
Fundamenta Informaticae 1XX (2015) 1–39 1

DOI 10.3233/FI-2015-0000

IOS Press

Distributional Learning of Some Nonlinear Tree Grammars

Alexander Clark∗

Department of Philosophy
King’s College London

Makoto Kanazawa∗ C

National Institute of Informatics, Tokyo, and
SOKENDAI (Graduate University for Advanced Studies)

Gregory M. Kobele∗

Department of Linguistics and Computation Institute
University of Chicago

Ryo Yoshinaka∗†

Graduate School of Informatics
Kyoto University

Abstract. A key component of Clark and Yoshinaka’s distributional learning algorithms is the ex-
traction of substructures and contexts contained in the input data. This problem often becomes
intractable with nonlinear grammar formalisms due to the fact that more than polynomially many
substructures and/or contexts may be contained in each object. Previous works on distributional
learning of nonlinear grammars avoided this difficulty by restricting the substructures or contexts
that are made available to the learner. In this paper, we identify two classes of nonlinear tree gram-
mars for which the extraction of substructures and contexts can be performed in polynomial time,
and which, consequently, admit successful distributional learning in its unmodified, original form.
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1. Introduction

In distributional learning [1, 2, 3, 4, 5, 6], we are concerned with learning sets of discrete combinatorial
objects of various types: strings, trees, λ-terms, graphs, etc. An important step in all these algorithms
is decomposition: we decompose an object into two parts—some piece or substructure of that object
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and the surrounding context in which that piece occurs in the whole object. The precise form of sub-
structures and contexts is determined by the nature of the grammars hypothesized by the learner. In
broadly “context-free” grammar formalisms, we can distinguish between the derivations, which are tree-
structured, and the objects which they derive, which may not be. In this case, the substructures of interest
are those which correspond to subtrees of a possible derivation tree for that object, and a context corre-
sponds to the contribution of the remainder of the derivation tree. For example, in the case of ordinary
context-free grammars generating strings, a substructure of a string is any substring of that string, and
the corresponding context is represented by the prefix-suffix pair that surrounds that substring. In distri-
butional learning of other kinds of “context-free” grammars, we might decompose a tree into a subtree
and a tree context (i.e., tree with a “hole”), or a λ-term of type β into a λ-term of type α and a λ-term of
type α→ β.

The substructures and contexts are used in different ways in the two approaches to distributional
learning, known as the primal and dual approaches. In the primal approach, each nonterminal in the hy-
pothesized grammar is indexed by a finite set consisting of a bounded number of substructures extracted
from the input positive data. These nonterminals, together with “grammatical operations” allowed by the
grammar class (e.g., concatenation of strings), are used to build candidate rules. The contexts extracted
from the input data are then used to filter out those rules that are incompatible with the requirement that
the distribution of the substructures that are derived from each nonterminal A be characterized by the
distribution of the finite set of substructures associated with A. Take, for example, the simple case of or-
dinary context-free grammars. When nonterminals A0, A1, A2 in the hypothesized grammar are indexed
by finite sets S0,S1,S1 of strings, the rule

A0 → A1A2

is deemed incorrect if there is a prefix-suffix pair (u, v) among the contexts extracted from the input data
such that uS0v is included in the target language but uS1S2v is not. (This is determined by querying the
membership oracle for the target language, which is assumed to be available to the learner.)

The dual approach to distributional learning swaps the roles of the substructures and the contexts,
with the nonterminals being indexed by finite sets (of bounded cardinality) of extracted contexts and the
extracted substructures used to eliminate the bad rules. For example, if nonterminals A0, A1, A2 of the
hypothesized context-free grammar are indexed by finite sets C0,C1,C2 of prefix-suffix pairs, the rule
A0 → A1A2 is rejected when there are substrings s1, s2 among those extracted from the input data such
that every context in C1 can appear flanking s1 in the target language and likewise for C2 and s2, and
yet there is a pair (u, v) in C0 such that us1s2v is not in the target language.

To sum up, distributional learning in its pristine form uses the sets S|D and C|D of substructures and
contexts extracted from input data D: one to characterize nonterminals, the other to filter out hypothe-
sized rules. The efficient computation of these two sets—the problem of decomposition—is crucial in
each of the two approaches to distributional learning.

In some cases, decomposition is algorithmically trivial: for example, there are only
(
n+1

2

)
+n+ 1 =

(n+2)(n+1)
2 different ways to divide a string of length n into a substring and a prefix-suffix pair, and

enumerating all of them is simply a matter of picking all unordered pairs of inter-symbol positions inside
a given string. More generally, decomposition is tractable when the available grammatical operations
are linear. The linearity of grammatical operations means that the combination of a substructure and a
context never deletes or duplicates any part of the substructure or the context. In this case, the number
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of ways to divide a given object into a possible substructure and a possible context is (when certain
parameters are fixed) bounded by a polynomial in the size of the given object, and all these different ways
of decomposition can be enumerated in polynomial time [5]. In contrast, when grammatical operations
are allowed to be nonlinear—in other words, when the combination of a substructure with a context may
duplicate some part of the substructure or the context—the number of different decompositions will in
general not be polynomially bounded; in this case it will be impossible to explicitly enumerate them all
in polynomial time.

This phenomenon of non-polynomiality of decomposition already manifests itself with a very simple
class of parallel multiple context-free grammars: the class G(1, 1, 2) in Clark and Yoshinaka’s [6] sym-
bolism. Rules of grammars in this class have one of the following forms, where A,B are nonterminals,
w ∈ Σ∗, x 6∈ Σ is a variable, and π ∈ Σ∗xΣ∗ ∪ Σ∗xΣ∗xΣ∗:

A(w) :−
A(π) :−B(x)

Contexts in this case are certain elements of (Σ∗x)+Σ∗ (representing functions from Σ∗ to Σ∗), substruc-
tures are just strings in Σ∗, and the combination of a context c and a substructure s consists in substituting
the string s for the variable x in c. For example, when a ∈ Σ, the following are some of the possible
rules (k, l ≥ 0):

A(xakx) :−A(x)

A(xal) :−A(x)

Let us denote a rule of the first form by ρk and one of the second form by σl. Chaining ρkm , . . . , ρk1 in
this order forms an incomplete derivation that contributes a context c(k1,...,km) defined by

c() = x,

c(k1,...,km−1,km) = c(k1,...,km−1)a
kmc(k1,...,km−1) for m ≥ 1.

When ki ≤ 2m − 1 for each i = 1, . . . ,m, the length of c(k1,...,km) is

m∑
i=1

2m−iki + 2m ≤
m∑
i=1

2m−i(2m − 1) + 2m < 22m,

and with an appropriate value of l, the sequence of rules σl, ρkm , . . . , ρk1 always gives a context
c(k1,...,km)a

l which can combine with a substructure a to form the string a22m . But all these contexts
c(k1,...,km)a

l are different for different choices of k1, . . . , km, which means that there are (2m)m = 2m
2

of them. It follows that the number of these contexts is not bounded by any polynomial in the length
n = 22m of the string a22m .

Despite this difficulty, Clark and Yoshinaka [6] succeeded in giving a kind of distributional learning
algorithm for parallel multiple context-free grammars. How did they overcome the non-polynomiality
of decomposition? As we have seen, when the learning target is the class G(p, q, r) of parallel multiple
context-free grammars with dimension bound p ≥ 1, rank bound q ≥ 1, and copying degree bound
r ≥ 2, the set C|D of contexts contained in the input data D cannot be enumerated in polynomial
time. However, the set S|D of substructures contained in D simply consists of tuples of strings with
at most p components and is quite easy to enumerate. Clark and Yoshinaka’s solution was to take the
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dual approach, using only a small subset of C|D to form characterizing sets of contexts for nonterminals.
Thus, they demanded not only that each nonterminal of the target grammar be characterized by a finite set
of contexts of bounded cardinality, but also that each element of the characterizing set be an r-copying
context (i.e., string pattern where each variable occurs at most r times). When a PMCFG in G(p, q, r) has
a finite characterizing set of contexts for each of its nonterminals, there is no reason to expect the contexts
involved to be r-copying, so this algorithm misses many grammars in G(p, q, r) that have a bounded-
cardinality characterizing set of contexts for each of their nonterminals.1 Crucially, the algorithm needs
S|D in its entirety to correctly filter out bad rules. For this reason, it does not seem to be possible to take
the primal approach to learning PMCFGs based on a similar idea.2

In this paper, we show, for the first time, the existence of non-trivial classes of nonlinear grammars for
which the decomposition problem is solvable in polynomial time, and which, consequently, admit both
primal and dual distributional learning algorithms in their pristine form. We present two: the classes of
parallel regular tree grammars and of uniformly copying IO context-free tree grammars. The proof of the
polynomial complexity of decomposition is far from trivial, and in both cases relies on a combinatorial
lemma about certain kinds of tree patterns that match a given tree.

Rather than establishing the learnability results for the two cases separately, we first present dis-
tributional learning algorithms in an abstract form and give a set of general conditions that are jointly
sufficient for these algorithms to succeed on any broadly context-free grammar formalism. The proof of
learnability for the particular cases will then reduce to checking that these conditions are satisfied.

2. Distributional Learning in a General Setting

We first consider an abstract form of distributional learning on broadly context-free grammar formalisms
and establish general conditions that are sufficient for successful learning. In dealing with learnability
results for the concrete grammar classes in later sections, all we will need to do is to check that these
conditions are satisfied.

2.1. Generalized Context-Free Grammars

The following definition deviates slightly from [8, 9]:

Definition 2.1. A generalized context-free grammar [8, 9] is a 6-tuple G = (N,O, F, σ, P, I) where

1. N is a finite set of nonterminals,

2. O is a countable set of objects,

3. F =
⋃

q∈N Fq is a finite set of partial functions, where Fq is a finite set of partial functions from
Oq to O,

4. σ is a function from N to P(O),

1Also, “r-copying” is an arbitrary restriction; other values, e.g. 2r , would work just as well.
2A recent paper by Kanazawa and Yoshinaka [7] pushes this strategy further in the general setting of tree-generating almost
linear second-order abstract categorial grammars with a bound on the degree of nonlinearity either in the substructures or in
the contexts.
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5. P is a finite subset of
⋃

q∈N(Fq ×N q+1) such that for each (f,A0, A1, . . . , Aq) ∈ P ,

σ(A1)× · · · × σ(Aq) ⊆ dom(f),

f(σ(A1)× · · · × σ(Aq)) ⊆ σ(A0),

and

6. I is a subset of N .

We adopt the convention that when q = 0, a partial function from Oq to O is identified with an element
of O. The value σ(A) of σ on A ∈ N is called the sort of A. The elements of I are called initial
nonterminals, and the elements of P are called rules.

A rule (f,A0, A1, . . . , Aq) is written sometimes in the form of a rewriting rule

A0 → f [A1, . . . , Aq]

and sometimes as a Horn clause

A0(f(z1, . . . , zq)) :−A1(z1), . . . , Aq(zq)

where in place of f(z1, . . . , zq), we may write an expression defining the value of f(z1, . . . , zq). We use
the latter notation.3 A rule A0(f(z1, . . . , zq)) :− A1(z1), . . . , Aq(zq) is called a terminating rule when
q = 0.

We will now give an informal explanation of the above definition. The nonterminal setN is standard.
Rather than having a single start symbol as in the standard definition of CFGs, it is convenient in the
context of distributional learning to have a set I of initial nonterminals.4 The set O consists of the
objects that may be derived by nonterminals in the grammar: strings, trees, or other expressions. In
multiple context-free grammars we have nonterminals of different dimensions which derive tuples of
strings, rather than individual strings, whose length (number of components in the tuple) is consistent.
This is reflected in the sorting mechanism. Each nonterminal A derives objects in σ(A). In the case of
MCFGs, O would be the set of all tuples of strings, and if A has dimension d, then σ(A) = (Σ∗)d. In
the case of a CFG, we only have one sort, which is just the sort of strings, and so O = Σ∗. F is the set
of partial functions that we use to construct the object on the left hand side of a rule from the objects
on its right hand side; Fq is the set of functions for rules which have q nonterminals on the right hand
side. In the case of CFGs, these functions are simply string concatenation. For each CFG rule of the
form A → u0A1u1 . . . Aquq, where ui is a string of terminal symbols, we have an element of Fq of
the form f(w1, . . . , wq) = u0w1 . . . wquq. In the notation introduced above, this rule may be written
A(u0z1u1 . . . zquq) :−A1(z1), . . . , Aq(zq). In the case of MCFGs, the set of functions would consist of
functions which manipulate the components of their arguments linearly via concatenation, tupling and
projection to form a new tuple of strings.

We now define derivation trees, which will form the basis of the notions of substructure and context
made use of by distributional learning techniques, and some associated notions. We will use ρ as a
variable for rules and τ, τ1, τ2, . . . as variables for derivation trees. The notion of an A-derivation tree
and its yield are defined inductively as follows:
3In the rewriting notation, the “f” on the right-hand side is a function symbol which should not be expanded by its definition
until the whole derivation is complete.
4A definition of CFGs with a set of initial nonterminals has been used by Thatcher [10], among others.
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• If ρ = A0(f) :− is a terminating rule, then ρ is an A0-derivation tree, and its yield is f ∈ O.

• If ρ = A0(f(z1, . . . , zq)) :− A1(z1), . . . , Aq(zq) is a non-terminating rule (q ≥ 1) and for each
i = 1, . . . , q, τi is an Ai-derivation tree with yield Si, then ρ(τ1, . . . , τq) is an A0-derivation tree
and its yield is f(S1, . . . , Sq).

Note that the yield of an A-derivation tree is always defined and belongs to σ(A). We call such an object
an A-substructure, and write S(G,A) for the set of A-substructures. When A ∈ I , an A-derivation tree
is called a complete derivation tree. The language of G, written L(G), is

⋃
A∈I S(G,A), or the set of

yields of complete derivation trees of G.
To provide an illustration of this abstract definition, we again translate it into the case of a CFG. Then

an A-derivation tree corresponds to a CFG derivation tree in the usual sense whose root is A and whose
yield is a string derived from A, and S(G,A) = {w ∈ Σ∗ | A ⇒∗G w }. Note that the rule applied at
each internal node of a CFG derivation tree (in the usual sense) is uniquely determined by the labels of
the node and its children. In the more abstract setting of a generalized context-free grammar, each node
of a derivation tree is explicitly labeled by a rule.

