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Abstract. I define a generalization of linear indexed grammars that is
equivalent to simple context-free tree grammars in the same way that
linear indexed grammars are equivalent to tree-adjoining grammars.

1 Introduction

The equivalence in string generating power of tree-adjoining grammars, head
grammars, and linear indexed grammars is one of the most celebrated results
in the mathematics of grammar formalisms for natural language [11,27].1 The
title of Joshi et al.’s paper [11], “The convergence of mildly context-sensitive
grammar formalisms”, referred to this equivalence, but was somewhat misleading
in that the relevant class of string languages—tree-adjoining languages—was
properly included in a larger class, the class of multiple context-free languages,
which has widely been regarded as a formal counterpart of the informal notion
of mild context-sensitivity. In fact, this latter class has also been found to be
characterized by a wide array of different formalisms [30,3,31,22,20,21,8,6,24].

Elsewhere [12], I have argued that a class of string languages that falls in be-
tween these two classes, namely, the class equivalently captured by well-nested
multiple context-free grammars [13],2 coupled-context-free grammars [10], non-
duplicating macro grammars [25], simple (i.e., linear and non-deleting) context-
free tree grammars [16], and second-order abstract categorial grammars of lex-
icon complexity 3 (see [14]), may be more attractive than the broader class
as a formalization of mild context-sensitivity. I will not repeat the arguments
here,3 but one counterargument might be that this intermediate class (the class

1 I exclude combinatory categorial grammars, another formalism that was shown to
be equivalent, from the discussion here, for two reasons. First, the equivalence was
proved with respect to a certain restricted version of combinatory categorial gram-
mars, and is not known to hold for more general combinatory grammars that are
actually used in practice [26]. Second, the definition of that version of combinatory
categorial grammar is mathematically not as natural as the other three formalisms.

2 The same formalism is called well-nested linear context-free rewriting systems by
some people [5].

3 Simple context-free tree grammars are also of interest because of their capacity to
lexicalize tree-adjoining grammars preserving the set of derived trees [19].
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of well-nested multiple context-free languages) does not look as robust as the
other two. The formalisms that capture it are all basically similar—they either
define local sets of derivation trees that are evaluated bottom-up using “linear”
functions (MCFGs and second-order ACGs) or present the same mechanism in a
top-down rewriting perspective (coupled-context-free grammars, non-duplicating
macro grammars, and simple context-free tree grammars). In contrast, at the
level of tree-adjoining languages, linear indexed grammars have non-local (and
non-regular) sets of derivation trees, and at the level of multiple context-free
languages, deterministic tree-walking transducers [31] map trees to strings in a
decidedly non-compositional way.

In this paper, I respond to this qualm by defining a natural generalization
of linear indexed grammars, which generates the class of well-nested multiple
context-free languages. This generalization, which I call arboreal indexed gram-
mars, uses a “stack” attached to nonterminal symbols that stores tuples of trees,
and is equivalent to simple context-free tree grammars in exactly the same way
that linear indexed grammars are equivalent to tree-adjoining grammars (or
more precisely, monadic simple context-free tree grammars [17]), in the follow-
ing sense:

– For any simple context-free tree grammar, there is an arboreal indexed gram-
mar such that the derived trees of the former may be obtained from the
derivation trees of the latter by relabeling of nodes and deletion of some
unary-branching nodes.

– For any arboreal indexed grammar, there is a simple context-free tree gram-
mar whose derived trees are precisely the result of stripping the derivation
trees of the arboreal indexed grammar of the “stack” part of their node
labels.

The formalism of arboreal indexed grammar is closely related to the notion
of Dyck tree language I introduced in [15]. This paper does not use this notion,
however, and is completely self-contained.

Arboreal indexed grammars may be useful for devising new parsing algo-
rithms for well-nested multiple context-free languages.

2 Indexed Grammars and Context-Free Tree Grammars

2.1 Indexed Grammars

An indexed grammar [1,9] is like a context-free grammar except that each oc-
currence of a nonterminal in a derivation tree has a string of indices attached to
it, which acts as a pushdown stack. The stack is passed from a node to each of
its nonterminal children, except that the production applied at that node may
either push a symbol onto the stack or pop its topmost symbol.

A formal definition goes as follows. When B is a nonterminal and χ is a string
of indices, we write B[χ] for Bχ; thus, B[] is just B. An indexed grammar is a
quintuple G = (N,Σ, I, P, S), where
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Table 1. Standard interpretation of indexed grammar productions (χ ∈ I∗).

(TERM) (DIST) (PUSH) (POP)

A[]→ a A[]→ B1[] . . . Bn[] A[]→ B[l] A[l]→ B[]

A[χ]

a

A[χ]

B1[χ] . . . Bn[χ]

A[χ]

B[lχ]

A[lχ]

B[χ]

1. N and Σ are finite sets of nonterminals and terminals, respectively,
2. I is a finite set of indices,
3. S ∈ N , and
4. P is a finite set of productions, each having one of the following forms:4

A[]→ a, (TERM)

A[]→ B1[] . . . Bn[], (DIST)

A[]→ B[l], (PUSH)

A[l]→ B[], (POP)

where a ∈ Σ ∪ {ε}, n ≥ 1, A,B,B1, . . . , Bn ∈ N , and l ∈ I.

A derivation tree of G is a finite labeled tree τ with node labels from NI∗ ∪
Σ ∪ {ε} such that

– each leaf node of τ is labeled by some a ∈ Σ ∪ {ε}, and
– each internal node of τ is sanctioned by one of the productions of G,

where a node is said to be sanctioned by a production if it and its children are
labeled as depicted in Table 1. For example, for a node to be sanctioned by a
(TERM) production A[] → a, it must be labeled by A[χ] for some χ ∈ I∗, and
its only child must be labeled by a. An internal node of a derivation tree is called
a (TERM) node, (DIST) node, (PUSH) node, or (POP) node, depending on the
type of production sanctioning it.

When a derivation tree has root label A[χ], we call it a derivation tree from
A[χ]. A complete derivation tree is a derivation tree from S[]. The language of
G is defined by

L(G) = {y(τ) | τ is a complete derivation tree of G },

where y(τ) denotes the yield of τ , the left-to-right concatenation of the labels
of its leaf nodes.

Note that in a derivation tree from A[], each (POP) node must match exactly
one (PUSH) node; a (PUSH) node may have zero, one, or more (POP) nodes
matching it.5

4 This is actually a normal form for indexed grammars which is more general than the
normal form (“reduced form”) given by Aho [1].

