
The Copying Power of Well-Nested Multiple
Context-Free Grammars

Makoto Kanazawa1 and Sylvain Salvati2,?

1 National Institute of Informatics, Tokyo, Japan
2 INRIA Bordeaux – Sud-Ouest, Talence, France

Abstract. We prove a copying theorem for well-nested multiple context-
free languages: if L = {w#w | w ∈ L0 } has a well-nested m-MCFG, then
L has a ‘non-branching’ well-nested m-MCFG. This can be used to give
simple examples of multiple context-free languages that are not generated
by any well-nested MCFGs.

1 Introduction

For a long time, the formalism of multiple context-free grammars [18], together
with many others equivalent to it, has been regarded as a reasonable formaliza-
tion of Joshi’s [9] notion of mildly context-sensitive grammars. Elsewhere [10], we
have made a case that a smaller class of grammars, consisting of MCFGs whose
rules are well-nested, might actually provide a better formal approximation to
Joshi’s informal concept. Well-nested MCFGs are equivalent to non-duplicating
macro grammars [5] and to coupled-context-free grammars [7]. Kanazawa [11]
proves the pumping lemma for well-nested multiple context-free languages. The
well-nestedness constraint has also been a focus of attention recently in the area
of dependency grammars (e.g., [12]).

Seki and Kato [17] present a series of languages that are generated by MCFGs
of dimension m, but not by any well-nested MCFGs of the same dimension.
These examples illustrate the limiting effect that the well-nestedness constraint
has on the class of generated languages at each level m of the infinite hierarchy
of m-multiple context-free languages (m ≥ 1).

An interesting fact is that the examples of Seki and Kato [17] all belong to the
class of well-nested MCFLs at some higher level of the hierarchy, so they do not
serve to separate the whole class of MCFLs from the whole class of well-nested
MCFLs. In fact, to our knowledge, the only example that has appeared in the
literature of an MCFL which is not a well-nested MCFL is the language discussed
by Michaelis [13], originally due to Staudacher [20]. Staudacher uses Hayashi’s [6]
theorem to show that this language is not an indexed language, while Michaelis
gives a (non-well-nested) 3-MCFG generating it. Since well-nested MCFLs are
all indexed languages, it follows that this language is an MCFL which is not

? We are grateful to Uwe Mönnich for pointing us to Engelfriet and Skyum’s [4] paper
in connection with the question of what languages are in MCFL−MCFLwn.

2 M. Kanazawa and S. Salvati

a well-nested MCFL. As it happens, the definition of this language is rather
complex, and Staudacher’s proof is not easy to understand.

As a matter of fact, what we would like to call the “triple copying theorem”
for OI (the class of OI macro languages), due to Engelfriet and Skyum [4], can
be used to give a simple example of a language that separates MCFL (the class
of MCFLs) from MCFLwn (the class of well-nested MCFLs). This theorem says
that L = {w#w#w | w ∈ L0 } ∈ OI implies L0 ∈ EDT0L.3 (Here and henceforth,
L0 is a language over some alphabet Σ and # is a symbol not in Σ.) Since OI is
the same as the class of indexed languages [5] and includes the class of well-nested
MCFLs, and L = {w#w#w | w ∈ L0 } ∈ 3-MCFL for all L0 ∈ CFL, this theorem
implies that L ∈ 3-MCFL−MCFLwn whenever L0 ∈ CFL−EDT0L. Examples
of such L0 are D∗2 , the one-sided Dyck language over two pairs of parentheses [2,
3] and D∗1 , the one-sided Dyck language over a single pair of parentheses [15]. A
question that immediately arises is the status of the “double copying theorem”
for OI: when is L = {w#w | w ∈ L0 } in OI? We do not yet have an answer to
this open question. In this paper, we prove a double copying theorem for well-
nested multiple context-free languages, which implies, among other things, that
L = {w#w | w ∈ L0 } ∈ 2-MCFL−MCFLwn for all L0 ∈ CFL−EDT0L. Unlike
Staudacher’s [20] proof, our proof of this result does not depend on a pumping
argument but instead makes use of simple combinatorial properties of strings.

