
A Note on Inference Systems for Update Semantics

by Willem Groeneveld and Frank Veltman

Makoto Kanazawa

Department of Cognitive and Information Sciences

Faculty of Letters, Chiba University

1{33 Yayoi-cho, Inage-ku

Chiba-shi, 263, Japan

kanazawa@cogsci.l.chiba-u.ac.jp

August 7, 1996

Although Section 2 of the paper introduces many useful general techniques, there still seems

to be a large gap between what has been learned about abstract update semantics and the

results about the concrete systems of Veltman. In this note, I will make one proposal that I

hope will narrow this gap.

One thing that makes it di�cult to compare Veltman's logic of might with a more general

system is that the semantic clause for might is designed to apply only to a very special kind

of model, with a distinguished bottom element. In Veltman's model, this is ;, which is the

empty set of possible worlds. To study an abstract might logic, it is desirable to be able to

interpret might in any model (or frame, in the authors' terminology) that interprets atomic

formulas as arbitray binary relations on the states. In fact, there is a natural way to achieve

this, if we make the following simple observation. Let us recall Veltman's semantic clause for

might:

[[might']] = f h�; ;i j �[[']] = ; g [f h�; �i j �[[']] 6= ; g: (1)

In Veltman's model, ; is like a black hole: once you get there, there's no way to get out of it.

The interpretation of every formula loops at ;. This is exactly like the dummy state ? that

De�nition 13 of the paper introduces to turn a partial functional model into a total functional

one. Applying this technique backwards, one sees that the submodel of Veltman's model that

you get by simply throwing away ; is equivalent to the original model. In this new model,

all formulas denote partial functions. The semantic clause for might can then be simpli�ed as

follows:

[[might']] = f h�; �i j � 2 dom([[']]) g: (2)

Clearly, the interpretation of might' given by this de�nition in our new model is the same as

the result of restricting the original interpretation of might' to the states of the new model.

Unlike (1), (2) makes sense in all models, not only those in which atomic formulas denote

partial functions. The operator might is now a simple domain operator. Since the clipped

Veltman model is just one special model, the logical rules governing the new might operator

should be a subset of the rules for might in Veltman's logic.

Let our language consist of atomic formulas p

0

; p

1

; p

2

; : : : and formulas of the form might p,

where p is atomic. Prohibition to iterate might is not important here, since mightmight'

1

would be simply equivalent to might'. By a translation to PDL by

tr(might') = (htr(')i>)?;

one can see that the (global) Update-Test consequence relation

� j= X) '

between �nite sets of sequents � and sequents X) ' in this language is recursive (see

Kanazawa 1994). A complete calculus witnessing the recursive enumerability of this relation

is not hard to �nd, and consists of the rules in Figure 1, in addition to Left Monotonicity and

Cautious Cut. Let us call this calculus AML. Note that the rules

might-Contraction

X

1

might' might' X

2

)

X

1

might' X

2

)

might-Permutation

X

1

might' might X

2

) �

X

1

might might' X

2

) �

are derivable in this calculus by might-Re
exivity, might-Monotonicity, and Cautious Cut.

might-Re
exivity

X might') might'

might-Monotonicity

X

1

X

2

)

X

1

might' X

2

)

(might))

X

1

might' ' X

2

)

X

1

' X

2

)

() might)

X) '

X) might'

Figure 1: Rules for abstract might logic AML.

Since AML does not have idempotency for atomic formulas, Groeneveld's general `Henkin-

type' method is not applicable here. There is a straightforward `representation' method, how-

ever, that shows completeness. We let X (possibly with subscripts) range over �nite sequences

of formulas, and Y (possibly with subscripts) range over �nite sequences of formulas of the

form might p (might-formulas). We write � ` X) ' to mean X) ' is derivable from � by

AML.

De�nition 1 Let � be any �nite set of sequents. M

�

is the model hjM

�

j; [[�]]

M

�

i, where

� jM

�

j = fX j X is a �nite sequence of formulas g:

� [[p]]

M

�

= f hX;X p Y i j � ` X) might p ^

Y is a sequence of might-formulas g [

f hX;Xi j � ` X) p g:

Lemma 2 For every �nite sequence of formulas X and every formula ',

hX;Xi 2 [[']]

M

�

i� � ` X) ':

Proof. For ' = p, it holds by de�nition. For ' = might p, this follows from () might) (for

left-to-right) and the de�nition of M

�

.

