
WoLLIC 2006

Abstract Families of
Abstract Categorial Languages

Makoto Kanazawa 1

National Institute of Informatics
Tokyo, Japan

Abstract

We show that the class of string languages generated by abstract categorial gram-
mars is a substitution-closed full AFL. The result also holds of each class G(m, n) in
de Groote’s hierarchy. We also show that the class of string languages generated by
lexicalized ACGs is a substitution-closed AFL, and that most of the results about
string languages carry over to tree languages.

Key words: Abstract Categorial Grammar, Abstract Family of
Languages, Tree Languages.

1 Introduction

The abstract categorial grammar (ACG, [8]) elegantly generalizes and unifies
diverse types of grammar formalisms that have been proposed for the descrip-
tion of natural language, including both string grammars and tree grammars.
ACGs are formalized in terms of linear lambda calculus, and they generate
languages of linear lambda terms, of which usual string languages and tree
languages are two special cases. Although some important results have been
obtained about the expressive power of ACGs ([9,11,19,16]), little is known
about the entire class of (string/tree) languages generated by ACGs; in par-
ticular, no example of an r.e. language has been found which lies outside of
this class.

The main result of this paper is that the string languages generated by
ACGs form a substitution-closed full AFL (abstract family of languages) in
the sense of Ginsburg and Greibach [6]. This result also holds of each class
G(m,n) in de Groote’s hierarchy. The string languages of lexicalized ACGs,
which cannot contain the empty string, can be shown to satisfy somewhat

1 I am grateful to Philippe de Groote for suggesting a generalization of Lemma 4.1 which
led to the present formulation of Lemma 3.3.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kanazawa

weaker conditions, forming a substitution-closed AFL. We also show how most
of these results can be generalized from string languages to tree languages.

The results in this paper are interesting for at least three reasons. First, in
the absence of an automaton model for ACGs, they are by no means obvious.
In fact, the proof of closure under intersection with regular sets is an interest-
ing application of the Curry-style type assignment system λ→. Second, these
results will hopefully be useful for gaining insights into the open questions
about the generative capacity and complexity of ACGs. For instance, in the
event that an analogue of the Pumping Lemma becomes available for ACGs,
closure under intersection with regular sets will surely be helpful in showing
many languages to fall outside of the class of ACG languages. Third, since the
closure properties of full AFLs are consequences of the existence of an appro-
priate kind of nondeterministic acceptor, the fact that the string languages of
ACGs form a full AFL suggests the possibility of a natural automaton model
corresponding to ACGs.

2 Preliminaries

This section presents some concepts and results which will be necessary in the
sequel. The reader may consult [6,13,8] for more details.

2.1 Abstract Families of Languages

We take for granted standard language-theoretic notions like concatenation,
the Kleene star (∗) and Kleene plus (+) operations, homomorphism, etc. A
family of languages is a class of languages (not necessarily over the same
alphabet) which contains at least one non-empty language. A homomorphism
h from V ∗

1 to V ∗
2 , where V1 and V2 are finite alphabets, is ε-free if h(w) = ε

implies w = ε. A family F of languages is closed under inverse homomorphism

if whenever L ⊆ V ∗
1 is a member of F and h is a homomorphism from V ∗

2 to
V ∗

1 , h−1(L) = {w ∈ V ∗
2 | h(w) ∈ L } is in F .

A mapping f from an alphabet V1 to P(V ∗
2), for some alphabet V2, is

called a substitution. The mapping f is extended to strings and to languages
as follows:

f(ε) = {ε}, f(wa) = f(w)f(a),

f(L) =
⋃

w∈L

f(w).

A family F of languages is closed under substitution if, for every L ∈ F

such that L ⊆ V ∗
1 and for every substitution f from V1 to P(V ∗

2) such that
f(a) ∈ F for all a ∈ V1, we have f(L) ∈ F .

Let F be a family of languages. We say that F is an AFL (abstract
family of languages) if F is closed under union, concatenation, Kleene plus,
ε-free homomorphism, inverse homomorphism, and intersection with regular

2

Kanazawa

sets. We say that F is a full AFL if F is closed under union, concatenation,
Kleene star, homomorphism, inverse homomorphism, and intersection with
regular sets.