We also need to define the notion of a derivation context or environment for a generalized context-
free grammar; in other words, a derivation tree which contains some gaps, into which derivation trees of
appropriate kinds need to be placed in order to create a full-fledged derivation tree.

For each nonterminal A ∈ N , we introduce a new symbol �A. We call such symbols holes. For a
finite sequence (A1, . . . , An) of nonterminals, an (A1, . . . , An)-derivation environment and its yield are
defined inductively as follows (we use ξ as a variable for derivation environments):

• If A ∈ I , then �A is an (A)-derivation environment and its yield is the identity function on σ(A).

• If ξ is a (B1, . . . , Bi, A0, Bi+1, . . . , Bn)-derivation environment with yield C0 and ρ =
A0(f(z1, . . . , zq)):−A1(z1), . . . , Aq(zq) is a rule, then the result of substituting ρ(�A1 , . . . ,�Aq)
for the (i + 1)th hole (which is �A0) in ξ is a (B1, . . . , Bi, A1, . . . , Aq, Bi+1, . . . , Bn)-
derivation environment and its yield is the function C : σ(B1) × · · · × σ(Bi) × σ(A1) × · · · ×
σ(Aq) × σ(Bi+1) × · · · × σ(Bn) → O such that C(z1, . . . , zi, x1, . . . , xq, zi+1, . . . , zn) =
C0(z1, . . . , zi, f(x1, . . . , xq), zi+1, . . . , zn) for every zi ∈ σ(Bi) (i = 1, . . . , n) and xj ∈
σ(Aj) (j = 1, . . . , q).

If ξ is an (A1, . . . , An)-derivation environment with yieldC and τi is anAi-derivation tree with yield
Si for i = 1, . . . , n, then the result of substituting τi for the ith hole (i.e., �Ai) in ξ (i = 1, . . . , n) is
a complete derivation tree whose yield is C(S1, . . . , Sn). In particular, a ()-derivation environment is
nothing but a complete derivation tree.

We call the yield of an (A)-derivation environment an A-context, and write C(G,A) for the set of
A-contexts of G. An A-context is always a function from σ(A) to O. Note that for any S ∈ S(G,A)
and any C ∈ C(G,A), the result C(S) of applying C to S will be in L(G).

In a CFG, if we have a derivation (in the usual sense) S ⇒∗ u0Au1 from the start symbol S, then the
associated A-context is the function from Σ∗ to Σ∗ which maps a string w to u0wu1.

The set of (A)-derivation environments together with their yield has the following alternative induc-
tive definition:

• If A ∈ I , then �A is an (A)-derivation environment and its yield is the identity function on σ(A).
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• If ξ is an (A0)-derivation environment with yield C0, ρ = A0(f(z1, . . . , zq)) :−
A1(z1), . . . , Aq(zq) is a non-terminating rule (q ≥ 1), and τj is an Aj-derivation tree with
yield Sj for j = 1, . . . , i − 1, i + 1, . . . , q (1 ≤ i ≤ q), then the result of substituting
ρ(τ1, . . . , τi−1,�Ai , τi+1, . . . , τq) for �A0 in ξ is an (Ai)-derivation environment, and its yield
is the function C : σ(Ai) → O such that C(z) = C0(f(S1, . . . , Si−1, z, Si+1, . . . , Sq)) for every
z ∈ σ(Ai).

2.2. Distributional Learning

Our learning paradigm is identification in the limit from positive data and membership queries. A positive
presentation of a language L∗ is an infinite sequence T1, T2, . . . such that L∗ = {Ti | i ≥ 1 }. A learner
is given a positive presentation of the language L∗ = L(G∗) of the target grammar G∗ and each time a
new example Ti is given, it outputs a grammarGi computed from T1, . . . , Ti with the aid of a membership
oracle. One may query the oracle whether a certain object T is in L∗, and the oracle answers in constant
time. For a learning algorithm to be successful in learningG∗, it must be that for any positive presentation
T1, T2, . . . of L∗, there is an integer n such that Gn = Gm for all m ≥ n and L(Gn) = L∗. Because
of the access to the membership oracle, this condition alone is not sufficiently restrictive; convergence
to a correct grammar is always possible with a simple-minded “enumerative” learning algorithm that
asks membership queries on the possible observations in turn and hypothesizes the first grammar that is
consistent with the input data and the membership queries so far. So as to exclude such an enumerative
algorithm, a distributional learning algorithm is required to be efficient both in terms of the time it takes to
compute the hypothesis at each stage (update time) and the amount of data that guarantees convergence.

2.2.1. Basic Properties and Assumptions

Let us fix a countable set O of objects with a distinguished subset O0 ⊆ O, a countable set R ⊆P(O) of
subsets of O, and for each q ∈ N, a countable set Fq of partial functions from Oq to O. Let F =

⋃
q∈N Fq

and let G be the class of generalized context-free grammars G = (N,O, F, σ, P, I) such that

• N ⊆ N,

• F ⊆ F,

• ran(σ) ⊆ R, and

• σ(A) ⊆ O0 for all A ∈ I .

Although nonterminals of grammars in G are formally natural numbers, we use other finitely presented
objects as nonterminals in informal description of grammars, assuming some suitable Gödel numbering
of the nonterminals.

Relative to the class G, we define the set S of substructures and the set C of contexts by

S =
⋃
{ S(G,A) | A is a nonterminal of some G ∈ G },

C =
⋃
{ C(G,A) | A is a nonterminal of some G ∈ G }.
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These sets correspond to the substructures and contexts for any grammar in the class. We can of course,
subject to the sortal constraints, combine a context C ∈ C and a substructure S ∈ S of the right sort to
get a complete object C(S) ∈ O0.

Example 2.2. Let Σ be a finite alphabet. For u0, u1, . . . , uq ∈ Σ∗, let fu0,u1,...,uq be the function from
(Σ∗)q to Σ∗ defined by

fu0,u1,...,uq(z1, . . . , zq) = u0z1u1 . . . zquq.

The class G of context-free grammars over Σ (with multiple initial nonterminals) may be specified in the
above manner by setting

O = O0 = Σ∗,

Fq = { fu0,u1,...,uq | u0, u1, . . . , uq ∈ Σ∗ },
F =

⋃
q∈N

Fq,

R = {Σ∗}.
Then we have

S = Σ∗,

C = { fu0,u1 | u0, u1 ∈ Σ∗ }.
The sets S and C for the class of context-free grammars are trivially simple, but for more complex

formalisms, these sets, particularly the set of contexts, may have some interesting structure.

Lemma 2.3. Suppose f ∈ Fq, R0, R1, . . . , Rq ∈ R, and

R1 × · · · ×Rq ⊆ dom(f),

f(R1 × · · · ×Rq) ⊆ R0.

(i) If Si ∈ S ∩Ri for i = 1, . . . , q, then f(S1, . . . , Sq) ∈ S. As a special case, if q = 0, then f ∈ S.

(ii) If R0 ⊆ O0, then the identity function on R0 is in C.

(iii) Suppose C ∈ C, R0 ⊆ dom(C), and Si ∈ S ∩ Ri for i = 1, . . . , j − 1, j + 1, . . . , q. Define a
function C ′ : Rj → O0 by

C ′(z) = C(f(S1, . . . , Sj−1, z, Sj+1, . . . , Sq)) for every z ∈ Rj .

Then C ′ ∈ C.

Definition 2.4. Let G = (N,O, F, σ, P, I) ∈ G and A ∈ N .

(i) We say that a finite nonempty set S ⊆ S ∩ σ(A) is a kernel for A if the following equivalence
holds for all C ∈ C such that σ(A) ⊆ dom(C):5

∀S ∈ S(G,A)(C(S) ∈ L(G))⇔
∧
S∈S

C(S) ∈ L(G).

When |S| ≤ m, we call S an m-kernel for A.
5We use the symbol

∧
to express finite conjunctions. If S = {S1, . . . , Sm}, then

∧
S∈S C(S) ∈ L(G) means C(S1) ∈

L(G) ∧ · · · ∧ C(Sm) ∈ L(G).
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(ii) We say that a finite nonempty set C ⊆ {C ∈ C | σ(A) ⊆ dom(C) } is a context set for A if the
following equivalence holds for all S ∈ S ∩ σ(A):

S ∈ S(G,A)⇔
∧
C∈C

C(S) ∈ L(G).

When |C| ≤ m, we call C an m-context set for A.6

(iii) We say thatG has them-finite kernel property (m-FKP) if every nonterminal ofG has anm-kernel.

(iv) We say that G has the m-finite context property (m-FCP) if every nonterminal of G has an m-
context set.

Example 2.5. Let G be the class of context-free grammars over Σ, as in Example 2.2. Every regular
language L over Σ has a grammar in G with the 1-FKP. Such a grammar G can be obtained from the
syntactic monoid (M, •, 1) of L in a straightforward manner.7 We have G = (N,Σ∗, F, σ, P, I), where
N = M = { [v]≡L | v ∈ Σ∗ }, F = F0 ∪ F2 = { fa | a ∈ Σ ∪ {ε} } ∪ {fε,ε,ε}, σ maps every element
of N to Σ∗, I = { [v]≡L | v ∈ L }, and P consists of rules

A(a) :− ,
A0(z1z2) :−A1(z1), A2(z2)

such that a ∈ Σ∪ {ε}, A = [a]≡L , and A0 = A1 •A2. It may be proved that for every A ∈ N and every
v ∈ Σ∗, v ∈ S(A) if and only if [v]≡L = A, so that elements of S(A) are everywhere interchangeable.
It follows that any singleton subset of S(A) is a 1-kernel for A.8

A primal learner for G tries to learn every grammar in G with the m-FKP for a certain fixed value
of m. In contrast, a dual learner for G tries to learn every grammar in G with the m-FCP.

Let T ∈ O0. We say that S ∈ S is contained in T if there exists C ∈ C such that C(S) is defined and
equals T . Likewise, C ∈ C is said to be contained in T if there exists S ∈ S such that C(S) is defined
and equals T . For f ∈ Fq, we say that f is contained in T ∈ O0 if there are C ∈ C and S1, . . . , Sq ∈ S
such that C(f(S1, . . . , Sq)) is defined and equals T . For T ∈ O0, define

S|T = {S ∈ S | S is contained in T },
C|T = {C ∈ C | C is contained in T },
F|T = { f ∈ F | f is contained in T }.

6Yoshinaka [2] and Leiß [11] used a weaker definition of a context set for ordinary context-free grammars, which can be
expressed in the present general setting as follows: for all S ∈ S ∩ σ(A),

∀C′ ∈ C((σ(A) ⊆ dom(C′) ∧ ∀S′ ∈ S(G,A)(C′(S′) ∈ L(G)))⇒ C′(S) ∈ L(G))⇔
∧

C∈C

C(S) ∈ L(G).

This weaker definition also verifies Lemma 2.7 below and hence suffices for our dual distributional learning algorithm (Algo-
rithm 2) to work properly.
7The syntactic monoid of L ⊆ Σ∗ is the quotient Σ∗/≡L of the free monoid Σ∗ by the syntactic congruence≡L for L defined
by v ≡L v

′ ⇔ { (u0, u1) | u0vu1 ∈ L } = { (u0, u1) | u0v
′u1 ∈ L }. It is known that L is regular if and only if its syntactic

monoid is finite.
8Note that this in general requires multiple initial nonterminals, since two elements of L may not be in the same equivalence
class of the syntactic congruence for L.
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Lemma 2.6. Let G = (N,O, F, σ, P, I) ∈ G and L = L(G). Suppose that each nonterminal A ∈ N
has a kernel SA.

(i) If C(G,A) 6= ∅, then every S ∈ SA is contained in some T ∈ L.

(ii) If A ∈ I , then SA ⊆ L.

(iii) For every rule A0(f(z1, . . . , zq)) :−A1(z1), . . . , Aq(zq) in P , the following condition holds:

∀C ∈ C

σ(A0) ⊆ dom(C) ∧
∧

S0∈SA0

C(S0) ∈ L

 ⇒
∧

S1∈SA1

· · ·
∧

Sq∈SAq

C(f(S1, . . . , Sq)) ∈ L

 .

Proof:
We only show (iii). Let C ∈ C and assume

σ(A0) ⊆ dom(C) ∧
∧

S0∈SA0

C(S0) ∈ L.

Let S1 ∈ SA1 , . . . , Sq ∈ SAq . We show the following claim by induction on i ∈ {0, . . . , q}:

∀S′i+1 ∈ S(G,Ai+1) . . . ∀S′q ∈ S(G,Aq)(C(f(S1, . . . , Si, S
′
i+1, . . . , S

′
q)) ∈ L). (1)

The case of i = 0 is clear since A0(f(z1, . . . , zq)) :− A1(z1), . . . , Aq(zq) is a rule of G. Now assume
that (1) holds for i = j − 1 < q, and let S′j+1 ∈ S(G,Aj+1), . . . , S′q ∈ S(G,Aq). Let C ′ : σ(Aj)→ O0

be the function defined by

C ′(x) = C(f(S1, . . . , Sj−1, x, S
′
j+1, . . . , S

′
q)) for all x ∈ σ(Aj).

By part (iii) of Lemma 2.3, C ′ ∈ C. Since (1) holds for i = j − 1, we have C ′(S′j) ∈ L for all
S′j ∈ S(G,Aj). Since Sj ∈ SAj , it follows that C ′(Sj) ∈ L, i.e.,

C(f(S1, . . . , Sj , S
′
j+1, . . . , S

′
q)) ∈ L.

Since S′j+1, . . . , S
′
q were arbitrary, it follows that (1) holds for i = j. ut

Lemma 2.7. Let G = (N,O, F, σ, P, I) ∈ G and L = L(G). Suppose that each nonterminal A ∈ N
has a context set CA.

(i) If S(G,A) 6= ∅, then every C ∈ CA is contained in some T ∈ L.