In addition to shedding light on the difference between the class of MCFLs
and the class of well-nested MCFLs, the double copying theorem for well-
nested MCFLs also highlights a general question underlying Joshi’s notion of
mild context-sensitivity: what are the limitations found in the kind of cross-
serial dependency exhibited in natural language? For, if L is a family of lan-
guages closed under rational transductions, {w#w | w ∈ L0 } ∈ L implies
{w h(w) | w ∈ L0 } ∈ L for any homomorphism h, and languages of the lat-
ter form, together with some restriction on L0, may serve as a model of natu-
ral language constructions exhibiting cross-serial dependency. This may offer a
more fruitful approach than concentrating on languages like {w h(w) | w ∈ Σ∗ },
which has been a common practice in the mathematical study of natural lan-
guage syntax.

2 The Double Copying Theorem for Context-Free
Languages

Let us first look at the double copying theorem for context-free languages. This
has a rather simple proof, which is omitted here in the interests of space. The
implication (i)⇒ (iii) may be proved using the pumping lemma for context-free
languages; it also follows from a closely related result proved by Ito and Katsura
[8].

Theorem 1. Let L = {w#w | w ∈ L0 }. The following are equivalent:

3 See [3] for the definition of EDT0L.

The Copying Power of Well-Nested Multiple Context-Free Grammars 3

(i) L is a context-free language.
(ii) L is a linear context-free language.
(iii) L0 is a finite union of languages of the form rRs, where r, s ∈ Σ∗ and R

is a regular subset of t∗ for some t ∈ Σ+.

3 Combinatorics on Words

The statement of the double copying theorem for well-nested multiple context-
free languages is similar to that for context-free languages, but we do not need to
invoke the pumping lemma for well-nested MCFLs in order to prove it. Instead,
we rely on some basic results in the combinatorics on words.

A string x is a conjugate of a string y if x = uv and y = vu for some u, v.
Elements of u∗ are called powers of u. A nonempty string is primitive if it is
not a power of another string. For every nonempty string x, there is a unique
primitive string u such that x is a power of u; this string u is called the primitive
root of x. When two nonempty strings are conjugates, their primitive roots are
also conjugates.

We use the following basic results from the combinatorics on words (see, e.g.,
[19]):

Lemma 2. Let x, y, z ∈ Σ+. Then xy = yz if and only if there exist u ∈ Σ+,
v ∈ Σ∗, and an integer k ≥ 0 such that x = uv, z = vu, and y = (uv)ku =
u(vu)k.

Lemma 3. Let x, y ∈ Σ+. The following are equivalent:

(i) xy = yx.
(ii) There exist z ∈ Σ+ and i, j ≥ 1 such that x = zi and y = zj.
(iii) There exist i, j ≥ 1 such that xi = yj.

4 Multiple Context-Free Grammars

A ranked alphabet is a finite set ∆ =
⋃
n≥0∆

(n) such that ∆(i) ∩ ∆(j) = ∅ if

i 6= j. An element d of ∆ has rank n if d ∈ ∆(n). A tree over a ranked alphabet
∆ is an expression of the form (dT1 . . . Tn), where d ∈ ∆(n) and T1, . . . , Tn are
trees over ∆; the parentheses are omitted when n = 0. In writing trees, we adopt
the abbreviatory convention of dropping the outermost parentheses.

Let ∆ be a ranked alphabet and Σ an unranked alphabet. Let X be a count-
ably infinite set of variables ranging over Σ∗. We use boldface italic letters
x1,y1, z1, etc., as variables in X . A rule over ∆,Σ is an expression of the form

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn),

where n ≥ 0, A ∈ ∆(q), Bi ∈ ∆(qi), xi,j are pairwise distinct variables, and αi is
a string over Σ ∪ {xi,j | i ∈ [1, n], j ∈ [1, qi] } satisfying the following condition:

– for each i, j, the variable xi,j occurs in α1 . . . αq at most once.

4 M. Kanazawa and S. Salvati

Rules with n = 0 are called terminating and written without the :− symbol.
When we deal with rules over ∆,Σ, we view elements of ∆ as predicates, and
call q the arity of A if A ∈ ∆(q). Thus, rules are definite clauses (in the sense of
logic programming) built from strings and predicates on strings.

