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Abstract

I demonstrate the usefulness of syntactic features expressing regular constraints in
a linguistic theory based on the formalism of abstract categorial grammars, using a
fragment involving wh-extraction islands as an example. I then use the same technique
to give a method of approximating in ACGs the behavior of the directional slashes of
the Lambek calculus.

Keywords: abstract categorial grammar; Lambek calculus; intersection with regular sets;
syntactic features

1 Introduction

This paper was motivated by the question of to what extent the formalism of abstract
categorial grammars (de Groote, 2001) is capable of replicating Lambek grammars, where
both formalisms are taken as systems for defining relations between strings and typed
λ-terms (understood as representations of meanings). This is a purely technical question
about the expressive power of two grammar formalisms, but I believe its resolution to
be of interest to linguists since the apparent difficulty of the ACG formalism to simulate
Lambek calculus analyses of non-constituent coordination and related phenomena seems
to have led some people to conclude that the ACG is fundamentally inadequate as a vehicle
to express a satisfactory theory of natural language syntax and compositional semantics.1

As a partial answer to this question, this paper presents an automatic procedure to
translate an arbitrary Lambek grammar into an ACG that simulates it up to a certain
point. This is done by adding two syntactic features to each atomic type, which express

∗I am grateful to Chris Tancredi and Greg Kobele for giving me native speakers’ judgments.
1This view was expressed by Kubota and Levine (2014b, p. 30):

“. . . keeping track of the right word order becomes a virtually intractable problem in non-
directional variants of CG such as Abstract Categorial Grammar (de Groote 2001) and
Lambda Grammar (Muskens 2003)”

and by Moot (2014, p. 2):

“The abstract categorial grammar treatment suffers from problems of overgeneration and
problems at the syntax-semantics interface unlike any other categorial grammar.”



regular constraints on the surface positions of “extraction sites”. The way the syntactic
features are percolated is automatically determined by the regular constraints; this is an
application of a general method I developed in Kanazawa (2006). Since each feature has
a finite number of possible values, employing it is formally equivalent to splitting each
atomic type into a finite number of distinct variants.

Before turning to the simulation of Lambek grammars, I illustrate my general method
by showing how λ-abstraction in derivations can be controlled through a finite-valued
feature, using a fragment containing wh-extraction. (The fragment is vaguely reminiscent
of GPSG (Gazdar et al., 1985).) The feature employed in the fragment is similar to what
Pogodalla and Pompigne (2012) arrived at by an ad hoc construction. I then proceed
to show how one can use the same method to limit λ-abstraction in such a way that
the surface position of the extraction site created by λ-abstraction is limited to left or
right periphery, mimicking the behavior of the introduction rules for Lambek’s directional
slashes.

A systematic use of the latter technique results in a procedure to translate an arbitrary
Lambek grammar into an ACG. This is not a perfect simulation; the output ACG under-
generates relative to the string-meaning relation of the input Lambek grammar.2 For the
purpose of the description of natural language, this imperfection does not necessarily bode
ill for the proposed technique. The discrepancy does not seem to show up in concrete cases
that have been discussed by linguists, and I will suggest that there may even be reason to
favor the feature mechanism over the directional slashes of the Lambek calculus.

I will start by giving an informal introduction to the ACG formalism, illustrating
some of its important properties through concrete examples. Before proceeding to do so in
Section 2, however, I would like to make some terminological and conceptual clarifications.

By a grammar formalism, I mean a mathematically defined class of finite devices (called
grammars) equipped with a definition of the language of each grammar, which is a set of
discrete entities of some sort (strings, trees, λ-terms, pairs of strings and λ-terms, etc.). A
grammar formalism is an abstract mathematical object that can and should be studied in
isolation from any applications. Each grammar formalism usually distinguishes itself from
others by referring to a grammar in its class by a unique compound noun ending in the
word “grammar”. Thus, a context-free grammar or a CFG is a grammar belonging to a
certain formalism found in any textbook in formal language theory; an abstract categorial
grammar or an ACG is a grammar belonging to the formalism defined by de Groote
(2001).3

In linguistics, the word “grammar” has another, entirely different use, where it ap-
pears as part of a proper name that refers to a particular (usually fairly comprehensive)
linguistic theory that aims to capture the syntax (and often compositional semantics) of
natural language. These names are almost always capitalized. Examples are Lexical-
Functional Grammar (LFG), Generalized Phrase Structure Grammar (GPSG), and Head-
Driven Phrase Structure Grammar (HPSG). These linguistic theories are often expressed
by means of some (usually custom-built) grammar formalism in the sense of the pre-
ceding paragraph, but more often than not, the definition of the grammar formalism is

2In the initial abstract I submitted to this workshop, I stated that the output ACG also overgenerates
relative to the input Lambek grammar. That statement was made in error, and I now think it only
undergenerates.

3What I call an ACG in this paper is technically a coupling of two ACGs that share the same abstract
signature. This use of ACGs was called the transductive paradigm by de Groote (2001). Other authors
have proposed definitions roughly equivalent to de Groote’s, most notably Muskens (2003), but not all
details are the same.



only implicit in the linguistic theory.4 (To add to the confusion, these linguistic theories
themselves are sometimes called “grammar formalisms” when they serve as frameworks in
which to carry out further linguistic investigations.)

The formalism of abstract categorial grammars was introduced without a well-
developed linguistic theory to go with it. I think it is fair to say that subsequent uses
of the ACG formalism in theoretical and computational linguistics have been sporadic
and no broad consensus has emerged as to what form linguistically adequate grammars of
English, French, etc., should take within a framework offered by the ACG formalism.5 In
this sense, there is no linguistic theory called Abstract Categorial Grammar, at least not
yet.6

There is another point I wish to make at this point about the relation between a gram-
mar formalism and a linguistic theory. When a grammar formalism is used in a linguistic
theory, it need not be the case that the formalism provides the entire metalanguage in
which to express individual grammars within that theory. A trivial example is the use
of parentheses and braces in phrase structure rules to indicate optional elements and al-
ternatives. These are conventions used to abbreviate multiple phrase structure rules into
a single rule and do not appear in the official definition of a phrase structure rule. Nev-
ertheless, as noted by Chomsky (1965, pp. 42–43), these abbreviatory devices may play
important roles in expressing linguistically significant generalizations. Another example
might be Jacobson’s (2014, pp. 94–95) use of “directional rules” in the lexicon of a cate-
gorial grammar of English to express the generalization that English is a predominantly
head-first language. Here, a directional rule is a kind of lexical rule that turns a lexical
entry underspecified as to the directions of some slashes into one where the directions
of those slashes are specified. Another, particularly elaborate example of an additional
mechanism that falls outside of the grammar formalism adopted by a linguistic theory is
found in the TAG-based theory of Frank (2002), where the Merge and Move operations
are used to generate the finite set of elementary trees of a tree-adjoining grammar.

Now when the workings of such formalism-external devices are specified fully precisely,
they may be incorporated into the grammar formalism and the resulting enriched formal-
ism may be studied as a mathematical object. But they need not be. Rather, these
devices may simply be viewed as part of a system of notation—compression scheme if
you will—that enables compact representations of grammars belonging to the grammar
formalism. The choice between these two viewpoints of course does not affect the content
of the linguistic theory in any way; it is just a matter of what level of abstraction is the
most fruitful in the mathematical study of grammar formalisms. When certain represen-
tational devices in the linguistic theory are left out of the grammar formalism, algorithmic

4An unfortunate practice that greatly hampers understanding of the relevant linguistic theory, in my
opinion. A notable exception in this respect is Tree-Adjoining Grammar (Joshi and Schabes, 1997; Abeillé
and Rambow, 2000; Frank, 2002).

5Needless to say, examples (“toy grammars”) that are used to illustrate properties of a grammar for-
malism need not constitute any serious attempt to develop a linguistic theory based on that formalism.
Also, when a linguist employs a certain formalism in her account of a certain empirical phenomenon, the
grammar fragment provided for that purpose may involve choices that are tangential to the points she
wants to make and which she would be happy to change in the face of possible criticisms.

6In fact, de Groote and Pogodalla (2004, p. 421) go so far as to say

“Abstract Categorial Grammars are not intended to be yet another grammatical formalism
that would compete with other well-established formalisms. They should rather be seen as
the kernel of a grammatical framework — in the spirit of (Ranta, 2004) — in which other
existing grammatical models may be encoded.”

I myself do not share this view. I think the ACG formalism has some unique strengths that make it
attractive as a grammar formalism for natural language.



properties of the formalism will guide and inform our understanding of the corresponding
properties of the linguistic theory, rather than reveal them completely. This will in no way
render the formalism irrelevant to the linguistic theory; on the contrary, such a separation
between a grammar formalism and formalism-external representational devices may offer
a more effective way to gain important insights into human grammars.

2 Abstract Categorial Grammars

The ACG formalism is based on the simply typed λ-calculus, the kind of λ-calculus linguists
are familiar with from Montague semantics. Simple types are formed from atomic types
with the connective→; if A and B are simple types, then A→B is a simple type. A λ-term
is either a variable, a constant, an application MN of λ-terms M and N , or a λ-abstract
λx.M , where M is a λ-term and x is a variable. Note that I write MN instead of M(N)
for applications; the former notation is the standard one in λ-calculus. (We of course use
parentheses where they are necessary to remove ambiguity.) Application is assumed to be
left-associative, so MNP means (MN)P , not M(NP ). A sequence of λs is abbreviated
to one, as in λxyz.x(yz) = λx.λy.λz.x(yz). Another standard abbreviation is employed
in writing types: α→ β→ γ abbreviates α→ (β→ γ) (i.e., the connective → associates to
the right). I write αn→ β for α→ · · · → α→ β, with n occurrences of α. I assume that
the reader is familiar with the notions of free and bound variables, with λ-conversion or
β-reduction, and with how types are assigned to λ-terms given the types of variables and
constants.

Roughly, an abstract categorial grammar (ACG)7 consists of a finite set of triples of
the form (α,M,N), where α is a simple type over some finite set P of atomic types, and
M and N are closed λ-terms of types σ(α) and τ(α), respectively, where σ and τ are the
two type substitutions specified by the grammar. In this paper, I call the triples (α,M,N)
comprising an ACG grammar entries. The first component α of a grammar entry is a
syntactic type. The λ-terms M and N are the λ-terms in the form dimension and the
meaning dimension, respectively. The former is usually assumed to be a linear λ-term,
while the latter is not restricted in that way.8 These λ-terms may contain constants as well
as bound variables and λ. In this paper, the constants appearing in the form dimension
are all of the same type str , which is the type of string, except the constant ◦, which is of
type str→ str→ str and stands for string concatenation. We write ◦ as an infix operator.
The constants appearing in the meaning dimension have various types built from atomic
types (e, t, etc.).

An ACG generates a pair consisting of a string and a λ-term by combining grammar
entries through application and linear λ-abstraction in accordance with their syntactic
types. A succinct formal definition of ACGs is found in the appendix (Section A).

2.1 ACG Encoding of a CFG

Let us see our first example of an ACG, which is based on the translation from CFGs to
ACGs given by de Groote (2001).

