
Noname manuscript No.
(will be inserted by the editor)

A Note on Intensionalization

Philippe de Groote · Makoto Kanazawa

the date of receipt and acceptance should be inserted later

Abstract Building on Ben-Avi and Winter’s (2007) work, this paper provides a gen-
eral “intensionalization” procedure that turns an extensional semantics for a language
into an intensionalized one that is capable of accommodating “truly intensional” lex-
ical items without changing the compositional semantic rules. We prove some formal
properties of this procedure and clarify its relation to the procedure implicit in Mon-
tague’s (1973) PTQ.

Keywords intensionalization ·Montague semantics

1 Introduction

Ben-Avi and Winter (2007) proposed a procedure for intensionalization, a method
for mapping an object of an “extensional” type (i.e., type based on atomic types e
and t) into an object of a corresponding “intensional” type (based on e, t, and s).
They used this mapping to convert an extensional semantics for a fragment of natural
language, where all lexical items have extensional denotations, into an intensional
semantics which assigns “intensionalized” denotations to the same lexical items and
which is capable of accommodating new lexical items with “truly intensional” deno-
tations without any change in the grammar. This is supposed to allow a “modular”

This note has its origin in the discussions we had with Reinhard Muskens in Tokyo in early 2007, after
all three of us had heard Yoad Winter present his joint work with Gilad Ben-Avi on intensionalization
(see Ben-Avi and Winter 2007). A previous version of this note, dated December 2009, was cited in Jan
van Eijck and Christina Unger’s textbook (van Eijck and Unger 2011). The section on Montague’s typing
(Section 5) is new to the present version.

P. de Groote
INRIA Nancy - Grand-Est, 615, rue du Jardin Botanique, 54600 Villers-lès-Nancy, France
E-mail: Philippe.deGroote@loria.fr

M. Kanazawa
National Institute of Informatics, 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, Japan
E-mail: kanazawa@nii.ac.jp

2 Philippe de Groote, Makoto Kanazawa

development of natural language semantics, where the purely extensional fragment
is first presented in the simplest possible terms, without the machinery of possible
worlds. Intensionalization can also be discerned, in a particularly simple form, in the
semantics of various intensional logics, which are usually built on top of the standard,
extensional language of propositional or first-order logic. The higher-order character
of natural language semantics makes it a less trivial task to find a suitable definition
of intensionalization.

This paper presents an alternative intensionalization procedure that is more gen-
eral than Ben-Avi and Winter’s (2007) in two respects. First, Ben-Avi and Winter’s
procedure is only applicable to objects of types that are either quasi-relational or e-
based—in other words, types that contain no subtype of the form (α1→ · · · → αn→

t)→ β1 → · · · → βm → e. This limitation stems from the fact that their type change
scheme replaces t by s→ t, but leaves e unchanged. In contrast, the present scheme
uniformly replaces each atomic type a in an extensional type α by s→ a to produce
an intensional type α; this uniformity allows the intensionalization procedure to be
defined at arbitrary extensional types. Second, unlike Ben-Avi and Winter’s (2007)
method, where the input is a single extensional object, the method defined here takes
a set of extensional objects of type α parameterized by objects of type s, and returns
an object of type α. This allows a construction of an intensional model from a class
of extensional models viewed as possible worlds; as a result of this, there is no need
to stipulate a sharp distinction between lexical items that are “logical constants” and
others whose denotations are unconstrained, as in Ben-Avi and Winter’s construction.
We give the formal definition of intensionalization in Section 2.

Naturally, the present intensionalization procedure generalizes the way an inten-
sional language is usually built on top of an extensional one in formal logic. We take
the extensional language whose sentences are simply typed λ-terms (of type t) con-
taining constants, and interpret it in an intensional model constructed from a class of
extensional models, assigning each constant the denotation obtained from its denota-
tions in the extensional models by intensionalization. For the intended application to
natural language semantics, constants are to stand for extensional lexical items, and
a closed λ-term of type t is to represent a possible sentence meaning, expressing how
the denotations of words may be combined to give a truth value. After intensionaliza-
tion, a constant of type α will now denote an object of type α; a closed λ-term of type
t will now express a recipe for combining intensionalized denotations of constants to
yield an object of type t = s→ t, or a set of possible worlds.

To give a concrete example, in giving an extensional semantics for a certain frag-
ment of English, we may use the λ-terms

every man (find (a unicorn)) (1)
a unicorn (λve.(every man (find (λue→t.u v)))) (2)

to represent the subject wide scope and object wide scope readings of the sentence
every man finds a unicorn. Here, each word whose (extensional) denotation is of type
α is represented by the corresponding constant (in small capitals) of type α. We as-
sume that determiners have type (e→t)→(e→t)→t, commoun nouns have type e→t,
and transitive verbs have type ((e→ t)→ t)→ e→ t. (Note that a transitive verb can

A Note on Intensionalization 3

directly combine with its object by functional application in the case of subject wide
scope reading.) Given an extensional model M assigning each constant c of type α its
denotation M(c), the truth value of the sentence under the two readings is given by
the denotation of the above λ-terms in M. Now, suppose that we systematically inten-
sionalize the semantic types for all syntactic categories, so that determiners, common
nouns, and transitive verbs will now denote objects of type (e→ t)→ (e→ t)→ t,
e→ t, and ((e→ t)→ t)→ e→ t, respectively. Given an intensional denotation for
each constant, the same λ-terms (1) and (2) will still be meaningful, provided that the
variables ve and ue→t are now understood to range over objects of type e and e→ t,
respectively; the denotations of (1) and (2) will then be objects of type t = s→ t.
The resulting compositional semantics will be able to accommodate intensional tran-
sitive verbs like seeks, treating them as belonging to the same syntactic category—
and hence having the same semantic type—as extensional transitive verbs like finds.
Whereas the denotation of finds will be an object that is constructed from a collection
of objects of type ((e→ t)→ t)→ e→ t, the denotation of seeks will not reduce in
the same way to objects of type ((e→ t)→ t)→ e→ t. The compositional semantics,
however, will be agnostic to the distinction, and meaning recipes of the exact same
form as (1) and (2) will account for two readings of every man seeks a unicorn.

An important desideratum for intensionalization is that the resulting intensional
semantics is “conservative” over the original extensional semantics. This desidera-
tum is somewhat misstated in Ben-Avi and Winter’s (2007) paper for a reason related
to their treatment of “non-logical” lexical items. They demand that validity and con-
sequence be preserved in moving from extensional models to intensional models.
Since their treatment of non-logical lexical items in effect amounts to treating them
as free variables, this is an unreasonably strong requirement, one that easily fails in
the “intensionalization” of as simple a language as the language of propositional logic
augmented with a non-logical constant of type t→ t. In order to satisfy this desider-
atum, Ben-Avi and Winter (2007) had to severely restrict the admissible types of
non-logical lexical items—specifically, they were limited to those types that contain
at most one instance of t, and only at the tail position.