Some well-known examples of full AFLs are the regular sets, the context-
free languages, the r.e. sets, the indexed languages ([1]), the linear indexed
languages ([4]), the multiple context-free languages and the parallel multiple
context-free languages ([17]). Some examples of AFLs that are not full AFLs
are the context-sensitive languages, the recursive sets, the ε-free context-free
languages, and the class NP. An example of a family of languages that is not
an AFL is the class of PTIME languages (assuming P 6= NP).

Many types of grammars that are known to generate full AFLs have a
corresponding type of nondeterministic acceptor. In such cases, closure under
the regular operations becomes easy to prove. Proof of the other closure
properties is also not hard, given the following fact ([6]):

Fact. A family of languages is closed under homomorphism, inverse homo-

morphism, and intersection with regular sets if and only if it is closed under

finite transduction.

2.2 Type Assignment System λ→Σ

Given a finite set A of atomic types, the set T (A) of types built upon A is
the smallest superset of A satisfying the following condition:

α, β ∈ T (A) implies (α→ β) ∈ T (A).

We omit the outermost parentheses when we write types. The connective
→ is assumed to be right-associative, so we write α1 → α2 → α3 instead of
α1 → (α2 → α3). We abbreviate α→ · · · → α

︸ ︷︷ ︸

k times

→β as αk → β. We define

arity(α) = k if α = α1→ · · · → αk→ p for some p ∈ A.

The order of a type α, denoted by ord(α), is defined as follows:

ord(p) = 1 if p is atomic,

ord(α→ β) = max(ord(α) + 1, ord(β)).

A higher-order signature is a triple Σ = 〈A,C, τ〉, where A is a finite set
of atomic types, C is a finite set of constants, and τ is a mapping from C to
T (A). The order of a higher-order signature Σ is max{ ord(τ(c)) | c ∈ C }.
Let X be a countably infinite set of variables. The set Λ(Σ) of (untyped)
λ-terms built upon a higher-order signature Σ = 〈A,C, τ〉 is the smallest
superset of X ∪ C satisfying the following conditions:

(i) If M,N ∈ Λ(Σ), then (MN) ∈ Λ(Σ);

(ii) If M ∈ Λ(Σ) and x ∈ X, then (λx.M) ∈ Λ(Σ).

We omit the outermost parentheses when we write λ-terms. We

3

Kanazawa

write MNP for (MN)P , λx.MN for λx.(MN), and λx1 . . . xn.M for
λx1.(λx2. . . . (λxn.M) . . .). The set FV(M) of free variables of M is under-
stood in the usual way. We write M [x1, . . . , xn] to indicate that {x1, . . . , xn} ⊆
FV(M [x1, . . . , xn]). A λ-term M is closed if FV(M) = ∅; it is a combinator

if it moreover contains no constants. We take for granted the notions of sub-

stitution (of a λ-term for a free variable in a λ-term), β-redex, β-reduction,
β-normal form, etc. We write³β for β-reduction, and =β for β-equality. The
β-normal form of M is denoted by |M |β.

Let M ³β M ′ in one step by contraction of a β-redex (λx.N)P . This
β-reduction step is said to be non-erasing if x ∈ FV(N). It is said to be
non-duplicating if x occurs free in N at most once. The β-reduction from
M to M ′ is non-erasing (non-duplicating) if it consists entirely of non-erasing
(non-duplicating) β-reduction steps.

A type environment is a finite set Γ of variable declarations of the form x:α
(where x ∈ X,α ∈ T (A)) in which no variable is declared more than once. A
type environment is usually written as a list x1 :α1, . . . , xn :αn. The following
inference system, λ→Σ, derives typing judgments of the form Γ `Σ M : α,
where Γ is a type environment, M ∈ Λ(Σ), and α ∈ T (A):

`Σ c : τ(c) for c ∈ C x : α `Σ x : α for x ∈ X and α ∈ T (A)

Γ `Σ M : β

Γ− {x : α} `Σ λx.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α

Γ ∪∆ `Σ MN : β

We write Γ ` M : α when Γ `Σ M : α for some Σ = 〈A, ∅, ∅〉. As usual, we
have Γ `Σ M : α if and only if there is a λ→Σ-deduction of this judgment. M
is typable if Γ `Σ M : α for some Γ, α.