5 I leave to the reader a formal definition of the intuitively clear notion of a (POP)
node matching a (PUSH) node.
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2.2 Context-Free Tree Grammars

A ranked alphabet is a union ∆ =
⋃
n∈N∆

(n) of disjoint finite sets of symbols. If

f ∈ ∆(n), then n is the rank of f .
Let Σ be an (unranked) alphabet and ∆ be a ranked alphabet. We define

the set TΣ,∆ of trees over Σ,∆ as follows:

1. If f ∈ Σ ∪∆(0), then f ∈ TΣ,∆.
2. If f ∈ Σ ∪∆(n) and t1, . . . , tn ∈ TΣ,∆ (n ≥ 1), then f(t1, . . . , tn) ∈ TΣ,∆.

The notation TΣ denotes the set of unranked trees over Σ; thus TΣ = TΣ,∅.
We set aside special symbols x1, x2, . . . called the variables. The set consisting

of the first n variables x1, . . . , xn is denoted Xn. The set TΣ,∆(Xn) is defined to
be TΣ,∆∪Xn

, where∆∪Xn is the ranked alphabet where symbols inXn have rank
0. If t[x1, . . . , xn] ∈ TΣ,∆(Xn) and t1, . . . , tn ∈ TΣ,∆, then t[t1, . . . , tn] denotes
the result of substituting ti for each occurrence of xi in t (i = 1, . . . , n). Note
that if xi does not occur in t[x1, . . . , xn], then ti is deleted in t[t1, . . . , tn], and
if xi occurs more than once in t[x1, . . . , xn], then ti is duplicated in t[t1, . . . , tn].
A tree t[x1, . . . , xn] ∈ TΣ,∆(Xn) is called an n-context if each xi occurs exactly
once in it. If t[x1, . . . , xn] is an n-context, then each ti is neither deleted nor
duplicated in t[t1, . . . , tn].

We deviate from the standard practice and define context-free tree grammars
using unranked alphabets of terminals. (This makes it easier to relate them to
indexed grammars, but is not essential.) A context-free tree grammar [23,2] is a
quadruple G = (N,Σ,P, S), where

1. N =
⋃
n∈NN

(n) is a finite ranked alphabet of nonterminals,
2. Σ is a finite unranked alphabet of terminals,
3. S is a nonterminal of rank 0, and
4. P is a finite set of productions of the form

A(x1, . . . , xn)→ t[x1, . . . , xn],

where A ∈ N (n) and t[x1, . . . , xn] ∈ TΣ,N (Xn).

We say that G is of rank m if the rank of nonterminals of G does not exceed m.
The one-step rewriting relation ⇒G on TΣ,N is defined as follows: u1 ⇒G u2

if there is a 1-context u[x1] ∈ TΣ,N [X1], a nonterminal A ∈ N (n), a pro-
duction A(x1, . . . , xn) → t[x1, . . . , xn], and trees t1, . . . , tn ∈ TΣ,N such that
u1 = u[A(t1, . . . , tn)] and u2 = u[t[t1, . . . , tn]]. The language of a context-free
tree grammar G is6

L(G) = { t ∈ TΣ | S ⇒∗G t }.
We call elements of L(G) derived trees of G.

We assume that when Σ contains a special symbol ε, it is always used to
label a leaf node and is interpreted as the empty string. The string language of
a context-free tree grammar G is defined to be

{y(t) | t ∈ L(G) }.
6 This is the OI, as opposed to IO, interpretation of the grammar [2].
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Example 1. Here is a very simple example of a context-free tree grammar. Let
G = (N,Σ,P, S), where

N = N (0) ∪N (1) = {S,C} ∪ {A,B},
Σ = {a, f, g},

and P consists of the following productions:

S → A(a),

A(x1)→ A(g(C, x1)),

A(x1)→ B(x1),

C → a,

B(x1)→ x1,

B(x1)→ B(f(a, x1, x1)).

Some elements of L(G) are:

a,

g(a, a),

g(a, g(a, a)),

f(a, a, a),

f(a, g(a, a), g(a, a)),

f(a, g(a, g(a, a)), g(a, g(a, a))),

f(a, f(a, a, a), f(a, a, a)),

f(a, f(a, g(a, a), g(a, a)), f(a, g(a, a), g(a, a))),

f(a, f(a, g(a, g(a, a)), g(a, g(a, a))), f(a, g(a, g(a, a)), g(a, g(a, a)))).

A context-free tree grammar is simple if for each production A(x1, . . . , xn)→
t[x1, . . . , xn], the right-hand side t[x1, . . . , xn] is an n-context. Monadic simple
context-free tree grammars, i.e., simple context-free tree grammars of rank 1,
are, inessential details aside, the same as tree-adjoining grammars [17].

2.3 From Context-Free Tree Grammars to Indexed Grammars

In this section, we review Guessarian’s [7] method (in slightly adapted form) of
converting a context-free tree grammar G to an indexed grammar Ind(G) that
generates the same string language.

We refer to a node of a tree by a “Dewey decimal notation” [18] or “Gorn
address”, which is a string of positive integers separated by dots “.”. If t is a
tree, define the domain of t, dom(t), by

dom(a) = {ε},
dom(f(t1, . . . , tn)) = {ε} ∪ { i.p | 1 ≤ i ≤ n, p ∈ dom(ti) }.
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If p ∈ dom(t), the label of the node at p, written lab(t, p) is defined by

lab(a, ε) = a, lab(f(t1, . . . , tn), ε) = f,

lab(f(t1, . . . , tn), i.p) = lab(ti, p).

Let G = (N,Σ,P, S) be a context-free tree grammar. Let ti be the right-hand
side tree of the ith production in P . Let

N ′ = {S′} ∪ { (i, p) | 1 ≤ i ≤ |P | and p ∈ dom(ti) },
I = { (i, p) ∈ N ′ | lab(ti, p) ∈ N }.