In the present construction of intensional models from classes of extensional
models, the desideratum is, simply put, that the truth conditions of sentences (i.e.,
closed λ-terms of type t) in the extensional language be preserved. More precisely,
this means that the truth value of a sentence ϕ in an extensional model M is to coin-
cide with the truth value of ϕ in any intensional model constructed form extensional
models in which M is the “actual world”. The preservation of validity and conse-
quence for sentences follows as a corollary. These results are proved in Section 3.

Even though the validity of an open formula in a class of extensional models
should not be expected to be preserved in intensional models built from them, it may
be of some technical interest to see to what limited extent this expectation may be
satisfied. For an open formula ϕ in the extensional language to be valid in a class of
intensional models, all instances of ϕ, including formulas in an expanded language
containing some truly intensional items, must be valid as well. Particularly simple
examples of such formulas are provided by propositional modal logic, where a propo-
sitional variable in a tautology may be replaced by any modal formula to produce a
valid modal formula. This is a rather trivial case, but there are other more interesting

4 Philippe de Groote, Makoto Kanazawa

cases. In Section 4, we define a class of safe open formulas, and show that for those
formulas, validity in extensional models guarantees validity in intensional models
based on them.

The present intensionalization procedure based on the mapping α 7→ α is simple
and natural, but not so familiar. In Section 5, we compare it to the procedure implicit
in Montague (1973), which is closer to the practice of linguists. The two procedures
can easily be seen to be equivalent. The chief difference is that in Montague’s ap-
proach, not only the denotations of the lexical items but also the “meaning recipes”
associated with the analysis trees (or “LFs”) of natural language sentences must be
modified. (Section 5 does not depend on Section 4 and can be read immediately after
Section 3.)

It is not entirely clear to us whether a fully general intensionalization procedure
such as the one given in this paper is called for in natural language semantics. It seems
to us that the usual practice in linguistics is to introduce as few instances of s as is
required for proper linguistic analysis, rather than adding as many instances of s as
there are instances of e and t.1 Assigning fully intensionalized types to extensional
lexical items may be seen as a manifestation of Montague’s strategy of “generaliz-
ing to the worst case”. Instead, it may be more congenial to the current practice of
linguists to adopt a type-shifting mechanism to intensionalize (and extensionalize)
denotations of phrases and apply it only when it is needed, and only to the extent that
it is needed.2 Nevertheless, the very fact that a completely general intensionaliza-
tion procedure exists, with a definition so natural as to look almost inevitable, and its
equivalence to a mechanism behind Montague’s PTQ, may interest some researchers
concerned with foundational aspects of semantics.

2 Intensionalization

We begin with some necessary definitions. The set of types over a set A of atomic
types is defined inductively as follows:3

– Every atomic type a ∈ A is a type over A.
– If α1 and α2 are types over A, then α1→ α2 is a type over A.

The type constructor→ is assumed to be right-associative, so that α→ β→ γ stands
for α→ (β→ γ). We let αn→ β abbreviate α→ · · · → α→ β, with “α→” repeated n
times.

Given a family (Da)a∈A of base domains, the domain Dα of objects of type α is
defined for each type α over A by recursion:

Dα1→α2 = D
Dα1
α2 .

In concrete examples, we often assume A = {e, t} and Dt = {1, 0}. The elements of De

are individuals and 1 and 0 are truth values.
1 Cf. von Fintel and Heim (2011, section 1.3.1).
2 The paper by Partee and Rooth (1983) contains two “type-lifting” principles to this effect.
3 In Montague semantics, α → β is usually written 〈α, β〉, but we prefer the notation standard in λ-

calculus.

A Note on Intensionalization 5

Let s be a new atomic type not in A. Elements of Ds are called indices or possible
worlds. The intensionalization of type α, written α, is defined by

α = α[a := (s→ a)]a∈A.

For example, if α = (e→ t)→ (e→ t)→ t, then α = ((s→ e)→ s→ t)→ ((s→ e)→
s→ t)→ s→ t.

We use simply typed λ-calculus (à la Church) as our metalanguage to denote
objects in Dα, for types α over A ∪ {s}. The type of a variable is indicated by a
superscript at its first occurrence. If ψ is a λ-term of type α→ β and χ is a λ-term of
type α, then the application ψχ is a λ-term of type β and denotes the object in Dβ that
is the value of ψ on argument χ. If ψ is a λ-term of type β, then the λ-abstract λxα.ψ
is a λ-term of type α→ β and denotes the function from Dα to Dβ which maps x to ψ.
The application of λ-terms is assumed to be left-associative, so that ϕψχ stands for
(ϕψ)χ. Application binds stronger than λ-abstraction, so that λxα.ψχmeans λxα.(ψχ),
rather than (λxα.ψ)χ. A sequence of λ’s is collapsed into one, so that λxα1

1 . . . xαn
n .ψ

abbreviates λxα1
1 λxαn

n .ψ.
For each type α over A, we define the intensionalization and extensionalization

combinators at type α by mutual recursion as follows:

inta = exta = λxs→a.x,

intα→β = λxs→α→βyα. intβ(λis.xi(extα y i)),

extα→β = λyα→β jsxα. extβ(y(intα(λks.x))) j.

Note that intα is of type (s→ α)→ α and extα is of type α→ s→ α.

Remark 1 If α = α1→ · · · → αn→ a, we have

intα = λxs→αyα1
1 . . . yαn

n is.xi(extα1 y1 i) . . . (extαn yn i),

extα = λyα jsxα1
1 . . . xαn

n .y(intα1 (λks.x1)) . . . (intαn (λks.xn)) j,

For example, if q ∈ Ds→(e→t)→(e→t)→t, then

int(e→t)→(e→t)→t q =

λy(s→e)→s→t
1 y(s→e)→s→t

2 is.qi(λze.y1(λks.z)i)(λze.y2(λks.z)i).

If qi is the quantifier some for all i, i.e.,

q = λksxe→t
1 xe→t

2 .∃e(λze.∧(x1z)(x2z)),

where ∃e ∈ D(e→t)→t is the first-order existential quantifier over individuals and ∧ ∈
Dt→t→t is conjunction, then int(e→t)→(e→t)→t q equals

λy(s→e)→s→t
1 y(s→e)→s→t

2 is.∃e(λze.∧(y1(λks.z)i)(y2(λks.z)i)).

Lemma 2 For any type α over A, λxs→α. extα(intα x) = λxs→α.x.

6 Philippe de Groote, Makoto Kanazawa

Proof By induction on α. The case of atomic types is obvious. For the non-atomic
case, we have

λxs→α→β. extα→β(intα→β x)

= λxs→α→β jszα. extβ(intα→β x(intα(λks.z))) j

= λxs→α→β jszα. extβ(intβ(λis.xi(extα(intα(λks.z))i))) j

= λxs→α→β jszα.(λis.xi((λks.z)i)) j by induction hypothesis

= λxs→α→β jszα.x jz

= λxs→α→β.x ut

Clearly,
λyα. intα(extα y) = λyα.y

does not hold in general. We call an object y ∈ Dα quasi-extensional if y =

intα(extα y). By Lemma 2, it is clear that y ∈ Dα is quasi-extensional if and only
if y = intα x for some x ∈ Ds→α. We call y ∈ Dα truly intensional if it is not quasi-
extensional.