A λ-term M is linear if the following conditions both hold:

(i) for any subterm λx.N of M , x ∈ FV(M);

(ii) for any subterm NP of M , FV(N) ∩ FV(P) = ∅.

M is a λI-term if it satisfies the first condition.

It is known that a linear λ-term which contains no constants is always
typable ([12]). The set of linear λ-terms over Σ is denoted Λlin(Σ).

Below we list some important facts about λ→Σ which we will make use of
in this paper (see [13]).

Subject Reduction Theorem. If Γ `Σ M : α and M ³β M ′, then Γ′ `Σ

M ′ : α, where Γ′ is the restriction of Γ to FV(M ′).

Subject Expansion Theorem. If Γ `Σ M ′ : α and M ³β M ′ by non-

erasing non-duplicating β-reduction, then Γ `Σ M : α.

As a special case, if M is linear and M ³β M ′, then Γ `Σ M ′ : α implies
Γ `Σ M : α.

Uniqueness Theorem. If M is a λI-term and Γ `Σ M : α, then there is a

unique λ→Σ-deduction of this judgment.

4

Kanazawa

A pair 〈Γ, α〉 is a principal pair for M if Γ ` M : α and for every Γ′,M ′

such that Γ′ ` M : α′, there is a type substitution σ such that Γ′ = σ(Γ) and
α′ = σ(α).

Principal Pair Theorem. If M is typable, then there is a principal pair for

M .

2.3 Trees and Strings as Linear λ-terms

A ranked alphabet is a pair 〈F, ρ〉, where F is an alphabet and ρ is a mapping
ρ : F → N. If 〈F, ρ〉 is a ranked alphabet, we write Fk for { f ∈ F | ρ(f) = k }.
We often write F for the ranked alphabet 〈F, ρ〉, suppressing reference to ρ.
The set of trees over a ranked alphabet F , denoted by TF , is the smallest
superset of F0 that satisfies the following condition:

f ∈ Fk and T1, . . . , Tk ∈ TF implies (fT1 . . . Tk) ∈ TF .

A set of trees is called a tree language. We refer the reader to [3] or [5] for
basic concepts about tree languages.

A ranked alphabet F can be represented by a second-order signature ΣF =
〈{o}, F, τF 〉, where for each f ∈ Fk, τF (f) = ok → o. ΣF is called a tree

signature. We identify a tree in TF with a closed λ-term in Λlin(ΣF) of type o
in the obvious way.

A string a1 . . . an over an (unranked) alphabet V can be represented by a
closed λ-term

/a1 . . . an/ = λz.a1(. . . (anz) . . .)

in Λlin(ΣV), where ΣV = 〈{o}, V, τ〉 and τ(a) = o→ o for all a ∈ V . We call
ΣV a string signature. Note that `ΣV

/w/ : o→ o for all strings w ∈ V ∗.

2.4 Abstract Categorial Grammars

When we write Σ, Σ′, Σ1, etc., to refer to higher-order signatures, we assume
Σ = 〈A,C, τ〉, Σ′ = 〈A′, C ′, τ ′〉, Σ1 = 〈A1, C1, τ1〉, etc., unless otherwise noted.
Given higher-order signatures Σ and Σ′, a lexicon from Σ to Σ′ is a pair
L = 〈σ, θ〉 such that

(i) σ is a type substitution that maps elements of A to elements of T (A′);

(ii) θ is a mapping from C to Λlin(Σ
′);

(iii) `Σ′ θ(c) : σ(τ(c)) for all c ∈ C.

