u; : Aj)")'j:l; A”") and obtain
(% Ty, ((uj Aj)o)lj:]_ =G, %o (vi:G),, A" = B,

where U2, I7 =T, and w} and v} are pairwise distinct. By Lemma 40, %, does
notend in —1.

Case 2.2.1. The main branch of 2" leads to an assumption belonging to A”.
By Lemma 40, the main branch of %, also leads to an assumption belonging to
A",

Let | be the least that satisfies the following condition:

(8) Forevery jsuchthatl+1 < j<|, thereisan aj (1 < aj < p) satisfying:
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I. Ba; = Uj:Aj;
i uj:Aj ¢ Ass(%) fori # aj.
Let

P={L....pt—{ay|T+1<j<I},

Bo = Bol(uj: Aj/va) o 10 (i : Gidiep, (U : A)!

’”
j:f+1 j:|A+:|.’A = B.

It is easy to see that (%j)icp is an interpojant to £ with respect to the partition
(07 (@ AD)yi (U A &) via o,

We have seen that %, does not end in —| and the main branch of %, leads
to an assumption belonging to A”. Since %, satisfies condition (I14) by induction
hypothesis, we have the following:

(B) Every maximal path in P, that starts inside the endformula B, some uj:Aj
(I+1 < j<I),orsome v;:G;ends inside an assumption belonging to A”.

Case 2.2.1.1. i = 0. Let
P = D', (Bi)ieps
and let .@0: (Wi : Fi)i_;, (Vi : Gi)iep, A = C be the following deduction:

(Vi : Gi)iep, (Uj : Aj)',-:l,A”

5 (w; : Fi)?zl,A' By
(9) Do = ‘@O S, u|
(AI1 —-B)—>C AI1 —B !
c —E

We let 2", Z = prune(Z2, %p).1°
We have to show that condition (14) is satisfied by %. This easily follows from

(B). A
Case 2.2.1.2. 1 > 1. Let

P* = {i e P| Ass(%;) contains at least one of (uj: A,—)'Aj:l 1,
P-=P-P".

Let Z1: T, U Uicps IV = CK = ((Gi)iep+ — Al — B) - C be the following
deduction:

(10) )
7 ((uj 0 A
r; . \ %
_@]’_ Vi (Gi)i€P+ Ed Af+l d B Gi iep+ E
N b4
G, = Ci=> (A >B)=»C (0;:C), A —B )
| —E 7 -, u'1
(A} —>B)—-C A, —B
—E
c 0k

- | —1,01,V
Cl e ((Gi)iGFH Ed Af+l d B) d C

5The sequence 2", %, constructed this way turns out to be the same as the result one obtains if
one applies the construction of Case 2.1.
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Note that 21 normalizes in at most k non-erasing B-reduction steps. Let
PN =1D1lp, (2] Yien, (%i)iep--

Let .@01 i1 CE - ((Gj)iepr — A:A+1 — B) = C, (W : Fiien, (Vi : Gi)iep-,A = C be
the following deduction:

(11)
(w; : ;i)kieN’A (Vi : Gi)iep+» (Vi : Gi)iep-, (U; 3AJ')IJ-=|;1’AN
; A
. P,
Gp= 1 :CY > (Gi)iep — A:;l —-B)—C Cf B0 I (v |
— I —E ~ i i v(VI)IEP+7 uf+1
((Gi)iep+ — Af+l —-B)—C Giiepr — Af+1 —B

c —E

where €X is as in (6). Now let 2", 7o = prune(Zi", 7).'®
Let us show that _@f‘, 9 satisfies conditions (11)—(14) of Definition 16. Since

1 reduces to %, by non-erasing B-reduction steps, Lemma 14 implies that it suf-
fices to show that these conditions are satisfied by 71, 27", %. Condition (I1) is
obvious. That condition (12) is satisfied can be seen as follows:

Dol /11, (Z] IWi)iens (i Vi ico-]

B
(Vi : Giiep+» Uiep- Ty, (Uj 1Aj)'j=f+1,A”
FBol(Zi/Vidier-] Ty, ((uj AJ-)")E:l
’ ’ ). | %
I, Uien T}, A o, N B =1, (Vi)ieps. Up i _
; O S R Ssinda Gi ieP*
Ck— (Al 5B)-C ck A, —B )
—E >l, u'1
(Al ->B)—>C Al >B
C —E
>
Uieps T7 (U 2 Aoy Usep- T, (Uj - AL, A”
I, Uien I, & Bol(BiVi)icp+, (BiVi)ier-1
9{ Cglk[(~@i//wi)ieN] L —>|,UI-
C‘I - (A'1 —-B)—>C C‘; A::rl —-B :fl
0 —E - = —~hu
(A;—B)—=C Al —B
C —E
Iw7 ((UJ : Aj)o)lj:j[’AN
I, N Bol(% /)]
Dol wi)] i
(A'l —-B)—>C A'1 —-B
—E

C
—» (by induction hypothesis)

T, (U A)°)y A

T, A %
9, —>|,UI1 Z_@.
(A'1—>B)—>C A'1—>B
c —E

16Two remarks about this construction. One can apply this construction to Case 2.2.1.1, producing
a weaker interpolant. If one uses P* such that P* c P* C P in place of P* in this construction, one
still gets an interpolant, but then 2, becomes disconnected.
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As for condition (13), induction hypothesis takes care of (2))ien., (%i)icp-, SO
it remains to check @1. Let 7 be a maximal path in 921 that starts inside its end-
formula. If 7 starts inside C‘{, it passes through the endformula of & and ends
inside an assumption belonging to I';. If x starts inside (Gj)icp-, it enters some %
(i € P*) through its endformula and either ends inside an assumption belonging to
7" or exits %; through some uj: Aj (1 < j < f). In the latter case, x then trav-
els a link associated with the last —E step, enters &; through its endformula, and
ends inside an assumption belonging to I';. If r starts inside Al+ — B, it travels a
link associated with the last —E step and enters &; through its endformula, ending
inside an assumption belonging to I';. If « starts inside C, it directly enters &,
through its endformula and ends inside an assumption belonging to ;.

To show that condition (14) is satisfied, consider any maximal path x in P that
starts inside an assumption belonging to 7; : C‘{ - ((Gj)iep+ — AL —-B)—>C, (w;:
Fiiens (Vi : Gy)iep-. If & starts inside an assumption belonging to (Iwi : Fi)ien, then,
by (A), 7 stays within some %; and ends inside an assumption belonging to A’. If
7 starts inside an assumption belonging to (vi : Gj)iep-, then, by (B), & stays within
%o and ends inside an assumption belonging to A”. Now suppose that  starts
inside 7; : CX = ((Gi)iep+ — A:‘+1 — B) - C. If x starts inside Ck, then it enters
some %; through its endformula and ends inside an assumption belonging to A’, by
(A). If & starts inside (Gj)iep+ — A:A+1 — B, then it enters %30 through some v; : G;j

(i € PT), some uj : Aj (i+1 < j <), orits endformula B, and in all three cases
ends inside an assumption belonging to A”, by (B). If x starts inside C, then it ends
inside the endformula C of %.

Case 2.2.2. The main branch of 2" leads to an assumption belonging to I or
to some uj : Aj. By Lemma 40, the main branch of %, must lead to v; : G;. Since
Py does not end in —1, G; must have the form Hf — B, and %4, must have the
following form:

I

(Vi : Gj)jep;s Af’]q
i
Hi

(12) Po =y, H - B ( i1

B —E

where

{LLUPLU---UPg =1{1,...,p}
AYU---UAf =A".

Since % satisfies condition (14) of Definition 16, each .7 satisfies the following
condition:

(C) Every maximal path in . that starts inside the endformula H; or some v;:G;
must end inside an assumption belonging to A{".

Fori=1,...,q,let

Pi" ={]j € Pj | Ass(#) contains a least one of (u; :Aj)'j:1 1
Py =Pi— P},
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and then let
P*=PU---UPg,
P"=PyU---UP.

Let Z1: I UTY UUiep- IY = CK = ((Gj)jepr — Hi)L, — C be the following
deduction:

(13)
T/, (U An) )by ’
. COB-
F'/,((U' . A_)o)l_= ~ J
r, ! J,@l 1775 Vi: (Gj)jgpi*f - H; G; jeP;f
; % W~ a e
—E -l, ull
(AL—~B)—C A B
c —E

-1, 0k, 99
Ci = ((Gjery = H)L, > C v

Note that &1 normalizes in at most k + g non-erasing B-reduction steps. Let
R =Dl (Z)iens (Bicp-.

Let .@01 i1: Cil( - ((Gj)jepf — Hi)?:l — C, (Wi : Fyien, (Vi : Gi)iep-, A = C be the
following deduction:

(14)
e ZQQEN’A (Vi :Gyjepy» (Vi : Gjjery, A ’
1 6
Gy = BiCE = (G)er; » H)L »C Ch Hi
5 —E = |, (V) jer;
(Gj)jeps = HI)L, = C Giier; — Hi i1

C —E

where ‘51k and 4 are as in (6) and (12), respectively. Now let 2", %, =
prune(Z™, %).
We show that 21, (2/)ien, (%i)ier-, 2o satisfies conditions (12)-(14) of Defini-
tion 16. We start with condition (12):
Dol /11, [Wi)ien, (B [Vi)iep-]

B
(Vj :Gj)jepi‘r!UjePi’ F]/,A;' q
A1) ep-] T, (@ Ay
1/ . ) H aB .
Y, (Ui Ay) )|j=1 G=IH _>|7(Vj)jeP|*' g’
r; Uien T}, &Y ZA Giier; = Hi , jeP}
2 C(Z /w)ia]  HI—>B =) —E) |
C‘I—)(A'1—>B)—>C C'I
—E —>|, U!l
(Al ->B)—>C Al >B
—E
C
>p
T A (U T (@ Ay Y
F,1 UiEN Fi’A %1 jgi;[(%j/vj)jeli’i]
7; GE(Z Wi)ien]  H{ — B H; -
Ck— (Al »B)—C ck B —E
—E —l, u'1
(Al >B)—>C Al B
—E
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S NN (TR

UL T, A Bol(%i/vi)],]
@6[(-@{/Wl)|n=1] N | uI
(Al »B)—C Al-B

C —E

—» (by induction hypothesis)

F”,A”,((Uj :Aj)o)lj:]_
N %

(Al »B)—C Al !
C

Next we need to show that condition (13) of Definition 16 holds of 1. Letrbe
amaximal path in 2 that starts inside the endformula C'{—> ((Gj)jep; — Hi)?=l —C.
If 7 starts inside C'{, then 7 enters 4 through its endformula and ends inside an
assumption belonging to I'}. If  starts inside some (Gj)jepiﬂ then r passes through
Vi (Gj)jepr — Hj, enters some % (j € P;") through its endformula, and either
ends inside an assumption belonging to I'’’ or exits Z; through some u; : A;. If the
latter, 7 travels a link associated with the last —E step and enters Z; through its
endformula, ending inside an assumption belonging to I';. If r starts inside some
H;, then 7 passes through V; : (Gj)jepr — Hij, enters %, through its endformula, and
either ends inside an assumption belonging to I'}’ or exits %, through some uj: A;.
If the latter, 7 travels a link associated with the last —E step and enters &; through
its endformula, ending inside an assumption belonging to I';. If r starts inside C,
then it directly enters &; through its endformula and ends inside an assumption
belonging to I'}.

Finally, we show that 9 satisfies condition (14) of Definition 16. Let m be
a maximal path in P that starts inside an assumption belonging to 7; : C'{ -
((Gj)jepr - Hi)?:l — C, (Wi : Fiien, (Vi : Gi)iep-. If 7 starts inside an assumption
belonging to (w;: Fj)ien, then, by (A), x stays within some %; and ends inside an as-
sumption belonging to A’. If & starts inside an assumption belonging to (vi: Gj)icp-,
then, by (C), n stays within some .74 and ends inside an assumption belonging to
A”. Now suppose that n starts inside 7; : C'{ - ((Gj)jepr - Hi)iq:1 —-C. Ifn
starts inside C‘f, then & enters some %; through its endformula and ends inside an
assumption belonging to A’, by (A). If x starts inside some (Gj)jep;r — H;j, then
m enters 77 through some vj : Gj or its endformula Hj, and in both cases ends in-
side an assumption belonging to A", by (C). If = starts inside C, it ends inside the
endformula C of %.

This completes the description of the new method and the proof that it always
outputs an interpolant together with an auxiliary deduction for it. We next prove
some facts about deductions that can be components of interpolants constructed by
the new method. Let

D= U{ (Pn,...,Dn} | 27", Dy is a possible output of the new method }

Note that all deductions _@i that are constructed in Case 2 of the Induction Step of
the new method are in D.

Claim A. Let 2 be a deduction in D.

43



1. 9 is connected.

2. Suppose that & is of the form

H
C‘i —-C
where 2~ does not end in —1. Then
° Forveach i=1,...,Kk there is exactly one assumption of the form {; : C;
ino-.
e If the maximal subdeduction of 2~ which does not end in —1 and
whose main branch leads to G : Cj is

2
%
U| (CIJ)] 1—)C|0 C|J

Cio

—E

where C; = (Ci,j);‘:1 — Cj,, then
— each % jisinD;
— Z;jj does not contain any Un : Ch but contains some assumption
discharged in .@‘ and
— %, j is not an @-interpolant to G, if j < h.