A multiple context-free grammar (MCFG) is a quadruple G = (N,Σ,P, S),
where N is a ranked alphabet of nonterminals, Σ is an unranked alphabet of
terminals, P is a finite set of rules over N,Σ, and S ∈ N (1). When A ∈ N (q)

and w1, . . . , wq ∈ Σ∗, we write `G A(w1, . . . , wq) to mean that A(w1, . . . , wq) is
derivable using the following inference schema:

`G B1(w1,1, . . . , w1,q1) . . . `G Bn(wn,1, . . . , wn,qn)

`G A(α1, . . . , αq)σ

where A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn) is in P and
σ is the substitution mapping each xi,j to wi,j . The language of G is defined as
L(G) = {w ∈ Σ∗ | `G S(w) }.

In order to speak of derivation trees of derivable facts, we put the elements
of P in one-to-one correspondence with the elements of a ranked alphabet ∆P ,
so that a rule π ∈ P with n occurrences of nonterminals on the right-hand side

corresponds to a symbol in ∆
(n)
P , which we confuse with π itself. In order to

refer to contexts in which derivation trees appear, we augment ∆P with a set Y
of variables (y, z, etc.), whose rank is always 0. The following inference system
associates derivation trees (trees over ∆P) with derivable facts and derivation
tree contexts (trees over ∆P ∪Y) with facts derivable from some premises:

y :A(x1, . . . ,xq) `G y :A(x1, . . . ,xq)

Γ1 `G T1 :B1(β1,1, . . . , β1,q1) . . . Γn `G Tn :Bn(βn,1, . . . , βn,qn)

Γ1, . . . , Γn `G πT1 . . . Tn :A(α1, . . . , αq)σ

In the second schema, π is the rule

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

and σ is the substitution mapping each xi,j to βi,j ; each Γi is a finite se-
quence of premises of the form z : C(y1, . . . ,yp), and it is understood that Γi
and Γj do not share any variables if i 6= j. It is clear that `G A(w1, . . . , wq)
if and only if `G T : A(w1, . . . , wq) for some tree T over ∆P . The set {T |
`G T : S(w) for some w ∈ Σ∗ } is a recognizable set of trees; as a consequence,
the Parikh image of L(G) is semilinear [21].

A nonterminal A ∈ N (q) is useful if `G A(w1, . . . , wq) for some w1, . . . , wq
and y :A(x1, . . . ,xq) `G T : S(α) for some T and α; otherwise it is useless.

Example 4. Let G be the MCFG consisting of the following rules:

π1 : S(x1y1b#ay2x2) :− A(x1,x2), B(y1,y2).

π2 : A(a, ε). π3 : A(abx1ba, abx2ab) :− A(x1,x2).

π4 : B(ε, b). π5 : B(bay1ba, bay2ab) :− B(y1,y2).

The Copying Power of Well-Nested Multiple Context-Free Grammars 5

For example,

`G π1(π3(π3π2))(π5π4) : S(ababababababab#ababababababab),

y :A(x1,x2) `G π1(π3y)(π5π4) : S(abx1bababab#ababababx2ab),

and we have L(G) = { (ab)n#(ab)n | n ≥ 1 }.

The dimension of an MCFG G is the maximal arity of nonterminals of G.
The branching factor (or rank) of G is the maximal number of occurrences of
nonterminals on the right-hand side of rules of G. We write m-MCFG(f) for
the class of MCFGs whose dimension is at most m and whose branching factor
is at most f . (Note that this notation is the opposite of the one used by Seki
and Kato [17], but is more consistent with [18].) We write m-MCFG and MCFG
for

⋃
f m-MCFG(f) and

⋃
m

⋃
f m-MCFG(f), respectively. The corresponding

classes of languages are denoted by m-MCFL(f), m-MCFL, etc.4

An MCFG rule

A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

is non-deleting if each xi,j occurs in α1 . . . αq; it is non-permuting if j < k im-
plies that the occurrence (if any) of xi,j in α1 . . . αq precedes the occurrence (if
any) of xi,k in α1 . . . αq. It is known that every G ∈ m-MCFG(f) has an equiv-
alent G′ ∈ m-MCFG(f) whose rules are all non-deleting and non-permuting. A
non-deleting and non-permuting rule is well-nested if it moreover satisfies the
following condition:

– if i 6= i′, j < qi, and j′ < qi′ , then α1 . . . αq 6∈ (Σ∪X)∗xi,j(Σ∪X)∗xi′,j′(Σ∪
X)∗xi,j+1(Σ ∪ X)∗xi′,j′+1(Σ ∪ X)∗.