2

Unfortunately, the `Groeneveld equivalence'

M

�

; X

1

j= X

2

) ' i� � ` X

1

X

2

) ' (3)

does not always hold. (If � 6` X

1

) might p, then M

�

; X

1

j= p X

2

) ' for all X

2

; '.) We do

have one half of (3), however, and it is enough to prove M

�

j= �.

Lemma 3 � ` X

1

X

2

) ' implies M

�

; X

1

j= X

2

) ':

Proof. Induction on the length of X

2

.

Induction Basis. X

2

= �: By (one half of) Lemma 2.

Induction Step. X

2

= X

3

. The assumption is

� ` X

1

 X

3

) ': (4)

To show M

�

; X

1

j= X

3

) ', we show that for all Z such that X

1

�! Z, M

�

; Z j= X

3

) '.

So assume X

�! Z.

Case 1. = p.

Case 1a. Z = X

1

p Y . By (4) and might-Monotonicity, � ` X

1

p Y X

3

) ': By

induction hypothesis, M

�

; X

1

p Y j= X

3

) '.

Case 1b. Z = X

1

. Then � ` X

1

) p by the construction of M

�

. By (4) and Cautious

Cut, � ` X

1

X

3

) p. By induction hypothesis, M

�

; X

1

j= X

3

) p.

Case 2. ' = might p. Then Z = X

1

and by Lemma 2, � ` X

1

) might p. By (4) and

Cautious Cut, � ` X

1

X

3

) '. By induction hypothesis, M

�

; X

1

j= X

3

) '.

Lemma 4 � ` X) ' implies M

�

j= X) '.

Proof. By Lemma 3 and Left Monotonicity.

Let us now show the converse of Lemma 4. Let X be a �nite sequence of formulas. By

the might-pre�x of X, mpre�x(X), we mean the longest pre�x of X that entirely consists of

might-formulas. By the fattening of X, fattening(X), we mean the result of replacing each

occurrence of an atomic formula p by might p p.

Lemma 5 For every �nite sequence of formulas X and every formula ',

� ` X) ' i� � ` fattening(X)) ':

Proof. By might-Monotonicity and (might)).

Lemma 6 For every �nite sequence of atomic formulas X,

mpre�x(fattening(X))

X

�! fattening(X)

in M

�

.

Proof. By might-Re
exivity and might-Monotonicity.

Lemma 7 M

�

j= X) ' implies � ` X) '.

Proof. By Lemmas 2 and 6,M

�

;mpre�x(fattening(X)) j= X) ' implies � ` fattening(X))

'. By (one half of) Lemma 5, � ` X) ' follows.

By Lemmas 4 and 7, we get

Theorem 8 Let � be a �nite set of sequents. For every sequent X) ',

� ` X) ' i� M

�

j= X) p:

3

X) '

X) might'

X ') ?

X might') ?

X) ?

X)

X) might X) '

X ') might

X ')

X might') might

Figure 2: Rules for concrete might logic.

Having shown the completeness of AML, let us compare it to the might-rules for Update-

Test Consequence given in the paper (Figure 2).

The �rst rule is simply our () might). The second and the third rules can be seen to be

valid in the abstract setting if we set [[?]] = ;, which is the interpretation we get by clipping

the Veltman model. The last two rules are invalid in our abstract setting|it is easy to produce

countermodels|and can be seen to depend on some special features of the concrete model.

Our rules might-Re
exivity and might-Monotonicity are present in the concrete might logic

in the form of general Re
exivity and Monotonicity. What about our rule (might))? I

conjecture that this is an admissible, but underivable rule of the concrete might logic.

References

Groeneveld, Willem and Frank Veltman. 1994. Inference systems for update semantics. In-

stitute for Logic, Language and Computation, Department of Philosophy, University of

Amsterdam.

Kanazawa, Makoto. 1994. Completeness and decidability of the mixed style of inference with

composition. In Paul Dekker and Martin Stokhof, eds., Proceedings of the Ninth Amsterdam

Colloquium, pp. 377{391. Institute for Logic, Language and Computation, Department of

Philosophy, University of Amsterdam.

4