3. If every maximal path in 2 that starts inside an assumption ends inside the
endformula E, then Z is an assumption.

All three properties can be easily checked by induction.
Claim B. Let  be a deduction in D. Let a normal deduction Z: I' = E be given.
Then

1. One can determine whether  is an @-interpolant to &, and if so, produce a
deduction .#: 7. E = E such that

(a) 2 is an g-interpolant to & via .#; and
(b) . is long for 2.

2. If Z is an g-interpolant to 2, then & is an @-interpolant to 2.

We prove the claim by induction on the construction of 9.

Induction Basis.  is first constructed in Case 1 of the Induction Basis of the
new method, i.e., ¥ = x: C. Then the only interpolant to Zis 9 itself, and the
only auxiliary deduction for 2,9, up to the choice of variable, isZ: C. If 9 =9,
we let & =7:C. Clearly £[&/Z] = & and all the conditions are satisfied.

Induction Step.
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Case 1. @vis first constructed in Case 2.2.1.2 of the Induction Step of the new
method, i.e., & is the normal form of (10), repeated below:

r, | o
@1' V: Gi)ierr » AL — B G
1
(10) C‘I - (A'l —-B)—>C ( ZCJ-)‘}:1 A:A+1 —B
E

(A >B)>C - A >B

C
N

CE - ((Gi)iEF” - A:»+1 = B) e C

Let k (0 < k < k) be such that

7 ((uj: Aj)°)21]
V iePt

—E

—>I,u'1

—E

Nk
1,03,

F'l, (I Ci)t(:l
, 7
(15) 7, = CE+1 — (AI1 —-B)—>C

—>|,0§

C|I—>(A|1—>B)—>C

where ;™ does not end in —1. Then

TY (U Ay
~ L@i
U (Giicpr — A:~+1 —B Gi iep+

|
Af+l —B

F’l, (0, . Ci)?:1
2,
G = CE+1 > (Al ->B)>C (0;: Ci):(:|2+1
(AL 5B)>C - A >B
c e
—1,03,V
CK = ((Giiep+ — A:AJrl —-B)—>C

—E

—>|,u'l

—E

We can show that Z is an @-interpolant to & if and only if 2 is the normal
form of a deduction of the form

(16)
" caey P
[Fp(i)’((uj “A)) )|j=l]

r; E7
—_ . P+ —_~

971 Ugs1 - @1 N ALl —B Gi i1 c

— — Ed
Ci>(A —»B)—~C G:C), A,—B
—E N
(Al >B)—C Al ->B !
C —E

- - \k+1
Cr)i = C Gl
) /i=1

where 7 is a permutation of {1,...,k + 1}, @1 is an @-interpolant to 77, Cis1 =
@f” - A}+1 — B, p is a bijection from {1,...,|P*|}to P*,and fori = 1,...,|P"|,
% is an @-interpolant to %,,.

We first prove the “only if” direction of this statement. Suppose that & is an
@-interpolant to & via &. Since Z is connected by part 1 of Claim A, Lemma 32

implies that & can have only one assumption. By part 1 of Lemma 44, we may
assume that & is of the following form:

@lk
_ {%]
éo = 7 ﬁk - C F| i=1
C
K [ -
Cl = ((Gi)iep+ — Af+1 —B)—>C

—E
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where
©1U---UB = (0i: C)y, 0 (Gi)iepr — AIA .~ B

Since & satisfies condition (14) of Definition 16 (with respect to (Z : F¥ 1~ C;2)),

each .%; must satisfy condition (13) of Definition 16. This implies that @. + @ for
each i. Moreover, by part 2 of Claim A and Lemma 19, it is not difficult to see that

@il =1 foreachi,
0inB; =0 ifi£].

Sok =k+1. By part 3 of Lemma 40, the main branch of 2 leads to an assumption
belonging to I';. Now we show that 2 must end in at least k applications of —1.
Suppose not. Then, since é"[@/‘] g 2, the subdeduction of (10) whose endfor-
mula is A} — B must be Z. Then, for i € P*, Ass(%i) C {uj:Aj 1< j<T)
Since '/F satisfies (13) and each 2, is connected by part 1 of Claim A, each %;
has only one assumption and every maximal path in 2, that starts inside its only
assumption must end inside its endformula. By part 3 of Claim A, it follows that
i = uj . Ajforsome jsuchthatl < j < I. Since «@f,«%’o is an output of the
pruning procedure, % # %j for i # |, by part 2 of Lemma 39. Hence for each
j=1,. .., 1, there is a unique i such that %; = u;: AJ By the definition of I, this
contradicts the assumption that I > 1. Therefore, 2 must end in k applications of
— 1. This means that 2 must be of the following form:

T @ C)y  Uieps TV Tiet © Cirt

@I éli
2= (A -B)—C Al - B
C S
TR
(!

where 7 is a permutation of {1,...,k + 1}, Fj = ,,(.), and

GGy * Crgi if 1 < n(i) <k,
"0 Gi)iep+ —Al —B ifr(i)=k+1

We have to show that 2’ and 2" have the required form. Let 6 = 1, o that
6:0:Ci=C fori=1,...,k
Gis1: V2 (Giiepr — A:A+1 — B = Cy1.
Let us first consider 2. Since £[Z/2] -5 7,
Iy, (0 i)k

Za

TGO 5 ck - LA SBSC @ i,

-

(Al >B)—C

This means that, for i = k + L..., k, Gj : Cj cannot appear as the major premise of
—E in Ci. Therefore, fori =k +1,...,Kk,

Ci =Ci, % = 0;:Ci,
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and 2’ must have the following form:

I, (JL: s
Za

9 = ~
CEH - (Al 5B)>C (G ci)';=R+l

(Al 5B)—>C —E
It follows that A
TG ] > 74
Let .
Iy @ Gy
7"

9, = Ck —(Al—>B)>C

c
[l >

61{ - (AI1 —-B)->C
Then
0
i ~
6'{—>(A|1—>B)—>C (lICT,)t(Zl > 7
(Al 5B)>C —E

and it is easy to see that @{ is an interpolant to ] via

l':liZ~Cik
_)
CE+1—>(A'1—>B)—>C

C|1(—>(A|1—>B)—>C

Let us now turn to 2”. Since £[Z/Z] -4 2, we have

Ty, ((uj: AL
0: Gilicer > AL —B %
—~ = . i)icpr @ AR — . .
17) -@”[Cgkﬂ/ﬁkﬂ] g VieP 1+1 Gi icP
Al 5B
1 i
= >, u
Al - B 1

2" must have the following form:

o (2 AD)a)'

e %

— it . | —~

g7 = U1 Gl AL - B Gi i=1
AL 5B —E
2 0
Al->B 7t

—E

where T < I. Since & satisfies condition (13) of Definition 16, each % must, too
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We show that T = I. Suppose T < I. Then i1 must have the following form:

[P
U (Gj)iep+ — A:A+1 - B |Gy i1
Gert = A B —F
k+1 ir1 -
I
Al 5B I+1
I+1

¥
GIl->AL —B
1+1

where (s;)” | lists the elements of P* in increasing order and

P
= G)T
uﬁ Jiz1o (Uj - J)J Tl

Since %1 satisfies condition (13) of Definition 16, each &’" must satisfy con-
dition (14) of Definition 16 (with respect to (Zj; 2)). By (17) it follows that, if
Ei = (Vj : G)jear, (Uj © Aj)jes,, then (4))jess, (U : Aj)jes, is an @-interpolant to
P, Via . Since Hs; is connected by part 1 of Claim A, Lemma 32 implies that
=il = 1 foreachi = 1,...,|P*|. Since | > T+ 1, there is an i such that u; : Aj = ;.
Since uj : Ay is an @- mterpolant to % via &, we see that B, = & and every
maximal path in %; that starts inside its onIy assumption ends inside its endfor-
mula. By part 3 of Claim A, it follows that %5, = u;: A;. Now take any h # i. Since
B, + PBs,, the above argument shows that u; : A; ¢ Ass(Hs,), which contradicts
the definition of I.
We have shown that T = I. Now %i.1 must have the following form:

—

t
_ :Giieer AL~ B (Gg)iy
k+1 = — —E

n |
GP+1 - Af+1 -8B 5

~n |
Gl_>Af+1_> B

where t < |P*|, P < = (Gs)I! ., and

i=t+1’
t
i=1

Again, it is easy to see that we must have |Zj| = 1, and if = =Vj: Gj, then E% is an

@-interpolant to %, via &, which, by the induction hypothesis, implies that %,
is an @-interpolant to %, Since, by part 2 of Lemma 39, %; is not an @-interpolant
to #; ifi < j, it follows that Zi N Ej = @ if i # j. Therefore, t = pand |[P*| = 7.
By (17), % HBs, fort+1 <i < |P*|. Thus, there is a bijection p from {1,...,|P*[}

p+1

I

5
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to P* such that

r Aoy VP
(l)a((uj . J) )j:]_

~ = . P |
9" = Ukst': G1 - Af+1 —B Gi

Al 5B
1 i

Al-B 1

where for i = 1,...,|P*|, % is an g-interpolant to %,. We have shown that 2"
has the required form. This proves the “only if” direction of the above statement.

Now suppose that @ is the normal form of (16). We will produce an auxiliary
deduction .# for 2, that is long for 2, thereby proving the “if” direction of
the above statement, and moreover prove that & is an o- interpolant to 9. By the
induction hypothesis, let .2’ W; : CX —» (Al - B)»C = CX— (Al - B) > C
be an auxiliary deduction for 7, 4 that is long for 2!, and fori=1,...,|P*, let
Vi : Gi = G, be an auxiliary deduction for &, %, that is long for 4. By
part 2 of Lemma 44 and part 2 of Claim A, wee can see that .#’ must be of the
following form:

Ci

[Ga(i) 1~Ccr<i>]k
. - Ok k I ~
wp:Ci—-Cr = (A;—>B)—=C Ci -

M =

[ — —E
—(A;—»B)—>C

k—>(A|1—>B)—>C

where k is as in (15), aﬁ(u = CEH, and o is a permutation of {1,...,k}. Let

€ =0;:C; fori=k+1,...,k,

Voi(i) - Gpri(i)
. | 0
— V: (Gi)ieP+ - AA — B G; icp+

I
k+1 = —E

A' —B
|(~I)|P|

I+1
~1P| |
Gl - AI”+1 -

(Recall that Cy,1 = éﬂf*'_m} —B.) Let.#: Z:(Cri)) 1 >C = CX((Gi)iep+ —
A:A+1 — B) — C be the following deduction:

Z:C)d > C (Gt

% = C —>E k
—I,0
Ck > (GiYierr » Al —»B)—C 1

U

Then it is easy to see that Z is an @- interpolant to Z via .. To prove that ./ is
long for 7, we use the induction hypothesis that .#" and .4; are long for 2’ and
%, respectively. We leave the tedious but straightforward proof to the reader.
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It remains to prove that Z is an @-interpolant to 2. By the induction hypoth-
esis, 2] is an @-interpolant to 7/ via some .Z": wy : CX - (Al > B) »C =
Ck —>(AI —B)—C,andfori=1,...,|P*|, A, is an @-interpolant to % via some
,/V Vo(i) : Goy = Gi. By part 1 of Lemma 44, we may assume that ./ ends in k
appllcatlons of —1. Since ///’[///’[.@’/W 1/W1] » 27, part 2 of Claim A implies
that .2’ must be of the following form:

=k
Ur(i) * Cei)
wp:Ck—> (Al 5 B)>C i
Z 1™ 1 Ci Jia

= - _>(A|1—>B)—>C —E

St

-l

~k k I ’
C1_>CR+1_>(A1_’B)_’C

where 7 is a permutation of {1, ..., k}. Let

€ =T :C; fori=k+1,...,k,

Al 5B
(Gi)iep+ — A:A+1 —B

=1, (Vi)iep+

Then let .47 : 2:CX— ((Gi)icp+ —>AA ,—B—-C= (Car(i))l*L — C be the following
deduction:
7:Ck— (G > Al —B)>C Ef*

; _ E
M = # N (-u' . )k+1 -
Crip)t - i

It is easy to see that & is an @-interpolant to 7 via ..
Case 2. 7 is first constructed in Case 2.2.2 of the Induction Step of the new
method, i.e., Z is the normal form of (13), repeated below:

(13)
L7, ((Un 2 An) iy ’
B
F”,((u- :A’)D)I»: R A
r; ! {% St I (Gj)jer; — Hi Gj jep+
2 H} — B Hi —E i=1
C'I—>(A'1—>B)—>C (ﬂj:Cj)'}zl —E
—E —>|,U|1
(A'l —-B)—>C A'1 —-B
c —E

-1, 0k, 99
Cli - ((Gj)jeP;r i Hi)?zl -C v

Let k and 2, beasin (15). Let 2 be the normal form of the subdeduction of (13)

whose endformula is B. Let %;i be the maximal subdeduction of % which does
not end in —1 and whose main branch leads to V; : (Gj)jepr — H;. (By part 2 of
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Claim A, j?f is unique.) %% is of the form

F" ((un = An)° )h 1 q{[] f
= S [%JJ
Ui 2 (Gjery — (Hij)iZ, — Hio Gj jerr  \Hij/jo

Hio

where
Hi = (Hi, j)? 1 Hio.