(ii) If A ∈ I , then the following condition holds:

∀S ∈ S

S ∈ σ(A) ∧
∧

C∈CA

C(S) ∈ L

⇒ S ∈ L

 .
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(iii) For every rule A0(f(z1, . . . , zq)) :−A1(z1), . . . , Aq(zq), in P , the following condition holds:

∀S1 . . . Sq ∈ S

 q∧
i=1

Si ∈ σ(Ai) ∧
∧

Ci∈CAi

Ci(Si) ∈ L

⇒ ∧
C0∈CA0

C0(f(S1, . . . , Sq)) ∈ L

 .

We make a number of assumptions that are necessary to make a distributional learning algorithm
possible. In the following, we assume that elements of O,R,F,G,S,C are all finitely represented under
some effective encoding.

Assumption 1. (Finiteness of the set of sorts)
R is a finite set of subsets of O.

Assumption 2. (Bound on the arity of functions)
Fq is empty for all but finitely many q.

Assumption 3. (Polynomial complexity of questions about functions)
Let R,R1, . . . , Rq ∈ R.

• For f ∈ Fq, the question “R1 × · · · ×Rq ⊆ dom(f)?” is decidable in polynomial time in the size
of f .

• For f ∈ Fq, the question “f(R1 × · · · ×Rq) ⊆ R?” is decidable in polynomial time in the size of
f ;

• For f ∈ Fq and (S1, . . . , Sq) ∈ dom(f), f(S1, . . . , Sq) is computable in polynomial time in the
combined size of f, S1, . . . , Sq.

Assumption 4. (Polynomial complexity of universal recognition)
For T ∈ O0 and G ∈ G, the question “T ∈ L(G)?” is decidable in polynomial time in the combined
size of T and G.

Assumption 5. (Polynomial complexity of questions about contexts and substructures)
Let R ∈ R.

• For S ∈ S, the question “S ∈ R?” is decidable in polynomial time in the size of S.

• For C ∈ C, the question “R ⊆ dom(C)?” is decidable in polynomial time in the size of C.

• For S ∈ S ∩R and C ∈ C such that R ⊆ dom(C), C(S) is computable in polynomial time in the
combined size of C, S.

Assumption 6. (Polynomial enumerability of substructures, contexts, and functions)
Each of S|T ,C|T ,F|T is finite and can be enumerated in polynomial time in the size of T ∈ O0.

We can state the general forms of both primal and dual distributional learning algorithms for any
class G satisfying Assumptions 1, 2, 3, 4, 5 and 6.9 When D is a finite subset of O0, we write

S|D =
⋃
T∈D

S|T , C|D =
⋃
T∈D

C|T , F|D =
⋃
T∈D

F|T .

9In fact, Assumption 4 can be seen to be a consequence of Assumption 6. We state Assumption 4 separately because it is often
easy to check while Assumption 6 can be quite difficult to establish.
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2.2.2. Primal Learner

The primal learning algorithm designed to learn grammars in G with them-FKP is given in Algorithm 1.
Here,G∗ ∈ G is the target grammar. The algorithm calls the function PRIMAL to construct its conjecture.

Algorithm 1 Primal learner for G.
Data: A positive presentation T1, T2, . . . of L∗ = L(G∗); membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;
let D0 := ∅;K0 := ∅; J0 := ∅;H0 := ∅; G0 := PRIMAL(K0, J0, H0);
for i = 1, 2, . . . do

let Di := Di−1 ∪ {Ti}; Ji := C|Di ;
if Di * L(Gi−1) then

let Ki := S|Di ; Hi := F|Di ;
else

let Ki := Ki−1; Hi := Hi−1;
end if
output Gi := PRIMAL(Ki, Ji, Hi);

end for

LetK ⊆ S, J ⊆ C,H ⊆ F be finite sets. The grammar PRIMAL(K,J,H) = (N,O, H, σ, P, I) ∈ G
is defined as follows. Let

N = { (S, R) ∈P(K)× R | S 6= ∅, |S| ≤ m,S ⊆ R },
σ((S, R)) = R,

I = { (S, R) ∈ N | S ⊆ L∗ },

and let P consist of all rules of the form

(S0, R0)(f(z1, . . . , zq)) :− (S1, R1)(z1), . . . , (Sq, Rq)(zq)

(with nonterminals in N and f ∈ H) which satisfy the following condition:

∀C ∈ J

R0 ⊆ dom(C) ∧
∧

S0∈S0

C(S0) ∈ L∗

⇒ ∧
S1∈S1

· · ·
∧

Sq∈Sq

C(f(S1, . . . , Sq)) ∈ L∗

 . (2)

Note that the condition (2) is similar to the condition in part (iii) of Lemma 2.6, except that here,
L∗ is the language of the target grammar rather than the conjectured one and the universally quantified
variable C is restricted to J (which is C|Di in the algorithm). (Note that the checking of (2), as well as
the condition S ⊆ L∗ in the definition of I , requires access to the membership oracle for L∗.)

The following lemma is clear from the definition of PRIMAL:

Lemma 2.8. Let K ⊆ S, J, J ′ ⊆ C, and H ⊆ F, and let PRIMAL(K,J,H) = (N,O, H, σ, P, I) and
PRIMAL(K,J ′, H) = (N,O, H, σ, P ′, I). We have

J ⊆ J ′ ⇒ P ′ ⊆ P.
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We call a rule (S0, R0)(f(z1, . . . , zq)) :− (S1, R1)(z1), . . . , (Sq, Rq)(zq) of PRIMAL(K,J,H) valid
for L∗ if the following condition holds:

∀C ∈ C

R0 ⊆ dom(C) ∧
∧

S0∈S0

C(S0) ∈ L∗

⇒ ∧
S1∈S1

· · ·
∧

Sq∈Sq

C(f(S1, . . . , Sq)) ∈ L∗

 . (3)

This is the unrestricted version of the condition (2).

Lemma 2.9. If all rules of G = PRIMAL(K,J,H) are valid for L∗, then L(G) ⊆ L∗.

Proof:
We can easily prove by induction that if ξ is an ((S1, R1), . . . , (Sn, Rn))-derivation environment (n ≥ 0)
of G with yield C : R1×· · ·×Rn → O0, then C(S1, . . . , Sn) ∈ L∗ holds for all S1 ∈ S1, . . . , Sn ∈ Sn.
If τ is a complete derivation tree of G with yield S, then τ is a ()-derivation tree environment of G, so
S ∈ L∗. ut

Theorem 2.10. Algorithm 1 successfully learns all grammars in G with the m-FKP.

Proof:
Let G∗ = (N∗,O, F∗, σ∗, P∗, I∗) ∈ G be a grammar with the m-FKP. Let SA be an m-kernel for
each nonterminal A ∈ N∗. Without loss of generality, we may assume that for all A ∈ N∗, we have
S(G∗, A) 6= ∅ and C(G∗, A) 6= ∅, and each f ∈ F∗ is used in some rule in P∗. This implies that all
f ∈ F∗ is contained in some T ∈ L∗ = L(G∗). Also, by part (i) of Lemma 2.6, each element of SA is
contained in some T ∈ L∗

Consider the run of Algorithm 1 on a positive presentation T1, T2, . . . of L∗. Let k be large enough
that

SA ⊆ S|Dk
for each A ∈ N∗,

F∗ ⊆ F|Dk
.

We distinguish two cases.
Case 1. At all stages l ≥ k, Dl ⊆ L(Gl−1) holds. Then L∗ ⊆ L(Gl) and Kl and Hl stay the same at

all stages l ≥ k. By Lemma 2.8, no new rule is added to the conjectured grammar beyond stage k. If a
rule is not valid for L∗, then the context C falsifying the condition (3) must be contained in some Tj , so
when l ≥ j, Jl will contain C and the rule will not be in Gl. Hence Gl will eventually consist of valid
rules only and stabilize. When that happens, by Lemma 2.9, L(Gl) ⊆ L∗, so the conjectured grammar
will be correct.

Case 2. There is some stage l ≥ k where Dl 6⊆ L(Gl−1). Then for all i ≥ l, Ki will include SA for
allA ∈ N∗ andHi will contain all f ∈ F∗. Then for every ruleA0(f(z1, . . . , zq)):−A1(z1), . . . , Aq(zq)
in P∗, the conjectured grammar Gi will contain the rule

(SA0 , σ∗(A0))(f(z1, . . . , zq)) :− (SA1 , σ∗(A1))(z1), . . . , (SAq , σ∗(Aq))(zq),

since it is valid for L∗ by part (iii) of Lemma 2.6. Also, if A ∈ I∗, SA ⊆ L∗ by part (ii) of Lemma 2.6,
so (SA, σ∗(A)) is an initial nonterminal ofGi. This means thatGi contains a homomorphic image ofG∗
and L∗ ⊆ L(Gi) holds. Similarly to Case 1, rules that are not valid for L∗ will eventually be eliminated
and the conjectured grammar will stabilize and be correct. ut
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2.2.3. Dual Learner

The dual learning algorithm designed to learn grammars in G with them-FCP is given in Algorithm 2. As
before, G∗ ∈ G is the target grammar. The algorithm calls the function DUAL to construct its conjecture.

Algorithm 2 Dual learner for G.
Data: A positive presentation T1, T2, . . . of L∗ = L(G∗); membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;
let D0 := ∅;K0 := ∅; J0 := ∅;H0 := ∅; G0 := DUAL(K0, J0, H0);
for i = 1, 2, . . . do

let Di := Di−1 ∪ {Ti}; Ki := S|Di ;
if Di * L(Gi−1) then

let Ji := C|Di ; Hi := F|Di ;
else

let Ji := Ji−1; Hi := Hi−1;
end if
output Gi := DUAL(Ki, Ji, Hi);

end for

Let K ⊆ S, J ⊆ C, H ⊆ F be finite sets. The grammar DUAL(K,J,H) = (N,O, H, σ, P, I) ∈ G
is defined as follows. Let

N = { (C, R) ∈P(J)× R | C 6= ∅, |C| ≤ m,dom(C) ⊆ R for all C ∈ C },
σ((C, R)) = R,

I = { (C, R) ∈ N | ∀S ∈ K((S ∈ R ∧
∧
C∈C

C(S) ∈ L∗)⇒ S ∈ L∗) },

and let P consist of all rules of the form

(C0, R0)(f(z1, . . . , zq)) :− (C1, R1)(z1), . . . , (Cq, Rq)(zq)

(with nonterminals in N and f ∈ H) which satisfy the following condition:

∀S1 . . . Sq ∈ K

 q∧
i=1

Si ∈ Ri ∧
∧

Ci∈Ci

Ci(Si) ∈ L∗

⇒ ∧
C0∈C0

C0(f(S1, . . . , Sq)) ∈ L∗

 . (4)

Note that the condition defining I and the condition (4) are similar to the conditions in part (ii) and
(iii) of Lemma 2.7, respectively, except that here, L∗ is the language of the target grammar rather than
the conjectured one and the universally quantified variables S, S1, . . . , Sq are restricted to K (which is
S|Di in the algorithm). (Checking these conditions requires access to the membership oracle for L∗.)

Again, the following property of DUAL is clear from its definition:

Lemma 2.11. Let K,K ′ ⊆ S, J ⊆ C, and H ⊆ F, and let DUAL(K,J,H) = (N,O, H, σ, P, I) and
DUAL(K ′, J,H) = (N,O, H, σ, P ′, I ′). We have

K ⊆ K ′ ⇒ (P ′ ⊆ P ∧ I ′ ⊆ I).
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We call a rule (C0, R0)(f(z1, . . . , zq)) :− (C1, R1)(z1), . . . , (Cq, Rq)(zq) of DUAL(K,J,H) valid
for L∗ if the following condition holds:

∀S1 . . . Sq ∈ S

 q∧
i=1

Si ∈ Ri ∧
∧

Ci∈Ci

Ci(Si) ∈ L∗

⇒ ∧
C0∈C0

C0(f(S1, . . . , Sq)) ∈ L∗

 . (5)

This is the unrestricted version of the condition (4).
We call an initial nonterminal (C, R) of DUAL(K,J,H) valid for L∗ if the following condition

holds:

∀S ∈ S

((
S ∈ R ∧

∧
C∈C

C(S) ∈ L∗
)
⇒ S ∈ L∗

)
.

This is the unrestricted version of the condition defining the set of initial nonterminals in DUAL(K,J,H).

Lemma 2.12. If all rules and all initial nonterminals of G = DUAL(K,J,H) are valid for L∗, then
L(G) ⊆ L∗.

Proof:
We can easily prove by induction that if τ is a (C, R)-derivation tree of G with yield S, then C(S) ∈ L∗
for all C ∈ C. If (C, R) ∈ I , then S ∈ L∗ by the definition of validity. ut

Theorem 2.13. Algorithm 2 successfully learns all grammars in G with the m-FCP.

Proof:
The proof is very similar to that of Theorem 2.10. Let G∗ = (N∗,O, F∗, σ∗, P∗, I∗) ∈ G be a grammar
with the m-FCP. Let CA be an m-context set for each nonterminal A ∈ N∗. Without loss of generality,
we may assume that for all A ∈ N∗, we have S(G∗, A) 6= ∅ and C(G∗, A) 6= ∅, and each f ∈ F∗ is
used in some rule in P∗. This implies that all f ∈ F∗ is contained in some T ∈ L∗. Also, by part (i) of
Lemma 2.7, each element of CA is contained in some T ∈ L∗. Let k be large enough that

CA ⊆ C|Dk
for each A ∈ N∗,

F∗ ⊆ F|Dk
.

We distinguish two cases.
Case 1. At all stages l ≥ k, Dl ⊆ L(Gl−1) holds. Then L∗ ⊆ L(Gl) and Jl and Hl stay the same at

all stages l ≥ k. By Lemma 2.11, no new rule is added to the conjectured grammar beyond stage k. If a
rule is not valid for L∗, then the substructures S1, . . . , Sq falsifying the condition (5) must be contained
in some Tj1 , . . . , Tjq , so when l ≥ max{j1, . . . , jq}, Kl will include {S1, . . . , Sq} and the rule will not
be in Gl. Hence Gl will eventually consist of valid rules only and stabilize. When that happens, by
Lemma 2.12, L(Gl) ⊆ L∗, so the conjectured grammar will be correct.