Note that if x ∈ Dtn→t (i.e., x is a truth function), then inttn→t(λks.x) coincides
with its usual Boolean “generalization” to type (s→ t)n → s→ t. For instance, the
intensionalization of conjunction ∧ ∈ Dt→t→t is

intt→t→t(λks.∧) = λxs→tys→tis.∧(xi)(yi),

that is, the intersection operation on subsets of Ds.4

In general, the intensionalization intα(λks.x) corresponding to a “logical constant”
x ∈ Dα does not necessarily agree with other existing ways of “lifting” x to an object
in Dα. For instance, the first-order universal quantifier over individuals ∀e ∈ D(e→t)→t

can be naturally “lifted” to

λy(s→e)→s→tis.∀s→e(λzs→e.yzi),

using the universal quantifier ∀s→e ∈ D((s→e)→t)→t over individual concepts (i.e., func-
tions from possible worlds to individuals), but this differs from its intensionalization,

int(e→t)→t(λks.∀e) = λy(s→e)→s→tis.∀e(exte→t y i)

= λy(s→e)→s→tis.∀e(λze.y(λks.z)i).

The point here is that the intensionalization of λks.x is λ-definable in terms of x, but
the universal quantifier over objects of a higher type is not λ-definable in terms of the
universal quantifier over objects of a lower type.5

4 As is customary, we often identify sets with their characteristic functions.
5 In fact, in the particular case of the universal quantifier, λ-definability goes the other way around:

λks.∀α is λ-definable in terms of ∀α by

λis xα→t .∀α(λyα.x(extα y i)).

(The same can be said of equality at different types.)

A Note on Intensionalization 7

Another example is “generalized conjunction”, defined for each type α of the
form α1→ · · · → αn→ t by

∧α = λyα1 yα2 zα1
1 . . . zαn

n .∧(y1z1 . . . zn)(y2z1 . . . zn).

For instance,

int(e→t)→(e→t)→e→t(λks.∧e→t)

= λy(s→e)→s→t
1 y(s→e)→s→t

2 zs→eis.∧e→t(exte→t y1 i)(exte→t y2 i)(exte z i)

= λy(s→e)→s→t
1 y(s→e)→s→t

2 zs→eis.∧e→t(λxe.y1(λks.x)i)(λxe.y2(λks.x)i)(zi)

= λy(s→e)→s→t
1 y(s→e)→s→t

2 zs→eis.∧(y1(λks.zi)i)(y2(λks.zi)i),

which does not equal

∧e→t = λy(s→e)→s→t
1 y(s→e)→s→t

2 zs→eis.∧(y1zi)(y2zi).

3 Preservation of Extensional Semantics Under Intensionalization

The object language of our study is that of typed λ-terms built up from basic ex-
pressions consisting of constants, each of some type α over A, and countably many
variables for each type α over A. We use boldface variables vα1 , v

α
2 , . . . and boldface λ

in the object language to avoid confusion with the metalanguage. Because of the pres-
ence of constants, whose interpretation we can pick at will, this choice of the object
language is general enough to encompass most “extensional” languages of formal
logic, and is also adequate as a language for representing meanings of expressions in
extensional fragments of natural language in the style of Montague semantics. The in-
tensionalization of the semantics of these languages serves as a foundation on which
to build richer languages including intensional constructs within the usual framework
of possible world semantics.

An extensional model M of our object language consists of base domains (Da)a∈A

and an assignment of a denotation M(c) ∈ Dα to each object language constant c of
type α. An intensional model consists of base domains (Da)a∈A∪{s} together with an
assignment of a denotation M(c) ∈ Dα to each object language constant c of type α.
We are interested in those intensional models that are built from extensional models
by means of intensionalization.

An object language expression ϕ has the denotation ~ϕ�M,g in an (extensional
or intensional) model M relative to an assignment g of values to variables. In an
extensional model, g(vαl) ∈ Dα, whereas in an intensional model, g(vαl) ∈ Dα. We let
g[x/vαl] denote the assignment that is like g except that it assigns x to vαl .

~c�M,g = M(c),
~vαl �M,g = g(vαl),
~ϕψ�M,g = ~ϕ�M,g~ψ�M,g,

~λvαl .ϕ�M,g =

λxα.~ϕ�M,g[x/vαl] if M is an extensional model,
λxα.~ϕ�M,g[x/vαl] if M is an intensional model.

8 Philippe de Groote, Makoto Kanazawa

Note that if ϕ is an object language expression of type α, the denotation of ϕ in an
intensional model belongs to Dα.

If ϕ is a closed object language expression, ~ϕ�M,g does not depend on g, so we
let ~ϕ�M = ~ϕ�M,g for an arbitrarily chosen g.

Given an indexed collection I = (Mi)i∈I of extensional models with the same
base domains (Da)a∈A, we create an intensional model MI based on I, with Ds = I.
For an object language constant c of type α, we let

MI(c) = intα(λis.Mi(c))

be its denotation in MI.
Let us consider a very simple example to illustrate the above definition. Let A =

{t} and let the vocabulary of the object language include constants c of type t and q
of type t → t. Fix Dt = {1, 0}. There are eight possible extensional models for this
language: M(c) is either 0 or 1, and M(q) must be one of λxt.0, λxt.1, λxt.x, , and
λxt.¬x. Let C = {M1, . . . ,M8} be the set of these eight models and let I be a subset of
{1, . . . , 8}. We can construct an intensional model MI out of I = (Mi)i∈I by the above
definition. The denotation MI(c) of c is (the characteristic function of) a subset of I,
and MI(q) is a function from the power set of I to the power set of I. We have

MI(q) = intt→t(λis.Mi(q))
= λys→tis.Mi(q)(yi),

so MI(q) y i does not depend on the “global” property of y, but only on its value at i.
In particular,

~qc�MI = MI(q)MI(c)
= (λys→eis.Mi(q)(yi))(λis.Mi(c))
= λis.Mi(q)Mi(c)
= λis.~qc�Mi . (3)

Having defined MI, one can then expand it to a model M′ for a larger vocabulary
including additional constants, such as the necessity operator � (of type t→ t, with
denotation in Dt→t), whose denotation is truly intensional.

We shall show that equalities exemplified by (3) are completely general and hold
for all sentences in the extensional object language.

If g is an intensional assignment (suitable for MI), define an extensional assign-
ment g↓i by

g↓i(vαl) = extα g(vαl) i.

We call an intensional assignment g quasi-extensional if g(vαl) is quasi-extensional
for all vαl .