Define the indexed grammar Ind(G) = (N ′, Σ, I, P ′, S′), where P ′ consists of
the following productions:

– If the left-hand side of the ith production is S, then P ′ contains the produc-
tion

S′[]→ (i, ε)[]. (DIST1)

– If lab(ti, p) ∈ Σ and n = max{ j | p.j ∈ dom(ti) }, then P ′ contains the
production

(i, p)[]→ (i, p.1)[] . . . (i, p.n)[]. (DIST2)

– If p is a leaf of ti and lab(ti, p) = a ∈ Σ, then P ′ contains the production

(i, p)[]→ a. (TERM)

– If lab(ti, p) = A ∈ N and the left-hand side nonterminal of the jth produc-
tion is A, then P ′ contains the production

(i, p)[]→ (j, ε)[(i, p)], (PUSH)

and the production

(j, q)[(i, p)]→ (i, p.k)[] (POP)

for each q ∈ dom(tj) such that lab(tj , q) = xk.

If τ is a derivation tree of Ind(G), then let h(τ) be the result of removing
all unary-branching nodes sanctioned by (TERM), (DIST1), (PUSH), or (POP)
productions, and then changing the label of each remaining internal node from
(i, p)[χ] to lab(ti, p). Clearly, y(τ) = y(h(τ)). We can prove the following:

Proposition 2. If τ is a complete derivation tree of Ind(G), then h(τ) is a
derived tree of G. Conversely, if t is a derived tree of G, then there exists a
complete derivation tree τ of Ind(G) such that t = h(τ).

Corollary 3. For every context-free tree grammar G, {y(t) | t ∈ L(G) } =
L(Ind(G)).
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We need two new notions to prove this proposition.7 For an indexed grammar,
a derivation tree fragment is defined like a derivation tree except that labels
of the form A[χ] are allowed on leaf nodes. For a context-free tree grammar
G = (N,Σ,P, S), we extend the rewriting relation ⇒∗G to TN∪Σ(Xn) in an
obvious way.

Proof (of Proposition 2). Let G′′ be like Ind(G) except that it has additional
productions

(i, p)[]→ (i, p.1)[] . . . (i, p.n)[] (DIST3)

for all (i, p) ∈ N ′ such that lab(ti, p) ∈ N , where n = max({0} ∪ { j | p.j ∈
dom(ti) }). (When n = 0, the right-hand side is ε.) Extend h to derivation tree
fragments of G′′. Call a derivation tree fragment υ of G′′ proper if whenever a leaf
node of υ has label of form (j, q)[χ], lab(tj , q) is a variable and χ = ε. Note that
for each (i, p) ∈ N ′, there is a unique proper derivation tree fragment υ(i,p) of
G′′ from (i, p)[] that only involves (TERM), (DIST2), and (DIST3) productions.
In υ(i,p), all internal nodes have empty stack. We write υ(i,p)[χ] for the proper
derivation tree fragment from (i, p)[χ] that results from υ(i,p) by changing the
stack content of each internal node to χ. We prove two claims:

Claim 1. If τ is a proper derivation tree fragment from (i, ε)[] of G′′, then ti ⇒∗G
h(τ).
Claim 2. If ti ⇒∗G u, then there is a proper derivation tree fragment τ of G′′

from (i, ε)[] such that u = h(τ).

Claim 1 is proved by induction on the number of (PUSH) nodes of τ . If
τ has no (PUSH) nodes, then it is easy to see that h(τ) = ti. Otherwise,
let r be one of the lowest (PUSH) nodes of τ . The nodes r and r.1 have la-
bels of the form (j, p)[χ] and (k, ε)[(j, p)χ], respectively, where lab(tj , p) = A
and A(x1, . . . , xn) → tk is a production in P for some n and A ∈ N (n). Let
r.r1, . . . , r.rm (m ≥ 0) be the highest (POP) nodes among the descendants of
r. For l = 1, . . . ,m, the labels of r.rl and r.rl.1 must be of form (k, ql)[(j, p)χ]
and (j, p.hl)[χ], respectively, for some ql ∈ dom(tk) and hl ∈ {1, . . . , n} such
that lab(tk, ql) = xhl

. Let τl be the subtree of τ rooted at r.rl.1. Since there is
no (PUSH) node in τ1, . . . , τm, it is easy to see that for all l, l′ ∈ {1, . . . ,m},
hl = hl′ implies τl = τl′ . For h = 1, . . . , n, define

υh =

{
τl if hl = h,

υ(j,p.h)[χ] if there is no l such that hl = h.

Let τ ′ be the result of attaching υ1, . . . , υn directly below r in τ , discarding
the subtree rooted at r.1. In τ ′, the node r is now sanctioned by a (DIST3)
production. It is easy to see that τ ′ is a proper derivation tree fragment that
has one fewer (PUSH) nodes than τ . By induction hypothesis, ti ⇒∗G h(τ ′).
The label of the node of h(τ ′) corresponding to the node r of τ ′ is A, and

7 Due to space limitations, I had to leave out all proofs in the version of this paper
that was published in the proceedings.
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its immediate subtrees are h(υ1), . . . , h(υn); that is to say, h(τ ′) is of the form
u0[A(h(υ1), . . . , h(υn))]. It is easy to see that h(τ) = u0[tk[h(υ1), . . . , h(υn)]], so
ti ⇒∗G h(τ).

We prove Claim 2 by induction on the length of derivation ti ⇒∗G u. If
ti = u, then we can take τ = υ(i,ε). It is easy to see h(υ(i,ε)) = ti. Suppose
ti ⇒∗G u′ = u0[A(u1, . . . , un)] and u = u0[tk[u1, . . . , un]], where A(x1, . . . , xn)→
tk[x1, . . . , xn] is a production of G. By induction hypothesis, there is a proper
derivation tree fragment τ ′ from (i, ε)[] of G′′ such that h(τ ′) = u′. Let r be the
node of τ ′ that corresponds to the node labeled by A of u′. The node r must
have label of form (j, q)[χ], where lab(tj , q) = A. Since r corresponds to a node
of u′, r must be sanctioned by a (DIST3) production. If n = 0 (i.e., A has rank
0), then r has just one child, r.1, whose label is ε. If n ≥ 1, then r has n children,
r.1, . . . , r.n, whose labels are (j, q.1)[χ], . . . , (j, q.n)[χ], respectively. Let υl be the
subtree of τ ′ rooted at r.l. We can easily combine the portion of τ ′ excluding
the descendants of r, υ(k,ε)[(j, q)χ], and some of υ1, . . . , υn to form a τ such that
h(τ) = u.