In other words, if xi′,j′ occurs between xi,j and xi,j+1 in α1 . . . αq, then
xi′,1, . . . ,xi′,qi′ must all occur between xi,j and xi,j+1.

We attach the subscript “wn” to “MCFG” and “MCFL” to denote
classes of well-nested MCFGs and corresponding classes of languages, as in
m-MCFGwn(f), m-MCFGwn, m-MCFLwn(f), m-MCFLwn, etc. The grammar in
Example 4 belongs to 2-MCFGwn(2). Note that m-MCFL(1) = m-MCFLwn(1).

Lemma 5. For each m ≥ 1, m-MCFLwn = m-MCFLwn(2).

Proof (sketch). A well-nested rule

π = A(α1, . . . , αq) :− B1(x1,1, . . . ,x1,q1), . . . , Bn(xn,1, . . . ,xn,qn)

with n ≥ 3 can always be replaced by two rules whose right-hand side has at most
n−1 nonterminals, as follows. The replacement introduces one new nonterminal
C, whose arity does not exceed max{q, q1, . . . , qn}. We assume without loss of
generality that 1 ≤ i < j ≤ n implies that xi,1 occurs to the left of xj,1 in

4 See [14] and [16] for relations among the classes m-MCFL(f) with different values
of m and f .

6 M. Kanazawa and S. Salvati

α1 . . . αq. Since π is well-nested, there must be an l ∈ [1, n] such that α1 . . . αq ∈
(Σ ∪ X)∗xl,1Σ

∗xl,2Σ
∗ . . . Σ∗xl,ql(Σ ∪ X)∗. Let i, j be such that αi ∈ (Σ ∪

X)∗xl,1(Σ ∪ X)∗ and αj ∈ (Σ ∪ X)∗xl,ql(Σ ∪ X)∗.

Case 1. i < j. We can write αi = β1xl,1β2 and αj = γ1xl,qlγ2. Let C be
a new nonterminal of arity q′ = i + q − j + 1 ≤ q. We can replace π with the
following two rules:

B(y1, . . . ,yi−1,yixl,1β2, αi+1, . . . , αj−1, γ1xl,qlyj ,yj+1, . . . ,yq) :−
C(y1, . . . ,yi,yj , . . . ,yq), Bl(xl,1, . . . ,xl,ql).

C(α1, . . . , αi−1, β1, γ2, αj+1, . . . , αq) :−
B1(x1,1, . . . ,x1,q1), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1

),

Bl+1(xl+1,1, . . . ,xl+1,ql+1
), . . . , Bn(xn,1, . . . ,xn,qn).

Case 2. i = j. We can write αi = β1xl,1β2xl,qlβ3.

Case 2a. β1β3 ∈ Σ∗. Let C be a new nonterminal of arity q − 1. We can
replace π with the following two rules:

A(y1, . . . ,yi−1, αi,yi+1, . . . ,yq) :−
C(y1, . . . ,yi−1,yi+1, . . . ,yq), Bl(xl,1, . . . ,xl,ql).

C(α1, . . . , αi−1, αi+1, . . . , αq) :−
B1(x1,1, . . . ,x1,q1), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1

),

Bl+1(xl+1,1, . . . ,xl+1,ql+1
), . . . , Bn(xn,1, . . . ,xn,qn).

Case 2b. β1 = γxk,pw with w ∈ Σ∗. Let C be a new nonterminal of arity qk.
We can replace π with the following two rules:

A(α1, . . . , αi−1, γxk,pβ3, αp+1, . . . , αq) :−
B1(x1,1, . . . ,x1,q1), . . . , Bk−1(xk−1,1, . . . ,xk−1,qk−1

), C(xk,1, . . . ,xk,qk),

Bk+1(xk+1,1, . . . ,xk+1,qk+1
), . . . , Bl−1(xl−1,1, . . . ,xl−1,ql−1

),

Bl+1(xl+1,1, . . . ,xl+1,ql+1
), . . . , Bn(xn,1, . . . ,xn,qn).

C(xk,1, . . . ,xk,p−1,xk,pwxl,1β2xl,ql ,xk,p+1, . . . ,xk,qk) :−
Bk(xk,1, . . . ,xk,qk), Bl(xl,1, . . . ,xql).