Case 2. There is some stage l ≥ k where Dl 6⊆ L(Gl−1). Then for all i ≥ l, Ji will include CA for
allA ∈ N∗ andHi will contain all f ∈ F∗. Then for every ruleA0(f(z1, . . . , zq)):−A1(z1), . . . , Aq(zq)
in P∗, the conjectured grammar Gi will contain the rule

(CA0 , σ∗(A0))(f(z1, . . . , zq)) :− (CA1 , σ∗(A1))(z1), . . . , (CAq , σ∗(Aq))(zq),
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since it is valid for L∗ by part (iii) of Lemma 2.7. Also, if A ∈ I∗, the nonterminal (CA, σ∗(A)) of Gi

is valid for L∗ by part (ii) of Lemma 2.7 and hence is an initial nonterminal of Gi. This means that Gi

contains a homomorphic image of G∗, and L∗ ⊆ L(Gi) holds. Similarly to Case 1, rules that are not
valid for L∗ will eventually be eliminated and the conjectured grammar will stabilize and be correct. ut

2.2.4. Efficiency of the Learning Algorithms

We say that a finite sequence of objects T1, . . . , Tn from a language L ⊆ O0 is a locking sequence [12]
for L and a learning algorithm A if for some grammar G such that L(G) = L, the algorithm A, when
given access to the oracle for L, returns G on all extensions T1, . . . , Tn, T

′
1, . . . , T

′
l of T1, . . . , Tn with

{T ′1, . . . , T ′l } ⊆ L. If, instead, A outputs a grammar for a superset of L on all extensions (inside L) of
T1, . . . , Tn (possibly different grammars for different extensions), then we say that T1, . . . , Tn is a weak
locking sequence for L and A.

Theorem 2.14. Algorithms 1 and 2 have the following properties:

(i) The update time of each algorithm is polynomial in the total size of the input data.

(ii) For each grammar G ∈ G with the m-FKP (resp. m-FCP), Algorithm 1 (resp. Algorithm 2)
satisfies the following conditions:

(a) There is a finite set D ⊆ L(G) whose cardinality is polynomial in the size of G such that
whenever D ⊆ {T1, . . . , Tn} ⊆ L(G), the sequence T1, . . . , Tn can be extended to a weak
locking sequence for L(G) with the addition of at most one element of L(G).

(b) For every weak locking sequence T1, . . . , Tn for L(G), there is a finite set E whose
cardinality is polynomial in the total size of T1, . . . , Tn such that every extension
T1, . . . , Tn, T

′
1, . . . , T

′
l of T1, . . . , Tn with E ⊆ {T1, . . . , Tn, T

′
1, . . . , T

′
l } ⊆ L(G) is a lock-

ing sequence for L(G).

Proof:
Part (i) is by inspection of the algorithms, using Assumptions 1, 2, 3, 4, 5 and 6. The proof of part (ii) is
similar to the proofs of Theorems 2.10 and 2.13. ut

3. Two Learnable Classes of Nonlinear Tree Grammars

3.1. Preliminaries on Trees and Tree Patterns

A ranked alphabet is a finite set ∆ of symbols where each symbol has a fixed rank l ∈ N. We write ∆(l)

for the set of symbols in ∆ of rank l. The set T∆ of trees over ∆ is the smallest superset of ∆(0) such
that f(T1, . . . , Tl) ∈ T∆ whenever f ∈ ∆(l) and T1, . . . , Tl ∈ T∆ with l ≥ 1. The size |T | of a tree T is
the number of occurrences of symbols in it. In terms of graphical representation of trees, this is the same
as the number of nodes of T .

Let X be a countably infinite set of variables x1, x2, . . . , disjoint from ∆. The variables in X are
assumed to have rank 0. The set of first n variables x1, . . . , xn in X is denoted Xn. An n-variable tree
pattern over ∆ is an element of T∆∪Xn in which each of the variables x1, . . . , xn occurs at least once.
We write T∆[Xn] for the set of n-variable tree patterns over ∆. Note that T∆[X0] = T∆.



A. Clark, M. Kanazawa, G. Kobele, R. Yoshinaka / Distributional Learning of Some Nonlinear Tree Grammars 17

A tree T ∈ T∆∪Xn can naturally be viewed as a representation of a function JT K : (T∆∪X)n →
T∆∪X that maps (U1, . . . , Un) ∈ (T∆∪X)n to the tree T [U1, . . . , Un] that results from substituting
U1, . . . , Un for x1, . . . , xn, respectively, in T . Formally, T [U1, . . . , Un] is defined inductively by

a[U1, . . . , Un] = a for a ∈ ∆(0),

xi[U1, . . . , Un] = Ui,

(f(T1, . . . , Tl))[U1, . . . , Un] = f(T1[U1, . . . , Un], . . . , Tl[U1, . . . , Un]) for f ∈ ∆(l).

Note that under this definition, T [x1, . . . , xn] = T whenever T ∈ T∆∪Xn .
The following should be clear from the above definition:

Lemma 3.1. For T ∈ T∆∪Xn and U1, . . . , Un ∈ T∆∪X , T [U1, . . . , Un] is computable in polynomial
time in the combined size of T,U1, . . . , Un.

An n-variable tree pattern Q ∈ T∆[Xn] is k-copying if each of the variables x1, . . . , xn occurs at
most k times in Q. An n-variable tree pattern Q is said to match a tree T ∈ T∆ if there are trees
T1, . . . , Tn ∈ T∆ such that T = Q[T1, . . . , Tn]. It is easy to see that the number of k-copying n-variable
tree patterns that match a tree T ∈ T∆ is bounded by |T |kn and they can be enumerated in polynomial
time in |T |.

3.2. Enumeration of One-Variable Tree Patterns

When P1 and P2 are one-variable tree patterns, we call P1[P2] the composition of P1 and P2. Note that
the function JP1[P2]K represented by P1[P2] is actually the composition of the functions JP1K and JP2K.
We write P∆,k for the composition closure of the set of k-copying one-variable tree patterns over ∆. A
key theorem we rely on in what follows is the following:

Theorem 3.2. Let T ∈ T∆. If |T | = n, then there are no more than nk+1 one-variable tree patterns in
P∆,k that match T , and they can be enumerated in polynomial time.

The proof of this theorem is given in the long appendix (Section A).

3.3. Parallel Regular Tree Grammars

A parallel regular tree grammar is a nonlinear variant of the well-known regular tree grammar. Here,
the set T∆ plays the role of O = O0, and R is the singleton of T∆. Functions used in a parallel regular
tree grammar are ones that are represented by tree patterns.

Example 3.3. Let ∆ = ∆(0) ∪ ∆(1) ∪ ∆(2) ∪ ∆(4) = {a} ∪ {g} ∪ {f} ∪ {h}. Define a generalized
context-free grammar G = (N,O, F, σ, P, I), where

N = {A1, A2, A3},
O = T∆,

F = F0 ∪ F1 ∪ F2,

F0 = {a},
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A3(h(z1, z2, z1, z2)) :−A1(z1), A2(z2)

A1(f(z1, z1)) :−A1(z1)

A1(a) :−

A2(g(g(z1)) :−A2(z1)

A2(g(g(z1)) :−A2(z1)

A2(a) :−

Figure 1. A complete derivation tree of a parallel regular tree grammar.

F1 = {Jf(x1, x1)K, Jg(g(x1))K},
F2 = {Jh(x1, x2, x1, x2)K},

σ(Z) = T∆ for all Z ∈ N ,

I = {A3},

and P consists of the following rules:

A1(a) :− ,
A1(f(z1, z1))) :−A1(z1),

A2(a) :− ,
A2(g(g(z1)) :−A2(z1),

A3(h(z1, z2, z1, z2)) :−A1(z1), A2(z2).

(Note that we are expanding Jf(x1, x1)K(z1) as f(z1, z1), etc.) This is an example of a parallel regular
tree grammar. Figure 1 shows an example of a complete derivation tree of this grammar. The yield of
this derivation tree is h(f(a, a), g(g(g(g(a)))), f(a, a), g(g(g(g(a))))).

Since the value of the sort function σ in a parallel regular tree grammar is always T∆, it is superfluous.
So a parallel regular tree grammar (N,T∆, F, σ, P, I) may be thought of as a 5-tuple (N,T∆, F, P, I).

To satisfy the requirements about the target grammar class, we pick arbitrary positive integers k, r
and limit functions in grammars to those represented by k-copying q-variable tree patterns with q ≤ r.
Let

O = T∆,

Fq = { JQK | Q is a k-copying q-variable tree pattern },

F =

r⋃
q=0

Fq.

This determines the grammar class

GPRTG(k,r) = { (N,O, F, P, I) | N ⊆ N, F ⊆ F }.

The grammar in Example 3.3 belongs to GPRTG(k,r) if k ≥ 2 and r ≥ 2.
Let SPRTG(k,r) and CPRTG(k,r) be the sets of substructures and contexts of GPRTG(k,r), respectively.

Write FPRTG(k,r) for the set F defined just above.
It is easy to see that SPRTG(k,r) = T∆. The following lemma is also straightforward:
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Lemma 3.4. CPRTG(k,r) = { JQK | Q ∈ P∆,k }.

Let us check that the conditions required for Algorithms 1 and 2 to work correctly are satisfied.
Assumptions 1 and 2 are trivial. The first two items of Assumption 3 are trivial and the third item holds
by Lemma 3.1. Assumption 4 can be shown to hold by a standard dynamic programming technique.
(Here, the bound r on the number of occurrences of nonterminals on the right-hand side of rules plays
an important role.) The first two items of Assumption 5 are trivial, and the third item follows from
Lemma 3.1. As for Assumption 6, since SPRTG(k,r) = T∆ implies that SPRTG(k,r)|T is the set of subtrees
of T , the polynomial-time enumerability of SPRTG(k,r)|T is trivial. The polynomial-time enumerability
of CPRTG(k,r)|T directly follows from Lemma 3.4 and Theorem 3.2. The elements of FPRTG(k,r)|T are
the k-copying q-variable tree patterns (q ≤ r) that match some subtree of T , so this set is again clearly
enumerable in polynomial time in the size of T .

Theorem 3.5. Algorithms 1 and 2, when applied to G = GPRTG(k,r), successfully learn all grammars in
GPRTG(k,r) with the m-FKP and the m-FCP, respectively, while satisfying favorable properties in terms
of efficiency.

Example 3.6. The grammar G ∈ GPRTG(2,2) of Example 3.3 has both the 1-FCP and 2-FKP. It follows
that Algorithm 2 applied to G = GPRTG(2,2) withm = 1, as well as Algorithm 1 applied to G = GPRTG(2,2)

with m = 2, correctly learns this grammar. It is easy to see that the nonterminals A1, A2 and A3 of G
admit 1-context sets {z}, {h(z, a, z, a)} and {h(a, z, a, z)}, and 2-kernels {a, f(a, a)}, {a, g(g(a))} and
{h(a, a, a, a)}, respectively. Note that no singleton tree set can be a 1-kernel of A1 or A2. For example,
{f(a, a)} ⊆ S(G,A1) can occur in a context h(z, a, f(a, a), a) ∈ CPRTG(k,r), in which no other elements
of S(G,A1) can occur.

3.4. Uniformly Copying IO Context-Free Tree Grammars

An IO context-free tree grammar [13] is a generalized context-free grammar where each object is an
n-variable tree pattern for some n ≥ 0.10 In contrast to the PRTG case, here we have infinitely many
different possible sorts, and O0 = T∆ ⊂ O

Each function in an IO context-free tree grammar is represented by a tree pattern over an extended
ranked alphabet ∆ ∪ Y , where Y is a ranked alphabet of second-order variables, disjoint from ∆. We
assume that for each n ≥ 0, Y (n) = {y(n)

1 , y
(n)
2 , . . . }. A second-order variable y(n)

i ∈ Y (n) is interpreted
as ranging over the functions represented by elements of T∆[Xn]. We adopt the convention according to
which y(n)

i (T1, . . . , Tn) denotes y(0)
i when n = 0.

LetQ ∈ T∆∪Y [Xn] be an n-variable tree pattern over ∆∪Y such that the symbols from Y occurring
in Q are y(n1)

1 , . . . , y
(nq)
q . The function 〈〈Q〉〉 that Q represents maps (U1, . . . , Uq) ∈ T∆[Xn1 ] × · · · ×

T∆[Xnq ] to the n-variable tree pattern Q〈U1, . . . , Uq〉 that is obtained by interpreting each y(ni)
i in Q

10What we are calling an IO context-free tree grammar is actually a non-deleting IO context-free tree grammar. (This restriction
does not affect the generated languages.) “IO” stands for the inside-out mode of rewriting, where an innermost nonterminal
in a sentential form is rewritten at each step. This mode of rewriting can be cast as bottom-up derivation. An outside-in or OI
context-free tree grammar [13] does not have an associated notion of derivation tree and hence does not count as a generalized
context-free grammar. The IO and OI modes of rewriting were originally introduced by Fischer [14] in his study of macro
grammars.
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as JUiK. We inductively define T 〈U1, . . . , Uq〉 for T ∈ T
∆∪{y(n1)

1 ,...,y
(nq)
q }∪Xn

and Ui ∈ T∆[Xni ] (i =

1, . . . , q) as follows:

a〈U1, . . . , Uq〉 = a for a ∈ ∆(0),

xi〈U1, . . . , Uq〉 = xi,

(f(T1, . . . , Tl))〈U1, . . . , Uq〉 = f(T1〈U1, . . . , Uq〉, . . . , Tl〈U1, . . . , Uq〉) for f ∈ ∆(l),

(y
(ni)
i (T1, . . . , Tni))〈U1, . . . , Uq〉 = Ui[T1〈U1, . . . , Uq〉, . . . , Tni〈U1, . . . , Uq〉].

Let T∆〈Yq〉[Xn] denote the set of n-variable tree patterns Q ∈ T∆∪Y [Xn] such that the sym-
bols from Y occurring in Q are y(n1)

1 , . . . , y
(nq)
q for some n1, . . . , nq and for each i = 1, . . . , q, y(ni)

i

occurs exactly once in Q. A function used by an IO context-free tree grammar is 〈〈Q〉〉 for some
Q ∈ ⋃q∈N

⋃
n∈N T∆〈Yq〉[Xn]. In standard formulation, the sort of a nonterminal is T∆[Xn] for some

n, but we will consider a more general formulation which expedites the definition of what we call a
uniformly copying IO context-free tree grammar.