Consider the context-free grammar in Figure 1, where each rule is associated with a λ-
term that specifies how the meaning of an expression built with that rule is determined by

7See footnote 3.
8A λ-term is linear if each λ binds exactly one occurrence of a variable. The restriction to linear λ-terms

can be relaxed to almost linear λ-terms (Kanazawa, 2007, 2011, 2014) without affecting the computational
properties of ACGs.



s → np vp JvpK JnpK
vp → v1 np λxe.Jv1 K JnpKx
vp → v2 s bar λxe.Jv2 K Js barKx
vp → v3 s int λxe.Jv3 K Js intKx

s bar → that s JsK
s int → whether s ynt→q JsK

np → Leslie Lesliee

np → Robin Robine

np → Terry Terrye

v1 → hates λyexe.hatee→e→t y x

v1 → likes λyexe.likee→e→t y x

v2 → thinks λytxe.thinkt→e→t y x

v2 → claims λytxe.claimt→e→t y x

v3 → wonders λyqxe.wonderq→e→t y x

v3 → knows λyqxe.knowq→e→t y x

Figure 1: A CFG with Montague semantics.

s

np

Leslie
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v3
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s int
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np

Robin

vp
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hates

np

Terry

Figure 2: A CFG derivation tree.

the meanings of its immediate constituents. I use lower-case italic letters for nonterminals
(i.e., syntactic categories) and sans serif for terminals (i.e., words). The type of a constant
or variable is indicated by a superscript at its first occurrence. Here, e is the type of
individual, t is the type of proposition, q is the type of question, and the constant yn
denotes a function that turns a proposition into a yes-no (polar) question. According
to this context-free grammar, the string Leslie wonders whether Robin hates Terry has the
derivation tree in Figure 2 and its meaning is calculated to be

((λyqxe.wonderq→e→t y x)(ynt→q (((λyexe.hatee→e→t y x)Terrye)Robine)))Lesliee

= wonderq→e→t (ynt→q (hatee→e→tTerryeRobine))Lesliee. (1)

Figure 3 lists the grammar entries of the ACG that encodes the CFG in Figure 1.
Each rule of the CFG corresponds to an entry of the ACG. The correspondence should be
fairly obvious. When a CFG has a rule X → w0X1w1 . . . Xnwn, where X,X1, . . . , Xn are
nonterminals and w0, w1, . . . , wn are strings of terminals, the corresponding ACG entry has
the syntactic type X1→· · ·→Xn→X and the λ-term λzstr1 . . . zstrn .w0◦z1◦w1 ◦· · ·◦zn◦wn
in the form dimension. The λ-term in the meaning dimension of the entry is obtained from
the λ-term attached to the CFG rule by replacing JX1K, . . . , JXnK with appropriately typed
variables z1, . . . , zn and abstracting over them.

The derivation trees of the ACG are almost isomorphic to the derivation trees of the
CFG. Each node of an ACG derivation tree is licensed by a grammar entry. Figure 4



( np→ vp→ s, λzstr1 zstr2 .z1 ◦ z2, λze1z
e→t
2 .z2z1 )

( v1 → np→ vp, λzstr1 zstr2 .z1 ◦ z2, λze→e→t1 ze2x
e.z1z2x )

( v2 → s bar → vp, λzstr1 zstr2 .z1 ◦ z2, λzt→e→t1 zt2x
e.z1z2x )

( v3 → s int → vp λzstr1 zstr2 .z1 ◦ z2, λzq→e→t1 zq2x
e.z1z2x )

( s → s bar , λzstr1 .that ◦ z1, λzt1.z1 )
( s → s int , λzstr1 .whether ◦ z1, λzt1.yn

t→q z1 )
( np, Leslie, Lesliee )
( np, Robin, Robine )
( np, Terry, Terrye )
( v1 , hates, λyexe.hatee→e→t y x )
( v1 , likes, λyexe.likee→e→t y x )
( v2 , thinks, λytxe.thinkt→e→t y x )
( v2 , claims, λytxe.claimt→e→t y x )
( v3 , wonders, λyqxe.wonderq→e→t y x )
( v3 , knows, λyqxe.knowq→e→t y x )

Figure 3: The ACG encoding of the CFG in Figure 1.

np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

np

Leslie Lesliee

v3 → s int → vp

λzstr1 zstr2 .z1 ◦ z2 λzq→e→t
1 zq2x

e.z1z2x

v3

wonders λyqxe.wonderq→e→t y x

s → s int

λzstr1 .whether ◦ z1 λzt1.yn
t→q z1

np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

np

Robin Robine

v1 → np → vp

λzstr1 zstr2 .z1 ◦ z2 λze→e→t
1 ze2x

e.z1z2x

v1

hates λyexe.hatee→e→t y x

np

Terry Terrye

Figure 4: An ACG derivation tree representing a CFG derivation tree.



shows the ACG derivation tree corresponding to the CFG derivation tree in Figure 2.
The well-formedness of an ACG derivation tree is checked by calculating the type of each
subtree. Thus, a subtree T whose root node is labeled by a grammar entry of the form
(α1 → · · · → αn → p,M,N) is well-formed and is assigned type p if it has n immediate
subtrees that are assigned types α1, . . . , αn, respectively. The form/meaning associated
with T is the result of applying the λ-term in the form/meaning dimension of the grammar
entry (α1 → · · · → αn → p,M,N) to the forms/meanings associated with the immediate
subtrees of T . The λ-term in the form dimension associated with the entire derivation
tree in Figure 4 is (after β-reduction) calculated to be

Leslie ◦ (wonders ◦ (whether ◦ (Robin ◦ (hates ◦ Terry)))),

and the corresponding λ-term in the meaning dimension is calculated to be (1) above.
These λ-terms are guaranteed to be well-formed because of the existence of type substitu-
tions σ and τ such that for every grammar entry (α,M,N), M is a well-formed λ-term of
type σ(α) and N is a well-formed λ-term of type τ(α). In the case of this ACG, σ maps
each atomic syntactic type to str , and τ is the following type substitution:

s 7→ t,

np 7→ e,

vp 7→ e→ t,

s bar 7→ t,

s int 7→ q,

v1 7→ e→ e→ t,

v2 7→ t→ e→ t,

v3 7→ q→ e→ t.

The ACG in Figure 3 is particularly simple in two respects. First, the syntactic type
of a grammar entry is always of the form p1→· · ·→pn→p with n ≥ 0, where p1, . . . , pn, p
are all atomic types. ACGs with this property are (somewhat misleadingly) called second-
order ACGs (see Kanazawa, 2009).9 Second, in this ACG, the type substitution σ maps
every atomic type to the type str . The next example is different in that σ maps some
atomic syntactic types to complex types.

2.2 ACG encoding of a TAG

This example uses the method of encoding tree-adjoining grammars into ACGs due to de
Groote (2002) and is loosely based on an example used by Pogodalla (2009, Chapter 2).

The tree-adjoining grammar in Figure 5 generates a fragment that is similar to the one
generated by the CFG in Figure 1, but extended with wh-questions. For example, this
TAG generates (2) through the derivation tree in Figure 6.

(2) Leslie wonders who Robin thinks that Terry hates

An interesting property of this TAG is that long distance wh-extraction must be mediated
by bridge verbs that occur in auxiliary trees like the one for thinks.10 Consequently,
sentence (3) below is not generated. (Note that this is just an illustrative example.)

(3) Leslie wonders who Robin knows whether Terry hates

The ACG encoding of the TAG in Figure 5 coupled with a suitable semantics is given
in Figure 7. We have a new constant who(e→t)→q in the meaning dimension that turns a
unary property into a wh-question. In this ACG, all atomic types are mapped to str by

9Second-order ACGs are roughly the same as what Kracht (2003) called de Saussure grammars.
10This treatment of wh-extraction in the TAG formalism is originally due to Kroch (1987). The account

is slightly modified here for simplicity.



initial trees auxiliary trees
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np↓ vp

v

hates

np↓

s int

wh↓ s

np

ε
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s int
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np↓ vp

v
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s
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that s∗

s
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v

wonders

s int↓ np
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wh

who

s int
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v
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Figure 5: A tree-adjoining grammar. The arrow ↓ indicates substitution nodes and the
asterisk ∗ indicates foot nodes of auxiliary trees. Each of the two auxiliary trees can adjoin
into any node labeled with s (without ↓ or ∗). Three initial trees with likes (similar to
those with hates), one with knows (similar to that with wonders), and one each with Robin
and Terry (similar to that with Leslie) are not shown.
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Figure 6: A TAG derivation tree. The dashed arrows indicate substitution and the dotted
arrow adjunction.



(np→ np→ sA→ s, λzstr1 zstr2 zstr→str
3 .z3(z2 ◦ (hates ◦ z1)), λze1z

e
2z

t→t
3 . z3(hatee→e→t z1 z2) )

(np→ wh→ sA→ s int , λzstr1 zstr2 zstr→str
3 .z2 ◦ (z3(ε ◦ (hates ◦ z1))), λze1z

(e→t)→q
2 zt→t

3 .
z2(λxe.z3(hatee→e→t z1 x))

)

(np→ wh→ sA→ s int , λzstr1 zstr2 zstr→str
3 .z2 ◦ (z3(z1 ◦ (hates ◦ ε))), λze1z

(e→t)→q
2 zt→t

3 .
z2(λxe.z3(hatee→e→t x z1))

)

( s int → np→ sA→ s, λzstr1 zstr2 zstr→str
3 .z3(z2 ◦ (wonders ◦ z1)), λzq1z

e
2z

t→t
3 .z3(wonderq→e→t z1 z2) )

( s int → np→ sA→ s, λzstr1 zstr2 zstr→str
3 .z3(z2 ◦ (knows ◦ z1)), λzq1z

e
2z

t→t
3 .z3(knowq→e→t z1 z2) )

(np, Leslie, Lesliee )

(wh, who, λye→twho(e→t)→q(λxe.yx) )
( s → s int , λzstr1 .whether ◦ z1, λzt1.yn

t→q z1 )
(np→ sA→ sA, λzstr1 zstr2 xstr .z2(z1 ◦ (thinks ◦ (that ◦ x))), λze1z

t→t
2 xt.z2(thinkx z1) )

(np→ sA→ sA, λzstr1 zstr2 xstr .z2(z1 ◦ (claims ◦ (that ◦ x))), λze1z
t→t
2 xt.z2(claimx z1) )

( sA, λxstr .x, λxt.x )

Figure 7: The ACG encoding of the TAG in Figure 5 coupled with a Montague semantics.
There is one grammar entry in the ACG for each elementary tree of the TAG. The last
entry in the ACG does not correspond to any elementary tree of the TAG and expresses
the optionality of adjunction.

s int → np → sA → s

λzstr1 zstr2 zstr→str
3 .z3(z2 ◦ (wonders ◦ z1)) λzq1z

e
2z

t→t
3 .z3(wonderq→e→t z1 z2)

np → wh → sA → s int

λzstr1 zstr2 zstr→str
3 .z2 ◦ (z3(z1 ◦ (hates ◦ ε))) λze1z

(e→t)→q
2 zt→t

3 .z2(λx
e.z3(hate

e→e→t x z1))

np

Terry Terrye

wh

who λye→twho(e→t)→q(λxe.yx)

np → sA → sA

λzstr1 zstr2 xstr .z2(z1 ◦ (thinks ◦ (that ◦ x))) λze1z
t→t
2 xt.z2(thinkx z1)

np

Robin Robine

sA

λxstr .x λxt.x

np

Leslie Lesliee
sA

λxstr .x λxt.x

Figure 8: An ACG derivation tree representing a TAG derivation tree.

the type substitution σ except sA, which is mapped to str→ str . The type substitution τ
for the meaning dimension is as follows:

s 7→ t,

np 7→ e,

s int 7→ q,

wh 7→ (e→ t)→ q,

sA 7→ t→ t.

Figure 8 shows the ACG derivation tree for the pair(
Leslie ◦ (wonders ◦ (who ◦ (Robin ◦ (thinks ◦ (that ◦ (Terry ◦ (hates ◦ ε))))))),

wonderq→e→t (who(e→t)→q (λxe.thinkt→e→t (hatee→e→t xTerrye)Robine))Lesliee
)
.

Note that all entries of this ACG except the last contains at least one constant in the
form dimension. An ACG all of whose entries have this property is said to be lexicalized.11

11This terminology comes from the TAG formalism, where a TAG is said to be lexicalized (Joshi and
Schabes, 1997) if each of its elementary trees contains a terminal symbol.



( wh→ (np→ s)→ q , λzstr1 zstr→str
2 .z1 ◦ (z2 ε), λz

(e→t)→q
1 ze→t2 .z1(λx

e.z2x) )

( wh who λye→t.who(e→t)→q (λxe.yx) )
( s → s → s, λzstr1 zstr2 .z2 ◦ (and ◦ z1), λzt1z

t
2.∧t→t→t z1 z2 )

( vp→ vp→ vp, λzstr1 zstr2 .z2 ◦ (and ◦ z1), λze→t1 ze→t2 xe.∧t→t→t (z1x) (z2x) )

Figure 9: Additional entries for the ACG fragment handling wh-extraction and coordina-
tion.