Lemma 3 Let ϕ be an object language expression of type α, and let g be an inten-
sional assignment suitable for MI that is quasi-extensional.

1. extα~ϕ�MI,g i = ~ϕ�Mi,g↓i .
2. If the β-normal form of ϕ is not a λ-abstract, ~ϕ�MI,g = intα(λis.~ϕ�Mi,g↓i).

A Note on Intensionalization 9

Proof We prove both 1 and 2 simultaneously by induction on ϕ, assuming that ϕ is
in β-normal form. Note that if ϕ is not a λ-abstract, 1 follows from 2 by Lemma 2.

If ϕ is a constant c, then 2 holds by the definition of MI(c). If ϕ is a variable vαl ,
2 holds since g is quasi-extensional.

Suppose ϕ = ψχ, where ψ is of type β → α and χ is of type β. Since ϕ is in
β-normal form, ψ is not a λ-abstract. Hence by induction hypothesis,

~ψ�MI,g = intβ→α(λis.~ψ�Mi,g↓i)

= λyα0 . intα(λis.~ψ�Mi,g↓i (extβ y0 i)).

The induction hypothesis about χ gives

extβ~χ�MI,g i = ~χ�Mi,g↓i .

Thus,

~ψχ�MI,g = ~ψ�MI,g~χ�MI,g

= intα(λis.~ψ�Mi,g↓i (extβ~χ�MI,g i))
= intα(λis.~ψ�Mi,g↓i~χ�Mi,g↓i)
= intα(λis.~ψχ�Mi,g↓i)

and the condition in 2 holds of ϕ.
It remains to consider the case where ϕ is a λ-abstract λuβ.ψ, where α = β→γ and

ψ is of type γ. By induction hypothesis, extγ~ψ�MI,h i = ~ψ�Mi,h↓i for all assignments
h that are quasi-extensional.

extβ→γ~λuβ.ψ�MI,g i = λxβ. extγ(~λuβ.ψ�MI,g(intβ(λks.x))) i

= λxβ. extγ(~ψ�MI,g[intβ(λks.x)/uβ]) i

= λxβ.~ψ�Mi,g[intβ(λks.x)/uβ]↓i
by induction hypothesis

= λxβ.~ψ�Mi,g↓i[x/uβ]

= ~λuβ.ψ�Mi,g↓i .

(Note that g[intβ(λks.x)/uβ] is quasi-extensional.) Thus, 1 holds of ϕ. ut

Note that the condition in part 2 of Lemma 3 does not hold of λ-abstracts. A
simple counterexample is the I combinator λua→b.ua→b:

int(a→b)→a→b(λis.~λua→b.ua→b�Mi)

= int(a→b)→a→b(λisxa→b.x)

= λy(s→a)→s→b
1 ys→a

2 is. exta→b y1 i (exta y2 i)

= λy(s→a)→s→b
1 ys→a

2 is.(λza.y1(inta(λk.z))i)(exta y2 i)

= λy(s→a)→s→b
1 ys→a

2 is.(λza.y1(λk.z)i)(y2i)

= λy(s→a)→s→b
1 ys→a

2 is.y1(λk.y2i)i

, λy(s→a)→s→b
1 ys→a

2 is.y1y2i

10 Philippe de Groote, Makoto Kanazawa

= λy(s→a)→s→b
1 .y1

= ~λua→b.ua→b�MI .

(The inequality assumes |Da| ≥ 2 and |Ds| ≥ 2.)

Remark 4 A special case of Lemma 3 is when g = h∗ for some extensional assign-
ment h, where h∗ is defined by

h∗(vαl) = intα(λks.h(vαl)).

In this case, we have g↓i = h for all i ∈ I. This special case itself can be proved
directly by induction.

Remark 5 The content of Lemma 3 can be stated entirely within simply typed λ-
calculus, as follows. If ϕ is a λ-term of type α, with free variables zβ1

1 , . . . , z
βn
n , let ϕ be

the λ-term of type α obtained from ϕ by replacing each occurrence of a ∈ A by s→ a
in the type annotation of ϕ. Then we have

extα ϕ[(intβ1 xs→β1
1)/zβ1

1 , . . . , (intβn xs→βn
n)/zβn

n]

=βη λis.ϕ[(xs→β1
1 i)/zβ1

1 , . . . , (xs→βn
n i)/zβn

n],

and if the β-normal form of ϕ is not a λ-abstract,

ϕ[(intβ1 xs→β1
1)/zβ1

1 , . . . , (intβn xs→βn
n)/zβn

n]

=βη intα(λis.ϕ[(xs→β1
1 i)/zβ1

1 , . . . , (xs→βn
n i)/zβn

n]).

Theorem 6 For any closed object language expression ϕ of type a ∈ A, ~ϕ�MI =

λis.~ϕ�Mi .

Proof Immediate from Lemma 3. ut

Now assume t ∈ A and fix Dt = {1, 0}. We call an object language expression of
type t a formula, and a closed formula a sentence. A pointed possible world model is a
pair of the form (MI, i) where i ∈ I. The extensional model Mi is the actual world of
a pointed possible world model (MI, i). We say that a sentence ϕ is true in a pointed
possible world model (MI, i) if ~ϕ�MI i = 1.

Corollary 7 For every sentence ϕ in the object language and every extensional
model M, the following are equivalent:
1. ϕ is true in M.
2. ϕ is true in any pointed possible world model whose actual world is M.

LetC be a class of extensional models. Call a sentence ϕ extensionally valid inC if
~ϕ�M = 1 for all M ∈ C, and intensionally valid in C if ~ϕ�MI = λis.1 for all indexed
collections I = (Mi)i∈I consisting of models in C that share the same base domains.
Similarly, ψ is an extensional consequence of ϕ1, . . . , ϕn in C if ~ϕ1�M = · · · =

~ϕn�M = 1 implies ~ψ�M = 1 for all M ∈ C, and ψ is an intensional consequence
of ϕ1, . . . , ϕn in C if ~ϕ1�MI ∩ · · · ∩ ~ϕn�MI ⊆ ~ψ�MI for all indexed collections I
consisting of models in C with the same base domains.6

6 The intensional consequence relation as defined here corresponds to local consequence in modal logic
(Blackburn et al 2001).

A Note on Intensionalization 11

Corollary 8 Let C be a class of extensional models and let ϕ, ϕ1, . . . , ϕn, ψ be sen-
tences.

1. If ϕ is extensionally valid in C, then ϕ is intensionally valid in C.
2. If ψ is an extensional consequence of ϕ1, . . . , ϕn in C, then ψ is an intensional

consequence of ϕ1, . . . , ϕn in C.

In the presence of conjunction (∧) and implication (→) in the object language,
the consequence relation between ϕ1, . . . , ϕn and ψ can be defined as the validity of
ϕ1 ∧ · · · ∧ ϕn → ψ, both in the extensional and in the intensional sense. (Recall that
truth-functional connectives behave as desired in intensional models.) This allows us
to concentrate on validity.