Example 3.7. Let ∆ = ∆0 ∪ ∆2 = {a} ∪ {f}. Consider a generalized context-free grammar G =
(N,O, F, σ, P, I), where

N = {A0, A1, A2, A3},
O = T∆ ∪ T∆[X1],

F = F0 ∪ F1 ∪ F2,

F0 = {x1, a},
F1 = {〈〈f(y

(1)
1 (x1), x1)〉〉, 〈〈f(y

(1)
1 (x1), a)〉〉, 〈〈f(y

(0)
1 , x1)〉〉, 〈〈f(y

(0)
1 , a)〉〉},

F2 = {〈〈y(1)
1 (y

(0)
2 )〉〉},

σ(A0) = T∆,

σ(A1) = T∆[X1],

σ(A2) = T∆,

σ(A3) = T∆,

I = {A0},

and P consists of the following rules:

A0(z1[z2]) :−A1(z1), A2(z2),

A1(x1) :− ,
A1(f(z1[x1], x1)) :−A1(z1),

A1(f(z1[x1], a)) :−A1(z1),

A1(f(z1, x1)) :−A3(z1),

A2(a) :− ,
A3(a) :− ,

A3(f(z1, a)) :−A3(z1).
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A0(z1[z2]) :−A1(z1), A2(z2)

A1(f(z1[x1], x1)) :−A1(z1)

A1(f(z1[x1], a)) :−A1(z1)

A1(f(z1, x1)) :−A3(z1)

A3(f(z1, a)) :−A3(z1)

A3(a) :−

A2(a) :−

Figure 2. An example of a complete derivation tree of an IO context-free tree grammar.

(Note that for example, 〈〈f(y
(1)
1 (x1), x1)〉〉(T ) = f(T [x1], x1) for every T ∈ T∆[X1], so we are writing

f(z1[x1], x1) for 〈〈f(y
(1)
1 (x1), x1)〉〉(z1), etc.) This is an example of an IO context-free tree grammar.

Figure 2 shows an example of a complete derivation tree of this grammar. The yield of this derivation
tree is f(f(f(f(a, a), a), a), a).

The language of this grammar consists of all purely left-branching trees over ∆, i.e.,
{a, f(a, a), f(f(a, a), a), f(f(f(a, a), a), a), . . . }. The grammar is designed in such a way that
S(G,A1) and C(G,A2) both contain all one-variable tree patterns over ∆ that match any element of
L(G).

As before, an n-variable tree patternQ ∈ T∆∪Y [Xn] is said to be k-copying if each xi occurs at most
k times in it. Pick arbitrary positive integers k, p, r and for q = 1, . . . , r, let Qq be the set of k-copying
tree patterns Q ∈ ⋃p

n=0 T∆〈Yq〉[Xn] such that the second-order variables in Q are y(n1)
1 , . . . , y

(nq)
q with

ni ≤ p. Let

O =

p⋃
n=0

T∆[Xn],

O0 = T∆,

Fq = { 〈〈Q〉〉 | Q ∈ Qq },

F =

r⋃
q=0

Fq,

R = {T∆[Xn] | 0 ≤ n ≤ p }.

This determines the grammar class

GIOCFTG(k,p,r) = { (N,O, F, σ, P, I) | N ⊆ N, F ⊆ F, ran(σ) ⊆ R, σ(I) ⊆P(O0) }.

(Since R ∩P(O0) = {T∆}, grammars in this class must satisfy σ(A) = T∆ for all A ∈ I .)
The grammar G in Example 3.7 belongs to GIOCFTG(k,p,r) if k ≥ 2 and r ≥ 2. This example shows

that the class does not satisfy Assumption 6 because when T ∈ L(G) has n occurrences of a, there are
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at least 2n − 1 A1-substructures and exactly 2n − 1 A2-contexts that are contained in T , which means
that neither the substructures nor the contexts contained in T can be enumerated explicitly in polynomial
time in the size of T .

In order to define a subclass of the IO context-free tree grammars to which Algorithms 1 and 2 are
applicable, we have to impose some qualitative condition on the possible rules of the grammars. For this
purpose, we use a more fine-grained classification of objects into sorts. Different sorts may overlap, so
the set of sorts will no longer be a partition of the set of objects.

For an n-variable tree pattern T ∈ T∆[Xn], its duplicity vector is the bit vector d(T ) ∈ {0, 1}n whose
ith bit is 1 if and only if xi occurs more than once in T . We assume that when T ∈ T∆[X0] = T∆, the
duplicity vector of T is always (), the “vector” with no component. We use the set {0, 1}n together with
the familiar “component-wise” partial order ≤; in other words, we view {0, 1}n as the n-fold product of
the ordered set ({0, 1},≤). If ~v ∈ {0, 1}n, we let

R~v = {T ∈ T∆[Xn] | d(T ) ≤ ~v }.

Note that R(1,...,1) = T∆[Xn], where n is the length of the vector (1, . . . , 1). In particular, R() = T∆.

LetQ ∈ T∆〈Yq〉[Xn] be an n-variable tree pattern whose second-order variables are y(n1)
1 , . . . , y

(nq)
q ,

and for each i = 1, . . . , q, let Ui ∈ R~vi for some ~vi ∈ {0, 1}ni . Then 〈〈Q〉〉(U1, . . . , Uq) =
Q〈U1, . . . , Uq〉 ∈ T∆[Xn]. For each j = 1, . . . , n, it is clear that xj occurs more times inQ〈U1, . . . , Uq〉
than in Q if and only if there exist i and k such that the kth argument of the unique occurrence of y(ni)

i

in Q contains an occurrence of xj , and xk occurs more than once in Ui. Note that this is only possible if
the kth bit of ~vi is 1.

Definition 3.8. Let Q ∈ T∆〈Yq〉[Xn] be an n-variable tree pattern whose second-order variables are
y

(n1)
1 , . . . , y

(nq)
q . Let ~vi ∈ {0, 1}ni for each i = 1, . . . , q. We say that Q is uniformly copying on

R ~v1 × · · · ×R ~vq if the occurrences of x1, . . . , xn in Q satisfy the following condition:

• whenever there is an occurrence of xj inside the kth argument of y(ni)
i such that the kth bit of ~vi is

1, all occurrences of xj are inside the kth argument of y(ni)
i .

If Q is uniformly copying on R ~v1×· · ·×R ~vq , then for any U1, . . . , Uq such that Ui ∈ R~vi for 1 ≤ i ≤ q,
and any two occurrences of a variable xj in Q, both occurrences of xj were copied the same number of
times in 〈〈Q〉〉(U1, . . . , Uq).

Example 3.9. Consider the following tree patterns in T∆〈Y2〉[X2]:

f(y
(2)
1 (f(y

(1)
2 (x1), x1), g(x2)), f(x2, x2)), f(y

(2)
1 (f(y

(1)
2 (x1), x2), g(x1)), g(x2)).

Figure 3 shows these tree patterns in graphical notation. The tree pattern on the left is uniformly copying
onR(1,0)×R(0), because all occurrences of x1 are inside the first argument of y(2)

1 and all occurrences of
x2 are outside it. The tree pattern on the right is not uniformly copying on R(1,0) ×R(0). Both variables

x1 and x2 have two occurrences, one inside the first argument of y(2)
1 and one outside it, violating the

condition for uniform copying.
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f

y
(2)
1

f

y
(1)
2

x1

x1

g

x2

f

x2 x2
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y
(2)
1

f

y
(1)
2

x1

x2

g

x1

g

x2

Figure 3. A 3-copying 2-variable tree pattern that is uniformly copying on R(1,0) × R(0) (left) and a 2-copying
2-variable tree pattern that is not (right).

When f : T∆[Xn1 ]×· · ·×T∆[Xnq ]→ T∆[Xn] is a q-ary function and ~vi ∈ {0, 1}ni for i = 1, . . . , q,
we let

f ~v1,..., ~vq = f � (R ~v1 × · · · ×R ~vq),

the restriction of f to R ~v1 × · · · ×R ~vq .
Now pick arbitrary positive integers k, p, r. Let

F′q = { 〈〈Q〉〉 ~v1,..., ~vq | Q ∈
p⋃

n=0

T∆〈Yq〉[Xn], Q is k-copying,

the second-order variables in Q are y(n1)
1 , . . . , y

(nq)
q ,

ni ≤ p and ~vi ∈ {0, 1}ni for i = 1, . . . , q,

Q is uniformly copying on R ~v1 × · · · ×R ~vq },

F′ =
r⋃

q=0

F′q,

R′ = {R~v | ~v ∈
p⋃

n=0

{0, 1}n }.

This determines the grammar class

GUC-IOCFTG(k,p,r) = { (N,O, F, σ, P, I) | N ⊆ N, F ⊆ F′, ran(σ) ⊆ R′, σ(I) ⊆P(O0) },

where O =
⋃p

n=0 T∆[Xn] and O0 = T∆ = R() as before. (Since R′ ∩P(O0) = {T∆} = {R()},
grammars in this class must satisfy σ(A) = T∆ for all A ∈ I .) We call a grammar in this class a
uniformly copying IO context-free tree grammar.

Example 3.10. Let ∆ = ∆0 ∪ ∆1 ∪ ∆2 = {a} ∪ {g} ∪ {f}. Consider the uniformly copying IO
context-free tree grammar G = (N,O, F, σ, P, I) ∈ GUC-IOCFTG(2,2,2), where

N = {A0, A1, A2},
F = F0 ∪ F1 ∪ F2,
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A0(z1[a, a]) :−A2(z1)

A2(z1[f(z2[x1], x1), x2]) :−A2(z1), A1(z2)

A2(z1[f(z2[x1], x1), x2]) :−A2(z1), A1(z2)

A2(f(x1, x2)) :− A1(g(z1[x1])) :−A1(z1)

A1(x1) :−

A1(g(z1[x1])) :−A1(z1)

A1(x1) :−

Figure 4. A complete derivation tree of a uniformly copying IO context-free tree grammar.

F0 = {f(x1, x2), x1},
F1 = {〈〈y(2)

1 (a, a)〉〉(1,0), 〈〈g(y
(1)
1 (x1))〉〉(0)},

F2 = {〈〈y(2)
1 (f(y

(1)
2 (x1), x1), x2)〉〉(1,0),(0)},

σ(A0) = R() = T∆,

σ(A1) = R(0),

σ(A2) = R(1,0),

I = {A0},

and P consists of the following rules:

A0(z1[a, a]) :−A2(z1),

A2(f(x1, x2)) :− ,
A2(z1[f(z2[x1], x1), x2]) :−A2(z1), A1(z2),

A1(x1) :− ,
A1(g(z1[x1])) :−A1(z1).

Note that y(2)
1 (f(y

(1)
2 (x1), x1), x2) is uniformly copying on R(1,0) × R(0). Figure 4 shows an

example of a complete derivation tree of this grammar. The yield of this derivation tree is
f(f(g(f(g(a), a)), f(g(a), a)), a)).

Let SUC-IOCFTG(k,p,r) and CUC-IOCFTG(k,p,r) be the sets of substructures and contexts of GUC-IOCFTG(k,p,r),
respectively, and write FUC-IOCFTG(k,p,r) for the set F′ defined above.

For n ≥ 0, define

P(n)
∆,k = {U ∈ T∆[Xn] | for j = 1, . . . , n,

U [T1, . . . , Tj−1, x1, Tj+1, . . . , Tn] ∈ P∆,k

whenever T1, . . . , Tj−1, Tj+1, . . . , Tn ∈ T∆ }.

Note that P(0)
∆,k = T∆ and P(1)

∆,k = P∆,k.
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Lemma 3.11. LetQ ∈ T∆〈Yq〉[X1] be a 1-copying one-variable tree pattern with second-order variables
y

(n1)
1 , . . . , y

(nq)
q . If Ui ∈ P(ni)

∆,k for i = 1, . . . , q, then Q〈U1, . . . , Uq〉 ∈ P∆,k.

Proof:
We show by induction that T = T 〈U1, . . . , Uq〉 belongs to P∆,k for every subtree T of Q that contains
the unique occurrence of x1 in Q.

If T = x1, then T = x1 ∈ P∆,k.
If T = f(T ′1, . . . , T

′
l ) and T ′i contains the occurrence of x1, then T = f(T ′1, . . . , T

′
l ) is the compo-

sition of f(T ′1, . . . , T
′
i−1, x1, T ′i+1, . . . , T

′
l ) and T ′i . The former is a 1-copying one-variable tree pattern

and the latter belongs to P∆,k by induction hypothesis, so T belongs to P∆,k.
If T = y

(nh)
h (T ′1, . . . , T

′
nh

) and T ′i contains the occurrence of x1, then T = Uh[T ′1, . . . , T
′
nh

] is the

composition of Uh[T ′1, . . . , T
′
i−1, x1, T ′i+1, . . . , T

′
l ] and T ′i . The former belongs to P∆,k since Uh ∈ P(nh)

∆,k

and Tj ∈ T∆ for j = 1, . . . , i − 1, i + 1, . . . , l, and the latter belongs to P∆,k by induction hypothesis.
Therefore, T belongs to P∆,k. ut

The definition of “uniformly copying” is designed to make the following lemma hold:

Lemma 3.12. Let Q ∈ T∆〈Yq〉[Xn] be a k-copying n-variable tree pattern with second-order variables
y

(n1)
1 , . . . , y

(nq)
q and let ~vi ∈ {0, 1}ni . IfQ is uniformly copying onR ~v1×· · ·×R ~vq and Ui ∈ P(ni)

∆,k ∩R~vi

for each i = 1, . . . , n, then Q〈U1, . . . , Uq〉 ∈ P(n)
∆,k.

Proof:
Let T1, . . . , Tn ∈ T∆. It suffices to show

T = T 〈U1, . . . , Uq〉[T1, . . . , Tj−1, x1, Tj+1, . . . , Tn] ∈ P∆,k

for each subtree T of Q that contains an occurrence of xj . We do so by induction on T .
Case 1. T = xj . We have

T = xj〈U1, . . . , Uq〉[T1, . . . , Tj−1, x1, Tj+1, . . . , Tn] = x1 ∈ P∆,k.

Case 2. T = f(Q1, . . . , Ql), f ∈ ∆(l). We distinguish two cases depending on the cardinality of
{m | xj occurs in Qm }.