For every proper derivation tree fragment τ of G′′, h(τ) ∈ TΣ if and only if
τ is a derivation tree of Ind(G). So the proposition follows form Claims 1 and
2. ut

Example 4. The result of applying the method to the context-free tree grammar
G of Example 1 is the following indexed grammar Ind(G):

S′[]→ (1, ε)[]

(1, ε)[]→ (i, ε)[(1, ε)] (i = 2, 3)

(1, 1)[]→ a

(2, ε)[]→ (i, ε)[(2, ε)] (i = 2, 3)

(2, 1)[]→ (2, 1.1)[] (2, 1.2)[]

(2, 1.1)[]→ (4, ε)[(2, 1.1)]

(2, 1.2)[(i, ε)]→ (i, 1)[] (i = 1, 2)

(3, ε)[]→ (i, ε)[(3, ε)] (i = 5, 6)

(3, 1)[(i, ε)]→ (i, 1)[] (i = 1, 2)

(4, ε)[]→ a

(5, ε)[(i, ε)]→ (i, 1)[] (i = 3, 6)

(6, ε)[]→ (i, ε)[(6, ε)] (i = 3, 6)

(6, 1)[]→ (6, 1.1)[] (6, 1.2)[] (6, 1.3)[]

(6, 1.1)[]→ a

(6, 1.2)[(i, ε)]→ (i, 1)[] (i = 3, 6)

(6, 1.3)[(i, ε)]→ (i, 1)[] (i = 3, 6)

Fig. 1 shows two derivation trees of Ind(G) corresponding to the derived trees
g(a, a) and f(a, g(a, a), g(a, a)) of G.
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S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(5, ε)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(6, ε)[(3, ε)(2, ε)(1, ε)]

(5, ε)[(6, ε)(3, ε)(2, ε)(1, ε)]

(6, 1)[(3, ε)(2, ε)(1, ε)]

(6, 1.3)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

(6, 1.2)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

(6, 1.1)[(3, ε)(2, ε)(1, ε)]

a

Fig. 1. Derivation trees of an indexed grammar obtained from a context-free tree gram-
mar.
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Table 2. Interpretation of linear indexed grammar productions (χ ∈ I∗).

(TERM) (DIST′) (PUSH) (POP)

A[]→ a A[◦◦]→ B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[] A[◦◦]→ B[l◦◦] A[l◦◦]→ B[◦◦]

A[]

a

A[χ]

B1[] . . . Bi−1[]Bi[χ] Bi+1[] . . . Bn[]

A[χ]

B[lχ]

A[lχ]

B[χ]

3 Linear Indexed Grammars and an Alternative
Conception of Indexed Grammars

3.1 Linear Indexed Grammars

Gazdar [4] introduced linear indexed grammars,8 which are a variant of indexed
grammars where the stack attached to an internal node is passed to exactly
one of its children, except when the stack is empty, in which case it may be a
(TERM) node. A linear indexed grammar is a quintuple G = (N,Σ, I, P, S) just
like an indexed grammar except that each production takes one of the following
forms:9

A[]→ a, (TERM)

A[◦◦]→ B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[], (DIST′)

A[◦◦]→ B[l◦◦], (PUSH)

A[l◦◦]→ B[◦◦], (POP)

where A,B,B1, . . . , Bn ∈ N,n ≥ 1, l ∈ I, a ∈ Σ ∪ {ε}. The expression ◦◦ serves
as a variable ranging over the strings of indices and serves to indicate which of
the children of a node the stack gets passed to. In linear indexed grammars, an
occurrence of “[]” in a production indicates empty stack, rather than a variable
stack, as in the case of indexed grammars. Thus, a (TERM) production can
only sanction a node with empty stack, and all but one of the children of a
node sanctioned by a (DIST′) production must have empty stack. The (PUSH)
and (POP) productions are interpreted exactly like the productions of indexed
grammars of the same name, except for the notation. See Table 2.

The definition of the language generated by a grammar is as before:

L(G) = {y(τ) | τ is a complete derivation tree of G }.

8 “Linear indexed grammar” seems to be a coinage of Vijay-Shanker [29].
9 Again, this is a normal form for linear indexed grammars, which we adopt here for

convenience. Note that some authors, e.g., [27], place the top of the stack at the
right end, contrary to the original convention of Aho [1].
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Table 3. Bottom-up interpretation of indexed grammar productions (χ, χ1, . . . , χn ∈
I∗). In (DIST), χ1, . . . , χn must be pairwise compatible, and i = argmaxj |χj |.

(TERM) (DIST) (PUSH) (POP)

A[]→ a A[]→ B1[] . . . Bn[] A[]→ B[l] A[l]→ B[]

A[]

a

A[χi]

B1[χ1] . . . Bn[χn]

A[χ]

B[lχ]

or A[]

B[]

A[lχ]

B[χ]

3.2 A Bottom-Up Conception of Indexed Grammar Derivation
Trees

Because of the difference in how the stack works in linear indexed grammars,
a derivation tree of a linear indexed grammar is often not a possible derivation
tree of an indexed grammar. However, there is an alternative view of indexed
grammars that brings the two formalisms closer together.

Note that the labels of nodes in a derivation tree of a linear indexed gram-
mar may be determined both top-down and bottom-up; once you know which
production an internal node is sanctioned by, knowing its label uniquely deter-
mines its children’s labels, and vice versa. Derivation trees of indexed grammars
are deterministic only in the top-down direction, because when an internal node
is sanctioned by a (TERM) production, the label of its unique child does not
determine the stack portion of its label.

We can, however, adopt an alternative interpretation of indexed grammar
productions and construct derivation trees bottom-up. With this alternative con-
ception, (TERM) productions of an indexed grammar are interpreted in exactly
the same way as in linear indexed grammars: they sanction a node only when
its stack is empty. (POP) productions are interpreted in the same way as before,
but (DIST) and (PUSH) productions are reinterpreted, as indicated in Table 3
(we call two strings compatible if one of them is a prefix of the other). Note that
there are two ways in which a node may be sanctioned by a (PUSH) production;
the second case is for a (PUSH) node with no matching (POP) node.

Example 5. Fig. 2 shows the same derivation trees in Fig. 1 relabeled in the new
bottom-up way.

Indexed grammar derivation trees in the new sense correspond one-to-one
with derivation trees in the original sense. The derivation trees under the two
conceptions differ only in the stack portion of the labels of internal nodes, and
they give rise to the same notion of the generated language. Let us adopt this
new, bottom-up conception from now on, since it allows us to view derivation
trees of linear indexed grammars as derivation trees of indexed grammars of a
special kind.