It is easy to turn this ACG into a lexicalized one that generates the same set of string-
meaning pairs.12

2.3 Encoding Freewheeling Extraction by Lambda Abstraction

The previous two examples of ACGs were both second-order ACGs. The derivations in
a second-order ACG form a local set of trees,13 and in this respect, second-order ACGs,
together with well-known mildly context-sensitive grammars like TAGs, are “context-free”
grammars in a generalized sense. Our next example is a higher-order ACG and extends
the ACG in Section 2.1 by using λ-abstraction in derivations to handle extraction. We
also add entries for coordination for good measure. The entries of this ACG are those in
Figure 9 in addition to those in Figure 3. The new meaning constant ∧t→t→t is the truth
function for conjunction written in prefix notation. The type substitutions σ and τ for
this ACG extend those for the ACG in Figure 3 by

σ(wh) = str , τ(wh) = (e→ t)→ q.

With a higher-order ACG, derivations are no longer trees (in general). They may
contain nodes labeled by bound variables and λ-operators. (The binding relation between
these nodes could be represented by arcs, so the structure of a derivation is a kind of
graph.) We notate a bound variable node with an oval and a λ node with a diamond. The
whole derivation will be a closed λ-term made up of grammar entries, bound variables, and
λ. Each λ must bind exactly one occurrence of a bound variable; i.e., a derivation must
be a linear λ-term. The form and meaning associated with a derivation are computed
by interpreting λ-abstraction by λ-abstraction, replacing the type α of bound variable xα

with σ(α) and τ(α), respectively.
Here are a few string-meaning pairs generated by this ACG:(

Leslie ◦ (wonders ◦ (who ◦ (Terry ◦ (hates ◦ ε)))),

wonderq→e→t (who(e→t)→q (λxe.hatee→e→t xTerrye))Lesliee
) (4)

(
Leslie ◦ (wonders ◦ (who ◦ (Robin ◦ (thinks ◦ (that ◦ (Terry ◦ (hates ◦ ε))))))),

wonderq→e→t (who(e→t)→q (λxe.thinkt→e→t (hatee→e→t xTerrye)Robine))Lesliee
)

(5)(
Leslie ◦ (wonders ◦ (who ◦ (ε ◦ (likes ◦ Robin)))),

wonderq→e→t (who(e→t)→q (λxe.likee→e→tRobine x))
) (6)

12It is known that every second-order ACG can be converted to an equivalent lexicalized second-order
ACG (Kanazawa and Yoshinaka, 2005), but this generally makes σ a more complex type substitution.

13A set of trees is local if membership of a tree in the set depends only on the “local” fragments of the
tree consisting of a node together with all its children (see Comon et al., 2008).



np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

np

Leslie Lesliee

v3 → s int → vp

λzstr1 zstr2 .z1 ◦ z2 λzq→e→t
1 zq2x

e.z1z2x

v3

wonders λyqxe.wonderq→e→t y x

wh → (np → s)→ s int

λzstr1 zstr→str
2 .z1 ◦ (z2 ε) λz

(e→t)→q
1 ze→t

2 .z1(λx
e.z2x)

wh

who λye→t.who(e→t)→q (λxe.yx)
λxnp

1

np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

np

Terry Terrye

v1 → np → vp

λzstr1 zstr2 .z1 ◦ z2 λze→e→t
1 ze2x

e.z1z2x

v1

hates λyexe.hatee→e→t y x
xnp
1

Figure 10: An ACG derivation λ-term that is not a tree.

The derivation for (4) is shown in Figure 10.
This ACG allows wh-extraction freely within the constraint imposed by linearity of

derivations. In addition to pairs like (4)–(6), string-meaning pairs like the following are
generated:(
Leslie ◦ (wonders ◦ (who ◦ (Robin ◦ (thinks ◦ (that ◦ (ε ◦ (hates ◦ Terry))))))),

wonderq→e→t (who(e→t)→q (λxe.thinkt→e→t (hatee→e→tTerrye x)Robine))Lesliee
)

(7)(
Leslie ◦ (wonders ◦ (who ◦ (Robin ◦ (knows ◦ (whether ◦ (Terry ◦ (hates ◦ ε))))))),
wonderq→e→t

(who(e→t)→q (λxe.knowq→e→t (ynt→q (hatee→e→t xTerrye))Robine))
Lesliee

)
(8)

(
Leslie ◦ (wonders ◦ (who ◦ ((Robin ◦ (likes ◦ ε)) ◦ (and ◦ (Terry ◦ (hates ◦ Robin)))))),

wonderq→e→t

(who(e→t)→q (λxe.∧t→t→t (likee→e→t xRobine) (hatese→e→tRobineTerrye)))
Lesliee

)
(9)

In Section 3, I show how one can constrain λ-abstraction to block sentences like (8) and
(9).

2.4 Some Important Properties of ACGs

We have seen three examples of ACGs. The first two (Sections 2.1 and 2.2) are second-
order ACGs faithfully encoding a CFG and a TAG, respectively. No λ-abstraction occurs in



the derivations of these grammars. Neither is lexicalized, but the second ACG is nearly so
and is easily converted to a lexicalized ACG.14 The second ACG maps an atomic syntactic
type sA (corresponding to the auxiliary trees of the encoded TAG) to a nonatomic type
str → str . This is necessary to simulate the operation of adjunction in TAGs.

Formal properties of second-order ACGs are by now fairly well-understood (see
Kanazawa, 2007, 2011, 2009). In particular, their string-generating power is the same
as that of multiple context-free grammars (Seki et al., 1991) or linear context-free rewrit-
ing systems (Vijay-Shanker et al., 1987).15

Our third example (Section 2.3) is a higher-order ACG in that it contains a grammar
entry with a syntactic type that is not of the form p1→ · · · → pn→ p (with p1, . . . , pn, p
atomic). Compared to second-order ACGs, higher-order ACGs are of very high com-
plexity16 and their formal properties are not very well-understood. Although the ACG
in Section 2.3 is not lexicalized, it can easily be converted to a semilexicalized ACG by
combining the first two entries in Figure 9.17

It is important to remember that neither lexicalization nor semilexicalization is re-
quired of ACGs in general. This is one of several crucial differences that sets ACGs apart
from categorial grammars like Lambek grammars, where every entry is attached to an
overt word.

We have used constants ◦ and ε to represent the operation of string concatenation and
the empty string, respectively. Alternatively, we can view them as uninterpreted symbols;
the form component of the generated pairs will then be trees of a certain kind, rather than
strings.18 This shift in perspective will be useful in the next section.

3 Syntactic Features for Regular Constraints

Traditionally, various island constraints have been posited to account for unacceptable
instances of wh-extraction. Thus, the whether-clause in (8) creates a whether island,
and (9) involves a coordinate structure island.19 In this section, I show how a general
construction I gave in Kanazawa (2006) automatically supplies a finite-valued syntactic
feature that captures island effects. A similar use of a syntactic feature to control wh-
extraction is found in Pogodalla and Pompigne (2012). My point here is that whenever one
can express a relevant constraint in terms of a regular set of trees (or strings), a syntactic
feature that captures that constraint is automatically obtained.

14Since all second-order ACGs can be lexicalized, it is possible to lexicalize the ACG in Section 2.1
as well. In general, lexicalization of a second-order ACG requires a grammar transformation similar to
conversion to Greibach normal form (Kanazawa and Yoshinaka, 2005).

15This was first proved by Salvati (2007).
16It has recently been shown that the emptiness and universal recognition problems for higher-order

ACGs are of non-elementary complexity (Lazić and Schmitz, 2014); it is not known whether they are
decidable. In comparison, the emptiness and universal recognition problems for second-order ACGs are
P-complete and in EXPTIME (but at least PSPACE-hard), respectively (Kanazawa, 2011).

17An ACG is called semilexicalized (Salvati, 2005) if entries with higher-order syntactic types contain
at least one constant in the form dimension. Yoshinaka (2006) showed that semilexicalized ACGs can be
lexicalized. The universal recognition problem for semilexicalized ACGs is decidable (Salvati, 2005).

18We can even give a general definition of ACGs in such a way that they generate pairs of (not necessarily
binary) trees and λ-terms. The string-meaning pairs of the grammar will then be obtained by taking the
yields of the trees in the generated pairs.

19The grammatical status of these purported island violations has been in dispute in recent years (see,
e.g., Phillips, 2006, 2013; Hofmeister and Sag, 2010; Chaves, 2012). To the extent that the apparent
unacceptability of wh-extraction from these “islands” is due to extra-grammatical factors, my case for
the usefulness of syntactic features to control extraction is weakened. Here, I assume that at least some
purported islands are grammatical in nature.



Let us take the ACG in Section 2.3 (call it G) and treat ◦ and ε as uninterpreted
symbols. The ACG generates pairs of binary trees and λ-term representations of meanings.
The symbol ε occupies the positions of wh-extraction sites; they may be thought of as
traces of wh-movement. In order to express the fact that certain constructions are islands,
we introduce two unary function symbols I,O of type str → str and modify the form
dimension of some of the entries as follows:

( s → s int , λzstr1 .whether ◦ z1, . . . ) ( s → s int , λzstr1 . I (whether ◦ z1), . . . )
( wh→ (np→ s)→ q , λzstr1 zstr→str

2 .z1 ◦ (z2 ε), . . . )

 ( wh→ (np→ s)→ s int , λzstr1 zstr→str
2 . I (z1 ◦O (z2 ε)), . . . )

( s → s → s, λzstr1 zstr2 .z2 ◦ (and ◦ z1), . . . ) ( s → s → s, λzstr1 zstr2 . I (z2 ◦ (and ◦ z1)), . . . )
( vp→ vp→ vp, λzstr1 zstr2 .z2 ◦ (and ◦ z1), . . . )

 ( vp→ vp→ vp, λzstr1 zstr2 . I (z2 ◦ (and ◦ z1)), . . . )

The symbol I serves to mark islands for wh-extraction, and the symbol O marks the
“scope” of fronted wh-phrases. (We think of an occurrence of ε inside the scope of a wh-
phrase as “bound” by that wh-phrase.) Call the modified ACG G′. The form components
of some of the generated pairs now look as follows:

Leslie ◦ (wonders ◦ I
(
who ◦O

(
Terry ◦ (hates ◦ ε)

))
) (4′)

Leslie ◦ (wonders ◦ I
(
who ◦O

(
Robin ◦ (thinks ◦ (that ◦ (Terry ◦ (hates ◦ ε))))

))
) (5′)

Leslie ◦ (wonders ◦ I
(
who ◦O

(
ε ◦ (likes ◦ Robin)

))
) (6′)

Leslie ◦ (wonders ◦ I
(
who ◦O

(
Robin ◦ (knows ◦ I

(
whether ◦ (Terry ◦ (hates ◦ ε))

)
)
))

)

(8′)

Leslie ◦ (wonders ◦ I
(
who ◦O

(
I
(

(Robin ◦ (likes ◦ ε)) ◦ (and ◦ (Terry ◦ (hates ◦ Robin)))
)))

)

(9′)

The forms (4′)–(6′) obey the island constraints and (8′)–(9′) don’t. Figure 11 shows (5′)
and (8′) in graphical notation.

The trees that do and those that don’t obey island constraints can be distinguished by
the following deterministic bottom-up finite tree automaton (see, e.g., Comon et al., 2008),
which has just two states, [gap−] (“contains no unbound gap”) and [gap+] (“contains
an unbound gap”):

ε→ [gap+],

a→ [gap−] for each terminal symbol a,

[gap−] ◦ [gap−]→ [gap−],

[gap−] ◦ [gap+]→ [gap+],

[gap+] ◦ [gap−]→ [gap+],

I [gap−]→ [gap−],

O [gap+]→ [gap−].