Case 2.1. There is a unique m such that xj occurs in Qm. Then Qm′ ∈ T∆ for m′ 6= m and
T = f(Q1, . . . , Ql) is the composition of f(Q1, . . . , Qm−1, x1, Qm+1, . . . , Ql) and Qm. The former
is a 1-copying one-variable tree pattern over ∆, and the latter belongs to P∆,k by induction hypothesis.
Therefore, T ∈ P∆,k.

Case 2.2. There arem,m′ such thatm 6= m′ and xj occurs inQm and inQm′ . SinceQ ∈ T〈Yq〉[Xn]
is uniformly copying on R ~v1 × · · · × R ~vq , this means that there are no i, k such that xj occurs in T =

f(Q1, . . . , Ql) inside the kth argument of y(ni)
i and the kth bit of ~vi is 1. (Recall that each y(ni)

i occurs
exactly once in Q.) It follows that the number of occurrences of xj in T 〈U1, . . . , Uq〉 is the same as the
number of occurrences of xj in T , which is ≤ k since Q is k-copying. Therefore, x1 occurs at most k
times in T = T 〈U1, . . . , Uq〉[T1, . . . , Tj−1, x1, Tj+1, . . . , Tn] and hence T ∈ P∆,k.
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Case 3. T = y
(nh)
h (Q1, . . . , Qnh

). Again, we distinguish two cases depending on the cardinality of
{m | xj occurs in Qm }.

Case 3.1. There is a unique m such that xj occurs in Qm. Then Qm′ ∈ T∆ for m′ 6= m and
T = Uh[Q1, . . . , Qnh

] is the composition of Uh[Q1, . . . , Qm−1, x1, Qm+1, . . . , Qnh
] and Qm. Since

Uh ∈ P(nh)
∆,k , we have Uh[Q1, . . . , Qm−1, x1, Qm+1, . . . , Qnh

] ∈ P∆,k. Since xj occurs in Qm, we also
get Qm ∈ P∆,k by induction hypothesis. Therefore, T ∈ P∆,k.

Case 3.2. There arem,m′ such thatm 6= m′ and xj occurs inQm and inQm′ . SinceQ ∈ T〈Yq〉[Xn]

is uniformly copying, this means that there are no i, k such that xj occurs in T = y
(nh)
h (Q1, . . . , Qnh

)

inside the kth argument of y(ni)
i and the kth bit of ~vi is 1. Similarly to Case 2.2, it follows that xj occurs

exactly the same number of times in T 〈U1, . . . , Uq〉 as it does in T , which is ≤ k. Therefore, x1 occurs
at most k times in T = T 〈U1, . . . , Uq〉[T1, . . . , Tj−1, x1, Tj+1, . . . , Tn] and T ∈ P∆,k. ut

Lemma 3.13.

SUC-IOCFTG(k,p,r) ⊆
p⋃

n=0

P(n)
∆,k.

Proof:
Let G = (N,O, F, σ, P, I) ∈ GUC-IOCFTG(k,p,r). We show that S(G,A) ⊆ P(n)

∆,k for each A ∈ N (n) by
induction on A-derivation trees. Let

A(〈〈Q〉〉 ~v1,..., ~vq(z1, . . . , zq)) :−A1(z1), . . . , Aq(zq)

be a rule in P , where σ(A) = R~v ⊆ T∆[Xn] and σ(Ai) ⊆ R~vi ⊆ T∆[Xni ]. Assume that for i =

1, . . . , q, Ui ∈ S(G,Ai). Then Ui ∈ R~vi , and by induction hypothesis, Ui ∈ P(ni)
∆,k . Since 〈〈Q〉〉 ~v1,..., ~vq ∈

FUC-IOCFTG(k,p,r), Q is k-copying and uniformly copying on R ~v1 × · · · × R ~vq . By Lemma 3.12, we get

〈〈Q〉〉 ~v1,..., ~vq(U1, . . . , Uq) = Q〈U1, . . . , Uq〉 ∈ P(n)
∆,k. ut

The converse inclusion does not seem to hold, and currently we do not have an exact characterization
of SUC-IOCFTG(k,p,r). However, Lemma 3.13 alone is sufficient to establish that SUC-IOCFTG(k,p,r)|T can be
enumerated in polynomial time (see Lemma 3.17 below).

Lemma 3.14.

CUC-IOCFTG(k,p,r) = { 〈〈U [y
(n)
1 (T1, . . . , Tn)]〉〉~v | U ∈ P∆,k, n ≤ p, T1, . . . , Tn ∈ T∆, ~v ∈ {0, 1}n }.

Proof:
Write C′ for the right-hand side of the equation.

(⊆). Let G = (N,O, σ, F, P, I) ∈ GUC-IOCFTG(k,p,r). It suffices to show that for every A ∈ N , the
yield C of every (A)-derivation environment ξ belongs to C′. We prove this by induction on ξ.

Case 1. ξ = �A. Then A ∈ I and C is the identity function on σ(A) = T∆. So C = 〈〈y(0)
1 〉〉()

belongs to C′.
Case 2. ξ is the result of substituting ρ(τ1, . . . , τi−1,�Ai , τi+1, . . . , τq) for �A0 in an (A0)-derivation

environment ξ0 with yield C0 : σ(A0) → T∆, where for j = 1, . . . , i − 1, i + 1, . . . , q, τj is an Aj-
derivation tree with yield Uj and ρ = A0(f(z1, . . . , zq)) :−A1(z1), . . . , Aq(zq) is a non-terminating rule
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(q ≥ 1). Suppose that σ(Aj) = R ~vj with ~vj ∈ {0, 1}nj for j = 0, . . . , q. Then f = 〈〈Q〉〉 ~u1,..., ~uq for
some k-copying tree pattern Q ∈ T∆〈Yq〉[Xn0 ] such that Q is uniformly copying on R ~u1

× · · · × R ~uq

and ~uj ≥ ~vj (j = 1, . . . , q). By Lemma 3.13, we have Uj ∈ P(nj)
∆,k for j = 1, . . . , i− 1, i+ 1, . . . , q.

By induction hypothesis,
C0 = 〈〈U [y

(n0)
1 (T1, . . . , Tn0)]〉〉 ~v0

for some U ∈ P∆,k and T1, . . . , Tn0 ∈ T∆. By the definition of the yield of an (Ai)-environment,

C(z) = C0(f(U1, . . . , Ui−1, z, Ui+1, . . . , Uq))

for every z ∈ R~vi . Then

C(z) = (U [y
(n0)
1 (T1, . . . , Tn0)])〈Q〈U1, . . . , Ui−1, z, Ui+1, . . . , Uq〉〉

= U [Q〈U1, . . . , Ui−1, z, Ui+1, . . . , Uq〉[T1, . . . , Tn0 ]]

= U [Q[T1, . . . , Tn0 ]〈U1, . . . , Ui−1, z, Ui+1, . . . , Uq〉].

Since y(ni)
i occurs exactly once in Q, we can write

Q[T1, . . . , Tn0 ] = V0[y
(ni)
i (V1, . . . , Vni)],

where V0 is a 1-copying one-variable tree pattern and V1, . . . , Vni are trees over ∆ ∪
{y(n1)

1 , . . . , y
(ni−1)
i−1 , y

(ni+1)
i+1 , . . . , y

(nq)
q }. Then

C = 〈〈U [V0[y
(ni)
1 (V1, . . . , Vni)]]〉〉~vi ,

where for j = 0, . . . , ni, Vj = Vj〈U1, . . . , Ui−1, Ui, Ui+1, . . . , Uq〉 for some Ui ∈ P(ni)
∆,k . (Since y(ni)

i

does not occur in V0, V1, . . . , Vq, it does not matter what Ui is.) Since Uj ∈ P(nj)
∆,k for j = 1, . . . , q,

Lemma 3.11 implies V0 ∈ P∆,k. Since U ∈ P∆k
, we have U [V0[x1]] ∈ P∆,k, and it follows that C ∈ C′.

(⊇). Suppose U ∈ P∆,k, n ≤ p, T1, . . . , Tn ∈ T∆, ~v ∈ {0, 1}n. We show that
〈〈U [y

(n)
1 (T1, . . . , Tn)]〉〉~v ∈ CUC-IOCFTG(k,p,r). Since 〈〈y(n)

1 (T1, . . . , Tn)〉〉~v : R~v → T∆ is clearly in

F′1, it suffices, by part (iii) of Lemma 2.3, to show by induction on U ∈ P∆,k that 〈〈U [y
(0)
1 ]〉〉 ∈

CUC-IOCFTG(k,p,r).

Case 1. U = x1. In this case, 〈〈U [y
(0)
1 ]〉〉 is the identity function on T∆ and clearly belongs to F′1 and

hence to CUC-IOCFTG(k,p,r).
Case 2. U = U1[U2], where U1 ∈ P∆,k and U2 is a k-copying one-variable tree pattern over ∆. By

induction hypothesis, 〈〈U1[y
(0)
1 ]〉〉 ∈ CUC-IOCFTG(k,p,r). Since 〈〈U2[y

(0)
1 ]〉〉 clearly belongs to F′1, it follows

that 〈〈U1[U2[y
(0)
1 ]]〉〉 belongs to CUC-IOCFTG(k,p,r). ut

We assume that a partial function in CUC-IOCFTG(k,p,r) is represented by a tree of the form

U [y
(n)
1 (T1, . . . , Tn)] with n ≤ p, U ∈ P∆,k, and T1, . . . , Tn ∈ T∆, together with ~v ∈ {0, 1}n.

Lemma 3.15. Assumption 5 holds of GUC-IOCFTG(k,p,r).
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Proof:
Given Lemma 3.13, it suffices to show that the three items of Assumption 5 hold for S ∈ ⋃p

n=0 P
(n)
∆,k and

C ∈ CUC-IOCFTG(k,p,r). The first two items are trivial and the third item easily follows from Lemma 3.1.
ut

Lemma 3.16. Given T ∈ T∆, the set {Q ∈ P(n)
∆,k | Q matches T } can be enumerated in polynomial

time in the size of T .

Proof:
In this proof, we assume the standard way of referring to nodes of a tree by strings of positive integers,
as explained in the appendix (Section A). For u, v ∈ (N − {0})∗, we write u ≤ v to mean u is a prefix
of v.

In order to enumerate n-variable tree patterns Q ∈ P(n)
∆,k that match T , it suffices to enumerate

n-tuples of one-variable tree patterns Q1, . . . , Qn ∈ P∆,k that satisfy the following conditions:

• Qi matches T for i = 1, . . . , n.

• If x1 labels node u in Qi and x1 labels node v in Qj for some i, j such that 1 ≤ i < j ≤ n, then
u 6≤ v and u 6≥ v.

For, if Q ∈ P(n)
∆,k is such that Q[T1, . . . , Tn] = T , then Qi = Q[T1, . . . , Ti−1, x1, Ti+1, . . . , Tn] clearly

satisfy these conditions. Conversely, let Q1, . . . , Qn ∈ P∆,k satisfy these conditions. For each i =
1, . . . , n, let Ti be the tree such that Qi[Ti] = T . Define a tree Q whose set of nodes is the intersection of
the sets of nodes of Q1, . . . , Ql such that the label of a node u of Q is determined by the following rule:

• If x1 labels u in Qi, then the label of u in Q is xi.

• If there is no i such that x1 labels u in Qi, then the label of u in Q is the same as the label of u in
T .

Then it is easy to see that Qi = Q[T1, . . . , Ti−1, x1, Ti+1, . . . , Tn] and so Q ∈ P(n)
∆,k. ut

Lemma 3.17. Assumption 6 holds of GUC-IOCFTG(k,p,r).

Proof:
Firstly, we can see that CUC-IOCFTG(k,p,r)|T can be enumerated in polynomial time in the size of T ∈ T∆

by noticing

CUC-IOCFTG(k,p,r)|T =

{ 〈〈U [y
(n)
1 (T1, . . . , Tn)]〉〉~v | U ∈ Pk, T1, . . . , Tn ∈ T∆, ~v ∈ {0, 1}n, and

T = U [V [T1, . . . , Tn]] for some 1-copying V ∈ T∆[Xn] }.

This is because if T = U [V ′[T1, . . . , Tn]] for some V ′ ∈ SUC-IOCFTG(k,p,r), then we can obtain a 1-copying
V ∈ T∆[Xn] such that T = U [V [T1, . . . , Tn]] by replacing all but the first occurrence of xi in V ′ by Ti
for each i = 1, . . . , n, and it is clear that any 1-copying V ∈ T∆[Xn] belongs to SUC-IOCFTG(k,p,r).
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Similarly, we can see

FUC-IOCFTG(k,p,r)|T =
r⋃

q=0

{ f ∈ F′q | C(f(S1, . . . , Sq)) = T,C ∈ CUC-IOCFTG(k,p,r)|T ,
Si ∈ T∆[Xni ] and Si is 1-copying for i = 1, . . . , q },

which shows that FUC-IOCFTG(k,p,r)|T is enumerable in polynomial time.
It remains to show that SUC-IOCFTG(k,p,r)|T is enumerable in polynomial time. Write S′ for the right-

hand side of the inclusion in Lemma 3.13. In order to enumerate SUC-IOCFTG(k,p,r)|T , we can first enumer-
ate

S′|T = {S ∈ S′ | C(S) = T for some C ∈ CUC-IOCFTG(k,p,r)|T },
and check for each of its elements whether it is in SUC-IOCFTG(k,p,r)|T by dynamic programming, us-
ing the functions in FUC-IOCFTG(k,p,r)|T . Thus, any 0-ary function in FUC-IOCFTG(k,p,r)|T that is in S′|T
must be in SUC-IOCFTG(k,p,r)|T . Any element S of S′|T for which there are substructures S1, . . . , Sq ∈
SUC-IOCFTG(k,p,r)|T and a q-ary function f ∈ FUC-IOCFTG(k,p,r)|T such that f(S1, . . . , Sq) is defined and
equals S must also be in SUC-IOCFTG(k,p,r)|T . The fact that S′|T can be enumerated in polynomial time
follows from Lemma 3.16, since if C(S) = T for some C ∈ CUC-IOCFTG(k,p,r), S must match some
subtree of T . ut

Assumptions 1, 2, 3, and 4 are all easy to check, so we have

Theorem 3.18. Algorithms 1 and 2, when applied to G = GUC-IOCFTG(k,p,r), successfully learn all gram-
mars in GUC-IOCFTG(k,p,r) with the m-FKP and the m-FCP, respectively, while satisfying favorable prop-
erties in terms of efficiency.

