
A Note on Language Classes with Finite

Elasticity

Makoto Kanazawa

Department of Cognitive and Information Sciences

Faculty of Letters, Chiba University

1{33 Yayoi-cho, Inage-ku

Chiba-shi, 263, Japan

kanazawa@cogsci.l.chiba-u.ac.jp

Abstract

It is proved that �nite elasticity of language classes is preserved

under the inverse image of a �nite-valued relation, extending results

of Wright's and of Moriyama and Sato's.
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Let S be some set of objects. A subset L of pow(S) is said to have in�nite

elasticity if there exist an in�nite sequence hs

n

i

n2N

of elements of S and an

in�nite sequence hL

n

i

n2N

of sets in L such that for all n 2 N,

s

n

62 L

n

;

and

fs

0

; : : : ; s

n

g � L

n+1

:

1



If L does not have in�nite elasticity, it is said to have �nite elasticity . The

notion of �nite elasticity was introduced by Wright (1989) in connection

with inductive inference of formal languages from positive data (Gold 1967,

Angluin 1980), where elements of S are strings over some �nite alphabet, and

subsets of pow(S) are classes of languages. The interest of �nite elasticity

lies in the fact that if fL

i

g

i2N

is a uniformly recursive class of languages,

then �nite elasticity of fL

i

g

i2N

implies that it is identi�able in the limit from

positive data. (Gold 1967).

1

The main result of Wright 1989 is that �nite

elasticity is preserved under pointwise union: if L and M are two classes

with �nite elasticity, then the class fL [ M j L 2 L ^ M 2 Mg also

has �nite elasticity. Wright's proof of this result uses Ramsey's Theorem.

2

Recently, Moriyama and Sato 1993 shows that �nite elasticity is preserved

under many other operations as well, including pointwise concatenation and

pointwise Kleene closure.

In this note, we prove a theorem on �nite elasticity, which generalizes the

essence of Wright's Theorem and many of Moriyama and Sato's results. The

method of my proof is essentially the same as the one used by Moriyama and

Sato, but these authors do not state their result in the general form given

here.

3

The theorem has a number of applications; it is used extensively in

my dissertation (Kanazawa 1994).

Let S and U be two (not necessarily distinct) sets of objects. A relation

R � S �U is said to be �nite-valued i� for every s 2 S, there are at most

�nitely many u 2 U such that Rsu. If M is a subset of U, de�ne a subset

R

�1

[M ] of S by R

�1

[M ] = f s j 9u(Rsu ^ u 2M) g.

Theorem 1 Let M be a subset of pow(U) that has �nite elasticity, and let

R � S �U be a �nite-valued relation. Then L = fR

�1

[M ] j M 2 Mg also

has �nite elasticity.

Proof. Suppose that L = fR

�1

[M ] jM 2 Mg has in�nite elasticity. Then

there is an in�nite sequence of elements s

0

; s

1

; s

2

; : : : of S and an in�nite

1

Moreover, as Kapur (1991) emphasizes, given the indexing of a uniformly recursive

class of languages that has �nite elasticity, one can synthesize a learning algorithm for

that class.

2

Unfortunately, Wright's original de�nition of �nite elasticity was in error, and was

later corrected by Motoki, Shinohara and Wright (1991).

3

I came up with my proof in November 1993, before I became aware of Moriyama and

Sato 1993. In their proof, Moriyama and Sato essentially reproduce the proof of K�onig's

Lemma, which I explicitly rely on in my proof.
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sequence of sets L

0

; L

1

; L

2

; : : : from L such that for each n, s

n

62 L

n

and

fs

0

; : : : ; s

n

g � L

n+1

. For each n 2 N, take an M

n

2 M such that L

n

=

R

�1

[M

n

]. For each k 2 N, let

U

k

= f hu

0

; : : : ; u

k

i j Rs

0

u

0

^ � � � ^Rs

k

u

k

^ 9n(fu

0

; : : : ; u

k

g �M

n

) g:

Note that each U

k

is non-empty, and U

i

and U

j

are disjoint if i 6= j. Let

U =

[

k2N

U

k

:

By the preceding remarks, U is in�nite. U has the form of a tree: the

mother of hu

0

; : : : ; u

k

; u

k+1

i 2 U is hu

0

; : : : ; u

k

i, which is also in U . Since

R is �nite-valued, U is �nitely branching. Since U is an in�nite tree, by

K�onig's Lemma, U has an in�nite branch. Let u

0

; u

1

; u

2

; : : : be an in�nite

sequence of strings over � that corresponds to an in�nite branch of U ; i.e.,

hu

0

i; hu

0

; u

1

i; hu

0

; u

1

; u

2

i; : : : are the nodes on this branch. Note that s

n

62 L

n

implies

u

n

62M

n

: (1)

For each n, let f(n) be such that fu

0

; : : : ; u

n

g �M

f(n)

and for all j < f(n),

fu

0

; : : : ; u

n

g 6� M

j

. By (1), n < f(n) for all n. For each n, let g(n) =

f

n

(0) = f(: : : (f

| {z }

n times

(0)) : : :). Note that g is monotone increasing. We claim that

u

g(0)

; u

g(1)

; : : : ; u

g(n)

; : : :

and

M

g(0)

;M

g(1)

; : : : ;M

g(n)

; : : :

witness the in�nite elasticity of M. We have (1), so it is enough to observe

that by the de�nition of g,

fu

g(0)

; : : : ; u

g(n)

g �M

g(n+1)

for all n 2 N.