4 Intensionally Valid Schemata

Corollary 8 does not quite give what Ben-Avi and Winter (2007) were aiming for,
because in their method of intensionalization, the denotation of a non-logical constant
of type α is not restricted to quasi-extensional objects in Dα. They start from a class C
of extensional models that is closed under arbitrary change in the denotations of non-
logical constants and obtain by intensionalization a class C′ of intensional models that
is again closed under arbitrary change in the denotations of non-logical constants. (In
their method, intensionalization is only used to determine the denotations of logical
constants in intensional models.) Replacing non-logical constants with free variables,
we can say in our setting that what they were aiming for was preservation of validity
of (and the consequence relation among) open formulas or schemata. This is clearly
an unreasonably high demand and is impossible to achieve in any general terms;7

be that as it may, it will be instructive to see the limited extent to which the present
method of intensionalization preserves validity of open formulas.

The generalization of the notion of validity to open formulas is the standard one.
Let C be a class of extensional models. For an object language expression ϕ of type
t, we say that ϕ is extensionally valid in C if ~ϕ�M,g = 1 for all M ∈ C and all
extensional assignments g suitable for M; we say that ϕ is intensionally valid in C if
~ϕ�MI,g = λis.1 for all indexed collections I consisting of models in C built on the
same base domains and all intensional assignments g suitable for MI.

Lemma 3 does not imply that the validity of an open formula is preserved when
one moves from extensional models to intensional models created out of them, be-
cause not all intensional assignments are quasi-extensional. For example, let

ϕ =→(∧(ut→t>)(ut→t⊥))(ut→tvt),

or, in a more readable style,

(ut→t> ∧ ut→t⊥)→ ut→tvt. (4)

7 As mentioned in the introduction, Ben-Avi and Winter (2007) opted to restrict the types of non-logical
constants to those with a very special form.

12 Philippe de Groote, Makoto Kanazawa

Let→,∧,>,⊥ have the usual interpretation in Mi for all i ∈ I. Then ϕ is extensionally
valid in I = {Mi | i ∈ I }, but it is easy to see that there are intensional assignments g
such that

~ϕ�MI,g , λis.1.

The reason that an extensionally valid formula ϕ with FV(ϕ) , ∅ need not be
intensionally valid is related to the failure of the equality ~ψ�MI = intα(λis.~ψ�Mi)
when ψ is a (closed) λ-abstract. Let FV(ϕ) = {uα1

1 , . . . ,u
αn
n }. We have ~ϕ�Mi,g = 1 for

all extensional assignments g if and only if ~λuα1
1 . . . uαn

n .ϕ�Mi = λxα1
1 . . . xαn

n .1. Also,
~ϕ�MI,g = λis.1 for all intensional assignments g if and only if ~λuα1

1 . . . uαn
n .ϕ�MI =

λyα1
1 . . . yαn

n is.1. Now suppose ~ϕ�Mi,g = 1 for all i ∈ I and all extensional assignments
g. Then ~λuα1

1 . . . uαn
n .ϕ�Mi = λxα1

1 . . . xαn
n .1, and this clearly implies

intα1→···→αn→t(λis.~λuα1
1 . . . uαn

n .ϕ�Mi) = λyα1
1 . . . yαn

n is.1.

But since ~λuα1
1 . . . uαn

n .ϕ�MI = intα1→···→αn→t(λis.~λuα1
1 . . . uαn

n .ϕ�Mi) need not hold,
we cannot infer ~λuα1

1 . . . uαn
n .ϕ�MI = λyα1

1 . . . yαn
n is.1.

The open formula (4) should be clearly distinguished from its closure

∀t→t(λut→t.∀t(λvt.(ut→t> ∧ ut→t⊥)→ ut→tvt)) (5)

or the open formulas in one free variable

∀t→t(λut→t.(ut→t> ∧ ut→t⊥)→ ut→tvt), (6)
∀t(λvt.(ut→t> ∧ ut→t⊥)→ ut→tvt). (7)

The three formulas (5), (6), (7), unlike (4), remain valid in intensional models. As
mentioned above, the intensionalization of the universal quantifier ∀α still only quan-
tifies over objects in Dα, so the intensional validity of (5), (6), (7) does not imply the
intensional validity of (4).

The intensional validity of (6) and (7) illustrates the fact that extensionally valid
open formulas may remain intensionally valid in certain restricted cases. In what fol-
lows, we give one sufficient condition for an extensionally valid ϕ to be intensionally
valid.

Fix an indexed collection I = (Mi)i∈I of extensional models. We call an object
language constant c rigid (in I) if Mi(c) = M j(c) for all i, j ∈ I.

Let V be a set of object language variables. Let ϕ be an object language expres-
sion. We define two predicates V-safe and V-protected by simultaneous induction as
follows:

– ϕ is V-safe if and only if one of the following conditions holds:
1. ϕ is a constant or a variable.
2. ϕ = ψχ and either

– ψ is V-protected and χ is V-safe, or
– ψ is V-safe, all constants that occur in χ are rigid, FV(χ) ∩ V = ∅, and χ

is ∅-protected.
3. ϕ = λv.ψ and ψ is V-safe.

– ϕ is V-protected if and only if one of the following conditions holds:

A Note on Intensionalization 13

1. ϕ is a constant or a variable not in V .
2. ϕ = ψχ and ψ is V-protected and χ is V-safe.
3. ϕ = λv.ψ and ψ is V ∪ {v}-protected.

More informally, if λuβ1
1 . . . uβn

n .χ occurs in a V-safe formula as an argument of a
variable in V , then χ cannot contain any non-rigid constants or variables in V , and χ
must be a {uβ1

1 , . . . ,u
βn
n }-safe formula that does not start with one of uβ1

1 , . . . ,u
βn
n .

Lemma 9 Let V be a set of object language variables, and let ϕ be an object lan-
guage expression of type α. Suppose that g is an intensional assignment such that
for all variables uδ ∈ FV(ϕ) − V, we have g(uδ) = intδ(λks.x) for some x ∈ Dδ. The
following hold:

1. If ϕ is V-protected, ~ϕ�MI,g = intα(λis.~ϕ�Mi,g↓i).
2. If ϕ is V-safe, extα~ϕ�MI,g i = ~ϕ�Mi,g↓i .

Proof We prove 1 and 2 by simultaneous induction on ϕ. Note that the equality in 1
implies the equality in 2, so when ϕ is V-protected, it suffices to prove the former.

Induction basis.
Case 1. ϕ is a constant c. In this case, ϕ is V-protected. We have ~c�MI,g =

MI(c) = intα(λis.Mi(c)) = intα(λis.~c�Mi,g↓i) by the definition of MI(c).
Case 2. ϕ is a variable vα. In this case, ϕ is V-protected if and only if vα < V .