4. Conclusion

In previous works on distributional learning of nonlinear grammars [15, 6], the question of polynomial
enumerability of the sets S|T and C|T of possible substructures/contexts contained in a given element T
of input data has not been given enough scrutiny. These papers gave the impression that the nonlinearity
of the grammatical operations (functions) automatically implies that at least one of these sets becomes
too big to be enumerated in polynomial time. In this paper, we have shown that that is not the case,
and presented two classes of nonlinear tree grammars for which distributional learning is possible in its
“pristine” form, succeeding on all grammars with the m-FKP/m-FCP. The first class—the class of paral-
lel regular tree grammars (with certain parameters fixed)—has a natural definition similar to the classes
targeted by previous results on distributional learning, but its expressive power is rather limited. It is
easy to see that the class of tree languages generated by parallel regular tree grammars consists of all
homomorphic images of regular tree languages. The second class—the class of uniformly copying IO
context-free tree grammars—extends simple context-free tree grammars and is much more expressive,
but “uniform copying” is a qualitative restriction on IO context-free tree grammars with a rather convo-
luted definition whose sole motivation is the possibility of successful distributional learning. It remains
to be seen whether any independently motivated natural constraint on rules of nonlinear grammars sim-
ilarly leads to polynomial enumerability of substructures and contexts and hence to an interesting class
amenable to distributional learning.
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Szepesvári C, Ukkonen E, Zeugmann T, editors. Algorithmic Learning Theory. Lecture Notes in Computer
Science. Springer; 2011. p. 398–412.

[5] Yoshinaka R, Kanazawa M. Distributional learning of abstract categorial grammars. In: Pogodalla S, Prost
JP, editors. Logical Aspects of Computational Linguistics. Lecture Notes in Computer Science. Springer;
2011. p. 251–266.

[6] Clark A, Yoshinaka R. Distributional learning of parallel multiple context-free grammars. Machine Learning.
2014;96(1–2):5–31. Available from: http://dx.doi.org/10.1007/s10994-013-5403-2.

[7] Kanazawa M, Yoshinaka R. Distributional learning and context/substructure enumerability in nonlinear tree
grammars. In: Foret A, Morrill G, Muskens R, Osswald R, editors. Proceedings of Formal Grammar 2015;
to appear. .

[8] Pollard CJ. Generalized Phrase Structure Grammars, Head Grammars, and Natural Language. Stanford
University; 1984.

[9] Seki H, Matsumura T, Fujii M, Kasami T. On multiple context-free grammars. Theoretical Computer Science.
1991;88:191–229.

[10] Thatcher JW. Characterizing derivation trees of context-free grammars through a generalization of finite
automata theory. Journal of Computer and System Sciences. 1967;1:317–322.

[11] Leiß H. Learning context free grammars with the finite context property: A correction of A. Clark’s algo-
rithm. In: Morrill G, Muskens R, Osswald R, Richter F, editors. Formal Grammar. Lecture Notes in Computer
Science. Springer; 2014. p. 121–137.

[12] Osherson DN, Stob M, Weinstein S. Systems That Learn: An Introduction to Learning Theory for Cognitive
and Computer Scientists. Cambridge, MA: The MIT Press; 1986.

[13] Engelfriet J, Schmidt EM. IO and OI, part I. The Journal of Computer and System Sciences. 1977;15:328–
353.

[14] Fischer MJ. Grammars with Macro-Like Productions. Harvard University; 1968.

[15] Yoshinaka R. An attempt towards learning semantics: Distributional learning of IO context-free tree gram-
mars. In: Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related For-
malisms (TAG+11); 2012. p. 90–98.

[16] Sempere JM, Garcı́a P, editors. Grammatical Inference: Theoretical Results and Applications, 10th Interna-
tional Colloquium, ICGI 2010. Springer; 2010.

http://dx.doi.org/10.1007/s10994-013-5403-2


A. Clark, M. Kanazawa, G. Kobele, R. Yoshinaka / Distributional Learning of Some Nonlinear Tree Grammars 31

A. Enumerating One-Variable Tree Patterns That Match a Given Tree

In this appendix, we mainly think of trees in terms of their graphical representation. Thus, we use terms
like node, parent, child, root, leaf with their familiar meanings. Recall that the size |T | of a tree T is the
number of nodes of T . The height of a node in T is 0 if it is a leaf and 1 plus the maximal height of its
children otherwise.

We adopt a standard way of referring to a node in a tree T by a string over N − {0}. Thus, ε (the
empty string) refers to the root of T , and if u ∈ (N− {0})∗ refers to a node of T , then the ith child of u
(if it exists) is referred to by ui. When u = i1 . . . in ∈ (N−{0})n for n ≥ 1, we write u− for i1 . . . in−1

and last(u) for in. If u is a node of T , we write T/u for the subtree of T rooted at u. Note that when
uv is a node of T , we always have T/uv = (T/u)/v. A path (to a node u) is a sequence of nodes of the
form ε, i1, i1i2, . . . , i1i2 . . . in = u. Note that a path can contain at most one node of a given height h.

We write a one-variable tree pattern P ∈ T∆[X1] as P [x1] in order to clearly distinguish one-variable
tree patterns from trees in T∆. Recall that a one-variable tree pattern P [x1] matches a tree T if there
exists a tree T ′ such that P [T ′] = T .

The following example shows that there are in general exponentially many one-variable tree patterns
that match a given tree.

Example A.1. Consider the perfect binary tree Th over {f, a} of height h, defined by

T0 = a,

Th+1 = f(Th, Th).

Note that Th has 2h leaves and n = 2h+1 − 1 nodes. We can replace any nonempty subset of the
leaves of Th by x1 to obtain a one-variable tree pattern P [x1] such that P [a] = Th, so there are at least
22h − 1 = 2

n+1
2 − 1 one-variable tree patterns that match Th.

Within a polynomial time bound, we can only enumerate a subset of the one-variable tree patterns
that match a given tree. As we have noted, it is trivial to enumerate the subset consisting of k-copying
one-variable tree patterns.

We consider a superclass of the class of k-copying one-variable tree patterns, namely, the class Pk

of one-variable tree patterns that are compositions of k-copying one-variable tree patterns. We show that
for every tree T of size n, there are no more than nk+1 one-variable tree patterns in Pk that match T .

It is easy to see that if P [x1] ∈ Pk, the prime factors of the number of occurrences of x1 in P [x1]
are all less than or equal to k. In particular, if P [x1] ∈ P2, the number of occurrences of x1 in P [x1] is a
power of 2. This fact alone, however, does not imply that the number of one-variable tree patterns in Pk

that match a given tree is polynomial in the size of the tree.

Example A.1. (continued)
The tree Th+1 has n = 2h+2 − 1 nodes and 2h+1 = 2 · 2h leaves. Since any number of the first 2h

leaves may be included in a subset of the leaves of size 2h, the number of subsets of the leaves of size
2h clearly exceeds 22h = 2

n+1
4 . So there are exponentially many one-variable tree patterns P [x1] with

2h occurrences of x1 such that P [a] = Th+1. Of course, many of these one-variable tree patterns are not
elements of P2. For example, it is easy to see that f(f(f(x1, x1), f(x1, a)), f(f(x1, a), f(a, a))) 6∈ P2.
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Out of the
(

8
4

)
= 70 one-variable tree patterns P [x1] with 4 occurrences of x1 such that P [a] = T3, only

10 of them are in P2:

f(f(f(x1, x1), f(x1, x1)), f(f(a, a), f(a, a)))

f(f(f(x1, x1), f(a, a)), f(f(x1, x1), f(a, a)))

f(f(f(x1, x1), f(a, a)), f(f(a, a), f(x1, x1)))

f(f(f(x1, a), f(x1, a)), f(f(x1, a), f(x1, a)))

f(f(f(x1, a), f(a, x1)), f(f(x1, a), f(a, x1)))

f(f(f(a, x1), f(x1, a)), f(f(a, x1), f(x1, a)))

f(f(f(a, x1), f(a, x1)), f(f(a, x1), f(a, x1)))

f(f(f(a, a), f(x1, x1)), f(f(x1, x1), f(a, a)))

f(f(f(a, a), f(x1, x1)), f(f(a, a), f(x1, x1)))

f(f(f(a, a), f(a, a)), f(f(x1, x1), f(x1, x1)))

For example, the first of these is the composition of f(f(x1, x1), f(f(a, a), f(a, a))) and f(x1, x1). It
is not difficult to see that there are exactly 47 one-variable tree patterns P [x1] in P2 such that P [a] = T3,
and a total of 62 one-variable tree patterns in P2 that match T3.

The next example shows that the number of sequences of k-copying one-variable tree patterns whose
composition matches a tree of size n is in general not bounded by any polynomial function of n, even
when those involving 1-copying one-variable tree patterns are excluded.

Example A.2. For each m ∈ N, define a tree Um by

U0 = a

Um+1 = f(gm(Um)), gm(Um)),

where gi(T ) abbreviates
g(. . . (g(︸ ︷︷ ︸

i times

T ) . . . )︸ ︷︷ ︸
i times

.

We have
|U0| = 1,

|Um+1| = 2|Um|+ 2m+ 1,

and it easily follows that |Um| ≤ 3m+1. For example,

U3 = f(g(g(f(g(f(a, a)), g(f(a, a))))), g(g(f(g(f(a, a)), g(f(a, a)))))).

and |U3| = 23 < 34 = 81.
Now let m ≥ 1 and for each i = 0, . . . ,m − 1, pick an li ∈ {0, . . . , i}. Define a 2-copying

one-variable tree pattern Pi[x1] for each i = 0, . . . ,m by

P0[x1] = x1,

Pi[x1] = gli(f(gi−1−li−1(x1), gi−1−li−1(x1))) for i = 1, . . . ,m− 1,

Pm[x1] = f(gm−1−lm−1(x1), gm−1−lm−1(x1)).
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Then
Pm[. . . [P0[x1]] . . . ] = Pm[. . . [P1[x1]] . . . ]

matches Um. There are m! ways of picking l0, . . . , lm−1, which result in m! distinct sequences of 2-
copying one-variable tree patterns. Note that m! is not O((3m+1)c) for any constant c. However, all
these sequences compose to the same one-variable tree pattern in P2, namely, the result of replacing all
occurrences of a in Um by x1.

Definition A.3. A one-variable tree pattern P [x1] is said to be right-reduced if P [x1] has leaves u, v
labeled by x1 such that u, v ∈ (N− {0})+ and either

1. last(u) 6= last(v), or

2. P [x1]/u− 6= P [x1]/v−.

Lemma A.4. Let P [x1] be a one-variable tree pattern such that P [x1] 6= x1. The following are equiva-
lent:

(i) P [x1] is right-reduced.

(ii) If P [x1] = P1[P2[x1]] and P2[x1] is 1-copying, then P2[x1] = x1.

Proof:
The direction (i) ⇒ (ii) is easy. To see the converse direction, assume that P [x1] is not right-reduced.
Since P [x1] 6= x1, every leaf of P [x1] is in (N− {0})+. Since P [x1] is not right-reduced, every pair of
leaves u, v of P [x1] labeled by x1 must satisfy last(u) = last(v) and P [x1]/u− = P [x1]/v−. It easily
follows that v cannot be a descendant of u− in P [x1] and hence P [x1]/u− is 1-copying. If P ′[x1] is
the result of replacing all occurrences of P [x1]/u− in P [x1] by x1, then P [x1] = P ′[P [x1]/u−]. Since
P [x1]/u− has at least two nodes, condition (ii) does not hold. ut

Definition A.5. A sequence P1[x1], . . . , Pm+1[x1] (m ≥ 0) of k-copying one-variable tree patterns is
said to be standard if Pm+1[x1] is 1-copying and for each i = 1, . . . ,m, Pi[x1] is right-reduced.

Example A.2. (continued)
The sequence Pm[x1], . . . , P0[x1] is standard if and only if li = i for all i = 0, . . . ,m− 1. In this case,
we have

P0[x1] = x1,

Pi[x1] = gi(f(x1, x1)) for i = 1, . . . ,m− 1,

Pm[x1] = f(x1, x1).

The following lemma implies that the number of standard sequences of k-copying one-variable tree
patterns whose composition matches a tree T is an upper bound on the number of one-variable tree
patterns in Pk that match T .

Lemma A.6. For every sequence of k-copying one-variable tree patterns P1[x1], . . . , Pm[x1] (m ≥ 1),
there exists a standard sequence of k-copying one-variable tree patterns P ′1[x1], . . . , P ′m′ [x1] such that

P1[. . . [Pm[x1]] . . . ] = P ′1[. . . [P ′m′ [x1]] . . . ].
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Proof:
Let P1[x1], . . . , Pm[x1] be k-copying one-variable tree patterns. Without loss of generality, we may
assume that Pm[x1] is the only 1-copying one-variable tree pattern among P1[x1], . . . , Pm[x1]. For, if
Pm[x1] is not 1-copying, we can just add x1 at the end of the sequence, and if Pi[x1] is 1-copying for
some i < m, we can replace the subsequence Pi[x1], Pi+1[x1] by Pi[Pi+1[x1]], which is still k-copying.
The following algorithm computes the required standard sequence.

1. Let P ′i [x1] := Pi[x1] for i = 1, . . . ,m.

2. Let j := m− 1.

3. While j > 0, repeat the following:

(a) If P ′j [x1] is right-reduced, let j := j − 1.

(b) Otherwise, let Q[x1] := P ′j [x1]/u−, where u is a leaf of P ′j [x1] labeled by x1. Let P ′′j [x1] be
the result of replacing all occurrences ofQ[x1] in P ′j [x1] by x1. Let P ′j+1[x1] := Q[P ′j+1[x1]]
and P ′j [x1] := P ′′j [x1].