Note that there is no transition for [gap+] ◦ [gap+]. The automaton accepts a tree if it
can be rewritten to [gap−] by applying these transitions bottom-up. The accepted trees
are those such that



◦

Leslie ◦

wonders I

◦

who O

◦

Robin ◦

thinks ◦

that ◦

Terry ◦

hates ε

◦

Leslie ◦

wonders I

◦

who O

◦

Robin ◦

knows I

◦

whether ◦

Terry ◦

hates ε

Figure 11: A tree that obeys island constraints (left) and one that does not (right).

• no subtree contains more than one unbound gap,

• no subtree that is an island (marked by I) contains any unbound gap, and

• the entire tree contains no unbound gap.

It is important to note that this characterization of island constraints in terms of a
regular set of trees is possible no matter what construction creates an island, provided
that a fronted wh-phrase (together with its scope) creates an island of its own.20

We modified the ACG G in Section 2.3 into an ACG G′ which uses new constants I
and O in the form dimension and which allows a simple characterization of the effects
of islands in terms of a regular set R of trees (represented in the form of a finite tree
automaton). By a construction of Kanazawa (2006, Lemma 3.3 and Theorem 5.1), we can
form an ACG G′′ such that

• G′′ generates (M,N) if and only if G′ generates (M,N) and M ∈ R,

• G′ is the image of G′′ under a type substitution that maps atomic syntactic types of
G′′ to atomic syntactic types of G′.

I do not give a formal definition of this construction here, but merely illustrate it with
examples. An atomic type of G′′ is of the form p[gap±], where p is an atomic type of G′.21

20This is why Pogodalla and Pompigne (2012) needed a much more complex, infinite-valued feature
mechanism to capture the fact that a tensed clause creates a scope island. The scope of a quantifier may
contain a variable that is bound by another quantifier higher up, so quantification does not itself create a
scope island.

21In the general case, this is a little more complex. If σ(p) contained k occurrences of str instead of just
one, then an atomic type of G′′ that gets mapped to p would have k copies of the gap feature attached to
p.



Each grammar entry (α,M,N) of G′ gives rise to zero, one, or more grammar entries of
the form (α′,M,N) such that α is the result of erasing all the feature specifications from
α′, and α′ “induces” a typing of M consistent with the tree automaton for R. Let us use
the entry

( wh→ (np→ s)→ s int , λzstr1 zstr→str
2 . I (z1 ◦O (z2 ε)), λz

(e→t)→q
1 ze→t2 .z1(λx

e.z2x) )

to illustrate this. Consider

wh[gap g1]→ (np[gap g2]→ s[gap g3])→ s int [gap g4],

where g1, g2, g3, g4 ∈ {−,+}, as a feature-specified version of the syntactic type of the
above entry. Using g1, g2, g3, we add new transitions

z1 → [gap g1],

z2 [gap g2]→ [gap g3]

to the tree automaton and run it on the input tree

I (z1 ◦O (z2 ε)) =

I

◦

z1 O

z2

ε

(the “body” of the λ-term in the form dimension of the entry) to see if it can be rewritten
to [gap g4]. Since ε gets rewritten to [gap+], we must have g2 = +. Since the only
transition for O is O [gap+] → [gap−], we must have g3 = +. Likewise, since the only
transition for I is I [gap−] → [gap−], we must have g4 = − for the tree to be rewritten
to [gap g4]. Since we must have [gap g1] ◦ [gap−] → [gap−], it follows that g1 must be
−. So the only possibility is (g1, g2, g3, g4) = (−,+,+,−).22

The entire grammar G′′ is given in Figure 12. (We write [−] and [+] instead of [gap−]
and [gap+] to save space.)

Finally, erasing I and O from G′′ and restoring the original λ-terms in the form di-
mension gives a grammar G′′′ that generates the desired subset of the form-meaning pairs
generated by G. The method is summarized in Figure 13.23

22This corresponds to the alternative typing

λz
[gap−]
1 z

[gap+]→[gap+]
2 . I[gap−]→[gap−] (z1 ◦[gap−]→[gap−]→[gap−] O[gap+]→[gap−] (z2 ε

[gap+]))

of the λ-term in the form dimension of the entry.
23There remains the problem of blocking (7) while allowing sentences like (6) and Leslie wonders who

Robin thinks hates Terry. This could be done, for example, by letting the np→ vp→ s entry specify subject
as an island and positing special entries for in-situ wh-subjects and for bridge verbs combining with a vp,
à la GPSG (Gazdar et al., 1985).

It is also possible to add across-the-board wh-extraction to the present fragment by using a three-valued
feature [gap−], [gap+] (“properly contains a gap”), [gap =] (“is a gap”) instead and adding the following
entry to G′, where E is a new unary function symbol that requires its argument to be empty:

( (np→ s)→ (np→ s)→ np→ s, λzstr→str
1 zstr→str

2 xstr .
I (O (z2 ε) ◦ (and ◦O (z1 ε))) ◦ (Ex),

λze→t
1 ze→t

2 xe.∧t→t→t (z1x) (z2x) )

(The position of Ex may look unnatural, but what matters is the final product, a grammar with none of
these markers.)



( np[g1]→ vp[g2]→ s[g3], λzstr1 zstr2 .z1 ◦ z2, λze1z
e→t
2 .z2z1 )

( v1 [g1]→ np[g2]→ vp[g3], λzstr1 zstr2 .z1 ◦ z2, λze→e→t
1 ze2x

e.z1z2x )
( v2 [g1]→ s bar [g2]→ vp[g3], λzstr1 zstr2 .z1 ◦ z2, λzt→e→t

1 zt2x
e.z1z2x )

( v3 [g1]→ s int [g2]→ vp[g3] λzstr1 zstr2 .z1 ◦ z2, λzq→e→t
1 zq2x

e.z1z2x )
( s[g]→ s bar [g], λzstr1 .that ◦ z1, λzt1.z1 )
( s[−]→ s int [−], λzstr1 . I (whether ◦ z1), λzt1.yn

t→q z1 )
( np[−], Leslie, Lesliee )
( np[−], Robin, Robine )
( np[−], Terry, Terrye )
( v1 [−], hates, λyexe.hatee→e→t y x )
( v1 [−], likes, λyexe.likee→e→t y x )
( v2 [−], thinks, λytxe.thinkt→e→t y x )
( v2 [−], claims, λytxe.claimt→e→t y x )
( v3 [−], wonders, λyqxe.wonderq→e→t y x )
( v3 [−], knows, λyqxe.knowq→e→t y x )

( wh[−]→ (np[+]→ s[+])→ s [−], λzstr1 zstr→str
2 . I (z1 ◦O (z2 ε)), λz

(e→t)→q
1 ze→t

2 .z1(λxe.z2x) )

( wh[−] who λye→t.who(e→t)→q (λxe.yx) )
( s[−]→ s[−]→ s[−], λzstr1 zstr2 . I (z2 ◦ (and ◦ z1)), λzt1z

t
2.∧t→t→t z1 z2 )

( vp[−]→ vp[−]→ vp[−], λzstr1 zstr2 . I (z2 ◦ (and ◦ z1)), λze→t
1 ze→t

2 xe.∧t→t→t (z1x) (z2x) )

Figure 12: An ACG with island and wh-scope markers that respects island constraints.
Here, (g1, g2, g3) ∈ {(−,−,−), (−,+,+), (+,−,+)} and g ∈ {−,+}.
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Figure 13: Deriving an ACG with a feature that respects wh-extraction islands.

Two remarks about the island and wh-scope markers I,O are in order. First, these
markers are devices that we employed to discover an appropriate syntactic feature to use;
they are not part of the final grammar that is obtained by this method. The “derivation” of
the grammar G′′′ (Figure 13) has nothing to do with the derivations of individual sentences
generated by G′′′. Second, the present example is simple enough that it’s easy to come up
with a suitable feature mechanism without the help of these markers. The advantage of
using them is that the grammar automatically comes with a correctness proof. The use of
these markers reduces the linguist’s job to the specification of the constraint in terms of a
regular set of trees. As long as this specification is correct, the grammar is guaranteed to
be correct.

4 Directional Slashes and Syntactic Features

The most popular style of linguistic analysis based on the formalism of ACGs has been
the one exemplified by the fragment in Muskens (2003), which may be loosely described
as “non-directionalization” of a Lambek grammar. Moot (2014) quite rightly pointed out
that this approach does not scale well; once you add constructions like coordination, ad-
verbial modification, etc., that are usually treated by Lambek grammars using complex
functional types that take functional types as arguments, it seems that constraints on word
order imposed by directional slashes of the Lambek calculus cannot be replicated by any
amount of tweaking in the form dimension of the ACG written in this style. Needless to
say, this does not make the formalism of ACGs “descriptively inadequate”. Clearly, other
styles of analysis, perhaps incorporating some ideas from TAGs, are possible within the



ACG formalism. Even the CFG-based style of analysis we have used in Sections 2.1 and 2.3
is immune to some of the criticisms of Moot (2014), namely, the ones based on adverbial
modification and coordination of standard constituents. However, non-constituent coordi-
nation, a traditional stronghold of categorial grammars, does seem to present a difficulty
for any ACG analysis that treats non-standard constituents as resulting from extraction
(modeled by λ-abstraction).

I illustrate the problem in Section 4.1 using Right Node Raising, still following the same
style of analysis from Sections 2.1 and 2.3. The solution I propose is to use a finite-valued
syntactic feature again. A systematic use of this technique leads to a translation from an
arbitrary Lambek grammar into an ACG with features (Section 4.2). In Section 4.3, I
apply the technique to the treatment of Gapping by Kubota and Levine (2014a,b), which
uses their hybrid type-logical grammar formalism. I end with my skepticism about treating
Gapping with left- and right-peripheral extractions, suggesting that Lambek’s directional
slashes lack the flexibility one needs to control the extraction sites involved in Gapping
(Section 4.4).

4.1 Right Node Raising

In Lambek calculus, Right Node Raising has been analyzed as coordination of two expres-
sions of type s/X (for some type X). For example, sentence (10) would involve assigning
the conjunction and the type ((s/np)\(s/np))/(s/np):

(10) Terry hates and Leslie likes Robin.

A naive attempt to translate this entry for and into an ACG grammar entry would result
in either of the following:

( (np→ s)→ (np→ s)→ np→ s,

λzstr→str
1 zstr→str

2 xstr .((z2 ε) ◦ (and ◦ (z1 ε))) ◦ x, λze→t1 ze→t2 xe.∧t→t→t (z1 x) (z2 x) )

(11)

( (np→ s)→ (np→ s)→ np→ s,

λzstr→str
1 zstr→str

2 xstr .(z2 ε) ◦ (and ◦ (z1 x)), λze→t1 ze→t2 xe.∧t→t→t (z1 x) (z2 x) )

(12)

As pointed out by Moot (2014), adopting either of these entries in an ACG would result in
overgeneration. If we add (11) to the fragment in Section 2.1, the following pair (with the
meaning “Terry hates Robin and Robin likes Leslie”) will be generated, with the derivation
in Figure 14:

( ((Terry ◦ (hates ◦ ε)) ◦ (and ◦ (ε ◦ (likes ◦ Leslie)))) ◦ Robin,
∧t→t→t (likee→e→t LeslieeRobine) (hatee→e→tRobineTerrye) ).

If we add (12) instead, then the following pair (with the same meaning) will be generated
with a similar derivation:

( (Terry ◦ (hates ◦ ε)) ◦ (and ◦ (Robin ◦ (likes ◦ Leslie))),
∧t→t→t (likee→e→t LeslieeRobine) (hatee→e→tRobineTerrye) ).

In the former approach, ungrammatical strings are generated, while in the latter approach,
grammatical strings are paired with incorrect meanings.