Case 2c. β3 = wxk,pγ with w ∈ Σ∗. Similar to Case 2b. ut

Seki and Kato [17] show that for all m ≥ 2, RESPm ∈ m-MCFL(2) −
m-MCFLwn, where RESPm is defined by

RESPm = { ai1ai2b
j
1b
j
2 . . . a

i
2m−1a

i
2mb

j
2m−1b

j
2m | i, j ≥ 0 }.

It is easy to see that RESPm ∈ 2m-MCFL(1) = 2m-MCFLwn(1).

The Copying Power of Well-Nested Multiple Context-Free Grammars 7

5 The Double Copying Theorem for Well-Nested
Multiple Context-Free Languages

The following theorem about possibly non-well-nested MCFGs is easy to prove.
For part (ii), note that there is a rational transduction that maps L to L0.5

Theorem 6. Let L = {w#w | w ∈ L0 }.
(i) If L0 ∈ m-MCFL(f), then L ∈ 2m-MCFL(f).

(ii) If L ∈ m-MCFL(f), then L0 ∈ m-MCFL(f).

A consequence of Theorem 6 is that the class of all MCFGs has an unlimited
copying power in the sense that L = {w#w | w ∈ L0 } is an MCFL whenever
L0 is. We will see that the copying power of well-nested MCFGs is much more
restricted (Corollary 9).

The following lemma is used in the proof of our main theorem (Theorem 8).
Its proof is straightforward and is omitted.

Lemma 7. Let M be a semilinear subset of N2m and ri, si, ti, ui, vi ∈ Σ∗ for
i ∈ [1,m]. Then there are some G = (N,Σ,P, S) ∈ m-MCFG(1) and nontermi-
nal A ∈ N (m) such that

{ (x1, . . . , xm) | `G A(x1, . . . , xm) } =

{ (r1s
n1
1 t1u

n2
1 v1, . . . , rms

n2m−1
m tmu

n2m
m vm) | (n1, . . . , n2m) ∈M }.

Theorem 8. Let L = {w#w | w ∈ L0 }. The following are equivalent:

(i) L ∈ m-MCFLwn.
(ii) L ∈ m-MCFL(1).

Proof. The implication from (ii) to (i) immediately follows from m-MCFL(1) =
m-MCFLwn(1). To show that (i) implies (ii), suppose that L = L(G) for some
G = (N,Σ ∪ {#}, P, S) ∈ m-MCFGwn(2). If L is finite, L clearly belongs to
1-MCFL(1), so we assume that L is infinite. Without loss of generality, we may
suppose that G has no useless nonterminal and satisfies the following property:

– For each nonterminal A ∈ N (q), the set { (x1, . . . , xq) | `G A(x1, . . . , xq) }
is infinite.

To show that L belongs to m-MCFL(1), we prove that for each binary rule

π = A(α1, . . . , αq) :− B(y1, . . . ,yk), C(z1, . . . ,zl)

in P , there are Gπ = (Nπ, Σ ∪ {#}, Pπ, Sπ) ∈ m-MCFG(1) and a nonterminal

Aπ ∈ N (q)
π such that

{ (x1, . . . , xq) | `G πT1T2 :A(x1, . . . , xq) for some derivation trees T1, T2 }
= { (x1, . . . , xq) | `Gπ Aπ(x1, . . . , xq) }. (1)

This is a consequence of the following claim. We assume without loss of generality
that y1 occurs to the left of z1 in (α1, . . . , αq).

5 See the discussion following the proof of Theorem 8 for a possible strengthening of
part (ii) of Theorem 6.

8 M. Kanazawa and S. Salvati

Claim. There exist t ∈ Σ+ and r, s ∈ Σ∗ such that if

`G πT1T2 :A(x1, . . . , xq)

for some T1, T2, then x1, . . . , xq are non-overlapping substrings of rtis#rtis for
some i ≥ 0.

Proof. We write Σ# for Σ ∪ {#}. Let U [x] be a (smallest, for concreteness)
derivation tree context such that for some γ ∈ Σ∗#x1Σ

∗
. . . Σ

∗
#xqΣ

∗
,

x :A(x1, . . . ,xq) `G U [x] : S(γ).