Note that an analogue of Theorem 1 does not hold of ine�ective identi-

�ability in the limit from positive data (Gold 1967), which is a property of
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language classes.

4

For instance, let S = N, the set of natural numbers, and

take M = fEg [ f f1; 3; : : : ; 2n + 1g j n 2 N g, where E is the set of even

numbers. M is (ine�ectively) identi�able in the limit from positive data.

The relation R de�ned by Rxy , y = 2x _ y = 2x + 1 is �nite-valued. But

L = fR

�1

[M ] jM 2 Mg = fNg[f f0; 1; : : : ; ng j n 2 N g is not ine�ectively

identi�able in the limit from positive data.

Below we list some applications of Theorem 1.

Example 2 Let M and N be two classes of languages with �nite elasticity.

Let 0 and 1 be symbols that do not appear in M and N , and let M ]N =

f u0 j u 2M g [ f v1 j v 2 N g.

It is easy to see that the class fM ]N jM 2 M^N 2 N g also has �nite

elasticity. For, suppose that it has in�nite elasticity. Then there exist an

in�nite sequence of strings w

0

; w

1

; w

2

; : : : and in�nite sequences of languages

M

0

;M

1

;M

2

; : : : and N

0

; N

1

; N

2

; : : : fromM and N respectively, such that for

each n 2 N,

w

n

62M

n

]N

n

;

and

fw

0

; : : : ; w

n

g �M

n+1

]N

n+1

:

There must be an in�nite subsequence w

i

0

; w

i

1

; w

i

2

; : : : of w

0

; w

1

; w

2

; : : : such

that either (i) for all n 2 N, w

i

n

is of the form u0, or (ii) for all n 2 N,

w

i

n

is of the form v1. Assume (i), and let w

i

n

= u

i

n

0. For each n 2 N,

since u

i

n

0 62 M

i

n

] N

i

n

, u

i

n

62 M

i

n

. Since fu

i

0

0; : : : ; u

i

n

0g � M

i

n+1

] N

i

n+1

,

fu

i

0

; : : : ; u

i

n

g �M

i

n+1

. Thus,

u

i

0

; u

i

1

; u

i

2

; : : : ; u

i

n

; : : :

and

M

i

0

;M

i

1

;M

i

2

; : : : ;M

i

n

; : : :

witness the in�nite elasticity of M, contradicting the assumption. The case

where (ii) holds is similar.

Let R be the �nite-valued relation such that Rsw i� w = s0 or w = s1.

Let L = fR

�1

[M ]N ] jM 2 M^N 2 N g. Note that L = fM [N jM 2

4

Ine�ectively identi�ability is just like identi�ability, except that the requirement that

the learning function must be e�ectively computable is dropped. For ine�ective identi-

�ability, the indexing of the give language class fL

i

g

i2N

is irrelevant; thus ine�ectively

identi�ability is purely an extensional, set-theoretic property, just like �nite elasticity.

4



M^N 2 N g. Since fM ]N j M 2 M^N 2 N g has �nite elasticity, by

Theorem 1, so does L. Thus, Wright's (1989) theorem follows as a special

case of Theorem 1.

Example 3 LetM be a class of languages over �, and let h: �

�

! �

�

be a

non-erasing homomorphism; i.e., h is the unique homomorphism that extends

some h

0

: � ! �

+

. The relation R � �

�

� �

�

de�ned by Rsu , s = h(u)

is �nite-valued, for, if s = h(u), juj � jsj, where jvj is the length of v. Let

L = f h[M ] jM 2 Mg = fR

�1

[M ] jM 2 Mg. By Theorem 1, L has �nite

elasticity if M does.

Example 4 Let M be a class of languages with �nite elasticity. Then, the

class L of permutation closures of languages in M also has �nite elasticity.

In general, take any relation R � �

�

� �

�

such that Rsu only if jsj = juj.

If a class M of languages over � has �nite elasticity, then L = fR

�1

[M ] j

M 2 Mg has �nite elasticity.

Example 5 Assume that an ordered pair hu; vi of strings u and v is encoded

as a string <u,v>, where <, ,, > are new symbols. If M and N are languages,

let M �N = f hu; vi j u 2M ^ v 2 N g.