Let us concentrate on the first approach (11) and see if we can remedy it. The Lambek
entry for and requires each of the conjunct in Right Node Raising to contain an np gap



(np → s)→ (np → s)→ np → s

λzstr→str
1 zstr→str

2 xstr .((z2 ε) ◦ (and ◦ (z1 ε))) ◦ x λze→t
1 ze→t

2 xe.∧t→t→t (z1 x) (z2 x)

λxnp
1

np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

np

Terry Terrye

v1 → np → vp

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→e→t
2 xe.z2z1x

v1

hates λyexe.hatee→e→t y x
xnp
1

λxnp
1

np → vp → s

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→t
2 .z2z1

xnp
1

v1 → np → vp

λzstr1 zstr2 .z1 ◦ z2 λze1z
e→e→t
2 xe.z2z1x

v1

likes λyexe.likee→e→t y x

np

Leslie Lesliee

np

Robin Robine

Figure 14: A derivation of Terry hates and likes Leslie Robin with the meaning “Terry hates
Robin and Robin likes Leslie”.

at its right periphery, but the ACG entry (11) cannot enforce that requirement. Since the
requirement concerns the positions of the empty string symbol ε in the form component
of generated pairs, we can try to use a syntactic feature to filter out unwanted sentences,
like we did with violations of island constraints on wh-extraction.

We need to enforce that a gap occur at the right edge of each conjunct in a Right
Node Raising construction. Since this is not a requirement on gaps in general, we have to
distinguish gaps “bound” by the RNR entry for and from gaps bound by, e.g., wh-phrases.
For this purpose, we introduce a special symbol εR for a right-peripheral gap, and mark
the scope of its binder by OR. Note that these are markers we temporarily introduce to
automatically discover a suitable feature mechanism; these are part of the specification,
not the delivered product. The λ-term in the form dimension of the entry (11) is modified
with these markers as follows:24

( (np→ s)→ (np→ s)→ np→ s,

λzstr→str
1 zstr→str

2 xstr .(OR (z2 ε
R) ◦ (and ◦OR (z1 ε

R))) ◦ x, . . . )
(13)

With this change, the derivation in Figure 14 now generates the following pair:

( (OR (Terry ◦ (hates ◦ εR)) ◦ (and ◦OR (εR ◦ (likes ◦ Leslie)))) ◦ Robin,
∧t→t→t (likee→e→t LeslieeRobine) (hatee→e→tRobineTerrye) ).

We can express the constraint that needs to be satisfied as follows:

• Any occurrence of εR must be the rightmost leaf of a subtree marked by OR.

The deterministic bottom-up finite tree automaton that captures this constraint again
has just two states, [rgap 0] and [rgap 1], which indicate the absence/presence of a right-
peripheral gap. Its transitions are as follows:

εR → [rgap 1],

a→ [rgap 0] for each terminal symbol a,

[rgap 0] ◦ [rgap 0]→ [rgap 0],

[rgap 0] ◦ [rgap 1]→ [rgap 1],

OR [rgap 1]→ [rgap 0].

(14)

24We assume OR binds stronger than ◦, so that OR x ◦ y means (OR x) ◦ y.



(np[0]→ vp[r]→ s[r], λzstr1 zstr2 .z1 ◦ z2, λze1z
e→t
2 .z2z1 )

( v1 [0]→ np[r]→ vp[r], λzstr1 zstr2 .z1 ◦ z2, λze→e→t
1 ze2x

e.z1z2x )
( v2 [0]→ s bar [r]→ vp[r], λzstr1 zstr2 .z1 ◦ z2, λzt→e→t

1 zt2x
e.z1z2x )

( v3 [0]→ s int [r]→ vp[r] λzstr1 zstr2 .z1 ◦ z2, λzq→e→t
1 zq2x

e.z1z2x )
( s[r]→ s bar [r], λzstr1 .that ◦ z1, λzt1.z1 )
( s[r]→ s int [r], λzstr1 .whether ◦ z1, λzt1.yn

t→q z1 )
(np[0], Leslie, Lesliee )
(np[0], Robin, Robine )
(np[0], Terry, Terrye )
( v1 [0], hates, λyexe.hatee→e→t y x )
( v1 [0], likes, λyexe.likee→e→t y x )
( v2 [0], thinks, λytxe.thinkt→e→t y x )
( v2 [0], claims, λytxe.claimt→e→t y x )
( v3 [0], wonders, λyqxe.wonderq→e→t y x )
( v3 [0], knows, λyqxe.knowq→e→t y x )
( (np[1]→ s[1])→

(np[1]→ s[1])→ np[r]→ s[r],
λzstr→str

1 zstr→str
2 xstr .

(OR (z2 ε
R) ◦ (and ◦OR (z1 ε

R))) ◦ x,
λze→t

1 ze→t
2 xe.∧t→t→t (z1 x) (z2 x) )

Figure 15: An ACG with markers εR and OR containing an entry for Right Node Raising.
Here, r ∈ {0, 1}, and we write [0] and [1] for [rgap 0] and [rgap 1].

Using these transitions, we can calculate the features to assign to the occurrences of atomic
types in the syntactic type of the entry (13). In order for a feature-specified syntactic type

(np[rgap r1]→ s[rgap r2])→ (np[rgap r3]→ s[rgap r4])→ np[rgap r5]→ s[rgap r6]

to be legitimate, the tree automaton (14) augmented with the transitions

z1 [rgap r1]→ [rgap r2],

z2 [rgap r3]→ [rgap r4],

x→ [rgap r5],

must accept the tree
◦

◦

OR

z2

εR

◦

and OR

z1

εR

x

with final state [rgap r6]. We see that we must have (r1, r2) = (r3, r4) = (1, 1), and
r5 = r6, obtaining a new entry

(np[rgap 1]→ s[rgap 1])→ (np[rgap 1]→ s[rgap 1])→ np[rgap r]→ s[rgap r]

where r ∈ {0, 1}.

Doing the same with the entries in Figure 3 results in the ACG in Figure 15. Note that the
“final product” ACG is the result of removing OR and changing εR to ε in these entries.

I leave it as an exercise for the reader to combine the fragment in Figure 15 with the
one in Figure 12. This will require making a few decisions. You need to complete each of



( np, Leslie )
( np→ np→ s, λzstr1 zstr2 .z2 ◦ (likes ◦ z1) )

( (np→ s)→ s, λzstr→str
1 .only she ◦OL (z1 ε

L) )

( (np→ s)→ s, λzstr→str
1 .OR (z1 ε

R) ◦ only him )
( (np→ np→ s)→ (np→ np→ s)→ np→ np→ s,

λzstr→str→str
1 zstr→str→str

2 zstr3 zstr4 .

z4 ◦ ((OR (OL (z2 ε
R εL)) ◦ (and ◦OR (OL (z1 ε

R εL)))) ◦ z3) )
( (((np→ s)→ s)→ s)→ (((np→ s)→ s)→ s)→ ((np→ s)→ s)→ s,

λz
((str→str)→str)→str
1 z

((str→str)→str)→str
2 z

(str→str)→str
3 .

(OR (z2(λy
str→str .OR (y εR) ◦ εR)) ◦ (and ◦OR (z1(λy

str→str .OR (y εR) ◦ εR)))) ◦
OL (z3(λx

str .εL ◦ x)) )

Figure 16: An ACG translation of a Lambek grammar with markers. Not shown are
entries for Robin and Terry similar to that for Leslie, and an entry for hates similar to that
for likes.

the two tree automata with transitions for markers used in the other fragment and possibly
add markings to the form components of some of the entries. Once these decisions are
made, however, the rest of the grammar writing is automatic.

4.2 Translating Lambek grammars into ACGs

The use of the rgap feature in the preceding section can be generalized to a method
of translating an arbitrary Lambek grammar into an ACG (with finite-valued syntactic
features). I only sketch the method here. The precise definition is found in the appendix
(Section A).

Let us consider the following Lambek grammar as an example (we ignore the meaning
dimension since it is simply preserved in the ACG):

np : Leslie,Robin,Terry

tv = (np\s)/np : likes, hates

subj = s/(np\s) : only she

obj = (s/np)\s : only him

(tv\tv)/tv : and

((s/obj )\(s/obj ))/(s/obj ) : and

(15)

The last entry is used for sentences like Leslie likes and Robin hates only him paired with
the meaning “Leslie likes only him and Robin hates only him” (with “him” deictic). The
other entry for and is for transitive verb coordination as in Leslie likes and hates Terry.

Translating this Lambek grammar into an ACG with markers in a way analogous to
(13) gives the ACG in Figure 16 (the meaning dimension is omitted). Here, OL and
εL are the analogues of OR and εR for left-peripheral gaps; in a well-formed sentence,
any occurrence of εL must be the leftmost leaf of some subtree marked with OL. This
constraint is expressed by the following tree automaton with two states, [lgap 0] and
[lgap 1]:

εL → [lgap 1],

εR → [lgap 0],

a→ [lgap 0] for each terminal symbol a,



( np[0, 0], Leslie )
( np[0, r]→ np[l, 0]→ s[l, r], λzstr1 zstr2 .z2 ◦ (likes ◦ z1) )
( (np[1, 0]→ s[1, r])→ s[0, r], λzstr→str

1 .only she ◦ (z1 ε) )
( (np[0, 1]→ s[l, 1])→ s[l, 0], λzstr→str

1 .(z1 ε) ◦ only him )
( (np[0, 1]→ np[1, 0]→ s[1, 1])→ (np[0, 1]→ np[1, 0]→ s[1, 1])→ np[0, r]→ np[l, 0]→ s[l, r],

λzstr→str→str
1 zstr→str→str

2 zstr3 zstr4 .z4 ◦ (((z2 ε ε) ◦ (and ◦ (z1 ε ε))) ◦ z3) )
( (((np[0, 1]→ s[l1, 1])→ s[l1, 1])→ s[0, 1])→

(((np[0, 1]→ s[l2, 1])→ s[l2, 1])→ s[l3, 1])→ ((np[0, r1]→ s[1, r1])→ s[1, r2])→ s[l3, r2],

λz
((str→str)→str)→str
1 z

((str→str)→str)→str
2 z

(str→str)→str
3 .

((z2(λy
str→str .(y ε) ◦ ε)) ◦ (and ◦ (z1(λy

str→str .(y ε) ◦ ε)))) ◦ z3(λxstr .ε ◦ x) )

Figure 17: An ACG translation of a Lambek grammar with features.

(np[0, 1]→ np[1, 0]→ s [1, 1])→ (np[0, 1]→ np[1, 0]→ s [1, 1])→ np[0, 0]→ np[0, 0]→ s [0, 0]

λzstr→str→str
1 zstr→str→str

2 zstr3 zstr4 .z4 ◦ (((z2 ε ε) ◦ (and ◦ (z1 ε ε))) ◦ z3) . . .

np[0, 1]→ np[1, 0]→ s [1, 1]

λzstr1 zstr2 .z2 ◦ (likes ◦ z1) . . .
λx

np[0,1]
2

λx
np[1,0]
1

np[0, 1]→ np[1, 0]→ s [1, 1]

λzstr1 zstr2 .z2 ◦ (hates ◦ z1) . . .

x
np[1,0]
1 x

np[0,1]
2

np[0, 0]

Terry . . .

np[0, 0]

Leslie . . .

Figure 18: Failed derivation of Leslie likes and hates Terry with the meaning “Leslie likes
Terry and Terry hates Leslie”.

[lgap 0] ◦ [lgap 0]→ [lgap 0],

[lgap 1] ◦ [lgap 0]→ [lgap 1],

OL [lgap 1]→ [lgap 0],

OR [lgap l]→ [lgap l] for l ∈ {0, 1}.

The tree automaton for the rgap feature is similarly extended with transitions for εL

and OL. These two automata independently determine how each feature is passed around
in the syntactic types of the ACG entries. Writing [l, r] for [lgap l,rgap r], we get the
final ACG in Figure 17. For example, this grammar blocks the derivation in Figure 18
because of feature mismatches between the entry for hates and its two arguments.