Let G be a linear indexed grammar, and let G′ be the indexed grammar that
is the result of erasing all occurrences of ◦◦ from productions of G. Then every
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S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(5, ε)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[]

(4, ε)[]

a

S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(6, ε)[(3, ε)(2, ε)(1, ε)]

(5, ε)[(6, ε)(3, ε)(2, ε)(1, ε)]

(6, 1)[(3, ε)(2, ε)(1, ε)]

(6, 1.3)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[]

(4, ε)[]

a

(6, 1.2)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(2, 1.1)[]

(4, ε)[]

a

(6, 1.1)[]

a

Fig. 2. Derivation trees of an indexed grammar under the bottom-up conception.

derivation tree of G (from A[] for some nonterminal A) is a derivation tree of G′

in which each (PUSH) node has exactly one matching (POP) node.

3.3 Monadic Indexed Grammars

Suppose we apply the method of Guessarian [7] reviewed in Section 2.3 to a
monadic simple context-free tree grammar G. The resulting indexed grammar
Ind(G) is very close to a linear indexed grammar. (For example, the grammar
consisting of the first five productions of the grammar in Example 1 is a monadic
simple context-free tree grammar, and the productions of the corresponding in-
dexed grammar are the first 11 lines of the grammar in Example 4, with i 6= 6.)
In any complete derivation tree of Ind(G), every (PUSH) node has at most one
matching (POP) node. More precisely, a (PUSH) node has no matching (POP)
node when the (PUSH) production sanctioning it is related to a nonterminal of
G of rank 0; it has exactly one matching (POP) node when the production is
related to a nonterminal of rank 1. Actually, it is easy to modify Guessarian’s
method and convert a monadic simple context-free tree grammar into a linear in-
dexed grammar, instead of an indexed grammar.10 However, the kind of indexed
grammar that Ind(G) exemplifies is interesting in its own right.

Let us call a derivation tree of an indexed grammar monadic if every (PUSH)
node in it has at most one matching (POP) node. If G is an indexed grammar,

10 A variant of this modification is given by Vijay-Shanker and Weir [28] for tree-
adjoining grammars.
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let us write D(G) for the set of complete derivation trees of G and D1(G) for
the set of monadic complete derivation trees of G. Define

L1(G) = {y(τ) | τ ∈ D1(G) }.

(Recall L(G) = {y(τ) | τ ∈ D(G) }.) We can prove the following:

Proposition 6. For every indexed grammar G, there is a linear indexed gram-
mar G′ such that L1(G) = L(G′).

Proof. Let G = (N,Σ, I, P, S) be an indexed grammar. Let G′ =
(N ′, Σ, I, P ′, S) be a linear indexed grammar where

N ′ = N ∪ {A′ | A ∈ N },

and P ′ consists of the following productions:

– productions
A[◦◦]→ A′[◦◦], A′[l◦◦]→ A′[◦◦]

for each A ∈ N and l ∈ I,
– production

A′[]→ a

for each (TERM) production A[]→ a in P ,
– productions

A[◦◦]→ B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[]

for each (DIST) production A[]→ B1[] . . . Bn[] in P and i = 1, . . . , n, and
– all (PUSH) and (POP) productions in P (with ◦◦ inserted on both sides).

It is easy to see that the derivation trees of G′ are just monadic derivation trees
of G with additional unary-branching nodes above some (TERM) nodes. ut

Proposition 7. For every linear indexed grammar G, there is an indexed gram-
mar G′ such that L(G) = L1(G′) = L(G′).

Proof. Let G = (N,Σ, I, P, S) be a linear indexed grammar. Define an indexed
grammar G′ = (N ′, Σ, I ′, P ′, S′) as follows:

– N ′ = N ∪ {A′ | A ∈ N } ∪ {A′′ | A ∈ N }.
– I ′ = I ∪ {b}, where b is a new index.
– P ′ consists of the following productions:
• productions

A′[]→ A[b], A[b]→ A′′[]

for each A ∈ N ,
• production

A′′[]→ a

for each (TERM) production A[]→ a in P ,
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Table 4. Interpretation of monadic indexed grammar productions (χ ∈ I∗, 1 ≤ i ≤ n).

(TERM) (DIST) (PUSH) (POP)

A[]→ a A[]→ B1[] . . . Bn[] A[]→ B[l] A[l]→ B[]

A[]

a

A[χ]

B1[] . . . Bi−1[]Bi[χ] Bi+1[] . . . Bn[]

A[χ]

B[lχ]

or A[]

B[]

A[lχ]

B[χ]

• production
A[]→ B′1[] . . . B′i−1[]Bi[]B

′
i+1[] . . . B′n[]

for each (DIST′) production A[◦◦]→ B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[]
in P , and

• all (PUSH) and (POP) productions in P (with ◦◦ removed).

The new index b serves as a bottom-of-stack marker. In order to apply (TERM)
productions, b must be popped from the stack, which forces every (PUSH) node
to have a matching (POP) node. Since b can only be at the bottom of the stack
in a bottom-up constructed derivation tree, the stack attached to a nonterminal
of the form A′ is always empty. This ensures that D1(G′) = D(G′), and that
D(G′) corresponds one-to-one with the complete derivation trees of G. ut

Consider an indexed grammar G together with D1(G) and L1(G). This can
be thought of as another variant of indexed grammar where (DIST) production
A[]→ B1[] . . . Bn[] sanctions a node only if all but one of its children has empty
stack. Let us call an indexed grammar with this interpretation a monadic indexed
grammar. (See Table 4.) The indexed grammar obtained from a monadic simple
context-free tree grammar by Guessarian’s method can be regarded equivalently
as a monadic indexed grammar. As Propositions 6 and 7 show, monadic indexed
grammars are equivalent to linear indexed grammars, and the derivation trees
of the two formalisms are also almost identical.

Vijay-Shanker and Weir [27] give a method of converting a linear indexed
grammar to an equivalent head grammar. Combined with a conversion from
head grammars to tree-adjoining grammars, it gives a method of converting a
linear indexed grammar into a tree-adjoining grammar that generates the same
string language. This result can be strengthened. For a (linear/monadic/general)
indexed grammar G, let us call the result τ̂ of erasing all indices from a (com-
plete) derivation tree τ of G a stripped (complete) derivation tree. We can easily
turn Vijay-Shanker and Weir’s method into one that establishes the following:

Proposition 8. For every linear or monadic indexed grammar G, there is a
monadic simple context-free tree grammar G′ that generates the set of all stripped
complete derivation trees of G.