At all stages of the execution of the algorithm, P ′j+1[x1], . . . , P ′m[x1] is a standard sequence of k-
copying one-variable tree patterns. In line (3b), P ′j [x1]/u− is 1-copying and P ′j [x1] = P ′′j [Q[x1]] by
Lemma A.4. This implies that Q[P ′j+1[x1]] and P ′′j [x1] are k-copying, Q[P ′j+1[x1]] is right-reduced, and
P ′1[. . . [P ′m[x1]] . . . ] remains the same. Since every iteration of the while loop decreases j or the size of
P ′j [x1], the algorithm terminates. ut

Definition A.7. A pair of nodes (u, v) of a tree T is said to be productive if the following conditions
hold:

1. u, v ∈ (N− {0})+,

2. T/u = T/v, and

3. either

(a) last(u) 6= last(v), or

(b) T/u− 6= T/v−.

Lemma A.8. Let u, v be distinct nodes of a tree T such that T/u = T/v. Then there exist a productive
pair of nodes (u′, v′) and a string z ∈ (N− {0})∗ such that u = u′z and v = v′z.

Proof:
Since u 6= v, either (u, v) is itself productive or last(u) = last(v), u− 6= v−, and T/u− = T/v−. The
lemma is easily shown by induction. ut

Lemma A.9. Let T be a tree with n nodes, and suppose that for each l = 1, . . . , p, ul, vl ∈ (N− {0})+

and
(u1 . . . ul, v1 . . . vl)

is a productive pair of nodes of T . Then p < log2 n.



A. Clark, M. Kanazawa, G. Kobele, R. Yoshinaka / Distributional Learning of Some Nonlinear Tree Grammars 35

Proof:
Let u0 = v0 = ε. Then for each l = 1, . . . , p, T/(u1 . . . ul−1) = T/(v1 . . . vl−1). Since
(u1 . . . ul, v1 . . . vl) is a productive pair, either last(u1 . . . ul) 6= last(v1 . . . vl) or T/(u1 . . . ul)

− 6=
T/(v1 . . . vl)

−. In the former case, since last(u1 . . . ul) = last(ul) and last(v1 . . . vl) = last(vl),
we have last(ul) 6= last(vl). In the latter case, since (u1 . . . ul)

− = u1 . . . ul−1u
−
l , (v1 . . . vl)

− =
v1 . . . vl−1v

−
l , and T/u1 . . . ul−1 = T/v1 . . . vl−1, we must have u−l 6= v−l . In either case, we

have ul 6= vl and u1 . . . ul−1ul and u1 . . . ul−1vl are two distinct descendants of u1 . . . ul−1 such that
T/u1 . . . ul−1ul = T/v1 . . . ul−1vl. So we have

|T/u1 . . . ul−1| > 2|T/u1 . . . ul|

for l = 1, . . . , p, which implies

|T | = |T/u0| > 2p|T/u1 . . . up| ≥ 2p.

Therefore, p < log2 |T |. ut

Lemma A.10. Let P1[x1], . . . , Pm+1[x1] be a standard sequence of k-copying one-variable tree patterns.
For each l = 1, . . . ,m, there are distinct leaves ul, vl of Pl[x1] labeled by x1 satisfying the following
condition:

• if P1[. . . [Pm+1[x1]] . . . ] matches a tree T , then for each l = 1, . . . ,m,

(u1 . . . ul, v1 . . . vl)

is a productive pair of nodes of T .

Proof:
Since P1[x1], . . . , Pm+1[x1] is a standard sequence, for each l = 1, . . . ,m, there exist one or more
pairs of nodes (u, v) witnessing the fact that Pl[x1] is right-reduced (see Definition A.3). We pick one
particular such pair (ul, vl) according to the following rule. (Not every witnessing pair will do.)

Case 1. Pl[x1] has two leaves u, v labeled by x1 such that last(u) 6= last(v). Then we let ul = u
and vl = v.

Case 2. There exists an i such that all leaves u of Pl[x1] labeled by x1 are of the form u−i.
Case 2.1. There exist a leaf u of Pl[x1] labeled by x1, j 6= i, and w ∈ (N − {0})∗ such that u−jwi

is a leaf of Pl[x1] labeled by x1. In this case, let ul = u and vl = u−jwi. Since v−l is a descendant of
u−l in Pl[x1], we have Pl[x1]/u−l 6= Pl[x1]/v−l .

Case 2.2. For all leaves u of Pl[x1] labeled by x1, u is the only descendant of u− in Pl[x1] labeled by
x1. In this case, take any pair of leaves ul, vl of Pl[x1] labeled by x1 such that Pl[x1]/u−l 6= Pl[x1]/v−l ,
which must exist.

Now suppose T = P1[. . . [Pm+1[T ′]] . . . ]. We show that (u1 . . . ul, v1 . . . vl) is a productive pair of
nodes of T for l = 1, . . . ,m.

Clearly, u1 . . . ul and v1 . . . vl belong to (N − {0})+, so the first condition of Definition A.7 is
satisfied. Also, it is clear that T/u1 . . . ul = T/v1 . . . vl = Pl+1[. . . [Pm+1[T ′]] . . . ], which takes care of
the second condition.

It remains to show the third condition of Definition A.7. We reason according to the case distinction
in the definition of ul, vl.
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If Case 1 applied to Pl[x1], then last(ul) 6= last(vl), so last(u1 . . . ul) 6= last(v1 . . . vl), satisfying
the clause (3a) of Definition A.7.

If Case 2.1 applied to Pl[x1], then u1 . . . ul−1v
−
l is a descendant of u1 . . . ul−1u

−
l in T , so

T/u1 . . . ul−1u
−
l 6= T/u1 . . . ul−1v

−
l . Since T/(u1 . . . ul)

− = T/u1 . . . ul−1u
−
l and T/(v1 . . . vl)

− =
T/v1 . . . vl−1v

−
l = Pl[. . . [Pm+1[T ′]] . . . ]/v−l = T/u1 . . . ul−1v

−
l , we have T/(u1 . . . ul)

− 6=
T/(v1 . . . vl)

−, satisfying the clause (3b) of Definition A.7.
Suppose Case 2.2 applied to Pl[x1]. Since Pl[x1]/u−l 6= Pl[x1]/v−l , one of the following three

conditions must obtain:

(i) u−l and v−l have different labels in Pl[x1].

(ii) u−l and v−l have different numbers of children in Pl[x1].

(iii) There exist a j 6= i such that u−l j and v−l j are both nodes of Pl[x1] and Pl[x1]/u−l j 6= Pl[x1]/v−l j.

If (i) or (ii) obtains, it is clear that Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/u−l and Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/v−l
differ in the same way. In the case of (iii), since ul is the only descendant of u−l in Pl[x1]
that is labeled by x1 and vl is the only descendant of v−l in Pl[x1] that is labeled by x1,
Pl[x1]/u−l j = Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/u−l j and Pl[x1]/v−l j = Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/v−l j, which
again implies Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/u−l 6= Pl[Pl+1[. . . [Pm[T ′]] . . . ]]/v−l . So T/(u1 . . . ul)

− =
T/u1 . . . ul−1u

−
l 6= T/v1 . . . vl−1v

−
l = T/(v1 . . . vl)

− holds in all three cases (i)–(iii) and the clause
(3b) is satisfied. ut

If w1, . . . , wk are nodes of T such that T/w1 = · · · = T/wk, then we let T{w1,...,wk}[x1] denote the
unique k-copying one-variable tree pattern P [x1] such that w1, . . . , wk are the leaves of P [x1] labeled
by x1 and P [T/w1] = T .

Lemma A.11. Suppose that w1, . . . , wk are nodes of T such that T/w1 = · · · = T/wk. If (w1, w2) is a
productive pair of nodes of T , then T{w1,...,wk}[x1] is a right-reduced k-copying one-variable tree pattern.

Proof:
Assume that (w1, w2) is a productive pair of nodes of T . Then either last(w1) 6= last(w2) or T/w−1 6=
T/w−2 . In the former case, T{w1,...,wk}[x1] is right-reduced. Suppose T/w−1 = T/w−2 , and let

Q1[x1] = T{w1,...,wk}[x1]/w−1 ,

Q2[x1] = T{w1,...,wk}[x1]/w−2 .

Then T/w−1 = Q1[T/w1] and T/w−2 = Q2[T/w1]. Since T/w−1 6= T/w−2 , we have Q1[x1] 6= Q2[x1]
and so T{w1,...,wk} is right-reduced. ut

Theorem 3.2. Let T be a tree with n nodes. There are no more than nk+1 one-variable tree patterns in
Pk that match T , and they can be enumerated in polynomial time.

Proof:
We first describe informally a nondeterministic procedure for computing a standard sequence
P1[x1], . . . , Pm+1[x1] of k-copying one-variable tree patterns whose composition matches T .
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Let u, v be two nodes of T such that

T/u = T/v = T ′. (6)

Let
(û1, v̂1), . . . , (v̂p, v̂p)

list in the order of decreasing height the productive pairs of nodes of T whose first component lies on the
path to u and whose second component lies on the path to v.

Case 1. If u = v, then p = 0 and the node u determines a 1-copying one-variable tree pattern

P1[x1] = T{u}[x1] (7)

such that
P1[T ′] = T.

Case 2. Otherwise, by Lemma A.8, p ≥ 1 and

u = v̂pz, v = v̂pz

for some z. By Lemma A.9, we have p < log2 n. Pick m ≤ p of these pairs, including (v̂p, v̂p), which
must be of the form

(u1, v1), (u1u2, v1v2), . . . , (u1 . . . um, v1 . . . vm).

We have
u = u1 . . . umz, v = v1 . . . vmz.

Let hl be the height of u1 . . . ul in T (which must the same as the height of v1 . . . vl in T since
T/u1 . . . ul = T/v1 . . . vl). Now pick k′ ≤ k − 2 distinct nodes w′i (i = 1, . . . , k′) of T that satisfy
the following conditions:

wi = wi,1 . . . wi,mz, (8)

T/wi,1 . . . wi,l = T/u1 . . . ul for l = 1, . . . ,m, (9)

where wi,1 . . . wi,l is the unique node of height hl on the path to wi. (Note that this implies T/w1 =
· · · = T/wk′ = T ′.) By (9), for each l = 1, . . . ,m,

w1,l, . . . , wk′,l, ul, vl

are (not necessarily pairwise distinct) nodes of T/u1 . . . ul−1 and we have

(T/u1 . . . ul−1)/w1,l = · · · = (T/u1 . . . ul−1)/wk′,l = (T/u1 . . . ul−1)/ul = (T/u1 . . . ul−1)/vl.

Let

Pl[x1] = (T/u1 . . . ul−1){w1,l,...,wk′,l,ul,vl}[x1], for l = 1, . . . ,m, (10)

Pm+1 = (T/u1 . . . um){z}[x1]. (11)
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By Lemma A.11, P1[x1], . . . , Pm+1[x1] is a standard sequence of k-copying one-variable tree patterns.
We have

Pl[T/u1 . . . ul] = T/u1 . . . ul−1

for l = 1, . . . ,m, and
Pm+1[T ′] = T/u1 . . . um.

This implies
P1[. . . [Pm+1[T ′]] . . . ] = T.

This ends the description of our nondeterministic procedure. We now show that ev-
ery standard sequence of k-copying one-variable tree patterns P1[x1], . . . , Pm+1[x1] such that
P1[. . . [Pm+1[x1]] . . . ] matches T is obtained by the above procedure with a suitable choice of
u, v, (u1, v1), . . . , (um, vm), w1, . . . , wk′ .

Suppose that P1[x1], . . . , Pm+1[x1] is a standard sequence of k-copying one-variable tree patterns
such that x1 occurs in Pm+1[x1] and

P1[. . . [Pm+1[T ′]] . . . ] = T.

Let z be the only leaf of Pm+1[x1] labeled by x1. (Recall that Pm+1[x1] is 1-copying.) By Lemma A.10,
for each l = 1, . . . ,m, there are leaves ul, vl of Pl[x1] labeled by x1 such that (u1 . . . ul, v1 . . . vl) is a
productive pair of nodes of T . For each l = 1, . . . ,m, let zl,1, . . . , zl,kl be the leaves of Pl[x1] other than
ul, vl that are labeled by x1. We must have kl ≤ k − 2 since Pl[x1] is k-copying.

Case 1. m = 0. Then P1[. . . [Pm+1[x1]] . . . ] = P1[x1]. Let u = v = z. We have

T/u = T/v = T ′,

P1[x1] = T{u}[x1].

So (6) holds and Case 1 of the above procedure applies, giving P1[x1] by (7).
Case 2. m ≥ 1. Let k′ = max{ kl | 1 ≤ l ≤ m } and for each l = 1, . . . ,m and for each

i = 1, . . . , k′, define

wi,l =

{
zl,i if i ≤ lk,
ul otherwise.

Let
w1 = w1,1 . . . w1,mz,

...

wk′ = wk′,1 . . . wk′,mz,

u = u1 . . . umz,

v = v1 . . . vmz.

Then w1, . . . , wk′ , u, v are k′ + 2 ≤ k distinct nodes of T , and we have

T/w1,1 . . . w1,l = · · · = T/wk′,1 . . . wk′,l = T/u1 . . . ul = T/v1 . . . vl,

Pl[x1] = (T/u1 . . . ul−1){w1,l,...,wk′,l,ul,vl}[x1]
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for each l = 1, . . . ,m, and

T/w1 = · · · = T/wk′ = T/u = T/v = T ′,

Pm+1[x1] = (T/u1 . . . um){z}[x1].

Hence u, v, (u1, v1), . . . , (um, vm), w1, . . . , wk′ satisfy (6), (8), (9), and we obtain P1[x1], . . . , Pm+1[x1]
by (10) and (11) of Case 2 of the above nondeterministic procedure.

Summing up, every choice of u, v, (u1, v1), . . . , (um, vm), w1, . . . , wk′ in our nondeterministic pro-
cedure satisfying the required conditions determines a standard sequence of k-copying one-variable
tree patterns whose composition matches T , and every such sequence is determined by some choice
of u, v, (u1, v1), . . . , (um, vm), w1, . . . , wk′ . Clearly, there are less than

n2 · 2log2 n · nk−2 = nk+1

choices of u, v, (u1, v1), . . . , (um, vm), w1, . . . , wk′ . It is also clear that all these choices, as well as
the corresponding standard sequences of k-copying one-variable tree patterns, can be enumerated in
polynomial time. ut
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