A further complication is necessary to deal with entries that introduce “binders” of
two or more right-peripheral gaps (or left-peripheral gaps), like the following entry for and
conjoining two ditransitive verbs:

((((np\s)/np)/np)\(((np\s)/np)/np))/(((np\s)/np)/np) : and

This requires distinguishing two kinds of right-peripheral gaps, εR1 , ε
R
2 , and the corre-

sponding markers of scope, OR
1 ,O

R
2 . The full translation to ACGs with markers and the



associated tree automata are described in the appendix (Section A).
The ACG obtained by this method from an arbitrary Lambek grammar often under-

generates relative to the input Lambek grammar, since it does not allow nested uses of
the / (or \) introduction rule. The following is the simplest kind of example that gives
rise to this phenomenon:

s/(s/np) : funny subject

(s/(s/np))\s : funny verb

The “η-expanded” form of the Lambek derivation for the sentence funny subject funny verb
looks as follows:25

funny subject

s/(s/np)

[s/np]2 [np]1

s /E

s/np
/I, 1

s /E

s/(s/np)
/I, 2

funny verb

(s/(s/np))\s
s \E

The corresponding derivation of the ACG with markers gives the tree

◦

OR

◦

funny subject OR

◦

εR εR

funny verb

which is not accepted by the tree automaton regulating the positions of εR. However, a
situation like this does not seem to arise in practice in Lambek grammars for natural lan-
guage, where two right-peripheral gaps “bound” by distinct binders (in this case s/(s/np)
and (s/(s/np))\s) occur unbound in the same sub-derivation (in this case the derivation
ending in the topmost occurrence of s).

Note that an analogous case involving both kinds of slashes poses no problem:

s/(np\s) : subject

(s/(np\s))\s : verb

The Lambek derivation (in η-expanded form) for subject verb is

subject

s/(np\s)

[np]1 [np\s]2

s \E
np\s \I, 1

s /E

s/(np\s)
/I, 2

verb

(s/(np\s))\s
s \E

25I’m displaying a Lambek derivation in η-expanded form because my method of translation effectively
works on the η-expanded form of the one-line derivation consisting of the type assigned to a terminal. Of
course, there is no need to restrict our attention to such derivations when discussing a Lambek grammar.



The corresponding ACG derivation will give the tree

◦

OR

◦

subject OL

◦

εL εR

verb

which is accepted by the two automata (for εR and for εL).
Another hypothetical situation where the proposed translation will fail for the same

reason is when a Lambek grammar has entries like

(np\s)/(vp inf /np) : is hard

vp inf /(np\s) : to

((np\s)/np)/np : teach

s int/(s/np) : who,which language

(np\s)/s int : wonders

np : Leslie,Robin,Haskell

This grammar generates Leslie wonders who1 Haskell2 is hard to teach t1 t2 (with crossed
dependencies), but not Leslie wonders which language2 Robin1 is hard to teach t1 t2 (with
nested dependencies) (Figure 19). (The ACG translation rejects both sentences.) Of
course, a Lambek grammar like this does not even remotely resemble a correct description
of a fragment of English; neither wh-movement nor tough-movement is restricted to right
periphery, and if anything, the word order exhibiting nested dependencies often seems to
be the preferred one.26 In general, it seems to me that this peculiar ability of Lambek’s
directional slashes to enforce crossed, as opposed to nested, dependencies between binders
and gaps is never utilized in descriptions of natural language.

The present automatic method of translating a Lambek grammar into an ACG seems to
me to provide a good enough approximation of the input Lambek grammar for the purpose
of linguistic description. I am not, however, advocating to build an ACG-based linguistic
theory on the basis of this translation. When you are dealing with an expression whose
meaning is a function, there is always a choice between analyzing its form as a λ-abstract
or as a simple string. If you choose the latter, the syntactic type of the expression must be
atomic. If you choose the former, there is a further choice between giving the expression a
functional syntactic type or an atomic syntactic type. In the largely CFG-based analysis
of Sections 2.1, 2.3, 3, and 4.1, all standard constituents except that, whether, and and
were analyzed as simple strings in the form dimension and given atomic syntactic types,
while non-standard constituents and constituents with gaps were analyzed as functions in
the form dimension and given functional syntactic types.27 Alternatively, you could give
non-standard constituents atomic types while analyzing them as functions in the form

26Presumably, the particular sentences at hand are both ungrammatical in English because they involve
extraction of the first object in a double object (dative shift) construction.

27Of course, it is also easy to treat that, whether, and and like all other standard constituents.



who

s int/(s/np)

Haskell
np

is hard

(np\s)/(vp inf /np)

to

vp inf /(np\s)

teach

((np\s)/np)/np [np]1

(np\s)/np
/E

[np]2

np\s /E

vp inf
/E

vp inf /np
/I, 2

np\s /E

s \E
s/np

/I, 1

s int
/E

which language

s int/(s/np)

Robin
np

is hard

(np\s)/(vp inf /np)

to

vp inf /(np\s)

teach

((np\s)/np)/np [np]1

(np\s)/np
/E

[np]2

np\s /E

vp inf
/E

vp inf /np
/I, 1 ×

np\s /E

s \E
s/np

/I, 2

s int
/E

Figure 19: A Lambek derivation with crossed dependencies (above) and a failed derivation
with nested dependencies (below).

dimension, on the model of the TAG-style treatment of wh-extraction in Section 2.2. Or
you could analyze some standard constituents as functions in the form dimension and
give them functional types, as in the translation of Lambek grammars. These choices
(strings vs. functions, atomic vs. functional syntactic types) need not be made uniformly;
the decision can be made on a case-by-case basis, taking into account properties of a
particular construction at hand. Even when you decide to adopt a Lambek-style analysis
of a certain construction, the output of the automatic translation should be regarded as a
rough prototype which you can try to refine “manually” to suit the particular properties of
the construction in question. The output of my translation method applied to an existing
Lambek grammar (or a “hybrid” extension thereof, see below) should be viewed as a kind
of baseline—the worst you could do in a linguistic theory based on the ACG formalism.

4.3 Gapping

The method of Section 4.2 is also applicable to Kubota and Levine’s (2014a; 2014b) for-
malism of hybrid type-logical grammars, which is a kind of amalgam of Lambek grammars
and ACGs. Hybrid type-logical grammars use both the directional slashes of the Lambek
calculus and the “non-directional” implication from the simply typed lambda calculus. A
hybrid type is either a directional type of the Lambek calculus or of the form A→B, where
A and B are hybrid types. For example, Kubota and Levine (2014b) postulated the follow-
ing entry for the conjunction and in the Gapping construction, where tv = (np\s)/np:28

( (tv → s)→ (tv → s)→ tv → s, λzstr→str
1 zstr→str

2 zstr3 .(z2z3) ◦ (and ◦ (z1 ε)),

λz
(e→e→t)→t
1 z

(e→e→t)→t
2 ze→e→t3 .∧t→t→t (z1(λy

exe.z3yx)) (z2(λy
exe.z3yx)) ).

28This is actually an instance of a more general schema where, instead of tv , one has any Lambek type
of the form Y0\s/Y1/ . . . /Yn or s/Y0/Y1/ . . . /Yn with n ≥ 1.



This entry together with the entries of the Lambek grammar in (15) license a hybrid
derivation of the form-meaning pair

( (Leslie ◦ (likes ◦ Robin)) ◦ (and ◦ (Robin ◦ (ε ◦ Terry))),

∧t→t→t (likesRobinLeslie) (likesTerryRobin) ).

A naive translation of this fragment into an ACG, with the following entry for and, would
make the sentence Leslie likes Robin and Robin Terry ambiguous between the actual reading
“Leslie likes Robin and Robin likes Terry” and the reading “Robin likes Leslie and Terry
likes Robin”:29

( ((np→ np→ s)→ s)→ ((np→ np→ s)→ s)→ (np→ np→ s)→ s,

λz
(str→str→str)→str
1 z

(str→str→str)→str
2 zstr→str→str

3 .

(z2(λy
strxstr .x ◦ ((z3 ε ε) ◦ y))) ◦ (and ◦ (z1(λy

strxstr .x ◦ (ε ◦ y)))),

λz
(e→e→t)→t
1 z

(e→e→t)→t
2 ze→e→t3 .∧t→t→t (z1(λy

exe.z3yx)) (z2(λy
exe.z3yx)) ).

Again, we can use the lgap and rgap features to deal with this problem, without
abandoning the style of analysis employed by Kubota and Levine (2014b):30

( ((np[0, r1]→ np[l1, 0]→ s[l1, r1])→ s[0, r])→
((np[0, r2]→ np[l2, 0]→ s[l2, r2])→ s[l, 0])→ (np[0, 1]→ np[1, 0]→ s[1, 1])→ s[l, r],

λz
(str→str→str)→str
1 z

(str→str→str)→str
2 zstr→str→str

3 .

(z2(λy
strxstr .x ◦ (OR (OL (z3 ε

R εL)) ◦ y))) ◦ (and ◦ (z1(λy
strxstr .x ◦ (ε ◦ y)))),

λz
(e→e→t)→t
1 z

(e→e→t)→t
2 ze→e→t3 .∧t→t→t (z1(λy

exe.z3yx)) (z2(λy
exe.z3yx)) ).

The way overgeneration is blocked here (Figure 20) is entirely analogous to the case of
transitive verb conjunction (Figure 18).

4.4 A Closer Look at Gapping

Kubota and Levine’s (2014b) decision to exclusively use Lambek types like tv = (np\s)/np
as the possible categories of the gap (the elided material in the second conjunct of Gapping)
is puzzling. It has been widely recognized that the gap can be discontiguous:

(16) Max seemed to be trying to force Ted to leave the room, and Walt [seemed to
be trying to force] Ira [to leave the room] (Jackendoff, 1971, p. 25)

(17) Arizona elected Goldwater Senator, and Pennsylvania [elected] Schweiker
[Senator] (Jackendoff, 1971, p. 24)

(18) Jack begged Elsie to get married, and Wilfred [begged] Phoebe [to get married]
(Jackendoff, 1971, p. 24)

(19) Max wanted Ted to persuade Alex to get lost and [Max wanted] Walt [to
persuade] Ira [to get lost] (Hankamer, 1973, pp. 26–27)

(20) John took Harry to the movies, and Bill [took] Mike [to the movies] (Sag, 1976,
p. 218)

29There is an alternative translation considered by Moot (2014) and Kubota and Levine (2014b) which
gives the sentence the reading “Leslie likes Robin and Terry likes Robin”. This entry is shown in Figure 21.

30I’m showing the grammar with markers for the convenience of the reader; the markers are not actually
present in the output ACG of the translation.



((np[0, 0]→ np[0, 0]→ s [0, 0])→ s [0, 0])→ ((np[0, 0]→ np[0, 0]→ s [0, 0])→ s [0, 0])→ (np[0, 1]→ np[1, 0]→ s [1, 1])→ s [0, 0]

λz
(str2→str)→str
1 z

(str2→str)→str
2 zstr

2→str
3 .

(z2(λy
strxstr .x ◦ ((z3 ε ε) ◦ y))) ◦ (and ◦ (z1(λystrxstr .x ◦ (ε ◦ y))))

λz
(e2→t)→t
1 z

(e2→t)→t
2 ze

2→t
3 .∧t→t→t (z1(λy

exe.z3yx)) (z2(λy
exe.z3yx))

λy
np[0,0]→np[0,0]→s[0,0]
1

y
np[0,0]→np[0,0]→s[0,0]
1

np[0, 0]

Robin Robine

np[0, 0]

Leslie Lesliee

λy
np[0,0]→np[0,0]→s[0,0]
1

y
np[0,0]→np[0,0]→s[0,0]
1

np[0, 0]

Terry Terrye

np[0, 0]

Robin Robine

λx
np[0,1]
2

λx
np[1,0]
1

np[0, 1]→ np[1, 0]→ s [1, 1]

λzstr1 zstr2 .z2 ◦ (likes ◦ z1) λyexe.likese
2→t y x

x
np[1,0]
1 x

np[0,1]
2

Figure 20: Failed derivation of Leslie likes Robin and Robin Terry with the meaning “Robin
likes Leslie and Terry likes Robin”.