I use monadic indexed grammars, rather than linear indexed grammars, as
the point of departure for my generalization of linear indexed grammars. This is
not strictly necessary, but will greatly simplify the definition of the generalized
formalism.
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4 Arboreal Indexed Grammars

Given Proposition 8, an obvious variant of indexed grammars corresponding to
simple context-free tree grammars of rank m suggests itself: indexed grammars
interpreted in such a way that all (PUSH) nodes must have at most m matching
(POP) nodes.

4.1 From m-adic Indexed Grammars to Simple Context-Free Tree
Grammars of Rank m

Let us call a derivation tree fragment of an indexed grammar m-adic if each
(PUSH) node in it has at most m matching (POP) nodes. Write Dm(G) for
the set of m-adic complete derivation trees of an indexed grammar G, and let
Lm(G) = {y(τ) | τ ∈ Dm(G) }. It is easy to check the following:

Proposition 9. If G is a simple context-free tree grammar of rank m, then
D(Ind(G)) = Dm(Ind(G)), and consequently, L(Ind(G)) = Lm(Ind(G)).

I now present a generalization of the construction underlying Proposition 8.
Consider an indexed grammar G. A path in a derivation tree fragment of G is a
sequence of nodes, always passing from a parent node to one of its children. We
say that a path ρ is clean if every (PUSH) node on ρ is matched by a (POP)
node on ρ.

Lemma 10. If a (POP) node matches a (PUSH) node in a derivation tree frag-
ment, the path from the child of the (PUSH) node to the (POP) node is a clean
path.

Lemma 11. Let τ be a derivation tree fragment from A[] such that y(τ) =
w0B1[]w1 . . . Bn[]wn for some w0, . . . , wn ∈ Σ∗ and for every i = 1, . . . , n, the
path ρi from the root to the leaf node labeled by Bi[] is a clean path. Let τ ′ be the
result of changing the label of each node on ρ1, . . . , ρn from C[χ] to C[χl]. Then
τ ′ is a derivation tree fragment from A[l] with y(τ ′) = w0B1[l]w1 . . . Bn[l]wn.

Let m ≥ 1. Given an indexed grammar G = (N,Σ, I, P, S), define a simple
context-free tree grammar CFTmsp(G) = (N ′, Σ′, P ′, 〈S〉) where

N ′
(k)

=

{
{ 〈AB1 . . . Bk〉 | A,B1, . . . , Bk ∈ N } if k ≤ m,

∅ otherwise,

Σ′ = Σ ∪ {ε} ∪N,

and P ′ consists of the following productions:

(A) If A[]→ a is a (TERM) production in P , P ′ contains the production

〈A〉 → A(a).
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(B) For each nonterminal A ∈ N , P ′ contains the production

〈AA〉(x1)→ x1.

(C) For each nonterminal 〈AB1 . . . Bk〉 ∈ N ′, if A[] → C1[] . . . Cn[] is a (DIST)
production in P and 0 ≤ k1 ≤ · · · ≤ kn = k, then P ′ contains the production

〈AB1 . . . Bk〉(x1, . . . , xk)→
A(〈C1B1 . . . Bk1〉(x1, . . . , xk1), . . . , 〈CnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn)).

(D) For each nonterminal 〈AB1 . . . Bk〉 ∈ N ′, if A[] → C[l] is a (PUSH) pro-
duction in P , D1[l] → E1[], . . . , Dn[l] → En[] are (POP) productions in P
(0 ≤ n ≤ m), and 0 ≤ k1 ≤ · · · ≤ kn = k, then P ′ contains the production

〈AB1 . . . Bk〉(x1, . . . , xk)→
A(〈CD1 . . . Dn〉(D1(〈E1B1 . . . Bk1〉(x1, . . . , xk1)),

. . . ,
Dn(〈EnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn)))).

(When n = 0, this production is 〈A〉 → A(〈C〉).)

Lemma 12. Let 〈AB1 . . . Bk〉 be a nonterminal of CFTmsp(G). For every
t[x1, . . . , xk] ∈ TΣ∪{ε}∪N [Xk], the following are equivalent:

(i) 〈AB1 . . . Bk〉(x1, . . . , xk)⇒∗CFTm
sp(G) t[x1, . . . , xk].

(ii) There is an m-adic derivation tree fragment τ of G such that
– t[B1, . . . , Bk] = τ̂ ,
– the root of τ is labeled by A[],
– y(τ) = w0B1[]w1 . . . Bk[]wk for some w0, w1, . . . , wk ∈ Σ∗, and
– for each i = 1, . . . , k, the path from the root of τ to the leaf node labeled

by Bi[] is a clean path.

Proof. (i) ⇒ (ii). Induction on the length of the derivation
〈AB1 . . . Bk〉(x1, . . . , xk)⇒∗CFTm

sp(G) t[x1, . . . , xk].

Case 1. The first production applied in the derivation is an (A) production.
Then k = 0 and t[x1, . . . , xk] is of the form A(a). Then we can take the following
derivation tree as τ :

A[]

a

Case 2. The first production applied in the derivation is a (B) production.
Then k = 1 and B1 = A. We can simply take the one-node tree A[] as τ .

Case 3. The first production applied in the derivation is a (C) production.
Then t[x1, . . . , xk] must be of form A(t1[x1, . . . , xk1 ], . . . , tn[xkn−1 + 1, . . . , xkn ]),
where for i = 1, . . . , n,

〈CiBki−1+1 . . . Bki〉(xki−1+1, . . . , xki)⇒∗CFTm
sp(G) ti[xki−1+1, . . . , xki ].
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(We let k0 = 0.) By induction hypothesis, there is a derivation tree fragment
τi of G satisfying the required properties with respect to ti[xki−1+1, . . . , xki ]; in
particular, τ̂i = ti[Bki−1+1, . . . , Bki ]. We can take the following tree as τ :

A[]

C1[]

τ1

. . . Cn[]

τn

(†)

Case 4. The first production applied in the derivation
is a (D) production. Then t[x1, . . . , xk] must be of form
A(u[D1(t1[x1, . . . , xk1 ]), . . . , Dn(tn[xkn−1+1, . . . , xkn ])]), where11

〈CD1 . . . Dn〉(x1, . . . , xn)⇒∗CFTm
sp(G) u[x1, . . . , xn]

and for i = 1, . . . , n,

〈EiBki−1+1 . . . Bki〉(x1, . . . , xki−ki−1)⇒∗CFTm
sp(G) ti[x1, . . . , xki−ki−1 ].