Let M and N be classes of languages with �nite elasticity. It is easy

to see that the class M � N = fM � N j M 2 M ^ N 2 N g also

has �nite elasticity. For, suppose not. Then there exist in�nite sequences

of strings u

0

; u

1

; u

2

; : : : and v

0

; v

1

; v

2

; : : : and in�nite sequences of languages

M

0

;M

1

;M

2

; : : : and N

0

; N

1

; N

2

; : : : such that for each n 2 N,

hu

n

; v

n

i 62 M

n

�N

n

(2)

and

fhu

0

; v

0

i; : : : ; hu

n

; v

n

ig �M

n+1

�N

n+1

: (3)

By (2), for each n 2 N, either u

n

62 M

n

or v

n

62 N

n

. Thus, either for

in�nitely many n, u

n

62 M

n

, or for in�nitely many n, v

n

62 N

n

. Assume the

former, the latter being symmetric. Thus, there is an in�nite subsequence

u

i

0

; u

i

1

; u

i

2

; : : : of u

0

; u

1

; u

2

; : : : such that for each n, u

i

n

62 M

i

n

. By (3),

fu

i

0

; : : : ; u

i

n

g �M

i

n+1

. This means that u

i

0

; u

i

1

; u

i

2

; : : : andM

i

0

;M

i

1

;M

i

2

; : : :

witness the in�nite elasticity of M, contradicting the assumption.

Let shu�e(M;N) = fw j 9u

0

; u

1

; : : : ; u

n

; v

0

; v

1

; : : : ; v

n

(w = u

0

v

0

u

1

v

1

: : : u

n

v

n

^

u

0

u

1

: : : u

n

2 M ^ v

0

v

1

: : : v

n

2 N) g. shu�e(M;N) is the set of strings that

5



can be obtained by interleaving a string fromM and a string fromN . One can

now apply Theorem 1 to show that the class L = f shu�e(M;N) jM 2 M^

N 2 N g has �nite elasticity. To see this, take the relation R such that Rsw

if and only if for some u

0

; u

1

; : : : ; u

n

; v

0

; v

1

; : : : ; v

n

, s = u

0

v

0

u

1

v

1

: : : u

n

v

n

and

w = hu

0

u

1

: : : ; u

n

; v

0

v

1

: : : v

n

i. R is a �nite-valued relation, for, if R s hu; vi,

then jsj = juvj. It remains to note that L = fR

�1

[M �N ] jM 2 M^N 2

N g.

Example 6 If s is a string over �, let

1

2

s be that initial segment of s such

that j

1

2

sj = d

1

2

jsje. Let

1

2

L = f

1

2

s j s 2 L g. IfM is a class of languages with

�nite elasticity, then L = f

1

2

M j M 2 Mg also has �nite elasticity. To see

this, take the �nite-valued relation R such that Rsu if and only if s =

1

2

u.

Example 7 Let M be a class of �-free languages with �nite elasticity. Let

M

n

= fM

1

� � � � � M

n

j M

1

; : : : ;M

n

2 Mg, where M

1

� � � � � M

n

=

f hu

1

; : : : ; u

n

i j u

1

2 M

1

^ � � � ^ u

n

2 M

n

g, assuming a suitable encoding

of ordered n-tuples. As in the case of Example 5, it is easy to see that

M

n

has �nite elasticity. Since every language in M

i

is disjoint from every

language in M

j

if i 6= j,

S

n

M

n

must also have �nite elasticity. Let R be

such that Rsu if and only if for some non-empty strings s

1

; : : : ; s

n

such that

s = s

1

: : : s

n

, u = hs

1

; : : : ; s

n

i. Then R is a �nite-valued relation. Let L =

fR

�1

[M ] jM 2

S

n

M

n

g. L consists of languages that are concatenations of

languages from M. By Theorem 1, L has �nite elasticity. (This does not in

general hold without the assumption thatM consists of �-free languages. Let

M = f�; ag: Then fMg

n

= fM

n

g, where M

n

= M � � � � �M

| {z }

n times

. R

�1

[M

n

] =

f�; a; aa; : : : ; a

n

g: fR

�1

[M

n

] j n 2 N g = fR

�1

[N ] j N 2

S

n

fMg

n

g has

in�nite elasticity.)

Example 8 Let G be a class of context-free grammars over � that do not

contain unit productions (production rules of the form A! B) or � produc-

tions (A ! �). Let M be the class consisting of the sets of skeletal phrase

structures (Levy and Joshi 1978) generated by the grammars in G. Let L

be the class of languages generated by grammars in G in the usual sense.

Then, ifM has �nite elasticity, so does L. To see this, take the �nite-valued

relation s = yield(T ) between strings and skeletal phrase structures of the

appropriate sort.
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See Moriyama and Sato (1993) and Kanazawa (1994) for further examples

of easy consequences of Theorem 1.
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