(21) John persuaded Dr. Thomas to examine Mary, and Bill [persuaded] Dr. Jones
[to examine Mary] (Sag, 1976, p. 225)

(22) Joe covered the floor with red paint, and Alice [covered] the walls [with red paint]
(Neijt, 1980, p. 79)

(23) Joe painted his boat red, and Alice [painted] her car [red] (Neijt, 1980, p. 79)

(24) Some people want all doors to open to the left and others [want] all windows [to
open to the left] (Neijt, 1980, p. 160)

In all of these examples, there is elided material to the right of the second remnant, so it
seems that a hybrid type-logical grammar would need to assign the gap either a hybrid
type np→ (np\s) or a simple type np→ np→ s.31

Examples like the following seem to require np→np→s as the category of the gap:

(25) Max ordered Ted to persuade Alex to get lost and [Max ordered] Walt [to
persuade] Ira [to get lost]

(26) I asked Peter to take Susan home, and [I asked] John [to take] Wendy [home]

(27) Rarely does John call Mary at home, and [rarely does] Mary [call] John [at home]

This puts hybrid type-logical grammars in the same quandary that plagued the naive ACG
translation of a Lambek grammar (Section 4.3). Assuming hybrid entries in Figure 21, the
sentence I asked Peter to take Susan home and John Wendy would come out as ambiguous
between the reading indicated in (26) and the reading “I asked Peter to take Susan home,
and I asked Wendy to take John home” (among other readings).

Sentences like (25) and (26) seem to be generally acceptable. If so, the true general-
ization about the word order in Gapping may be the following:

(28) In the first conjunct of Gapping, the correspondent of the first remnant must
precede the correspondent of the second remnant.

It should be clear that (28) can be expressed as a regular constraint, if we mark the
positions of the correspondents in the first conjunct of Gapping:

31In Hankamer’s example (19), the hybrid type np→ (np\s) will work under the analysis where Gapping
occurs in the infinitival clause [Ted to persuade Alex to get lost and Walt [to persuade] Ira [to get lost]].



np : I : mee

np : Peter : Petere

np : Susan : Susane

np : John : Johne

np : Wendy : Wendye

vp inf /(np\s) : to : λye→txe.yx

(np\s)/vp inf /np : asked : λyeze→txe.aske→(e→t)→e→t y (zy)x
(np\s)/pp/np : take : λyezexe.takee→e→t z y x
pp : home : homee

((np2→ s)→ s)→
((np2→ s)→ s)→

(np2→ s)→ s

: λz
(str2→str)→str
1

z
(str2→str)→str
2 zstr

2→str
3 .

(z2(λy
strxstr .z3yx)) ◦

(and ◦ (z1(λy
strxstr .x ◦ (ε ◦ y))))

: λz
(e2→t)→t
1 z

(e2→t)→t
2 ze

2→t
3 .

∧t→t→t (z1(λy
exe.z3yx))

(z2(λy
exe.z3yx))

Figure 21: A hybrid type-logical grammar for discontiguous Gapping.

λz
(str→str→str)→str
1 z

(str→str→str)→str
2 zstr→str→str

3 .

(z2(λy
strxstr .O< (z3(C2 y)(C1 x)))) ◦ (and ◦ (z1(λy

strxstr .x ◦ (ε ◦ y)))). (29)

One can then capture this regular constraint with a syntactic feature, again using the
general method of Kanazawa (2006). The resulting entry would work for all cases of Gap-
ping in which the correspondents/remnants are two noun phrases. Note that the method
is applicable no matter what regular constraint governs the positions of the correspon-
dents/remnants. If, as has often been argued (Kuno, 1976; Neijt, 1980; Coppock, 2001;
Johnson, 2014), the relative positions of the correspondents/remnants obey some (but
perhaps not all) of the island constraints governing wh-extraction, those constraints can
also be captured by the syntactic feature, as long as they are regular.32

Actually, even the status of the generalization (28) may be open to question. Sag et al.
(1985) used the following example to question Hudson’s (1982) claim that in Gapping “the
order of constituents in the second conjunct . . . parallel the order of the corresponding
constituents in the first conjunct” (Hudson, 1982, p. 548):

(30) A policeman walked in at 11, and at 12, a fireman (Sag et al., 1985, p. 158)

The next examples are from Hankamer (1979, pp. 151–152):

(31) a. The beans, Harry cooked, and the potatoes, Henry

b. The beans, Harry cooked, and Henry, the potatoes

The following word order is also perfectly acceptable, given the right context:33

(32) Harry cooked the beans, and the potatoes, Henry

It seems likely that the reverse word order in (30), (31b), and (32) is the result of
interaction between Gapping and a separate process of Topicalization. Hankamer (1979),

32In addition to constraints that hold of wh-extraction, it has been argued that Gapping obeys the
Tensed S Condition (Neijt, 1980).

33For example, (32) is natural in the following dialogue:

(i) A. Gee, the beans and the potatoes are good! Did Harry cook them again?

B. No. Today, Harry cooked the beans, and the potatoes, Henry.



based on (31a) and (31b), concluded that the transformation of Topicalization follows
Gapping. In terms of an analysis along the line of Kubota and Levine (2014b), this means
that the first and the second arguments of the Gapping entry for and can independently
undergo Topicalization.34 If so, the implementation suggested above of the generalization
(28) in terms of a syntactic feature can be maintained. Whether or not this is on the right
track, data like (30), (31a), (31b), and (32) show that one needs an account of the effect
of Topicalization on possible intonations and topic-focus structures of utterances in order
to tell whether a given analysis of Gapping (and Topicalization) generates ungrammatical
form-meaning pairs.35

To end this inconclusive discussion, no matter what constraint the grammar should
ultimately impose on the order of the correspondents/remnants in Gapping, it seems fairly
clear that Lambek’s directional slashes are not the right tool for this purpose.

5 Conclusion

I would like to end by answering some questions that might be raised against this work.

What about the Pentus construction?

Pentus (1993; 1997) showed that a Lambek grammar can be translated into
an equivalent context-free grammar, and Kanazawa and Salvati (2013) showed
that the construction preserves the string-meaning relation. By de Groote’s
(2001) encoding, this means that every Lambek grammar has an equivalent
ACG. Why do you need another translation which is only an approximation?

Pentus’s construction drastically changes the derivations of the input Lambek gram-
mar. The ACG obtained this way is a particularly simple kind of second-order ACG and
does not use λ-abstraction in the derivation. Along with Moot (2014) and Kubota and
Levine (2014a,b), I am interested in the possibility of translating Lambek grammars into
ACGs in such a way that structures of derivations are preserved.36

34In ACGs/hybrid type-logical grammars, Topicalization can be handled in a similar way to wh-
extraction.

35Winkler (2005, p. 192) proposed the following principle:

Contrastive Topic and Focus Principle:
In gapping, the first remnant is a contrastive topic, the second remnant a contrastive focus.
The gapped elements must be given.

This does not always seem to be the case, however:

(i) (Did Gwendolyn play poker and Alan canasta?)
No, Alan played poker, and Gwendolyn canasta. (Sag, 1976, p. 192)

36This is not to say that Pentus’s conversion of Lambek grammars to CFGs is necessarily without
linguistic interest. Moot (2014, p. 59) stresses that Pentus’s construction brings about an exponential
blowup in the size of the grammar. While this is literally true of the CFG defined by Pentus (1997,
Theorem 2), this CFG contains a lot of useless nonterminals and superfluous rules, and should not be
the focus of our attention when we are interested in grammar size. We can obtain a much more compact
CFG by adhering to Pentus’s proof closely (see Pentus, 1997, Lemma 7) and eliminating some obvious
redundancies. It is also worth pointing out that even if it turns out that Pentus’s construction must
lead to an exponentially larger grammar in the worst case, this will not mean that exponential blowup
is inevitable. A particular conversion method can only establish an upper bound on the increase in size
when going from one formalism to another; establishing that such an upper bound is the best possible
one would require an entirely different kind of proof. Note that the NP-completeness of derivability in the
product-free Lambek calculus (Savateev, 2012) implies that any method of converting Lambek grammars
to CFGs must have non-polynomial time complexity, but says nothing about the size of the output.



What are syntactic features?

Doesn’t addition of syntactic features require extension of the type theory behind
ACGs?

I prefer to think of features as abbreviatory devices outside of the formalism of ACGs
(see the clarification at the end of Section 1). An entry with variables as feature values
abbreviates all of its instantiations. Since I only consider finite-valued features, this means
that I do not go beyond the expressive power of ACGs as originally defined by de Groote
(2001). An alternative is to embrace features as part of the formalism, using a type-
theoretic extension of ACGs (de Groote and Maarek, 2007). In the particular case of
finite-valued features, I see little advantage in doing so.

How many features are needed?

You have used one feature to express island constraints on wh-extraction, one
feature to handle right-peripheral extraction in Right Node Raising, another
feature to mimic Lambek’s backslash, and yet another to constrain the relative
order of the correspondents in the first conjunct of Gapping. If you need a new
feature every time you want to express a regular constraint, don’t you end up
with an extremely large number of features?

Beside these examples, I do not expect an ACG-based linguistic theory to need many
more features like them. I consider the last three features to be natural ones for constrain-
ing the positions of the gaps (right- and left-peripherality and relative order between two
gaps37). Note that these features are capable of capturing any Boolean combination of the
relevant regular constraints; if, for instance, it turns out to be desirable to restrict the gap
in a certain construction to a non-right-peripheral position, one can easily do so without
introducing a new feature.38

Doesn’t adding syntactic features result in an undesirable increase in the size
of the grammar?

If you use variables as feature values to abbreviate grammar entries, the size
of the grammar will be very large compared to the abbreviated notation. Isn’t
that a problem?

I assume that a grammar is represented in the linguistic theory (or in the brain) in
compressed form, using features and a host of other abbreviatory devices. The size of
the uncompressed grammar may become an issue if it is assumed that the compressed
representation needs to be fully decompressed in order to be put to use. This is a rather
implausible assumption. Even if an individual entry needs to be “multiplied out” with
concrete feature values in order to be used, it is reasonable to assume that only a limited
number of entries are activated on any single occasion of language use (like sentence
comprehension or production). It is hard to be concrete without a good model of parsing
and generation (which we only have for second-order ACGs (Kanazawa, 2007, 2011)),
but in terms of de Groote’s (2015) parsing schema for higher-order ACGs, it is a trivial
exercise to accommodate features like the ones we’ve been discussing, without using any
decompression.

37In the marked ACG entry (29), the markers C1 and C2 effectively mark the positions of the gaps in
the third argument of the entry.

38Depending on the style of analysis, you may not even need all of these features; if you adopt a CFG-
based style of analysis of English, you may not ever need the lgap feature, since, for example, the atomic
type vp takes the place of np\s.



Don’t syntactic features increase the computational complexity of the linguistic
theory?

Granted that the decompressed grammar need not be explicitly stored even tem-
porarily, doesn’t the presence of features still increase the computational com-
plexity of parsing, relative to the complexity of parsing with ACGs given in
uncompressed form?

This question is a little hard to make sense of, since the time complexity of parsing with
the decompressed grammar certainly places an upper bound on the time complexity of
parsing with the compressed grammar, modulo the overhead incurred by decompression.
The suggestion is that the dependence of the time complexity of parsing on the size of the
grammar will be significantly higher in the presence of features than in their absence. In
general, allowing an arbitrary number of finite-valued features changes a tractable parsing
problem into an intractable one (Barton et al., 1987, Chapter 3), but here we are not
dealing with a general case. What we have are a small number of features that express
deterministic bottom-up finite tree automata. It is not hard to see that such features
do not increase the degree of global ambiguity; the fact that they express deterministic
bottom-up finite tree automata means that any derivation tree that is legitimate except for
possible feature mismatches allows at most one assignment of feature values. How much
local ambiguity increases, which is the real cause of increased time complexity, depends
on the parsing algorithm. Again, since we do not have a good model of parsing for
ACGs in general, it is hard to be concrete, but it is likely that determinism will help in
reducing local ambiguity as well. In terms of second-order ACGs, whose computational
complexity properties are well understood, the universal recognition problem is already
PSPACE-hard, and one needs to place a bound on the size of σ(α) (for syntactic types
α of grammar entries) to make it tractable (Kanazawa, 2011).39 When the size of σ(α)
and the number of features are both bounded, even explicitly decompressing the grammar
only leads to a polynomial increase in grammar size, so the problem remains tractable in
the presence of features.