We have extα~vα�MI,g i = extα g(vα) i = g↓i(vα) = ~vα�Mi,g↓i by the definition of
g↓i, so the equality in 2 holds. If vα < V , then by the assumption on g, we have
~vα�MI,g = g(vα) = int(λis.g↓i(vα)) = int(λis.~vα�Mi,g↓i), so the equality in 1 holds.

Induction step.
Case 1. ϕ = ψχ, where ψ is of type β→ α and χ is of type β.
Case 1a. ψ is V-protected and χ is V-safe. In this case, ϕ is V-protected (as well as

V-safe). By induction hypothesis, ~ψ�MI,g = intβ→α(λis.~ψ�Mi,g↓i) and extβ~χ�MI,g i =

~χ�Mi,g↓i . Hence

~ψχ�MI,g = ~ψ�MI,g~χ�MI,g

= intβ→α(λis.~ψ�Mi,g↓i)~χ�MI,g

= intα(λis.~ψ�Mi,g↓i (extβ~χ�MI,g i))
= intα(λis.~ψ�Mi,g↓i~χ�Mi,g↓i)
= intα(λis.~ψχ�Mi,g↓i),

and the condition in 1 is satisfied.
Case 1b. ψ is V-safe, all constants that occur in χ are rigid, FV(χ) ∩ V = ∅,

and χ is ∅-protected. In this case, ϕ is V-safe. Note that FV(χ) ∩ V = ∅ implies
that g(uδ) = intδ(λks.x) for some x ∈ Dδ for all uδ ∈ FV(χ). Hence, the induc-
tion hypothesis applies to both ψ and χ and we get extβ→α~ψ�MI,g = ~ψ�Mi,g↓i and
~χ�MI,g = intβ(λis.~χ�Mi,g↓i). The fact that g(uδ) = intδ(λks.x) for some x ∈ Dδ for
all uδ ∈ FV(χ) also implies that g↓i and g↓ j agree on FV(χ) for all i, j ∈ I. Since
Mi(c) = M j(c) for all i, j ∈ I for all constants c in χ, we see that ~χ�Mi,g↓i = ~χ�M j,g↓ j

for all i, j ∈ I. Thus,

extα~ψχ�MI,g i = extα(~ψ�MI,g~χ�MI,g) i

14 Philippe de Groote, Makoto Kanazawa

= extα(~ψ�MI,g(intβ(λks.~χ�Mk ,g↓k))) i

= extα(~ψ�MI,g(intβ(λks.~χ�Mi,g↓i))) i

since ~χ�Mk ,gk = ~χ�Mi,g↓i for all k ∈ I

= extβ→α~ψ�MI,g i ~χ�Mi,g↓i

= ~ψ�Mi,g↓i~χ�Mi,g↓i

= ~ψχ�Mi,g↓i ,

and the condition in 2 holds.
Case 2. ϕ = λvβ.ψ, where ψ is of type γ and α = β→ γ.
Case 2a. ψ is V ∪ {vβ}-protected. In this case, ϕ is V-protected. By induction hy-

pothesis, ~ψ�MI,h = int(λis.~ψ�Mi,h↓i) holds of all h satisfying the following condition:

for all uδ ∈ FV(ψ) − (V ∪ {vβ}), there is an x ∈ Dδ such that h(uδ) = intδ(λks.x).
(8)

We see

~λvβ.ψ�MI,g = λyβ.~ψ�MI,g[y/vβ]

= λyβ. intγ(λis.~ψ�Mi,g[y/vβ]↓i
)

= λyβ. intγ(λis.~ψ�Mi,g↓i[extβ y i/vβ])

= λyβ. intγ(λis.~λvβ.ψ�Mi,g↓i (extβ y i))

= intβ→γ(λis.~λvβ.ψ�Mi,g↓i).

(Note that h = g[y/vβ] satisfies (8).) Hence the condition in 1 is satisfied.
Case 2b. ψ is V-safe. In this case, ϕ is V-safe. By induction hypothesis,

extγ~ψ�MI,h i = ~ψ�Mi,h↓i holds of all h satisfying the following condition:

for all uδ ∈ FV(ψ) − V , there is an x ∈ Dδ such that h(uδ) = intδ(λks.x). (9)

We have

extβ→γ~λvβ.ψ�MI,g i = λxβ. extγ(~λvβ.ψ�MI,g(intβ(λks.x))) i

= λxβ. extγ~ψ�MI,g[intβ(λks.x)/vβ] i

= λxβ.~ψ�Mi,g[intβ(λks.x)/vβ]↓i

= λxβ.~ψ�Mi,g↓i[x/vβ]

= ~λvβ.ψ�Mi,g↓i .

(Note that FV(ψ) ⊆ FV(ϕ) ∪ {vβ} and h = g[intβ(λks.x)/vβ] satisfies (9).) Thus, the
condition in 2 is satisfied.

This completes the induction step. ut

Remark 10 Remark 5 applies, mutatis mutandis, to Lemma 9 as well.

Theorem 11 Let ϕ be a formula of the object language that is FV(ϕ)-safe. If ϕ is
extensionally valid in a class C of extensional models, then ϕ is intensionally valid in
C.

A Note on Intensionalization 15

Proof Let I = (Mi)i∈I be an indexed collection of extensional models in C that share
the same base domains. Let g be an arbitrary intensional assignment suitable for MI.
Then ~ϕ�MI,g = extt~ϕ�MI,g = λis.~ϕ�Mi,g↓i by Lemma 9. Thus, if ~ϕ�Mi,h = 1 for all
i ∈ I and all extensional assignments h suitable for Mi, then ~ϕ�MI,g = λis.1. ut

Here are some examples illustrating the scope of applicability of Theorem 11.
First, all tautologies of propositional logic are intensionally valid. It is easy to see that
all formulas built from propositional variables in V are V-safe, because propositional
variables are V-safe and truth-functional connectives are V-protected. In fact, we need
not invoke Theorem 11 in this case, because all objects in Ds→t are quasi-extensional.
Of course, the fact that propositional tautologies are intensionally valid just means
that the power set of Ds is a Boolean algebra.

A less trivial example is Aristotelian syllogisms, which are of the form

Q1ue→t
1 ue→t

2 ∧ Q2ue→t
3 ue→t

4 → Q3ue→t
5 ue→t

6 ,

where ue→t
1 , . . . ,ue→t

6 are not necessarily distinct variables and Q1,Q2,Q3 are not
necessarily distinct constants of type (e→ t)→ (e→ t)→ t. Formulas of this form are
{u1, . . . ,u6}-safe, so if they are extensionally valid, one can instantiate u1, . . . ,u6 by
expressions denoting truly intensional properties (functions from individual concepts
to sets of possible worlds).