We write γ[~β] for γ[x1 := β1, . . . ,xq := βq]. Our goal is to find t ∈ Σ+ and
r, s ∈ Σ∗ such that

`G πT1T2 :A(x1, . . . , xq) implies γ[~x] = rtis#rtis for some i ≥ 0. (2)

We have

y :B(y1, . . . ,yk), z : C(z1, . . . ,zl) `G U [πyz] : S(γ[~α]).

Let us write γ[~α][~y, ~z] for the result of substituting y1, . . . , yk, z1, . . . , zl for
y1, . . . ,yk, z1, . . . ,zl in γ[~α]. Since π is well-nested, either

γ[~α] ∈ Σ∗#y1Σ
∗
. . . Σ

∗
#ykΣ

∗
#z1Σ

∗
. . . Σ

∗
#zlΣ

∗
#

or else

γ[~α] ∈ Σ∗#y1Σ
∗
. . . Σ

∗
#yhΣ

∗
#z1Σ

∗
. . . Σ

∗
#zlΣ

∗
#yh+1Σ

∗
. . . Σ

∗
#ykΣ

∗
#

for some h ∈ [1, k − 1]. Since γ[~α][~y, ~z] ∈ L for all y1, . . . , yk, z1, . . . , zl such that
`G B(y1, . . . , yk) and `G C(z1, . . . , zl), and y1, . . . , yk and z1, . . . , zl can vary
independently, it is easy to see that the former possibility is ruled out; thus we
must have

γ[~α] = δ1δ2δ3

where

δ1 ∈ Σ∗y1Σ
∗ . . . Σ∗yhΣ

∗, δ2 ∈ z1Σ
∗
. . . Σ

∗
#zl, δ3 ∈ Σ∗yh+1Σ

∗ . . . Σ∗ykΣ
∗.

Let

LB = { δ1#δ3[~y] | `G B(y1, . . . , yk) } and LC = { δ2[~z] | `G C(z1, . . . , zl) }.

Note that both LB and LC are infinite subsets of Σ∗#Σ∗, and for every u#v ∈ LB
and w#x ∈ LC , the string uw#xv is an element of L. Let u#v, u′#v′ ∈ LB with
|u| ≤ |u′|. By taking w#x ∈ LC with |w| ≥ |v′| (or equivalently, |x| ≥ |u′|), we
see that u must be a prefix of u′, since both are prefixes of x. We also see that
|u′| − |u| = |v′| − |v|. By the same token, v must be a suffix of v′.

The Copying Power of Well-Nested Multiple Context-Free Grammars 9

Let u1#v1 and u2#v2 be the two shortest strings in LB . Then u2 = u1û and
v2 = v̂v1 for some û, v̂ ∈ Σ+ such that |û| = |v̂|. Let w#x ∈ LC , and suppose
|x| > |u2|.

u1 w

u2︷ ︸︸ ︷
u1 û w

u1 û x̂︸ ︷︷ ︸
x

v1 u1 û x̂︸ ︷︷ ︸
x

v̂ v1︸ ︷︷ ︸
v2

From u1w = xv1 and u2w = xv2, we see that there is an x̂ ∈ Σ+ such that

x = u2x̂, w = x̂v2, and ûx̂ = x̂v̂.

By Lemma 2, there are û1 ∈ Σ+, û2 ∈ Σ∗ such that

û = û1û2, v̂ = û2û1, and x̂ = ûkû1 = û1(û2û1)k for some k ≥ 0.

Now let t be the primitive root of û. There are some i1, i2 ≥ 0 and t1, t2 such
that t1 6= ε and

t = t1t2, û1 = ti1t1, û2 = t2t
i2 .

Then
ûx̂ = x̂v̂ = ûk+1û1 ∈ t∗t1.

It follows that for all w#x ∈ LC such that |x| > |u2|,

w ∈ t∗t1v1, (3)

x ∈ u1t∗t1. (4)

Now let u#v be an arbitrary element of LB . Take w#x ∈ LC such that
|x| > |u2| and |w| ≥ |t| + |v|. Since uw = xv, there is an x′ such that |x′| ≥ |t|
and

w = x′v, (5)

x = ux′. (6)

Since |v| ≥ |v1| and |x′| ≥ |t|, (3) and (5) implies

x′ = t1(t2t1)jt3

for some j ≥ 0 and some prefix t3 of t2t1 such that t3 6= t2t1. Let t4 be such that
t3t4 = t2t1. Since (4) and (6) imply that x′ ends in t2t1, we see

t4t3 = t3t4.