By part 2 of Claim A, A, . .. jf do not overlap with each other and each %J is
a deduction in D. If we write B[%ﬂl, . ,%’a] for 2, then

(18) )
/ 0. . 3 k
Fl’(g;_cl)izl F" U]€p+ I‘/r ((UJ A) )J 1,(V| (GJ)J€P+ = H )I )
1
- (Al ->B)>C (@:C), B[, ..., )] |
77 - l,u
(A|1—>B)—>C - AI1—> —l,uj
C —E
—>|,O';,\7(l4

Cf = (Gj)jerr = H)L, = C

Let (si,j)lﬁl| list the elements of P;" in increasing order. We can show that 9

is an @-interpolant to & if and only if  is the normal form of a deduction of the
form

r, 7’
@'1, Iy U]ep+FJ,((UJ A))J 1’(~l C)t(+lg+1
. | 1 _ B[/, .. %]
- (Al - B) —-C (Ul . Ci)i:1 |
(19) | N I —l, us
(Al >B)—C AmB
C k+q
Y >, (Jn(i))'=
(Cn(l))k+q =

where 7 is a permutation of {1,...,k + g}, @’ is an g@-interpolant to &7,
B[%,.. ,%‘a] is the result of replacmg %%;ﬁ in B[/4,..., ] by
%ﬁ, .. %, respectively, and fori=1,...,q,

P l+ri
Ck+| = (GI J)lj 1|+r Hi,O,
q)l, |Pﬂ+r|

7 - o

; P*lar, -

i Uka+i : (Glj)lJ 1‘+r Hi,O Gi,j j=1

—E
Hio

and there is a permutation pj of {1,...,|P;"| + ri} such that

—~ Bs; if 1 < pi(j) <|PH,
<, ; is an @-interpolant to {~ S0 _ :'D'(J) < i | .
A p()-pr1 IFIPTT+1 < pi()) < IPf1+ i

We first prove the “only if” direction of this statement. Suppose that Zis an
@-interpolant to 2 via &. Since  is connected by part 1 of Claim A, Lemma 32
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implies that & can have only one assumption. By part 1 of Lemma 44, we may
assume that & is of the following form:

@ii
B
& = 7:F >c R/,
c —E

-1, 0%, ¢
Ck = ((G))jepr — H)L, —C i

where
O1U---UB = (0:Ci)fy, (0 (Gj)jerr — Hi)i, .

Since & satisfies condition (14) of Definition 16 (with respect to (7 : a{ - C; 2)),

each .%; must satisfy condition (13) of Definition 16. This implies that ®; # @ for
each i. Moreover, by part 2 of Claim A and Lemma 19, it is not difficult to see that

@il =1 foreachi,
0inB; =0 ifiz#].

Sok = k+ g. By part 3 of Lemma 40, the main branch of 2 leads to an assumption
belonging to I'}. Note that '?E cannot be the subdeduction of (18) whose endfor-
mula is A'1 — B. For, if that subdeduction satisfies condition (13) of Definition 16,
its main branch must lead to an assumption belonging to I/ # @. Therefore, 9
must be of the following form:

k+q

I‘;I.’ (UI~ Gi):(:]_ r;l,, v UjeP* ri,’ (Ui : G)i:k+1
_ 9’ Q"
2= (Al->B)—>C A'1—>B_>E
4C k+q
— —>|, (ﬁﬂ(i))':
Cr)id = =1
where  is a permutation of {1,. ..,k + g}, Fi = C,(), and
|Gy * Cagi) if 1 < (i) <Kk,
" 9k Gijers,, = Hayx ifk+ 1 <a(i) <k +q.

We have to show that 2’ and 2" have the required form. Let €} = 7,1, so that
6:0:Ci=C fori=1,...,k
ﬁﬂi Vi : (Gj)jepr - H;=> 6k+i fori=1,...,q.

Exactly as in Case 1, we can show

!
7! _
koA 5B)»C @:C), 7
E
(A >B)>C ~

where é{ is an @-interpolant to & .
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We turn to 2", Since £[Z/Z] -4 &, the main branch of 2" must lead to an
assumption belonging to I'"” and 2" must be of the following form

7’ ,’ . o . Ak
I U Ujeps T, ((Uj 2 A)) )Ijzl’ (@2 Ci)iy
oo — ,9-37
9 B |
—>|,U1
Al - B

We have . 5 5
BI(G /)01l 5 BIAL ..., )

Since ﬁﬂ satisfies condition (13) of Definition 16, the main branch of i%;ﬂ leads
t0 ¥ : (G))jepr — (HLJ-)';‘:1 — Hio. Then it is not difficult to see that

B =BA, ..., )
where, foreach i = 1,...,q, /4 is of the form
(I)i,j ni
_ 7,
%: — ~ T -’
"7 ki (Gi,j)?;l —Hio \Gij),

Hio

—E
and o 5
HG[Ciri[Uksi] »p S
Since 2 satisfies condition (13) of Definition 16, each % does, too. Fori =
1,...,0, %+ must have the following form:

ti

[1]

i,
Py < i
~ Vi (Gsi,j)jzll - (Hi,j)?:l —Hio \Gi j=1
ki = — —E
Gif)ilg 1 = Hio 5
=~ T _)|7 m,j)jzl
(Gij)jzy — Hio

where tj < |P{| +rj, pi <™, and

i ~. \Ni Pyl i
(Gi,j)tjzla (Gi,j)?:5i+1 = Gsip)jp (Hi,j)gzl’

ti _
| JEii=@;:Giply.
i1

Since ﬁﬂ satisfies condition (I13) of Definition 16, each é‘;’] must satisfy condition
(14) of Definition 16 with respect to (Zjj;@). Forh = 1,....t;, let Jijn = {] |
Vi,j : Gi,j € Eij Since JG[Gx+i/Uk+il g J4, we have

~ . . B, Via 8! if h < |P{,
(20) (4.j) jeai, is an @-interpolant to i Lh ) Py
’ Hin-py Via &y if h > |Pf].
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Since %, and %ﬁh_m are connected by part 1 of Claim A, Lemma 32 implies
that |Jin| = 1. By part 2 of Claim A and the induction hypothesis, we can see
that Jiy N Jin = @ if h # 0. Therefore, tj = pj and M = |Pf| +ri. Forh =
ti+1,...,|P| +rj, define

_ _ i +
1) G =P TH<IRL
%’h_“:“ ifh> |P| .

Combining (20) and (21), we conclude that there is a permutation p; of
{1,...,IP{"| + ri} such that

~ . B . if 1 < pi(j) <P,
<, ; is an @-interpolant to {~ S I N pild) <1 _ | .
c%{pi(j)_|pi+| if |Pi [+1<pi()) < |Pi | + ri.

We have shown that 2’ has the required form. This proves the “only if” direction
of the above statement. _

Conversely, suppose that & is the normal form of (19). By the induction hy-
pothesis, let .2 W, : CX — (Al - B) - C = C¥ — (Al - B) — C be an auxiliary
deduction for 77, 2; that is long for 27, and fori = 1,...,q, let 4 : Vij: Gij =
Gs;,,y be an auxiliary deduction for g;i:j,ﬂsi’pi(j) (incase 1 < pi(j) < [P{) or an
auxiliary deduction for & j, 7 ,,j-ps) (in case [Pf| + 1 < pi(j) < [P} + i) that is
long for 5?., As in the previous case, we can see that .#” must be of the following
form:

Ci

[Gcr(i) 1~Ca(u)]k
= .~k k I —~
wp:C—-Cr = (A;—>B)—=C C; -

M=

E
ck —(Al>5B)>C -
k+1 | A~k
Cko (A 5B —C
1 1
~k _ k . - ~
where C|2+1 = CR+1 and o is a permutation of {1,...,k}. Let
G =0:C; fori=k+1,...,k
v .~ |P|+| — .~ |Pi+|+ri
Vipri(i) * Gipri() Vigr(i) - Gipri(
3 . (i o)
Gowi = U0 Gjery = (Hij)j; — Hio Gs; i1 Hijrit i
Hio [P |+ri
IP{l+ri _>I’(\7i’j)i=|1

Gy — Hio
fori=1,...,q.

Thenlet . 7:7: (Gﬂ(i)):(:f — C = C{ = ((G))jer: — Hi)i;, — C be the following
deduction: - -
Z: Crp))ict 2 C (Gr)icy c
M = ¢ ookt
CX = ((G))jerr = Hi)iL, — C o
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Then it is easy to see that Zis an o- interpolant to Z via .. To prove that ./ is
Iong for &, we use the induction hypothesis that .#” and .4; j are long for @’ and
G .j» respectively. We leave the tedious but stralghtforward proof to the reader.
It remains to prove that 2 is an o- interpolant to 7 By the induction hypoth-
e5|s 2, is an g-interpolant to .@’ via some ./’ : wy : (A' —-B)-»C=>
(A'—>B)—>C and fori = 1,...,qgand j = 1,.. |P|+r.,<%’p,(1) is an
mterpolant to % j via some ,/VJ Vs.pm Gs,pm = Gijif 1 < pi(j) < IP{] and
A i) p+| Is an @-interpolant t0 % j via some A j: Vi p(j)- Pl = Higi(j)—1pr = G.J

if [Pl + 1 < pi(j) < |P{"| +ri. As in the previous case, we may assume that M is
of the following form:

< &
Ur(i) * Cr(i

w;:Ck—» (Al -B)—>C ¢
R 1~ (Aj—=B)— Ci S
—

—>(A|1—>B)—>C

= —>I,ﬁ§
Gli_)clﬁ(ﬂ_)(All—) B)—»C

where 7 is a permutation of {1, ..., R}. Let

€ =T:C; fori=k+1,...,k,

(Vsigyciy * Gsigy)° (yispi(j)—lPi*l s Hipi(iy-p1)° i
|P [+ri t'/ﬁj
Gt = Ui 2 (Gig)jly = Hig Gi,j j=1
Hio =1, (Vi) jep+, (Vi) h
G))jerr — (Hi,j)?zl —Hio i)jePy> Wij)j=1
fori=1,...,q.

Then let .7 2: CX — ((G))jerr — HI)L; = C = (Cx)7 — C be the following
deduction:
2:C5 = ((G)jepr —» H)L, »C &

- _ —>E
Cori) 0 > -

It is easy to see that & is an g-interpolant to 2 via .#. This completes the proof
of Claim B.

We have described an algorithm that, given an arbitrary normal deduction 9
and a deduction 2 which is among the deductions Q{“ constructed during the
course of the new method, determines whether & is an @-interpolant to &, and
if so, computes a particular auxiliary deduction .# for 2, 9. We can use this algo-
rithm to compute wu(i) and .#; used in the definition of the function prune. We will
assume that .7 : z,( : E,.iy = Ei is the deduction returned by the above algorithm
on input Z,, %. In particular, for each i, we have the following:

(22) () is an e-interpolant to % via ..

55



(23) . is long for 2.

Note that part 2 of Lemma 39 and part 2 of Claim B together imply that the
interpolant 2" constructed by the new method satisfies the following property:

(24) Ifi# j, Zjis not an @-interpolant to ;.
From (22) and (24), we also get:
(25) If % is an @-interpolant to 2, then j = u(i).

As a consequence of part 1 of Claim A and part 2 of Claim B, we know that
27" is a maximally strong interpolant to & in the sense that no interpolant to &
is strictly stronger than it. This is still short of establishing that 2" is in fact a
strongest interpolant, which we are now going to prove.

Claim C. Let (%i: Iy = Ej) 1,_%' (zi - E)";,A = C be the deductions that
the new method outputs when given deduction : I', A = C together with the

partition (T'; A) as input. Suppose that (.@. Ti= E) is another interpolant to &
with respect to the partition (T'; A) via Do: @ E; )I 1 A = C. Then one can find m
subsets Sy, ..., Sy of {1,...,m} and m normal deductions (&i: (zj:Ej)jes, = Ei)imzl
satisfying the following conditions:

1. SiU---USy={L,...,m};

2. Fori=1,...,m, (%j)jes; is an @-interpolant to .@. via &;

3. D& ,] >4 Do

4. Foreachi=1,...,mand for each j € S;, & is long for Z; with respect to
Zj . Ej.

Note that conditions 1-2 simply say that ;" is stronger than @F .

We prove the claim by induction on 2, following mostly the description of the
construction of @1”‘, 9. It suffices to prove conditions 2—4, because condition 1
easily follows from condition 3.

Induction Basis. Z is x: C.

Case 1. I' = {x:CL,A=02. Wehavem =1, % = %,and %, = z; : C. By
Lemma 19, m = 1, and by Lemma 40, P does notend in — 1, and the main branch
of % leads toZ;. It follows that % =71:Cand 91 = 9. So the claim holds with
51 =12;:C.

Case2.T=@,A={x:C}. Wehavem=0and 2, = . We must have m = 0
and the claim holds trivially.

Induction Step.