What about first-order logic? Of the usual Hilbert-style axioms,

∀x(ϕ(x)→ ψ(x))→ (∀xϕ(x)→ ∀xψ(x))

is rendered as

∀e(λve.ue→t
1 ve → ue→t

2 ve)→ (∀e(λve.ue→t
1 ve)→ ∀e(λve.ue→t

2 ve)),

where→ (of type t→t→t) is written as an infix operator. This object language formula
is {ue→t

1 ,ue→t
2 }-safe and is hence intensionally valid, assuming the usual interpretation

of ∀e and→.
In contrast,

∀xϕ(x)→ ϕ(t)

is rendered as
∀e(λve.ue→tve)→ ue→t te,

which is not {ue→t, te}-safe. Indeed, it is not intensionally valid, because not all indi-
vidual concepts are constant functions.

Another axiom that is not intensionally valid, this time from first-order logic with
equality, is

s = t → (ϕ(s)→ ϕ(t)),

which is rendered as
se = te → (ve→t se → ve→t te),

where = stands for the equality between individuals in De. This formula is not
{se, te, ve→t}-safe and is not intensionally valid. This is just the well-known failure
of substitutivity in intensional contexts.

16 Philippe de Groote, Makoto Kanazawa

Here are a couple of more artificial examples. Let I be an object language constant
that denotes the identity function on De→t in all models in C. Then

u((e→t)→e→t)→tI→ u((e→t)→e→t)→t(λve→t.ve→t)

is extensionally valid in C, but not intensionally so. This is because the intensionaliza-
tion of the identity function on De→t is not the identity function on D(s→e)→s→t. Note
that this formula is not {u((e→t)→e→t)→t}-safe because λve→t.ve→t is not ∅-protected.

Another example is

(ut→t> ∧ ut→t⊥)→ ut→t(¬vt),

where>,⊥,∧,→,¬ have the usual interpretation. This formula is extensionally valid,
but not intensionally so. Observe that it is not {ut→t, vt}-safe because FV(¬vt) ∩
{ut→t, vt} , ∅.

Note that FV(ϕ)-safety is by no means a necessary condition for ϕ to have the
property in Theorem 11. For one thing, ϕ may be an instance of an FV(ψ)-safe for-
mula ψ while not itself FV(ϕ)-safe.

5 Montague’s Typing in PTQ

The mapping
α 7→ α,

which replaces each occurrence of e and t by s→ e and s→ t, and the associated
intensionalization and extensionalization combinators (intα and extα) are not familiar
to linguists. In linguistics, a common practice nowadays is to use the fewest instances
of s that are necessary for adequate semantic analysis, rather than systematically
replacing each occurrence of an atomic type by its intensional counterpart.

In Montague’s original work, however, there was a systematic placement of s in
the semantic types associated with syntactic categories. In PTQ (Montague 1973),
syntactic categories are built from basic categories e and t by means of two connec-
tives / and //. The semantic type f (A) associated with a syntactic category A was
defined by the following recursion:

f (e) = e,

f (t) = t,

f (A/B) = f (A//B) = (s→ f (B))→ f (A).

This gives rise to the following association between an extensional semantic type α
and its intensional counterpart h(α):

h(e) = e,

h(t) = t,

h(α→ β) = (s→ h(α))→ h(β).

A Note on Intensionalization 17

This mapping α 7→ h(α) looks quite different from the above mapping α 7→ α. For
example, if α = (e→ t)→ t, then we have

α = ((s→ e)→ s→ t)→ s→ t,

h(α) = (s→ ((s→ e)→ t))→ t.

Note that the number of occurrences of s in the two types is different: it is three for α
and two for h(α).

Nevertheless, there is a systematic correspondence between the two approaches.
First, note that f (A) is the type of the extension of an expression of syntactic category
A. The type of the intension of an expression of syntactic category A is s→ f (A).
Thus, what we should really be comparing to α is not h(α), but s→ h(α). It is easy
to see that the number of occurrences of s in α and in s→ h(α) is the same for all α.
Indeed, we can go from one type to the other by repeatedly applying the operation of
changing the order of arguments:

β→ γ→ δ { γ→ β→ δ (10)

For example, with α = (e→ t)→ t,

α = ((s→ e)→ s→ t)→ s→ t

{ (s→ (s→ e)→ t)→ s→ t

{ s→ (s→ (s→ e)→ t)→ t

= s→ h(α).

In general,

a = s→ h(a),
α→ β = α→ β

{∗ (s→ h(α))→ s→ h(β)
{ s→ (s→ h(α))→ h(β)
= s→ h(α→ β).

The domains of the two types in (10) are of course related by the combinator

Cβ,γ,δ = λxβ→γ→δyβzγ.xzy

and its inverse, Cγ,β,δ, which shows that the two types are isomorphic (di Cosmo
2005). It easily follows that α and s→ h(α) must also be isomorphic; indeed, this is
witnessed by the pair of combinators Pα and Qα defined as follows:

Pa = λxs→a.x, Qa = λys→a.y,

Pα→β = λxα→βisys→h(α).Pβ(x(Qαy))i, Qα→β = λys→h(α→β)xα.Qβ(λis.yi(Pαx)).

We have
λxα.Qα(Pαx) = λxα.x, λys→h(α).Pα(Qαy) = λys→h(α).y.

18 Philippe de Groote, Makoto Kanazawa

This allows us to define the PTQ version intPTQ
α and extPTQ

α of intensionalization
and extensionalization combinators in terms of intα and extα:

intPTQ
α = λxs→α.Pα(intα x),

extPTQ
α = λys→h(α). extα(Qαy).

A direct recursive definition of intPTQ
α and extPTQ

α works out as follows:

intPTQ
a = λxs→a.x,

intPTQ
α→β = λxs→α→βisys→h(α). intPTQ

β (λ js.x j(extPTQ
α y j))i,

extPTQ
a = λys→a.y,

extPTQ
α→β = λys→(s→h(α))→h(β) jsxα. extPTQ

β (λis.yi(intPTQ
α (λks.x))) j.

Note that if α = α1→ · · · → αn→ a, then

intPTQ
α = λxs→αisys→h(α1)

1 . . . ys→h(αn)
n .xi(extPTQ

α1
y1 i) . . . (extPTQ

αn
yn i),

extPTQ
α = λys→h(α) jsxα1

1 . . . xαn
n .y j (intPTQ

α1
(λks.x1)) . . . (intPTQ

αn
(λks.xn)).

(11)

For example, if j ∈ De, then

intPTQ
(e→t)→t(λksue→t.uj) = λisys→(s→e)→t.yi(λks.j).

This is the simply typed λ-calculus expression corresponding to PTQ’s translation of
John.