(We let k0 = 0.) By induction hypothesis, there are
derivation tree fragments υ, τ1, . . . , τn of G corresponding to
u[x1, . . . , xn], t1[x1, . . . , xk1 ], . . . , tn[x1, . . . , xkn−kn−1

]. Apply Lemma 11 to
υ to obtain a derivation tree fragment υ′ with root label A[l] and yield of the
form w0D1[l]w1 . . . Dn[l]wn. We can take the following tree as τ :

A[]

C[l]

υ′

D1[l]

E1[]

τ1

. . . Dn[l]

En[]

τn

(‡)

(ii)⇒ (i). Induction on the size of τ .
Case 1. τ consists of a single node A[]. Then k = 1, B1 = A, and τ̂ = A. We

can take t[x1] = x1.
Case 2. The root node of τ is sanctioned by a (TERM) production A[]→ a.

Then k = 0. We can take t = A(a).

11 This depends on the fact that CFTm
sp(G) is a simple context-free tree grammar.
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Case 3. The root node of τ is sanctioned by a (DIST) production A[] →
C1[] . . . Cn[]. Then τ has the form (†) shown above. Let hi be the number of leaf
nodes of τi labeled by someBj []. Let ki = h1+· · ·+hi. We can apply induction hy-
pothesis to τi and obtain a derivation 〈CiBki−1+1 . . . Bki〉(x1, . . . , xhi)⇒∗CFTm

sp(G)

ti[x1, . . . , xhi
] such that τ̂i = ti[Bki−1+1, . . . , Bki ]. Let t[x1, . . . , xk] =

A(t1[x1, . . . , xk1 ], . . . , tn[xkn−1+1, . . . , xkn ]). Then t[B1, . . . , Bk] =
A(t1[B1, . . . , Bk1 ], . . . , tn[Bkn−1+1, . . . , Bkn ]) = A(τ̂1, . . . , τ̂n) = τ̂ , and we
have

〈AB1 . . . Bk〉(x1, . . . , xk)

⇒CFTm
sp(G) A(〈C1B1 . . . Bk1〉(x1, . . . , xk1), . . . , 〈CnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn))

⇒∗CFTm
sp(G) A(t1[x1, . . . , k1], . . . , tn[xkn−1+1, . . . , xkn ]).

Case 4. The root node of τ is sanctioned by a (PUSH) production A[]→ C[l].
Let n be the number of (POP) nodes that match the root node of τ . Since τ is
m-adic, we have n ≤ m.

Case 4a. n = 0. Then τ has no clean path starting from the root node, so
k = 0. Let τ1 be the subtree of τ rooted at node 1. We can apply the induction
hypothesis to τ1 and obtain a tree t1 such that 〈B〉 ⇒∗CFTm

sp(G) t1 and t1 = τ̂1.

Let t = A(t1). Then τ̂ = t and we have

〈A〉 ⇒∗CFTm
sp(G) A(〈B〉)

⇒∗CFTm
sp(G) A(t1) = t.

Case 4b. n ≥ 1. Let r1, . . . , rn be the (POP) nodes that match the root node
of τ . Then the path ρi from the node 1 to each ri is a clean path. Let Di[l]→ Ei[]
be the (POP) production sanctioning ri. Then τ has the form (‡) shown above.
The stack content of every node on the path ρi is of the form χl. Let υ be the
result of changing the label of each node on ρ1, . . . , ρn from C[χl] to C[χ]. We
can apply induction hypothesis to υ, τ1, . . . , τn and obtain derivations

〈CD1 . . . Dn〉(x1, . . . , xn)⇒∗CFTm
sp(G) u[x1, . . . , xn],

〈E1B1 . . . Bk1〉(x1, . . . , xh1
)⇒∗CFTm

sp(G) t1[x1, . . . , xh1
],

...

〈EnBkn+1 . . . Ekn〉(x1, . . . , xhn
)⇒∗CFTm

sp(G) tn[x1, . . . , xhn
],

where hn = kn − kn−1, such that υ̂ = u[E1, . . . , En] and for
each i = 1, . . . , n, τ̂i = ti[Bki−1+1, . . . , Bki ]. Let t[x1, . . . , xk] =
A(u[D1(t1[x1, . . . , xk1 ]), . . . , Dn(tn[xkn−1+1, . . . , xkn ])]). Then τ̂ = t[B1, . . . , Bk]
and we have

〈AB1 . . . Bk〉(x1, . . . , xk)

⇒CFTm
sp(G) A(〈CD1 . . . Dn〉(D1(〈E1B1 . . . Bk1〉(x1, . . . , xk1)),

. . . ,
Dn(〈EnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn))))
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⇒∗CFTm
sp(G) A(u[D1(t1[x1, . . . , xk1 ]), . . . , Dn(tn[xkn−1+1, . . . , xkn ])])

= t[x1, . . . , xk]. ut

Theorem 13. For every indexed grammar G, L(CFTmsp(G)) = { τ̂ | τ ∈
Dm(G) }.

Let us call indexed grammars with the restriction to m-adic complete deriva-
tion trees m-adic indexed grammars. Proposition 9 and Theorem 13 establish
the equivalence between m-adic indexed grammars and simple context-free tree
grammars of rank m.

4.2 Storing Tuples of Trees in the Stack

Our job is not done yet. The notion of an m-adic indexed grammar has not been
defined in terms of how the productions are interpreted. In the case of monadic
indexed grammars, the restriction on the way a (DIST) production may sanction
a node carved out precisely the set of monadic derivation trees. We cannot obtain
the m-adic derivation trees in a similar way, for m ≥ 2.

In order to express the restriction to m-adic derivation trees, we have to
somehow record at each node the number of (POP) nodes below the node that
are to match a given (PUSH) node above the node. This means that a (PUSH)
production should push k copies of the same index (k ≤ m) onto the stack,
and a (DIST) production should distribute different copies of the same index to
(possibly) different children.