Case 1. The last inference of Z is —1. 2 is of the form:

(y:A)°,T,A
@/

9 = B

—— —oly

A—B
where A — B = C. We have 2" = 2’7" and
zi:E)L,. (Y AP A
P = 7o

AEB‘”’y
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where 2’1, 7} is the output of the new method on input 2, (T; (y : A)°, A). We
have two subcases to consider. _
Case la. 9y ends in —1. Then 2 is of the form

I IPE'i)ETll,(y tA)°A
Do = s
B

Ao hY

Then it is easy to check that @T is an interpolant to &’ with respect to the partition
(T; (y:A)°,A) via @6. The induction hypothesis then gives sets ST and deductions
&7 with the necessary properties.

Case 1b. @o does not end in —1. Then @0 must look like the following:

@ :Ey°. @ E)M,.A
2K

Fo= “
~1ZC~:1I—>A—>B 61;
A>B —E

where E; = 61I — A — B. 2, must have the following form:

Ty, @Gy : A

S -
=  _—Luy
61{—>A—> B
Let o
@6: Do
A—>B y: A
B —E

Then @6 is a normal deduction and it is easy to see that .@T“ is an interpolant to &’
with respect to the partition (I';y : A, A) via Z{. By the induction hypothesis, we
have subsets ST of {1,...., m} and deductions (& : (zj: Ej)jes, = Ei)['; such that
(26) i. S;U---USH=1{1,...,m};

ii. fori=1,...,m, (%))jes; is an @-interpolant to D via &;

iii. Z4[(&/Z)T > Z;

iv. foreachi=1,...,mand foreach j € S;, & is long for &; with respect to

zj: Ej.

Only condition 3 remains to be proved. By (26.iv) and part 2 of Lemma 44, &1
must look as follows:

@) Ej)jes, @ : Ci) 1y A

&

& = 1 .
= —>I,U1i,y
CII—>A—> B



Then it is not hard to see that Zo[(&/Zi)",]1 -5 Zo.
Case 2. The last inference of 2 is —E. & is of the form
I“/’A/ I“/I7A/I
-@ = C/r — C C//

C —E

whereIV UT” =T and A’ UA” = A.

In each of the following subcases, we have 21", %, = prune(@m, .@o). We let
(i) and . be as in the definition of prune(Z™, Z).

Case 2.1. The main branch of 2’ leads to an assumption belonging to A’. Then
by Lemma 40, the main branch of 2, leads to an assumption belonging to A’, and
@o must look like the following, where M’ U M” = {1,...,m}:

@:E)ew, N @:Eiw,A”
27) Do = 74 Z
C// N C C//

C

—E

It is easy to see that (@i)ier is an interpolant to 2’ with respect to the partition
(IV; A") via &, and (Zi)iem~ IS an interpolant to 2 with respect to the parti-
tion (I'"; A”") via @6’. Applying the induction hypothesis to 2’ and 2", we ob-
tain subsets (S)iem Of {1,...,n}, subsets (S/")iem~ of {1,..., p}, and deductions
(&7 (Wj:Fjjes; = Eidiem, (& (Vj: Gj)jesy = Ei)iem such that
(28) i. Uiew S =1{1,...,n}
ii. foreachie M’, (@J{)jesi’ is an @-interpolant to ; via &5
iii. Z[(& [Ziew] »p P
iv. for each i € M’ and for each j € §;, & is long for .@Jf with respect to
wj:Fj;
(29) i. Uiemr S =1{1,....p}
ii. foreachie M”, (9]{,)1'65;’ is an @-interpolant to ; via &5
iii. ZUE [T)iew] »5 F;
iv. for each i € M” and for each j € S, & is long for 9}’ with respect to
Vj . Gj.
The output 2", %y of the new method is the result of applying the pruning
procedure to (Z;: T = E)P,, Zo: (i E)M,,A = C, where
@{n — @In’gﬂ:‘r—),
(T Ei)iLy = Wit Fi)iy, (vi 1 Gy,

as described in Case 2.1 of the new method. Let (i) and .#; be as in the description
of prune(2{", %). Fori = 1,...,n, we have u(i) = iand & = 2/ is an @-
interpolant to itself via .. Fori=1,...,p, Z,n+i is an @-interpolant to ;" via
///n+i-
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We define subsets ST of {1,...,m} and deductions (&i: (zj: Ej)jes; = E)}El as
follows:

s ifieM,
T lutn ) ljesyy  ifie M -,

g - NEUAW)jes ]l TTie M,
I - - -
|6 (s j V) jesyllp - 1Tie M7 =M.

We show that ST and & satisfy conditions 2—4.
Condition 2 follows from (28.ii) and (29.ii), using the property of .#; men-
tioned above. Condition 4 is a consequence of (23).
It remains to prove condition 3. Since %y = |.%[(.///i/ii)?‘=l]|ﬁ, D is the normal
form of
@ E)L A @iyt Epeip) g, A
DA, D [(AMsi V)]

C"->C . C—)E

Since % is of the form (27), it suffices to show

(30) DY E [T iew] =5 DA W)Ly,
(31) D ETiew] =p D [ Mnsi D], ]-

We can show (30) as follows:

G & TYiew] =5 ZYUE [(A3/W))jes 1 liem']
= Z5U& [Tiem (A /Wi)],] by (28.)
=5 D[(Ai)wi)_,] Dby (28.iii).

It remains to prove (31). Since (éi)ie,v,/, is an interpolant to 2" with respect to the
partition (I'”; A”) via &/, condition 2 implies that

(32) (Zj)jecUin si I8 an interpolant to 2" with respect to the partition (I'; A”’) via
the normal form of Z;'[(6i/Zi)iem~]: (2 : Ej)jeUicy 5i»A” = C”.
Applying the induction hypothesis again to 2"’ with respect to (32) and not-

ing Lemma 32, we obtain elements (7(j))jecyiu- s Of {1..... p} and deductions
(32 Ve(j) - Gr(i) = Ej)jeliwn s SUCh that
(33) i {7(D) € Uiew Sit=1{L,....pk
ii. 9;21.) is an g-interpolant to ; via .7j for each j € Uiem~ Si;

iii. 75 (& 2)iew (T2 el 5] > 75
By (33.ii) and part 2 of Claim B, for j € Uicym~ Si, we have u(n + 7(j)) = j and
9j is an o-interpolant to 77, Via #n.x(j): Zj 1 Ej = Gy(j). It follows that 7 is
an g-interpolant to itself via the normal form of .7j[.#.+(j)/V<(j)]: Zj : Ej = E;.
Hence by condition 4,

(34) T Anx(y V=) /2))jes] »p & forie M”.
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Now

DY UETYiem =5 DY UENTi M~y V=) /2)) jesi] [T)iem~] by (34)
= B UENT3/2)ies 1 Tiem N (Mnsi V)P, by (33.0)

B ~6, [(éﬁm)iEM',][(‘%/ZJ)jGUieM'/ Si][(///nH/Vi)ip:l]
g D [(Mnsi/Vi)_,] by (33.iii)

We have proved condition 3.

Case 2.2. The main branch of 2’ leads to an assumption belonging to I'". Then
by Lemma 40, the main branch of % leads to some 7 : Ej, say 7 : E;. Since %
cannot end in —1, %, must have the following form:

~ ~ K
(ZJ . Ej)ﬁj{EMpAi
@i

(35) D = 4
Ci

~126F—>C

where CX — C = E; and
{1}UM1U---UMF={1,...,FIﬁ},
K]_U---UZR‘:A.

Since 2 satisfies condition (14) of Definition 16, each % must satisfy the following
condition:

(D) Every maximal path in %; that starts inside the endformula C; or some Zj:Ej
must end inside an assumption belonging to A;.

1 must have the following form:

T0 @ Gy
_ 77
(36) 7= 61% +1 —-C
K
612 —C -l ull
1

where 0 < k; < kand Z; does not end in —1.
Case 2.2a. ki < k. Then Lemma 40 (part 3) implies that C; = C”, and it is
easy to see the following, using (D):

(37) a A=A
b. (@,—) jem: Is an interpolant to 2 with respect to (I'’; A”) via G
C. Xl U"'UZF—l =AN;

d. (.@]-)J.e ~isan interpolant to 2’ with respect to (I'"; A”) via

(UUSE M
— ~ k-1
I Ej)~jeMi,Ai
Dy = _ %
7,:Ct»c”c Ci i1
—E

60



By (D), the main branch of ‘5} leads to an assumption belonging to A”. It follows
that the main branch of 2" leads to an assumption belonging to A”, i.e., Case 2.2.1
of the description of the new method applies.

Using (D) again, we can see that 4 must be of the form

@ Eicw (U Ay, A
PBo
B |
—l, u;
Al - B

z—ll

where every maximal path in By starting inside some uj : Aj ends inside an as-
sumption belonging to A””. Therefore,

(38) (gj)EMF’ (u; :A,-)'j=1 isan inteToIant to % with respect to (I'”", (u; :Aj)ljzl; A”)
via Zol(y; : Aj/Uj)Ijzl]Z @: Ei)ieMp (j ZAj)Ijzl,A" = B.

Let
k-1

M ={l}u| M, M" =M.
i=1
We apply the induction hypothesis to & with respect to (37.d) and to % with
respect to (38). Itis easy to see that | = 0, i.e., Case 2.2.1.1 of the description of the
new method applies, and we obtain subsets (S;)iem’ Of {1,...,n}, subsets (S;")icm~
of P, and deductions (&’ (wj : Fj)j€5; = Ej)iem, (& (vj :Gj)jesgf = Ei)iem~
such that
(39) i Uiew Sj = (L....n};
ii. foreachie M’, (@J{)jesg is an @-interpolant to ; via &5
iii. Z0(& [Tiew] »p P
iv. for each i € M’ and for each j € ], & is long for _@Jf with respect to
wj: Fj;
(40) | UiEM/’ SIN = P,
ii. foreachie M”, (%))jes; is an @-interpolant to ; via &5
iii. Zol(&)" [TYiem] - Zo;
iv. for each i € M” and for each j € S, & is long for 2; with respect to
Vj . Gj.

The output 2, &, of the new method is the result of applying the pruning
procedure to (%: T = E),, Zo: (4 : E)M,, A = C, where
I = 7' (B)icp,
G E)M, = (Wi Fi)y, (Vi : Gi)icp,
as described in Case 2.2.1.1 of the new method. Let p,..., ps list the elements of
P in increasing order, so that m = n+ s. Let u(i) and .#; be as in the description of

prune(Z", %). Fori = 1,....n, we have u(i) = i and % = 2/ is an @-interpolant
toitself via .. Fori=1,...,s, Zyn+i) is an @-interpolant to Ay, via ;..
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We define subsets ST of {1,...,m} and deductions (&i: (zj: Ej)jes; = E)}El as
follows:

_JSi ifieM,

"+ iy ipyesyy  ifieM —m,
& = 16 [(A5/W})jes: g ifie M,

|@@i”[(<///n+j/vpj)pjesi”]|ﬁ ifieM” - M.

The proof of conditions 2—4 is entirely analogous to Case 2.1. We leave the details

to the reader. o _
Case 2.2b. k; = k. In this case 21 must look like

T, @i : Ciek:  T7, (@i : Ci)iexr

7; 7y
(41) 2= (Al —>B)—>C Al - B
c —— —F
~7—>I,Tﬁi
Cic

where
T, uUT) =Ty,
K'UK” ={1,...,Kk}.
By Lemma 40, the main branch of @i leads to an assumption belonging to f&.

Since @i does not end in —1 and since 2, satisfies condition (13) of Definition 16,
we have

(E) Every maximal path in @1 starting inside the endformula (A'l —B)—Cor
some T; : C; leads to an assumption belonging to Fi-

Since %[(@.F)m 1l > 2, we have
(42) DGUDi /T jem] Wiex:] »p 2,
(43) DG D /Z3) jem] [Uiek] 5 97,

which implies that

U Xi = A, U Zi =A".

ieK’ ieK”
Let

(44) M= M M7= s
ieK’ ieK”

Then we have

{IJUuM UM” ={1,...,m},

rul JTi=T, Tyu Uf

ieM’ ieM”
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Let
T}, @ : Ci)iex:

45 7 = ¢
(45) - (AI1 —-B)—>C _
— | =1, (Ui)iex/
(Ci)iexr = (A; > B)—>C
(i] . Ej)_.j,EMi,Ki
— N 4
“46) %= & Chi — (Al ->B)—C Ci ek’
—E

(Al >B)—>C

where %; are as in (35). We show
(47) «,(Z)iew is an interpolant to 2 with respect to (I"; A’) via 7.
Firstly,

DL Wir, (D7) jew] »p DG Z51T) jem]TW)iex']
Secondly, Jsatisﬂes condition (13) of Definition 16 by (E). Finally, the property
(D) ensures that & satisfies condition (14) of Definition 16. So we have shown
47).

By the induction hypothesis, we have subsets T, (S])icm 0f {1,...,n} and de-
ductions .7 : (Wj: Fj)jer = (Cidiek: = (AL 5 B) > C, (&1 (Wj:Fj)jes; = Eiiewr
such that
(48) i. TUUiem S{ =1{1,....n}

i a. (.@Jf)jeT is an g-interpolant to <7 via .7
b. foreachie M’, (@J{)jesg is an @-interpolant to ; via &5
iii. Z4L7 [Wir, (& [Z)iew] > T
iv. a. foreach jeT,.% islong for 915 with respect to wj : Fj;
b. foreachie M’ and for each j € S{, & is long for @Jf with respect to
Wj . Fj.