Since t3t4 = t2t1 is a conjugate of t and hence is primitive, Lemma 3 implies
that t3 = ε. Hence x′ ∈ t∗t1. By (4) and (6), we see

u ∈ u1t∗. (7)

10 M. Kanazawa and S. Salvati

By a reasoning symmetric to that leading up to (7), we can infer that there
exist some primitive non-empty string t̃ and some string w1 such that for all
w#x ∈ LC ,

w ∈ t̃∗w1. (8)

By taking sufficiently long w, (3) and (8) together imply

t|t̃| = t̃|t|.

Since t and t̃ are both primitive, Lemma 3 implies t = t̃. Thus, for all w#x ∈ LC ,

w ∈ t∗w1. (9)

From (7) and (9), we obtain

uw ∈ u1t∗w1

for all u#v ∈ LB and all w#x ∈ LC . Now (2) follows with r = u1 and s = w1. ut

We continue with the proof of Theorem 8. Let c = max{|r|, |s|, |t|}. By the
above claim, one of the following two cases must obtain.

Case 1. Every (x1, . . . , xq) such that `G πT1T2 :A(x1, . . . , xq) for some T1, T2
is of the form

(r1t
n1s1, . . . , rqt

nqsq).

for some r1, . . . , rq, s1, . . . , sq ∈ Σ≤c.
Case 2. Every (x1, . . . , xq) such that `G πT1T2 :A(x1, . . . , xq) for some T1, T2

is of the form

(r1t
n1s1, . . . , rj−1t

nj−1sj−1, rjt
njsj#rj+1t

nj+1sj+1,

rj+2t
nj+2sj+2, . . . , rq+1t

nq+1sq+1)

for some r1, . . . , rq+1, s1, . . . , sq+1 ∈ Σ≤c.
In Case 1, for any fixed r1, . . . , rq, s1, . . . , sq, the set

{ (n1, . . . , nq) | `G πT1T2 :A(r1t
n1s1, . . . , rqt

nqsq) for some T1, T2 }

is semilinear. To see this, it suffices to note that Lπ = {x1$. . . $xq |
`G πT1T2 :A(x1, . . . , xq) for some T1, T2 } is an m-MCFL and there is a ra-
tional transduction that relates r1t

n1s1$. . . $rqt
nqsq to an1

1 . . . a
nq
q . Thus, by

Lemma 7, there are a Gπ = (Nπ, Σ ∪ {#}, Pπ, Sπ) ∈ q-MCFG(1) and a non-

terminal Aπ ∈ N (q)
π such that (1) holds.

In Case 2, we can derive the same conclusion in a similar way.
Let P2 be the set of all binary rules of G. We can now form a G′ = (N ′, Σ ∪

{#}, P ′, S) ∈ m-MCFG(1) generating L by setting

N ′ = N ∪
⋃
π∈P2

Nπ,

P ′ = (P − P2) ∪
⋃
π∈P2

Pπ ∪ {A(x1, . . . ,xq) :− Aπ(x1, . . . ,xq) | π ∈ P2

and A ∈ N (q) is the head nonterminal of π }.

This completes the proof of Theorem 8. ut

The Copying Power of Well-Nested Multiple Context-Free Grammars 11

It would be desirable to have a precise characterization of the class of lan-
guages L0 for which L = {w#w | w ∈ L0 } belongs to m-MCFLwn, as in
the double copying theorem for context-free languages (Theorem 1). In a pre-
vious version of the paper, we hastily stated that L ∈ m-MCFL(f) implies
L0 ∈ dm/2e -MCFL(f) (compare part (ii) of Theorem 6), which would give us
such a characterization for even m. While this still seems to us to be a reasonable
conjecture, we currently see no easy way to prove it.

Since it is easy to see6

m-MCFL(1) = EDT0LFIN(m),

Theorems 6 and 8 give

Corollary 9. Let L = {w#w | w ∈ L0 }. The following are equivalent:

(i) L ∈ MCFLwn.
(ii) L ∈ EDT0LFIN.
(iii) L0 ∈ EDT0LFIN.