Such stack actions cannot be realized with strings of indices acting as push-
down storage. The most natural solution is to store a tuple of trees, rather than
a string, in the stack. We only need to store a tuple of trees s1, . . . , sk with very
special properties. First, all the nodes of s1, . . . , sk of the same level (i.e., at
the same distance from the root) must have the same label. Second, for m-adic
indexed grammars, the number of nodes of s1, . . . , sk of the same level may not
exceed m. (This implies that the trees are at most m-branching; it does not
imply that the number of leaves is bounded.) The number of components of the
tuple may vary from node to node, but of course cannot exceed m. Let us call
such a tuple of trees m-limited.

We consider trees in which each leaf node has a label from Σ ∪ {ε} and
each internal node has a label of the form A[s1, . . . , sk], where s1, . . . , sk is an
m-limited tuple of trees over I. Such trees may be sanctioned by productions of
an indexed grammar as indicated in Table 5, in which case we call them m-adic
arboreal derivation trees.

If s1, . . . , sk is an m-limited tuple of trees over I, all the paths in s1, . . . , sk
starting from the root and ending in some leaf node give mutually compatible
strings of indices. Let s1, . . . , sk be the string given by a maximal path. If υ is
an m-adic arboreal derivation tree of an indexed grammar G, let υ be the result
of changing each label C[s1, . . . , sk] in υ to C[s1, . . . , sk]. Then υ is always an
ordinary derivation tree. It is easy to see the following:
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Table 5. Interpretation of m-adic arboreal indexed grammar productions. Here, σ and
σi range over (m-limited) tuples of trees over I. When σ is empty, l(σ) stands for l.
The concatenation of tuples σ1, . . . , σn is written as σ1 . . . σn.

(TERM) (DIST) (PUSH) (POP)

A[]→ a A[]→ B1[] . . . Bn[] A[]→ B[l] A[l]→ B[]

A[]

a

A[σ1 . . . σn]

B1[σ1] . . . Bn[σn]

A[σ1 . . . σk]

B[l(σ1), . . . , l(σk)]

(k ≤ m) A[l(σ)]

B[σ]

S′[]

(1, ε)[]

(2, ε)[1ε, 1ε]

(3, ε)[2ε(1ε), 2ε(1ε)]

(6, ε)[3ε(2ε(1ε)), 3ε(2ε(1ε))]

(5, ε)[6ε(3ε(2ε(1ε)), 3ε(2ε(1ε)))]

(6, 1)[3ε(2ε(1ε)), 3ε(2ε(1ε))]

(6, 1.3)[3ε(2ε(1ε))]

(3, 1)[2ε(1ε)]

(2, 1)[1ε]

(2, 1.2)[1ε]

(1, 1)[]

a

(2, 1.1)[]

(4, ε)[]

a

(6, 1.2)[3ε(2ε(1ε))]

(3, 1)[2ε(1ε)]

(2, 1)[1ε]

(2, 1.2)[1ε]

(1, 1)[]

a

(2, 1.1)[]

(4, ε)[]

a

(6, 1.1)[]

a

Fig. 3. An example of a 2-adic arboreal derivation tree.

Lemma 14. Let G be an indexed grammar. An (ordinary) derivation tree τ of
G is m-adic if and only if there is an m-adic arboreal derivation tree υ of G
such that τ = υ.

Example 15. The second derivation tree in Fig. 2 was 2-adic. The 2-adic arboreal
derivation tree corresponding to it is shown in Fig. 3, where we abbreviate indices
(i, p) by ip.

We call an indexed grammar together with the interpretation of productions
given in Table 5 an m-adic arboreal indexed grammar. We have established the
following:

Theorem 16. (i) For every m-adic arboreal indexed grammar G, there is a
simple context-free tree grammar G′ of rank m such that the derived trees of
G′ are precisely the stripped complete derivation trees of G.
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(ii) For every simple context-free tree grammar G′ of rank m, there is an m-adic
arboreal indexed grammar G such that the derived trees of G′ are obtained
from the stripped complete derivation trees of G by deleting some unary-
branching nodes.

Corollary 17. Simple context-free tree grammars of rank m and m-adic arbo-
real indexed grammars are equivalent in string-generating power.
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16. Kepser, S., Mönnich, U.: Closure properties of linear context-free tree languages
with an application to optimality theory. Theoretical Computer Science 354(1),
82–97 (2006)

17. Kepser, S., Rogers, J.: The equivalence of tree adjoining grammars and monadic
linear context-free tree grammars. Journal of Logic, Language and Information
20(3), 361–384 (2011)

18. Knuth, D.E.: The Art of Computer Programming, Vol. I: Fundamental Algorithms.
Addison-Wesley, Reading, Mass., third edn. (1997)

19. Maletti, A., Engelfriet, J.: Strong lexicalization of tree adjoining grammars. In:
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics. pp. 506–515. Association for Computational Linguistics (2012)

20. Michaelis, J.: Derivational minimalism is mildly contextsensitive. In: Moortgat, M.
(ed.) Logical Aspects of Computational Linguistics, Lecture Notes in Computer
Science, vol. 2014, pp. 179–198. Springer Berlin Heidelberg (2001)

21. Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: Groote, P., Morrill, G., Retoré, C. (eds.) Logical Aspects of Com-
putational Linguistics, Lecture Notes in Computer Science, vol. 2099, pp. 228–244.
Springer Berlin Heidelberg (2001)

22. Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting
systems. Theoretical Computer Science 223(1–2), 87–120 (1999)

23. Rounds, W.: Mappings and grammars on trees. Mathematical Systems Theory
4(3), 257–287 (1970)

24. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th conference on
Formal Grammar. pp. 143–156. FG Online Proceedings, CSLI Publications (2007)

25. Seki, H., Kato, Y.: On the generative power of multiple context-free grammars
and macro grammars. IEICE Transactions on Information and Systems E91–D(2),
209–221 (2008)

26. Steedman, M.: The Syntactic Process. MIT Press, Cambridge, Massachusetts
(2000)

27. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27(6), 511–546 (1994)

28. Vijay-Shanker, K., Weir, D.J.: Parsing some constrained grammar formalisms.
Computational Linguistics 19(4), 591–636 (1993)

29. Vijayashanker, K.: A Study of Tree Adjoining Grammars. Ph.D. thesis, University
of Pennsylvania (1987)

30. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D.
thesis, University of Pennsylvania (1988)

31. Weir, D.J.: Linear context-free rewriting systems and deterministic tree-walking
transducers. In: Proceedings of the 30th Annual Meeting of the Association for
Computational Linguistics. pp. 136–143 (1992)


	A Generalization of Linear Indexed Grammars Equivalent to Simple Context-Free Tree Grammars