By (48.ii.a), (48.iv.a), and part 2 of Lemma 44, </ and .Z have identical final
blocks of applications of —1. Since 7 satisfies condition (13) of Definition 16, it
follows from (48.ii.a) and Lemma 21 that .# also satisfies condition (13). By (12),
(46), and (48.iii), then, .# must be of the following form:

Wj 2 Fjjer-, (@ : Cjjex:

3

(49) 9:W12C|£—>(A|1—>B)—>C CE
(Al >B)—>C

(Cj)jexs = (AL 5> B) > C

—E
=1, (U))jex

where

(50) {uT =T,
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(51) Tul Jsi=

ieM’
Let 7~ (Wj:Fj)icr, (U] :Gj)jeK/ = (A'1 — B) — C be the following deduction:
( J)JET (~J j)jeK’
cgk
wy:Ck— (Al ->B)—>C ck
(Al >B)—>C

G2) T =

—E

Since .7 satisfies condition (14) of Definition 16, each % must satisfy the fol-
lowing condition:

(F) Every maximal path in % that starts inside the endformula C; or some w; : F
must end inside some Uj : Cj.

Since Z[(Z;/Wj)jer] > o,

r; Ujer- T}, (Uj : Cjek:
! G2 W))jer-1 -
G3) Z U] = e il Spysc ch e
E
(AL 5B)—>C -

Also, by (48.iv.a), we have

(54) For j € T, if 9} is an @-interpolant to itself via .#: wj: Fj = Fj, then
F[IIWj] »p F
Case 2.2b.1. The main branch of 2" leads to an assumption belonging to A",
i.e., Case 2.2.1 of the description of the new method applies. Then (43) implies
that the main branch of 2;” must lead to some Uj, : C.1 (iy € K”), and 2;" must
have the following form:

(@ C Ao
Fl.a(“j : Cj)jeK;',((uj D Aj) )'j=1

—E

where
I{yu---UTjz=T7,
{iifUK{/U---U K&’ = K",
By (43), %, must have the following form:

(ij : Ej)jeMil,Zip (X |:fi)ia:l’ (UJ J)

_ j=1+1
Cgl_
— 1
(56) (gil = % —)l,UI_
AI. >B 1+1
1+1 A
l, X]
Hg —-A 5B
1+1



Since 2 satisfies condition (I3) of Definition 16, each .74 must satisfy the
following condition:

(G) Every maximal path in . that starts inside the endformula H; or some T;:C;
must end inside an assumption belonging to I'Y’; or some u; : Aj.

Let

T .~ . N a
75 (@2 Cijeryrs (U - ANy

57) 2" = = . G0 _, Al /i
67 71 Uiy :Hy = Ap — B Hi i=1

1+1

By (43), we get
", A”, ((uj: Aj)o)gzl, (uj: Aj)l.

]:f+1
(58) 2 (Gl Zi/T))jem] [TYiex] »p Z
AL 5B
1+1

N

b
>B 1+1

where # is as in (7).
Fori=1,...,7q, let

f,ll,i’ (Uj : aj)jeK;', ((uj: Aj)")'j:l
7 TG
59 % = ~I
(59) , 7

—_— = —>|,(Uj)jeKi"
(Cjjexy — Hi

~ ,A” = B be the following

Let %o: @2 (Cijeky — F)Ly. @i Eienr. 732 A)) 1,

deduction:
(60) _

(Zn : En)nem;» Aj ’

@ Ejem, - Ay, _ _ 7]
% Vi 1 (Cj)jexr — Hi Cj jeKy”
,@0 = ﬁfqﬁ AI_ N B — —)E
1 1+1 Hi i=1
AI— B —E A |
1+1 - (7] ' J)j:I~-¢-1
B —E

where ‘% are as in (35). Note that %, normalizes in at most  + | — I non-erasing

B-reduction steps (use (D)). We show
(61) @q, (@i)ieMu, (uj: Aj)lj:T+1 is an interpolant to % with respect to the partition
T, ((uj Aj)°)'j:1; A") via |%olg.
Firstly,
Bol(B W)Ly (D[ TYiewr Uy AT, ]

j=T+1
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]

— - = < q
o Ty (U Ay [ Unew; Tho 4
Ujem, Tj> Ay B, Cil(%h/Zn)hem;]
G, [(Zi/Z)jem, ] (C)jexy — Hi Cj jeky
qa | = —E
Hl - AI~+l —B Hi i=1
AL B ~E WAy
I+1 Pt
B
g (by (59))
) T A ” = —~ . T \d
~UJ€Mi1 FJ’ AI1 Flyis UjeKi” UheMj Th, UjeKi” Ajv ((uj : AJ) )Ij:]_
Gl iz} TG T e )0 ]
Hi— Ay, —B Hi i=1
A B ~F 1Ay
1+1 P Widta
B —E
= (by (57))
A7 (g AL
27" (GU(Z/Z}) jem] /Ui)iek ]
! Y
AT+1 —-B (uj - AJ)j:T+l
B —E
—»5 (by (58))
", A, ((uj: Aj)o)ljzl, (uj: Aj)lj:f+l
B
[ = -1, u:~ 1 I
+ AL
AT+1 —-B (uj - AJ)j=T+1
B —E
>p
B.

Secondly, the property (G) ensures that each B; satisfies condition (I13) of Def-
inition 16. Finally, the property (D) ensures that %, satisfies condition (14) of
Definition 16. So we have shown (61).

Case 2.2b.1.1. | = 0, i.e., Case 2.2.1.1 of the description of the new method
applies. Applying the induction hypothesis to % with respect to (61), we obtain
subfets V7, (S{")iem~ of P, deductions (% : (v{:G)jev;, ((vaj:Aj)")'j:1 = (Cj)jekr —
Hi)iL;. and deductions (&: (v; : Gj)jes = Ei)iem~ such that
62) i. UL, ViU Uiew S/ = P;

i a. fgr eachi = 1,...,7, (%))jevi» ((U; :AJ-)°)L1 is an @-interpolant to
PBivia 4,
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b. foreachie M”, (%))jes; is an @-interpolant to % via &5
iii. 95’0[(%/‘.), 1,(<5‘}"/fi)ier/,(Vaj/Vj)'j:|~+1] g Ho;

iv. a fori=1,...,qandfor j €V, % is long for #; with respect to

b. forie M” and for j € S’, & is long for #; with respect to vj : G;.

Let% = Gil(uj - Aj/vaj)Ll]. Since ¢ satisfies condition (14) of Definition 16,
we have

(H) Every maximal path in ¢ that starts inside some Vi:Gj(jeVjoruj:A,;
(1 < j <) must end inside the endformula (CJ)JGKN - HI

Note that since %; satisfies condition (13) of Definition 16, it follows from (62.ii.a)
and Lemma 21 that %; also satisfies condition (I3). N

LetV = J!, Vi Let &1 Wy Fj)iet, (vj i Gj)jev = CX — C be the following
deduction:

(63) & =
AT q
(Vi 1 Gijevi» (U - ANy
4
Ciexy = Hi - (U2 Cyjexy
= Q4 | — —E
Ui, : Hy - AI—+1 —B Hi i=1
(WJ Fj )JET G j)jeK’ A:_ L - B —E
. _
|
(A'—)B)—)C A'1—>B —hu
C - —E
= -1, Tk
a; —-C !

where .~ is as in (52). Since & satisfies condition (13), & normalizes by a se-
guence of non-erasing B-reduction steps. We can show

(64) (Z))jer> (#))jev s an @-interpolant to P via |l

That & satisfies condition (14) of Definition 16 can be checked using (F) and (H).
It remains to show éi[(.@’/wj),g (#j/Vj)jev] »p 91

GI(Z} W )jer (B V) jev]

<l

Ujev 7. (U5 - Ay
GUZi/Vi)jev] N
Ciiexy = Hi (U1 Cjjex

— .09 = —E
/ _ Ui, - H? - A:_+1 — B H; i1
Usjer T (@ : Cjex N B —E
F (7] /wier] I+ d
(Al >B)—>C Al >B T
c - —E

— |, T
ck->c !
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—p (by (53))

al

Ujew, T7- (W5 - Ay

%(%’j/vj)je\i] N
(Cj)jEKi” — Hi (Jj :Cj)jeKi”
_ _ ﬁﬁiﬁf—)A:}leB A, -k o
I, (U1 Cjjex S SE
@1 eI L
N
(Al >B)>C A g oW
c — —E
= —>I,H'i
Ci-c
s (by (62.i1.2))
= LA T q
7 (U5 Ay
DB
(Ciiexy = Hi (U :Cj)jexr
= ~ Uil:ﬁf_)A:ll_)B |:ii ~F i=1
I, (U Cjjex P SE
_gj{ 1+1 - | T
(Al > B) > C A B 0
C — —E
— —>I,U'{
C'I —-C
- (by (59))
7’ . ~ . o T ﬁ
rl,p(ﬁj FCijerrs (U5 A1)y
i
I, @ :C) Uil:Hg—)A:'u_)B Hi i=1 c
1 (U Cjexe , >
@l’ Al'+1 -8B L
(A 5B)-C A g oW
C - —E
— —>|,ﬁ1i
Ci—C

= (by (41) and (55))

2

The output 27", %y of the new method is the result of applying the pruning

procedure to (Z;: T = E),, Zo: (i : E),,A = C, where
I = 20 (Bicp,
G E)My = (wit Fi)ly, (Vi : Gi)icp,

as described in Case 2.2.1.1 of the new method. Let py, ..., ps list the elements of
Pin incvrgasivng order, so that m = n+s. Let u(i) and .#; be as in the description of
prune(2;", %). Fori=1,...,n, u(i) = iand Z; = 2/ is an @-interpolant to itself
via ;. Eor I =1,...,S, Zun+i Is an @-interpolant to %’&via Mni. We define
subsets ST' of {1, ..., m} and deductions &;: (z; : Ej)jes; = Ei)", as follows:

Tu{un+j)lpjeV) ifi=1,
Si =19 ifi e M’ — {1},
{u(n+j) | pje S} ifieM” - M —{1}.
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(AW jet . (M i Nppsev s TFT =1,
& =16 (/W) jes: I ifieM —{1},
|6 (M Vp))pjes i ifieM” - M —(1}.

(égl,éai’,&” are given in (63), (48), and (62), respectively.) We show that ST and
&M satisfy conditions 2—4.

Condition 2 follows from (64), (48.ii.b), and (62.ii.b), using the property of .#;
mentioned above. Condition 4 easily follows from (23).

It remains to prove condition 3. From (35) and (63), we see that

Dol E TN 1] =5 Dol (A IW))jet . (Mns i IVp,)psev] /21, (G T)T,]

N

c F

where
(@ Epjetutiow s A

L= F UMW) jer (LG T)nem )T jexc ]
(A'l —-B)—>C

al

 [@uoei t Buep)pjevi (U ANy B
(20 En)heUjenn, 550 By Gl Mnsi Vp))pjev] Gl /nnem]
6, [(63/75) jem, ] (Ci)jex; — Hi Cj

qa I = —E
H1 - AT+1 —-B A, -

(25 * Eg)geUnem; s1> Al]
jeK

j:

Al B
1+1

A'1—>B

—l, UE
Since 7o = | %o[(Ai/%)! 115, where T is given in (9), Zo is the normal form of

(Zy(n+i) : E,u(n+i))pi€P’ (UJ . Aj)ljzl’ A’
(Wit Fi)L,, A Bol(An+i/Vp;)piep]
.@6[(//4/W|)?:1]
(A, > B)>C A B

|
—>I,u1
—E

By (56) and (60),

z

ol

_ (Zu(n+j) : E,u(nJrj))pJeVI, ((Uj : Aj)o)Ll
@ Ej)jeUiEMil sio Ay gT[(//fnﬂ/VPj)Pjevi]
(gil[(éai/z)iEMil] (GJ)IEK:/ - ﬂ
- ﬁff - A:—+1 —B ﬁ

G T )nem;]

(zq: EQ)QEUheMj Sh’AJ]
jeK

N
A —>B (Uj:Aj)_l.

1+1 1+1

. . |
(20 * Ennetutns iipjev 1uUiewr Si> (Uj 2 Aj)jogs A

, Bol(G(Mrei Ny ] VL1 (G Tienar (U AT

]

|
)j:T+1

I
—l,u;

A'1—>B
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So it suffices to show

(65) T A /W5) jer (GL(ERTndnem 17T ek ] =5 DELA /Wi)4]

and

(66) ~

ol A i Vo) o] )Ly (G TNicwr . Vay - AT, 1.1 = Pol(Mei/Vp))pier].
We first show (65). By (47), (48.ii.a), and condition 2,

(67) (Z))jet:(Z))jecUiw s is @n interpolant to 2’ with respect to (I'; A’) via the

normal form of @6[9’/W1,(é?[z'i)iew]: Wj @ Fijet, @ - EpjeUi s A =
(Al - B)—>C.

Note that
(68) DT [Wir, (& [T)iew ] »p F (G [(En[Tnem,]/Tj) jexc 1.