Why not go GPSG and let the feature mechanism handle extraction itself?

The way the gap feature behaves is similar to the SLASH feature in GPSG
(Gazdar et al., 1985). If such a feature is needed, why don’t you just use the
SLASH feature instead of λ-abstraction? Likewise, left- and right-peripheral
extraction may be handled by LSLASH and RSLASH features.

I don’t have a good answer to this question. Some people think λ-abstraction in
derivations is problematic, and this feature of ACGs should be abandoned (Kiselyov,
2015). One point in favor of λ-abstraction in derivations may be that it allows an ACG
to be written in a style very close to common practices of linguists. For example, it seems
straightforward to express in ACGs not only Montague’s (1973) fragment but also much
of what’s found in Heim and Kratzer’s (1998) textbook, using the general style of CFG
plus extraction. Features can be conveniently left aside when they are not important.

Why not go hybrid instead of adding syntactic features?

Even if ACGs can simulate Lambek’s directional slashes with syntactic features,
isn’t using Lambek’s slashes simpler and more elegant? Why are you trying to
replace them with crummy features?

39Compare a similar bound that Barton et al. (1987, Chapter 9) placed on the length of rules in R-GPSG.



I consider ACGs to possess a kind of a priori appeal that hybrid type-logical grammars
lack. The syntactic features considered in this paper are the most direct expressions of the
relevant constraints on the positions of gaps. In contrast, there are natural constraints on
the positions of gaps that cannot be captured by Lambek’s slashes (see Section 4.4), and
I hinted in Section 4.2 that the power of Lambek’s slashes is very much underutilized in
descriptions of natural language. Lambek’s slashes seem to me to be neither sufficient nor
necessary.

Isn’t the ACG formalism too powerful?

ACGs are capable of incorporating in the form of a syntactic feature an arbi-
trary stipulation that is expressible as a regular constraint. Doesn’t that make
the formalism of ACGs too powerful and devoid of explanatory power?

That is exactly right, and the same can be said of any reasonable grammar formalism.
The relevant property, closure under intersection with regular sets, is intimately tied to
tabular parsing (Lang, 1994), and seems to be an essential property of any mathematically
well-behaved grammar formalism. Any explanatory power that a linguistic theory may
have must come from a combination of the grammar formalism employed by the theory—
which is neutral with respect to different applications—and specifically linguistic principles
espoused by the theory.
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A Formal Definitions

The set Tp\,/(P) of directional types over a set P of atomic types is the smallest superset
of P such that A,B ∈ Tp\,/(P) implies A\B,B/A ∈ Tp\,/(P). The set Tp→(P) of simple
types over P is the smallest superset of P such that α, β ∈ Tp→(P) implies α→ β ∈
Tp→(P). To each A ∈ Tp\,/(P), we associate a simple type A ∈ Tp→(P) by p = p (p ∈
P), A\B = A→B, B/A = A→B.

For reasons of space, I use a term notation for natural deduction in the Lambek calcu-
lus. Suppose that for each A ∈ Tp\,/(P), there is a countably infinite supply xA, yA, zA, . . .
of variables of type A. We define the set of Lambek terms and their frontier, which is a
string of variables, as follows (◦ stands for concatenation):

• xA is a Lambek term of type A and its frontier is fr(xA) = xA.

• If M is a Lambek term of type A\B and N is a Lambek term of type A, then
app\MN is a Lambek term of type B and its frontier is fr(app\MN) = fr(N) ◦
fr(M).

• If M is a Lambek term of type B/A and N is a Lambek term of type A, then
app/MN is a Lambek term of type B and its frontier is fr(app/MN) = fr(M) ◦
fr(N).

• If M is a Lambek term of type B, fr(M) = xA ◦ γ, and γ contains no occurrence of
xA, then λ\x

A.M is a Lambek term of type A\B and its frontier is fr(λ\x
A.M) = γ.

• If M is a Lambek term of type B, fr(M) = γ ◦ xA, and γ contains no occurrence of
xA, then λ/x

A.M is a Lambek term of type B/A and its frontier is fr(λ/x
A.M) = γ.

We assume familiarity with (simply typed) λ-terms and linear λ-terms. A Lambek
term of type B with free variables xA1

1 , . . . , xAn
n is mapped to a simply typed linear λ-term

of type B with free variables xA1
1 , . . . , xAn

n , as follows:

xA = xA,

app\MN = M N,

app/MN = M N,

λ\xA.M = λxA.M,

λ/xA.M = λxA.M.

A Lambek grammar (over a terminal alphabet Σ and a set ∆ of typed “meaning
constants”, with distinguished type s ∈ P) is a finite set of triples of the form (A, a,N)
(“lexical entries”), where A ∈ Tp\,/(P), a ∈ Σ, and N is a closed (not necessarily linear)

λ-term of type τ(A) (which may contain constants from ∆ in addition to bound variables)
representing the meaning of a, where τ : P → Tp→({e, t, . . . }) is a type substitution such
that τ(s) = t. If P is a Lambek term of distinguished type s with fr(P ) = xA1

1 . . . xAn
n ,

and for each i = 1, . . . , n, (Ai, ai, Ni) is a lexical entry of the grammar, then the pair

(a1 . . . an, P [xAi
i := Ni]

n
i=1) belongs to the string-meaning relation defined by the grammar.

An ACG (over a terminal alphabet Σ and a set ∆ of typed meaning constants, with
distinguished type s ∈ P) is a finite set of triples of the form (α,M,N) (“grammar
entries”), where α ∈ Tp→(P), M is a closed (linear) λ-term of type σ(α) containing
contants from Σ∪{◦, ε}, and N is a closed λ-term of type τ(α) containing constants from
∆, where σ : P → Tp→({str}) and τ : P → Tp→({e, t, . . . }) are type substitutions such



that σ(s) = str and τ(s) = t. Symbols in Σ are assumed to have type str , and ◦ (for
concatenation) and ε (for empty string) have types str → str → str and str , respectively.
If Q is a pure (i.e., constant-free) linear λ-term of type s with free variables xα1

1 , . . . , xαn
n ,

and for each i = 1, . . . , n, (αi,Mi, Ni) is an entry of the grammar, then the pair

(Q[xαi
i := Mi]

n
i=1, Q[xαi

i := Ni]
n
i=1)

is in the string-meaning relation defined by the ACG.
The naive translation from Lambek grammars to ACGs maps a lexical entry (A, a,N)

of a Lambek grammar into (A, acgA a,N). The combinators acgA of type str → Ã, where
Ã = σ(A), σ(p) = str for all p ∈ P, together with the accompanying combinators lambA
of type Ã→ str , are defined as follows:

acgp x
str = x, lambp x

str = x,

acgA\B x
str = λyÃ. acgB ((lambA y) ◦ x), lambA\B x

Ã→B̃ = lambB (x (acgA ε)),

acgB/A x
str = λzÃ. acgB (x ◦ (lambA z)), lambB/A x

Ã→B̃ = lambB (x (acgA ε)).

It is easy to see that lambA (acgA x
str ) = x holds for all A. Of course, acgA(lambA x

Ã) = x
holds only when A is atomic.

Lemma 1. Let M be a Lambek term of type A in normal form with fr(M) = xA1
1 . . . xAn

n .

(i) If M is not a λ\- or λ/-abstract, then M [xAi
i := acgAi

xi]
n
i=1 = acgA(fr(M)).

(ii) lambAM [xAi
i := acgAi

xi]
n
i=1 = fr(M).

Proposition 2. If M is a Lambek term of an atomic type with fr(M) = xA1
1 . . . xAn

n , then

M [xAi
i := acgAi

xi]
n
i=1 = fr(M).

This means that the output ACG of the naive translation generates all pairs generated
by the input Lambek grammar. The problem is that it massively overgenerates.

Clearly, what’s wrong in the naive translation is the two identical clauses

lambA\B x
Ã→B̃ = lambB (x (acgA ε)), lambB/A x

Ã→B̃ = lambB (x (acgA ε)).

In the former clause, the value of xÃ→B̃ should really be restricted to a function that
places its argument at its left edge, so to speak, while in the latter, it should be restricted
to a function that places its argument at its right edge. Worth’s (2014) idea was to use
subtyping to narrow down the domains of the combinators lambA\B and lambB/A. Here,

we try to obtain a similar effect by refining the atomic types in A→ B, without going
beyond the original architecture of the ACG.

We temporarily introduce new constant symbols εL1 , ε
L
2 , . . . and εR1 , ε

R
2 , . . . of type str

and new function symbols OL
1 ,O

L
2 , . . . and OR

1 ,O
R
2 , . . . of type str → str , and change the

definitions of acg and lamb as follows:

acg′p x
str = x,

acg′A\B x
str = λyÃ. acg′B((lamb′A 1 1 y) ◦ x),

acg′B/A x
str = λzÃ. acg′B (x ◦ (lamb′A 1 1 z)),

lamb′p nmxstr = x,



lamb′A\B nmxÃ→B̃ = OL
n

(
lamb′B (n+ 1)m (x (acg′A ε

L
n))
)
,

lamb′B/A nmxÃ→B̃ = OR
m

(
lamb′B n (m+ 1) (x (acg′A ε

R
m))
)
.

The combinator lamb′A is of type int → int → Ã→ str , where int is the type of positive
integers. The integer arguments of lamb′A are there to distinguish different left- (or right-)
peripheral gaps bound by the same “binder”. Note that we can recover acgA a from acg′A a
by substituting ε for εLi and εRj and λxstr .x for OL

i and OR
j .

The resulting ACG is then filtered through two finite tree automata. Given maximal
values nmax and mmax for n and m (the two integer arguments of lamb′A), the automata
have nmax(nmax + 1)/2 + 1 and mmax(mmax + 1)/2 + 1 states, respectively. The states
of the second automaton are [rgap 0] and [rgap i . . . j] with 1 ≤ i ≤ j ≤ mmax, and its
transitions are

a→ [rgap 0] for each terminal a,

εLi → [rgap 0] for i = 1, . . . , nmax,

εRi → [rgap i] for i = 1, . . . ,mmax,

[rgap 0] ◦ [rgap 0]→ [rgap 0],

[rgap 0] ◦ [rgap 1 . . . i]→ [rgap 1 . . . i] for 1 ≤ i ≤ mmax,

[rgap i . . . j] ◦ [rgap (j + 1) . . . k]→ [rgap i . . . k] for 1 ≤ i ≤ j < k ≤ mmax,

OL
i q → q for each state q and i = 1, . . . , nmax,

OR
1 [rgap 1]→ [rgap 0],

OR
j [rgap 1 . . . j]→ [rgap 1 . . . (j − 1)] for 1 < j ≤ mmax.

The definition of the first automaton is completely symmetric. We use new atomic types
of the form p[lgap l,rgap r] as a feature-specified variant of p. Given an entry

(α,M ′, N) = (A, acg′A a,N)

obtained from a Lambek grammar entry (A, a,N) and a feature specified variant α′ of α,
the entry (α′,M ′, N) is in the filtered grammar if for i = 1, 2, M ′ has type (α′)i under
the typing τ ′i of the constants determined by the ith automaton, where (α′)i is defined
inductively as follows:

(p[lgap l,rgap r])1 = [lgap l],

(p[lgap l,rgap r])2 = [rgap r],

(α′→ β′)i = (α′)i→ (β′)i.

The typing τ ′i is a simple kind of intersection typing that assigns a set of types to each
constant. For example, q1→ q2→ q ∈ τ ′i(◦) if and only if q1 ◦ q2 → q is a transition of Mi.

If (α′,M ′, N) is in the filtered grammar, with M ′ = acg′A a, then (α′,M,N) is in the
“final product” grammar, where M = acgA a.
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