Since CFL − EDT0L 6= ∅ and {w#w | w ∈ L0 } ∈ 2-MCFL for all L0 ∈
CFL− EDT0L, Corollary 9 implies

Corollary 10. 2-MCFL−MCFLwn 6= ∅.

6 Conclusion

We have shown that imposing the well-nestedness constraint on the rules of
multiple context-free grammars causes severe loss of the copying power of the
formalism. The restriction on the languages L0 that can be copied is similar to
the restriction in Engelfriet and Skyum’s [4] triple copying theorem for OI. It is
worth noting that the crucial claim in the proof of Theorem 8 does not depend
on the non-duplicating nature of the MCFG rules, and one can indeed prove that
an analogous claim also holds of OI. This leads us to conjecture that a double
copying theorem holds of OI with the same restriction on L0 as in Engelfriet and
Skyum’s triple copying theorem (namely, membership in EDT0L).7 We hope to
resolve this open question in future work.

References

1. Arnold, A., Dauchet, M.: Un théorem de duplication pour les forêts algébriques.
Journal of Computer and System Science 13, 223–244 (1976)

2. Ehrenfeucht, A., Rozenberg, G.: On some context-free languages that are not de-
terministic ET0L languages. R.A.I.R.O. Informatique théorique/Theoretical Com-
puter Science 11, 273–291 (1977)

6 See [3] for the definition of EDT0LFIN(m) and EDT0LFIN.
7 Arnold and Dauchet [1] prove a copying theorem for OI context-free tree languages,

which is an exact tree counterpart to this conjecture.

12 M. Kanazawa and S. Salvati

3. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree transducers, L systems, and two-way
machines. Journal of Computer and System Sciences 20, 150–202 (1980)

4. Engelfriet, J., Skyum, S.: Copying theorems. Information Processing Letters 4,
157–161 (1976)

5. Fisher, M.J.: Grammars with Macro-Like Productions. Ph.D. thesis, Harvard Uni-
versity (1968)

6. Hayashi, T.: On derivation trees of indexed gramamrs —an extension of the uvwxy-
theorem—. Publications of the Research Institute for Mathematical Sciences 9,
61–92 (1973)

7. Hotz, G., Pitsch, G.: On parsing coupled-context-free languages. Thoretical Com-
puter Science 161, 205–253 (1996)

8. Ito, M., Katsura, M.: Context-free languages consisting of non-primitive words.
International Journal of Computer Mathematics 40, 157–167 (1991)

9. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky,
A.M. (eds.) Natural Language Parsing: Psychological, Computational and Theo-
retical Perspectives, pp. 206–250. Cambridge University Press, Cambridge (1985)

10. Kanazawa, M.: The convergence of well-nested mildly context-sensitive
grammar formalisms (July 2009), an invited talk given at the 14th
Conference on Formal Grammar, Bordeaux, France. Slides available at
http://research.nii.ac.jp/~kanazawa/.

11. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory:
13th International Conference, DLT 2009. pp. 312–325. Springer, Berlin (2009)

12. Kuhlmann, M.: Dependency Structures and Lexicalized Grammars. Ph.D. thesis,
Saarland University (2007)

13. Michaelis, J.: An additional observation on strict derivational minimalism. In:
Rogers, J. (ed.) Proceedings of FG-MoL 2005: The 10th conference on Formal
Grammar and the 9th Meeting on Mathematics of Language. pp. 101–111. CSLI
Publications, Stanford, CA (2009)

14. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science 223, 87–120 (1999)

15. Rozoy, B.: The Dyck language D′1
∗

is not generated by any matrix grammar of
finite index. Information and Computation 74, 64–89 (1987)

16. Satta, G.: Trading independent for synchronized parallelism in finite copying par-
allel rewriting systems. Journal of Computer and System Sciences 56, 27–45 (1998)

17. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars
and macro grammars. IEICE Transactions on Information and Systems E91–D,
209–221 (2008)

18. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88, 191–229 (1991)

19. Shallit, J.: A Second Course in Formal Langauges and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

20. Staudacher, P.: New frontiers beyond context-freeness: DI-grammars and DI-
automata. In: 6th Conference of the European Chapter of the Association for
Computational Linguistics (EACL ’93). pp. 358–367 (1993)

21. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: 25th Annual Meeting of the As-
sociation for Computational Linguistics. pp. 104–111 (1987)