Applying the induction hypothesis again to (67) and noting Lemma 32, we ob-
tain elements (o(j))jeUiy s Of {1,...,n} and deductions (.7 : wj : Fj = Fj)jet,
(P Wo(i) * Fp(j) = Ej)jeUic s, SUCh that

(69) i TUf{p())!l]je€ UiemwSi}={1,....n}

ii. a Zjisan e-interpolant to itself via .7 for each j € T;

b. 9,?(]) is an @-interpolant to Z; via & for each j € Uiew Si;

iii. éé[y/wl,((gi[z})ieM’][(jj/Wj)jeTa(f@j/zj)jeUiEMr sl »p %4
By (25), (69.ii.b) implies that for j € Uicw Si, u(e(j)) = p(j) = j and Zj is an
@-interpolant to itself via the normal form of &j[.#j/wj]: zj: Ej = Ej. Thus,

(70) Tulsi=(,....n,
ieM’
and
(71) Gl(Zi[A#5/w;)/z))jes] »p & forie M.

Also, by (69.ii.a) and (48.iv.a),

(72) F(Fj/wj)jer] »p F.

Now we can show (65) as follows:

F(AG/W5) jet . (G T Ynem;1/T}) jek ]

=5 Z4LF W, (& /T)iem 1[(A/Wj)jer] by (68)

=5 DT (Ii/W)jer /W, (B P[4 /Wi)/2))jes, ) /Z)iem (A4 /wi)jer] by (71) and (72)
= ZLF S5/ W) jer W, (12 /25) jes 1 Z)iew 145 /wi)}_] by (70)

= ZYLZ W, (G/T)iem (/W) e+ (P5/2)) e s W) ]

g Dy[(Ai/wj)i_,] by (69.iii).

We now turn to (66). By (61), (62.ii.a) and condition 2,
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(73) (%)) jev: (Z))jeUicur si> U - Aj)'j:l is an interpolant to % with respect to
(T, (uj: Aj)lj=1; A”") via the normal form of @0[(%/7011, (&i/Tiemr, (Va;
AV, g0t (V32 Giievs (25 2 E e si» (Vay © Aj)jy, A” = B,

Applying the induction hypothesis again to % with respect to (73) and not-
ing Lemma 32, we obtain elements (7(j))jcusi Of {1,...,s} and deductions
(Zj:Vj:Gj = G)jev, (- V. :Gp‘r(j) = Ej)jeUiyr s Such that
(74) LV U{p | e Uiem Sit=P;

il. a. %jisan g-interpolant to itself via .#j for each j € V;

b. %y, Is an o-interpolant to 7;j via Jj for j € Uiem~ Si;
iii. @70[(%/\%)?;1,(cgi/Z"i)ier/,(Va,-iAj)'j:m][(fj/Vj)jev,(%‘/Zj)jeuiew sl »p
Bo.

By (25), (74.ii.b) implies that for j € Uicm~ Si, u(n + 7(j)) = j and Zj is an
@-interpolant to Ay, ;) via Ani.(j): 2j 1 Ej = Gp,,). It follows that & is an o-
interpolant to itself via the normal form of Fj[.#n.+(j)/Vp,;,]: 2j: Ej = E;j. Hence
by condition 4,

(75) EUTi [ Mrie(y Vo) /2)ies] > & Forie M.

Also, by (74.ii.a) and (62.iv.a),

(76) Gl(FiV)jevi] »p 4 fori=1,...,7.
Now we can show (66) as follows:

@0[(% [(//mj/ij)pjeVi]/vi)ia:l, (&/Z)ieM”, (Vaj . AJ[V])IJ:T+1]
= Bol(G W)Ly (S /Tiewr Vay AT 5 T Ansi/Vp pjev]
=B ‘@;0[(% [(fj/Vj)jevi]f\ﬂ)?;l, (Cg?[(%[///n+r(j)/Vpr(j)]/zj)jesi]/Z)ier', (Vaj : Aj/yj)lj:ﬂl]
[(-#n+/Vp;)pev] by (75) and (76)
= éo[(%[(jj/vj)jevi]/vi)?zla (éai[(%/zj)jesi]/fi)iem//, (Vaj . Aj/yj)|j=T+l][(//nﬂ'/vpj)pjep]
by (74.1)
= BolG )Ly (& /TYiewr (Vay - AT

[V Dievs (F3/20) iU sl Vo piep]
g Bol(AMn+j/Vp;)pier] by (T4.iii).

Case 2.2b.1.2. | > 1, i.e., Case 2.2.1.2 of the description of the new method
applies. Applying the induction hypothesis to % with respect to (61), we conclude

1 <1,

and obtain subsets U? of P*, subsets Vla, (Si")iem~ of P~, deductions (%4 (vj :
Gj)jeuiovi (Va; Aj)")'j:m = (C)jexr — Hi)l,, and deductions (&": (v; :

Gj)jesy = Ei)iem~ such that

77) i a UL Ui=P*

71



b. Ul ViuUiems S/ =P~

ii. a foreachi=1,...,7, (%))jcuiuvi, ((Uj :AJ-)")LA+1 is an @-interpolant

to % via %;
b. foreachie M”, (%))jes; is an o-interpolant to Z; via &,
iii. Zol( /W)Ly, (& [Ziemr, (Va, A, 5,11 2 Zos

iv. a fori=1,...,qandfor je UjuV;, % is long for %; with respect to

vj:Gj;

b. forie M” and for j € S’, & is long for #; with respect to vj : G;.

Let% = “[(uj :Aj/vaj)E f+1]' Since ¥; satisfies condition (14) of Definition 16,

we have

(I) Every maximal path in ; that starts inside some Vi:Gj(je Bi UVij)oruj:A;j

(I'+1 < j <1) must end inside the endformula (Cj)jex» — Hi.

Note that since %; satisfies condition (13) of Definition 16, it follows from (77.ii.a)

and Lemma 21 that %; also satisfies condition (13).

LetV = UL, Vi Let &1 41:CY > (GiJieps > AL 5 B) > C, Wy F)jer-, (vj:

Gjjev = 61‘; — C be the following deduction:

(78) & =

(Vj . Gj)jeUiuViv ((ui : Aj)o)

T q

j=i+1
4
(Cjexy = Hi (U : Cj)jexs
= .09 = —E
— Ui1 : H? - A:ﬂl —B Hi i=1
W Fjer, (Uj : Cjjes .8 —E
(gf 1+1 - | UT
% :Ck - (Gierr > Al 5 B)>C Ci AL —B T
, —E , =1, (Vi)iep+
(Gi)iers = A}, > B) = C Gidiepr = Ay, — B
—E
< 1Tk
— —1,
61{ —-C !

where (élk is as in (49) and iy is defined immediately above (55). Since & satisfies
condition (I13), &1 normalizes by a sequence of non-erasing B-reduction steps. We

can show

(79) |.@1|IB, (9})@-, (%)) jev is an @-interpolant to 1 via |(§1|ﬂ.

That & satisfies corldition (14) of Definition 16 can be checked using (F) and (I).

It remains to show &1[21 /71, (gj/wj)jeT‘a (a@j/vj)jev] g D.

(9?01[@1/2’19 (QJ{/Wj)jeTw (Bi/vi)jevl
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a

(Vj : Gj)jeUi, Ujevi F/j,7 ((uj : Aj)o)];zf+l
GUBi/Vi)jev] B
(Ciliexy = Hi (U :Cj)jexr
, = Ui1-Hf—>A:+l—>B A, —E o
U Ui Ty Uier T3 02 Cjee — E
~ 2 ’ -
D <51‘([(—@; /Wj)jer-] T+1 S
le = ((Gi)iep+ — A}+1 —-B)—>C C'{ A:;l B > Ui
E |, Vi)icp+
((Gi)ieP+ - A:ll - B) -C ” (Gi)ieP+ g A:l.l —B - ( I)IGP
C _ —E
= -, Tk
Ci-c
g (by (10))
T q
(Vj : Gj)jEUi’ Uje\/i r},’ ((UJ : Aj)o)lj:f+l
G(Bi/v))jevi]
(Ciliexy = Hi (U :Cj)jexr
5 — SE
Ui1 HT - :+1 - B Hi i=1
AL—B oF
+7 | [ " . o
! f e 6) A:~+1 3 —=Lu,, I; ,((Uj{%._)Aj) )|j=1
T, jer= 4 Ui Cg)jers = , =1, (Viiep+ /i
2 U7 w))jer-] Gliee ~ A, B Gi =
Ck—>(Al->B)—>C ck c A:A+l—>B »
— U
(AL 5>B)—>C - A B 1
C _ —E
—>|,ﬁ§
Ck>cC
g (by (53))
T q
(i 2 Gyieui» Ujew, T (Ui - A g,
GLZi/vi)ien] B
(Cj)jEKi” — Hi (Uj :Cj)jEKi”
— =5 — SE
Ui, : Hg - :+l - B A, L
[ —E
A —-B
Hl: =] UT i
A:A+1 —B > il Fi 5 ((Uj . Aj)o)j=1
_)|7(Vi)ieF’+ PBi
= ~ Giicr+ = Al — B Gi e
1'"1, (Jj :Cj)jeK’ | SE
o) AA b B
@1 1+1 N ur
(Al >B)—>C A -B !
C - —E
—>I,U‘I
Ck>cC
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—>p

"’ . o i 74 . o T a
Useus T7 (5 ADYjg Ujey, TF (U5 AD) gy
B M)l B )]
(Cjiexy — Hi (U 1 Cjexy
— T — —E
U, tH - A:‘+1 —B H; i=1
o ~ A:—+1 - B T o
Ly, (Uj 2 Cjjex: ———-lu
~ A. —B +
2 L i
= >|,u
(Al >B)—>C Al > B !
c . —E
= —>I,G'i
Ci—cC
s (by (77.i1.2))
= C AT a
75 (U2 Ay
P
Cjexyr = Hi (U :Cjjexr
— o7 | — —E
Ui, 1 H — AT+1 —B H; i1
= ~ A:—+1 - B T o
I, (U : Cjjexr | —>I,u:n1
=, A —B +
2 L i
| | —-lu
(A, —>B)—=C Al —B
c . —E
—>|,ﬁ1i
Ci—-c
5 (by (59))
” E Caey T
T7 @ Chjeryrs (U - AD°)y
_ 7
ﬁil : Hg - A:‘+1 —B Hi i=1
Al 5B —E
T .. ~. e Hli T
rl, (U] ;’C])]EK m —)I, UI 1
2 LS i
| | —l,u;
(A;,—B)—=C Al —B
c - —E
= -1, T
a{ —C !
= (by (41) and (55))
2

The output 27", 2 of the new method is the result of applying the pruning
procedure to (%: Ty = E)M,, %: (Zi: E)",, A = C, where
P = 1Dlg, (Z])ien, (B icp-
(Zi :E)y = 21:CY - (Gi)iep+ — AL, = B) > C, (Wi : Fi)ien, (Vi : Giicp-

as described in Case 2.2.1.2 of the new method. Let nq,..

.,nrand py,...

, Ps list

the elements of N and P~, respectively, in increasing order, so thatm = 1 +r + s.
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Let (i) and . be as in the description of prune(Z™, 7). We have u(1) = 1 and
D = .@1 = |921|ﬁ is an o-interpolant to itself via .#;. Fori = 1,...,1, D,a+i
is an @-interpolant to 21, = @r;i via A4, Fori =1,...,8, Dy@a4r+i is an o-
interpolant to .@Hm = By, via M 14r+i- We define subsets ST of {1,...,m} and

deductions & (zj : Ej)jes; = E), as follows:

Bufp@+IinjeT huiu+r+j)IpjeVy} ifi=1,
Si={{u(+])Injes) ifi e M — {1},
{u@+r+j)lpjeS’} ifieM” - M —{1}.
|G LA o, (M /Wo InjeT-, (MrarsjNppsev]ls i =1,
& = 16 [(Ar+j/Wnnjes: I ifie M —{1},
|8 [(A 145+ /Vp;)pjesy I ifie M”-M" —{1}.

(é"l,é‘;’,é‘;” are given in (78), (48), and (77), respectively.) We show that ST and
&M satisfy conditions 2—4.

Condition 2 follows from (79), (48.ii.b), and (77.ii.b), using the property of .#;
mentioned above. Condition 4 easily follows from (23).