A PTQ model M of our object language consists of base domains (Da)s∈A∪{s}

together with an assignment of an intension M(c) ∈ Ds→h(α) to each object language
constant c of type α. An object language expression ϕ has the intension ~ϕ�PTQ

M,g in
a PTQ model M relative to an assignment g of values to variables, where g(vαl) ∈
Ds→h(α) for every variable vαl of type α:

~c�PTQ
M,g = M(c),

~vαl �
PTQ
M,g = g(vαl),

~ϕψ�PTQ
M,g = λis.~ϕ�PTQ

M,g i~ψ�PTQ
M,g ,

~λvαl .ϕ�
PTQ
M,g = λisxs→h(α).~ϕ�PTQ

M,g[x/vαl]i

(12)

Note that these are recursive clauses for the intensions of object language expressions.
In the case of the PTQ fragment, our object language expressions roughly correspond
to meaning recipes associated with analysis trees of English expressions.8

The last two clauses of the above recursive definition can be recast in terms of
extensions (not to be confused with extensionalization), i.e., values of intensions at
particular indices, as follows. Writing ~ϕ�PTQ

M,g,i for ~ϕ�PTQ
M,g i, we have

~ϕψ�PTQ
M,g,i = ~ϕ�PTQ

M,g,i(λis.~ψ�PTQ
M,g,i),

~λvαl .ϕ�
PTQ
M,g,i = λxs→h(α).~ϕ�PTQ

M,g[x/vαl],i.

8 The correspondence is not exact, however, for reasons we choose not to go into here.

A Note on Intensionalization 19

The former says that the extension of ϕψ is the extension of ϕ applied to the intension
of ψ. This semantic recipe was called “intensional functional application” by Heim
and Kratzer (1998), and it appears in PTQ in the form of the Intensional Logic (IL)
expression ϕ′(∧ψ′), where ϕ′ and ψ′ translate ϕ and ψ, respectively.

The two intensional interpretations of ϕ are related by the following equations.
For any object language expression ϕ of type γ, we have

~ϕ�PTQ
M,g = Pγ(~ϕ�Q◦M,Q◦g) for PTQ model M and PTQ assignment g,

~ϕ�M,g = Qγ(~ϕ�PTQ
P◦M,P◦g) for intensional model M and assignment g.

Here, P ◦ M is the PTQ model such that (P ◦ M)(c) = Pα(M(c)) for each constant c
of type α, and P ◦ g is the PTQ assignment such that (P ◦ g)(vαl) = Pα(g(vαl)) for each
variable vαl . The definitions of Q ◦ M and Q ◦ g are similar. The above equations can
be proved by straightforward induction on ϕ. In particular, when ϕ is a sentence (i.e.,
closed object language expression of type t), we have

~ϕ�PTQ
M = ~ϕ�Q◦M

for every PTQ model M.
As before, given an indexed collection I = (Mi)i∈I of extensional models with

the same base domains (Da)a∈A, we can create a PTQ model MPTQ
I

based on I, with
Ds = I, by letting

MPTQ
I

(c) = intPTQ
α (λis.Mi(c))

for each object language constant c of type α. Then Q ◦ MPTQ
I

= MI and we can
easily prove analogues of Lemma 3 and Theorem 6. In particular, for every sentence
ϕ, we have

~ϕ�PTQ
MPTQ
I

= λis.~ϕ�Mi = ~ϕ�MI .

Finally, it may be of some interest to note that intPTQ
α and extPTQ

α are definable in
Montague’s (1973) IL. For α = α1→ · · · → αn→ a, let

intILα [xs→α] = λys→h(α1)
1 . . . ys→h(αn)

n .∨x(extILα1
[y1]) . . . (extILαn

[yn]),

extILα [ys→h(α)] = λxα1
1 . . . xαn

n .
∨y(∧(intILα1

[∧x1])) . . . (∧(intILαn
[∧xn])),

where the right-hand sides of the equations are IL expressions and equality is syn-
tactic equality. Thus, intILα [xs→α] is an IL expression of type h(α) whose only free
variable is x, and extILα [ys→h(α)] is an IL expression of type α whose only free variable
is y. (We write intILα [ϕ], where ϕ is an IL expression of type s→ α, for the result of
replacing xs→α by ϕ in intILα [xs→α].) When these IL expressions are translated into
simply typed λ-terms (of type s→ h(α) and s→ α, respectively), they come out as
equivalent to the following, obtained from (11):

intPTQ
α xs→α = λisys→h(α1)

1 . . . ys→h(αn)
n .xi(extPTQ

α1
y1 i) . . . (extPTQ

αn
yn i),

extPTQ
α ys→h(α) = λ jsxα1

1 . . . xαn
n .y j (intPTQ

α1
(λks.x1)) . . . (intPTQ

αn
(λks.xn)).

20 Philippe de Groote, Makoto Kanazawa

The translation in question is

xα† = λks.xα,

(ϕψ)† = λis.ϕ†i(ψ†i),

(λxα.ϕ)† = λisxα.ϕ†i,

(∧ϕ)† = λks.ϕ†,

(∨ϕ)† = λis.ϕ†ii,

which is a straightforward rendering of the semantics of IL given in Montague
(1973).9 Note that this translation gives a simply typed λ-term that represents the
intension of an IL expression, rather than its extension at a particular index, as in
Gallin (1975). We have

(intILα [xs→α])† = intPTQ
α xs→α,

(extILα [ys→h(α)])† = extPTQ
α ys→h(α),

which can be proved by straightforward induction. For example, when c is a constant
of IL of an extensional type α, the PTQ-style intensionalization of its intension (which
is an object of type s→ α) is given by (the intension of) the IL expression intILα [∧c].

Acknowledgements We are indebted to Reinhard Muskens and Yoad Winter for helpful discussions.

References

Ben-Avi G, Winter Y (2007) The semantics of intensionalization. In: Muskens R (ed) Workshop on New
Directions in Type-Theoretic Grammars, pp 98–112

Blackburn P, de Rijke M, Venema Y (2001) Modal Logic. Cambridge University Press, Cambridge
di Cosmo R (2005) A short survey of isomorphisms of types. Mathematical Structures in Computer Science

15:825–838
van Eijck J, Unger C (2011) Computational Semantics with Functional Programming. Cambridge Univer-

sity Press, Cambridge
von Fintel K, Heim I (2011) Intensional semantics. URL http://mit.edu/fintel/fintel-heim-intensional.pdf,

online lecture notes
Gallin D (1975) Intensional and Higher-Order Modal Logic: With Applications to Montague Semantics.

North-Holland, Amsterdam
Heim I, Kratzer A (1998) Semantics in Generative Grammar. Blackwell, Oxford
Montague R (1973) The proper treatment of quantification in ordinary English. In: Hintikka J, Moravcsik

J, Suppes P (eds) Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on
Grammar and Semantics, D. Reidel, Dordrecht, pp 221–242

Partee B, Rooth M (1983) Generalized conjunction and type ambiguity. In: Bäuerle R, Schwarze C, von
Stechow A (eds) Meaning, Use, and Interpretation of Language, de Gruyter, Berlin, pp 361–383

9 This translation of IL expressions (without constants) into simply typed λ-calculus must not be con-
fused with (12), which gives the PTQ-style intensional compositional semantics to expressions of our
object language, which are simply typed λ-terms, not IL expressions.