It remains to prove condition 3. From (35) and (78), we see that

(& T) 1] =5 Doléil A0/, (M 145/ WnnjeT- (Arie+i/Vp,)p,ev /21, (G /T),]
21:C§ = ((Giiep» > AL = B)—=C
1
s Ci=(Giiers > AL —>B)>C  ZF

(GiJier = AL —B)—C
C

E —
t %

—E

where

(20 Ennetu@+iinjeT- 10U Si0 A
LE = G M W) oyer- (GLE T Yiewm, 1T jerc']

Ci
(Vi 2 Gy)ieuss @urrei  Buweredpjevis (U5 1 AD) g, ((Zg : Egdgetnan ,- 50|
(Zj : Ej)jEUieMil Si» Ail %[(/flﬂﬂ'/vm)pjevi] cgj[(ézi']ﬁh)heMj]
(gh[(éaim)ieMil] (€ — Hi Cj ek
‘%7 = va - A%“Fl - B |q|

El

Al 5B
1+1 T

-, u:;

Al 5B > T+l

1+1
—l, (Vi)ieP+

(Gi)iep+ — A:A+1 —B
Since 9 = I%[(.//Zi/ii);ﬁzl]lﬁ, where % is given in (11), & is the normal form of
21 : CX > ((Gi)iep- — ALl —-B)—C

M
CI{ = ((Gi)iep — A:‘+l —B)—>C glk

E
(Gl ~ AL =B =C

C

—E
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where

(Zu(1+i) - Ep(u+iy)nien, A
$1k= Cglk[(///hi/wni)nieN]
Ck
1
(Vi : Gi)ier+» (Zu+r+i) - Euer+i)) pier-» (Uj - Aj)'j:m,A"
P = Bol(MrarsiVp) piep-]

. |
(Gi)iep+ — Al 5B HI,(VI)IEPHUTH
I+1

By (56) and (60),

Z
T . -~ q
(i 2 Gjeu @uwore * Epuwersidogevis (U5 1 AN, (20 BadacUnew n- A
@z EJ')J'EUieM.1 si> Aig g[('%1+r+j/vpj)Pj€Vi] Cgi[((g)hlz‘)hEMJ]
G, [(/T)iem, ] (Cjjexy — Hi Cj ek
qa [ = —E
— H - AT+1 Bl Hi i=1
B I SB —>E(u_ 'A-)'
Tl i Ak,
|
Al 5B -l uf+1
1+1
=1, (Vi)icp+
(Giiep+ — A}+1 —-B

(Vi 1 Gi)iep+ (2n  Endnequar+ jipjev 1uUiawr Sis (Uj * AJ')Ij:f+1’A"

Bl G M Vo)) R (6 Bienr, (052 AT, ]
= |

’ A[ SB -l uf+1
1
: =1, (Vi)icp+

(Gi)iePJr - A:A”_ —-B

So it suffices to show

(80)  CF[(Mrri/Wnnier-, (GLETYiem /U] jex] =5 CXI(Mri/WnImen],

and
(81) B
Bol(GI(M1re+iVp,)psevid i)y (ETiems Way - AT — 1 =p Bol(Mrsrsi/Np)prep-1-

j=1+1
We first show (80). By (47), (48.ii.a), and condition 2, we get
(82) (.@Jf),-eT, (Z§) jeUin Si 18 an interpolant to 2 with respect to (I'; A’) via the
normal form of @6[%‘/v~v1,(<§i[z'i)iew]: Wi Fiet @ - ERjeliaw S0 A =
(A'1 — B) - C.

Applying the induction hypothesis again to 2’ with respect to (82) and noting
Lemma 32, we obtain elements (o(])) jeU,.,, si OF {1, . .., n} and deductions (.7 : wj:
Fi= Fiet. (Zi: Wag)  Fa(i) = Ej)jeUiew si SUCh that

83) i. Tu{p())l]jeUiew Si}=11,....n}
ii.  a @Jf is an @-interpolant to itself via .7 for each j e T;
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b- 755
iii. ZiL7 Wy, (G/ZD)iem I(F5/W)) et (P/2)) icUiew 511 8 D

By (48.iv.a),

is an @-interpolant to Z; via & for each j € Uicw Si;

(84) F(Fj/wj)jer] »p 7.
We have
LT 101 (G [TYiew (W) et (P512)) e 1]
= LTI} /W (G ZP3/2)jesi ) Tiew ]
5 D3I [, (EUP)/2))jes ] TYiew] by (84)
Wj  Fjjer-, (U : Ci)jek:
%lk
Wl:Cl{—>(A'1—>B)—>C C'I
= (A'1 —-B)—>C
(Chiexs = (A, >B) > C

(Watw * FoneUia, s Aj
Cil(E1(Ph/2n)nes;] /T)iem;]
C)

—E
=1, (Uj) jex’

jek”
(AL 5B)>C —E
by (46) and (49)
 (Wn et utaticUiee - A
CE(GUEN(Pn/2n)hes, 1 [T)iem; 1 /T jex:]
78wy Ck— (Al - B) - C ck
(Al >B)>C —E
Therefore, by (6) and (83.iii),
(85) CUGENPh 20)nes 1 BYiem 1 /T)) jexr] 5 CF
which implies that
(86) T-ulp)lje | sit=N.
ieM’
Let (o(]))jeUi si D€ such that p(j) = n,j) for each j € Uicwr Si. By (86),
(87) T"uingliel Jsit=N
ieM’

By (25), (83.ii.b) implies that for j € Uicm Si, u(1 + p(j)) = j and Zj is an
g-interpolant to 7 . via A1.(j): zj D Ej = Fp,. It follows that ; is an o-
interpolant to itself via the normal form of &j[.#1.,(j) /wn,;]1: 2j:Ej = Ej. Hence
by condition 4,

(88) GNP AMrip(j) [ Wo,)]/2))jes] »p & Torie M.
Now we can show (80) as follows:
G A5 W et (GG /Diem )T jex']
=5 CX[(M14§ /W, nyeT- (G EN( PRl M pry Wi,y 20)hes, ) [Fiem;]/Tj)je:] by (88)

= GUEEN P/ 20nes 1 /T)iem1/T)) jek 141+ /Wn Jnjen] by (87)
~p CE[(M14j/Wn)nen] DY (85).

We now turn to (81). By (61), (77.ii.a), and condition 2,
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(89) (%j)jer+uvs (Z))jeUien Si> (U] :Aj)lj:m is an interpolant to % with respect to
(T, ((uj :Aj)")'j:l; A’") via the normal form of @o[(% [\ﬂ)?zl, (&i/Z)iemr, (Va;:
AT, g0) (Vi Gidiepruvs (23 B et s Vay S A, 7, = B.

Applying the induction hypothesis again to % with respect to (89) and not-
ing Lemma 32, we obtain elements (7(j))je., s Of {1,...,s} and deductions
(Fj:Vj:1Gj = G)jerruv, (T Vo * Gpry = Ej)jeUiw- s SUch that
(90) i. Vu { P=(j) | j € UieM" Si}=P7;
i, a. %jisan g-interpolant to itself via .7 for j € PT UV,
b. %y, Is an g-interpolant to 7 via Jj for j € Uiem~ Si;
iii. éo[(gi/vi)ia:l,(é?[zvi)iew/a(Vaj:Aj[yj)ljzljrl][(fj/Vj)jePﬂJV,(%/Zj)jeUiEMu sl »p
By.
By (25), (90.ii.b) implies that for j € Uicm~ Si, u(1 + 1+ 7(j)) = jand 2 is
an g-interpolant to Ay, Via A 14r1.(j): 2j - Ej = Gp,;)- It follows that Z; is an

@-interpolant to itself via the normal form of Jj[.#1.r+«(j)/Vp,]: 2j : Ej = Ej.
Hence by condition 4,

(91) EUT L Mrer ety Vo)) /2])ies] »p & forie M.

Also, by (90.ii.a) and (77.iv.a),

(92) Gl(Ap;Vp)pjeuiovi] »p %G fori=1,....7.
Now we can show (81) as follows:

<FQ?O[(gI [(///1+r+j/ij)pjeVi]/W)ia:1’ (Cg‘i/z)ieM”’ (Vaj : AJ/VJ)IJ:T_HL]

=5 Bl Voy)psevn I Aasrs 1V )y DL
(ST LM rsratiy Vo) /20D jes ) Biemr, (Va;  Aj/Y), 1,1 by (92) and (92)
= @0[(%[(fpj/ij)p,-eUiuvi]/—\mia:y (éai[(%/zj)jesi]/'fi)iew,, (Vaj : Aj/Vj)Ij:TJrl]
[(.#14r+j/Vp;)pjer-1 by (90.)
= BolG/ W)Ly, (6iBiew (V, Aj/yj)ljzm][(jpj/ij)pjeP*UVa (Ti/2)) jeUinr sil
[((A14r4§/Vp;)pier-]
»g Bol(A1+r+j/Vp;)pjer-]1 by (90.iii)

Case 2.2b.2. The main branch of 2" leads to an assumption belonging to I'"”
or to some uj : Aj, i.e., Case 2.2.2 of the description of the new method applies.

Then (D) and (43) imply that the main branch of @{’ must lead to an assumption
belonging to f’l’ or to some uj : Aj, and 2;" must have the following form:

T, @i : Cidiexr, (U Ay
(93) Dy = Za

| —>I,u'1
A1—>B

where é{" does not end in —1. Since Z; satisfies condition (13) of Definition 16,
2,'~ must satisfy the following condition:
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(J) Every maximal path in @1" that starts inside the endformula B or some
Tj : Cj must end inside an assumption belonging to T}’ or some u; : A;.

From (43) we obtain

(94) D UGUDi[T) iem] [Tk ] 5 B.
Let
Ff, (Ui CF:vi)ieK”, ((uj : Aj)o)lj:1
(95) B = e
—5 (T)iex~
Cieckr »B
@7 Ej)AjdeMpAi
(96) Bo= 4
Vi : (Ci)iekr — B Ci ieK”
—E

where %; are as in (35). We show

(97) 2? (Z)jem~ is an interpolant to 22 with respect to (I””, ((u;: Aj)°)}_;; A”) via
ABy.

Firstly,

Bol B V1, (i T))iem] 5 27 " [(GUDi/Z)) jem ) W)iex]
»g B by (94).

Secondly, 7 satisfies condition (I3) of Definition 16 by (J). Finally, the property
(D) ensures that %, satisfies condition (14) of Definition 16. So we have shown
97).

By the induction hypothesis, we have subsets W, (S;")iem~ of {1,...,p} and
deductions ¢: (vj : Gj)jew = (Ci)iek» = B, (&1 (Vj: Gj)jesr = Ei)iem~ such
that
(98) | WUUiEM” SIU = {1,,p},

i. a (%))jew isan g-interpolant to Z via ¢;
b. foreachie M”, (%j)jes- is an o-interpolant to 2 via &5

iii. 0l [V, (& [Tiew] 5 Zo;
iv. a. for jeW, ¥ islong for #; with respect to v : Gj;
b. forie M” and for j € §;’, & is long for % with respect to v; : G;.

By (98.ii.a), (98.iv.a), and part 2 of Lemma 44, 2% and 4 have identical final
blocks of applications of —1. Since £ satisfies condition (13) of Definition 16, it
follows from (98.ii.a) and Lemma 21 that ¢ also satisfies condition (13). By (12),
(95), and (98.iii), then, & must be of the following form:

. .~ q
(Vj : Gj)jew;» (Uj : Cj)jexs
A
(99) @ = V1. Hf —B Hi i1
B —E
_>I’(_Jj)j€K”

(aj)jeK” —B
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where

(LJUWL U---UWg = W,

(100) Ky U--- UKy =K”,
wiu | ) | sh=ri
jeK!” heM;

Since ¢ satisfies condition (14) of Definition 16, each A must satisfy the fol-
lowing condition:

(K) Every maximal path in ji%ihat starts inside the endformula or some v; : G;
must end inside some Uj : Cj.

Since Z[(%i/vi)iew] 5 2 by (98.ii.a),

(101) _ ;
TL (AN sy (e T (052 Ay T < Gy
, B Do -
H(f B il( JI—/|i i)jew:] . g 9]
B - —E

By (98.ii.b), S c P~ fori € M”, so we have

Pi+ cW;.
Let
Vi =W, - P},
so that
(102) Wi =ViUP/,
(103) Pr=viul ) sy
jeK{” heM;

LetV ={J?, Viand letU =W — V. We have

Let &1: 21:CY — ((G)jepr = HI)y = C.(Wj : Fj)jer-. (v 1 Gj)jev = CX > C
be the following normal deduction:

(104) & =
WF T u6 K —_
(w; + F T%;k(v’ ek (Vi : Gjerruvis (T; : Cjjexsr ’
) I
. JE
4iCE = (G = H)L —C CY Hi
- —E — 5, (V))jepr
((Gj)jsPi+ i Hi)i:1 -C (GJ')JFF’,Jr — Hi I i=1
C —E
= —>I,U1?
61{ —-C '

where € is as in (49). We show
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(105) |.@1|ﬁ, (Qj)jeT—, (%)) jev is an @-interpolant to .@1 via &;.

That &7 satisfies conditign (14) of Definition 16 can be checked using (F) and
(K). It remains to show &1[21 /%1, (_@J{/Wj)jeT—, (Bj/Vj)jev] »p Ph.

T UTY U Uieps TY

@@1[@1/21, (@J{/Wj)jeTw (%j/vj)jev]

Ujer- T}, (G : Chjex:
G U Wj)jer-]

(i :Gjerr> Ujey, T (@5 : Cj) e

173 (%
1B IV )iy
Cf = (Gjer; » HI)L, — C Ci il 'J“/'VJ)J !
—E >, (V))jepr
((Gj)jery — Hi)L, - C (G))jer; = Hi 1 i=1
E
C = 4
= -, Tk
61; —-C !
-5 (by (13))
"’ - ~ q
(Vi 1 Gj)jers» Ujew; T (U 1 Cj)jexr
%[(%j/vj)jeVi] r/j,’((uh : Ah)o):‘zl
I VA (TR 91 B e 4
r, Uer Tp@:Ci g J (Gier; — Hi W ° il
7,  GUZw)e-]  HI-B H s
Ck>(Al->B)—>C Ck
I SE I -, UI1
(A, —>B)-C it
c - —E
— —1,T¥
C‘I —-C
g (by (53))
(;:Gjeprs Ujey, T (@5 C ey q
HUBiVi)jen] T (Un : A) Yy
Ty (U5 Ay __H =1, (Vj)jep+ f.j
A (Giery — Hi ' ! <P
— _ q ;
T, @ Cj)jawr  M17B il s E
é’/ | ”
1 —)I, Ul
(A =B —C A B
c - —E
= —>|,U1i
6‘; —C

—>p

% . o L~ q
Ty (A, (Uievorr 7 (U5 A) Dm0 C ey

By HPINY jevioe: ]
ri,(m : Cj)jEK/ Hg —B H; i=1
7 B —)I,UI1
(Al ->B)—>C Al >B
c - —E
= -1, Tk
Cimc
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4 (by (102) and (101))

Ty, (@ : Ciiekr. (U : A

T3 (@2 Cierc 7
@1, -l
(Al »B)—C Al —B !
c — —E
= -1, Tk
61; —C !
= (by (41) and (93))

The output .@m, 9y of the new method is the result of applying the pruning

procedure to (@. I = E )I 1,%: (Zi: Ej ):“1,A = C, where

= I%Iﬁ, (Z)ieN, (Bi)icp-,
G:E) =7 :Cho ((Gj)jepr = Hi)iLy = C, (Wi : Fidien, (Vi : Gi)icp-,

as described in Case 2.2.2 of the new method. Let ny,...,n. and py,..., ps list
the elements of N and P~, respectively, in increasing order, so that m =1 +r + s.
Let ,u(l) and ///. be as in the description of prune(@m, %) We have u(1) = 1 and
91 = _@1 = |@1|B is an g-interpolant to itself via .#;. Fori = 1,...,r, Z,14i)
is an - mterpolant to .@1+. = .@ via A14i. Fori=1,...,s, @y(lwr.) is an @-
interpolant to 91+r+. By, via ///1+r+. We define subsets Sm of {1,...,m} and
deductions & (zj : Ej)jes; = Ei )™, as follows:

Ufpu(l+ ) InjeT uful+r+j)lpjeVy) ifi=1,
Si={{u(+])Injes) ifie M — (1),
{u@+r+j)lpjeS’} ifie M’ — M’ —{1}.
e[/, (A1 /Wi njeT-» (A 1irsj/Np)pievllp ifi=1,
&i = & [( A+ /Wi njes 11 ifieM —{1},
& [(A14x+(/Vp;)pjesy I ifie M’ - M’ —{1}.

(gl, &7, & are given in (104), (48), and (98), respectively.) We show that Srn and
51”‘ satisfy conditions 2—4.

Condition 2 follows from (105), (48.ii.b), and (98.ii.b), using the property of
; mentioned above. Condition 4 easily follows from (23).

It remains to prove condition 3. From (35) and (104), we see that
@0[(5/~) 1] =B -@0[6@1[%1/21’(%1+]/Wn )nJeT (//1+r+J/Vp])pJeV]/~1,(g/~) 2]
21:C¥ = ((Gj)jepr = Hi)iL, = C

M
Sy CE=(G)ier; o H)L, »C ZF _
H —_—
((Gj)jepr = Hi)iL, = C 7%

C —E

where
(2h * Enhe(u(t+ hinjeT - 1uUiew i A
L = CU( MW njer (GG TYiem;]/T)) jex]
Ck
1
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(V) : G)jepr (29 : Eq)getutor+ DipseVi Ul Sne Ujexy Aj
% = <%'ﬂ:(//flﬂﬂ/ij)pjevi, (ng [((gah/—ih)heMj]/Uj)jeKi"] fori=1,...,q.
Hi

—_— —>|,(V')' p+
(Gj)jery — Hi I

Since % = @o[(///i/ii)f‘:l]lﬁ, where 2 is given in (14), & is the normal form of

21:CK = ((Gj)jerr = Hi)L; = C
WA
Ck = (G)jep: » H)L, »C 2K
((G)jepr = Hi)iL, = C
C

—E
q
%l

—E

where

(Zu(1+i) © Epqeiy)nien, A
LK = CH( M1 /Wi )nen]

Ck
1

(Vi : G)jerrs (Zuqrr+i) * Euttre)pjerys A
%[(ﬂlwﬂ/vpj)pjeﬂ’]

Hi
(Gjjer; — Hi

i = fori=1,....q.

=1, (Vj)jeps

So it suffices to show

(106)  GX[(Mrsi/WnnjeT-» (CiL(ET)iem,1/T)) jek ] =p CXI(Mrsi/Wo)nen],

and
(107)

%[(///1+r+j/vpj)pjevi, ((gj[((g)hfzh)hEMj]/Uj)jEK{'] =B %[(ﬁhwj/vpj)pjeﬂ‘]
fori=1,...,q.

We can prove (106) in exactly the same way as (80) of Case 2.2b.1.2.
We prove (107). By (97), (98.ii.a), and condition 2, we get

(108) (#))ijew, (Z))icUiu~ s 1S an interpolant to % with respect to (I, ((u;j :
Aj)°)'j:1; A") viathe normal form of %o[¥ /V1, (&i/Zi)iem ] (Vj:Gj)jew, (Zj:
EicUiew 5i-A” = B.

Applying the induction hypothesis again to % with respect to (108) and not-
ing Lemma 32, we obtain elements (7(j))je..,,» s Of {1,..., p} and deductions
(Zi:Vj:Gj = Gjjew, (Jj: Va(j) - Gz(j) = Ej)jeUiy s Such that
(109) i WU {7(j) ] € Uiem~ Si} ={1,....p}
ii. a. %jisan o-interpolant to itself via .#; for each j e W;
b. %) is an @-interpolant to Z; via .Jj for each j € Uicw~ Si;

iii. 2ol V1. (G/T)iem 1T V)) jew- (F5/25) iU si] 25 Po-
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By (98.iv.a),

(110) GI(IiVjew]l »p 9.
We have
Bol9 V1. (& [TYiew IV iew- (T2 el 1]
= BolG1(I1/V) i) V1. (LT3 /7)) jes, )/ T)iem ]
5 BolY N (E1(T3/23)jes, ) T)iemr] by (110)
(V5 G jews- (@ : Cjerr )’
A _
viiH! > B Hi i-1 (Vi) * Gt(@))geUnem; sn> A

— B @) GLE(Ta/25)ges ) e
(Cpjexr — B Cj ek
B —E
by (96) and (99)
(ve: Gf)feWiU{%(g)\gerEKi// Unem; Sh)> Ujexs Zi q
g HEUE( T/ 26)ges,) Tndnemn, 1 /0] jexc]
vi:H > B H; i
B —E
Therefore, by (12) and (109.iii),
(112) HUG( (T /29)ge,] [Tndnem, /T jewr ] p A,
which implies that
(112) viutr@ lge [ [Jsnr=pr.

jeK!” heM;
Let (7(})) jeUiou~ si b€ such that 7(j) = pj) for each j € Uiem~ Si- By (112),

(113) Viu{pglge U USh}=Pi_-

jeK!" heM;

By (25), (109.ii.b) implies that for j € Uiecmr Si, u(1 + 1+ 7(j)) = jand Zj is
an g-interpolant to Ay, via A14r1.(j): 2j - Ej = Gp,;)- It follows that Z; is an
@-interpolant to itself via the normal form of Jj[.#1r+.(j)/Vp,;]: 2j 1 Ej = Ej.
Hence by condition 4,

(114) ST AMrre() Vo) 2] jes] »p & Torie M7,
Now we can show (107) as follows:

A AMir+ i IVp))pievis (C1L(En Tndnem;1/T)) e ]

=B c%%[(///l+r+j/vpj)pjevi, (ng[(éoh [(%[///1+r+r(g)/Vpr(g)]/zg)gesh][Zh)heMj]/Uj)jeKi”]
by (44), (100), and (114)

= AT Ty 20)a5] Fdnewn, T e W e Vo Dpyep 1 by (113)
> %[(z///hwj/vpj)pjePi‘] by (111).

This concludes the proof of Claim C. O
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Remark. Using the algorithm given in the proof of Claim B, it is not hard to see
that the function prune can be computed in polynomial time. Since the complexity
of the new method is clearly dominated by the complexity of prune, it follows that
the new method itself can be implemented to run in polynomial time.

Example46. Consider the following normal deduction & x1: ((p1— p2) — ps) —
P6,Y1 1 P4 — Ps, X2 1 P3 — Pa,Y2 1 P2 = P3, X3 : P1 = Pe from Example 31:

U:pr— P2 X3:P1

Y2:P2— Ps oo -
X2 1 P3— Psa Ps £ -
Y1 Pa— Ps Pa -
Ps —E
— Slu
X1 1 ((p1— P2) = Ps) = Ps  (P1— P2) — Ps
—E

Pe

Let us see how the new method works on this deduction with respect to the partition

(X1 :((p1 = P2) = Ps) = Pe, X2 : P3 — Pa, X3: P1 ; Y1: P4 — Ps, Y2 : P2 = P3).

Let 20) the subdeduction whose endformula is p;. We list the A-terms (along with
their type) corresponding to the interpolants computed by the new method when
given 20 (together with the relevant partition) as input:

2@ py Case 2.2.2.  uxz: pz

2 by Case 2.1. Uxs : P2

2™ by Case 2.2.1.1. Xy : p3 — Pa, UX3: P2

20 py Case 2.1. X2 : P3 — Pa, UX3: P2

2©® py Case 2.2.1.2.  Av.x1(Au.v(ux3z)) : (P2 = Ps) — Ps, X2 : P3 — P4

The output of the new method on & is the sequence &1, &2, & of Example 31. (In
this example, the pruning procedure does not affect the outcome.)

Remark. We note that Theorem 45 relativizes to substructural logics (BCl-logic,
BCK-logic, R_,). Condition (11) of Definition 16 is strengthened to “T’y,...,I'y =
I'” in the case of BCI- and BCK-logic. These logics do not require the pruning
procedure, and the proof of Theorem 45 is accordingly greatly simplified.

Remark. We may choose to treat deductions modulo n-equality, as is often done
in typed A-calculus. This will simplify the proof of Theorem 45 in many places.
In particular, Cases 2.2.1.1 and 2.2.1.2 of the Induction Step of the new method
will no longer need to be distinguished. Of course, the resulting statement of the
theorem will become weaker.

4 Discussion

We have presented a new algorithm for computing an interpolant to a given normal
natural deduction & (with respect to a partition of its set of assumptions) in the im-
plicational fragment of intuitionistic logic. From among many interpolants to &,
this algorithm picks out a strongest one in a certain natural sense, but our notion of
an “interpolant”, given by Definition 16, is somewhat restricted because not all in-
terpolation sequences (in the sense of section 1) can be obtained from interpolants.
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For instance, consider the following deduction:

X:(p—=>0g)—>r y2:p—q y3:q

G- Y1irT>Tr—>s r ~E xipoqor poqg™
H

—E r

r— S
S —E

The one-formula sequence (p — q) — r is an interpolation sequence to (p — q) —
r,r—r—s, p—d,q = Sswithrespectto the partition ((p—q)—r; r—r—s, p—q,q).
The associated deductions

21=x.(p—>q)—r
PDo= Y[z1:(p—q) —r/X]

satisfy conditions (I11), (12), and (13) of Definition 16, but not (14), so &, does not
count as an interpolant. Up to Br-equality, there is only one interpolant to & (with
respect to the partition in question), namely 21, 2, where
ViQ
. " Sa
Dy = X-(p—>Q)r—>r P—q .
g—or

I
E

—l,v

This interpolant gives an interpolation sequence (p — g) — r, g — r which is more
complex than the above interpolation sequence (p — q) — r. A weaker definition of
an interpolant is conceivable under which (the sequence consisting of) 2, counts as
an “interpolant’ to 2, but interpolants in such a weaker sense cannot be constructed
inductively. (Note that x: (p—q)—r is not an ‘interpolant’ in any reasonable sense
to the immediate subdeduction of & whose endformula is r.) Our definition of an
interpolant (Definition 16) is the one that is naturally extracted from the existing
syntactical methods for proving interpolation.

It may also be worth mentioning that the interpolation sequence associated
with a strongest interpolant may not be one of the simplest ones among all the
interpolation sequences obtained from interpolants. For instance,

X:p—>p—>Q yp_)

9 = P4 E y:ip
q —E
has an interpolant
X:p—>p—q u:p
pP—4 aH
q -k
m—)l,u

which is strictly less strong than the strongest interpolant:
X:p—p—q.

The main result of this paper should be compared to a result in Pitts 1992,
which states that the set of interpolation formulas to a given sequent I’ A = C in
intuitionistic propositional logic has a least and a greatest element with respect to
the usual preorder given by

A<B iff A= B.
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This result by Pitts is different from our main result in a number of respects. Firstly,
Pitts’ proof of his result does not take into account ‘intensional’ properties of in-
terpolants as expressed in our condition (12) of Definition 16 or condition 3 of
Definition 5.17 Secondly, Pitts’ result essentially depends on the presence of con-
junction and disjunction and it does not specialize to the implicational fragment of
intuitionistic logic. Thirdly, his result makes essential use of Weakening and does
not relativize to substructural logics. Looking from the opposite angle, since not
all interpolation sequences are obtained from interpolants in the sense of Defini-
tion 16, our main result does not imply that Pitts’ result holds of the implicational
fragment of intuitionistic logic.
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