θ is extended to a mapping from Λlin(Σ) to Λlin(Σ
′) as follows:

θ(x) = x for x ∈ X, θ(MN) = θ(M)θ(N), θ(λx.M) = λx.θ(M).

We write L (α) and L (M) for σ(α) and θ(M), respectively. The order of L

is max{ ord(L (p)) | p ∈ A }.

5

Kanazawa

We list three easy properties of lexicons. First, typing judgments are pre-
served under lexicons: If L is a lexicon from Σ to Σ′, then

Γ `Σ M : α implies L (Γ) `Σ′ L (M) : L (α).

Second, β-reduction commutes with lexicons:

M ³β M ′ implies L (M)³β L (M ′).

Third, the composition of two lexicons is a lexicon: If L1 = 〈σ1, θ1〉 is a lexicon
from Σ0 to Σ1 and L2 = 〈σ2, θ2〉 is a lexicon from Σ1 to Σ2, then

L2 ◦L1 = 〈σ2 ◦ σ1, θ2 ◦ θ1〉

is a lexicon from Σ0 to Σ2.

An abstract categorial grammar (ACG) is a quadruple G = 〈Σ, Σ′,L , s〉,
where

(i) Σ is a higher-order signature called the abstract vocabulary ;

(ii) Σ′ is a higher-order signature called the object vocabulary ;

(iii) L is a lexicon from Σ to Σ′;

(iv) s is an atomic type of the abstract vocabulary (s ∈ A).

The abstract language of G , denoted by A(G), is defined as follows:

A(G) = {M ∈ Λlin(Σ) |M is β-normal and `Σ M : s }.

The object language of G , denoted by O(G), is defined as follows:

O(G) = { |L (M)|β |M ∈ A(G) }.

We say that an ACG generates its object language.

If Σ′ is a tree signature and L (s) = o, then O(G) is a set of trees. In such
a case, we call G a tree ACG. If Σ′ is a string signature ΣV and L (s) = o→o,
then we call G a string ACG, and we say that G generates a string language
L ⊆ V ∗ if O(G) = { /w/ | w ∈ L }.

A constant c of the abstract vocabulary of an ACG G is lexical if L (c)
is not a combinator, i.e., if it contains at least one constant. We say that G

is lexicalized (in analogy with lexicalized tree-adjoining grammars ([14])) if all
its abstract constants are lexical. We denote the class of lexicalized ACGs by
Lex.

For m ≥ 2, n ≥ 1, G(m,n) denotes the class of ACGs G = 〈Σ, Σ′,L , s〉
such that the order of Σ is ≤ m and the order of L is ≤ n. An ACG G is
m-th order if G ∈ G(m,n) for some n. Note that if G ∈ G(m,n) is a string
ACG, n ≥ 2.

6

Kanazawa

Example 2.1 Let G = 〈Σ, Σ′,L , s〉, where

A = {p1, p2, p3, q, s}, A′ = {o},

C = {a,b,c,d,e, f}, C ′ = {a, b, c},

τ(a) = (p1→ s)→ s, τ ′(a) = o→ o,

τ(b) = (p2→ s)→ s, τ ′(b) = o→ o,

τ(c) = (p3→ s)→ s, τ ′(c) = o→ o,

τ(d) = q→ s,

τ(e) = p1→ p2→ p3→ q→ q,

τ(f) = q,

L (p1) = o→ o, L (a) = λu.a(u(λz.z)),

L (p2) = o→ o, L (b) = λu.b(u(λz.z)),

L (p3) = o→ o, L (c) = λu.c(u(λz.z)),

L (q) = o→ o, L (d) = λv.v,

L (s) = o→ o, L (e) = λx1x2x3vz.x1(x2(x3(vz))),

L (f) = λz.z.

Then G ∈ G(3, 2). Let

P = a(λx1.b(λy1.b(λy2.a(λx2.c(λz1.c(λz2.d(ex1y1z1(ex2y2z2f)))))))).

We have P ∈ A(G) and |L (P)|β = /abbacc/, so /abbacc/ ∈ O(G). It is not
hard to see O(G) = { /w/ | w ∈ mix }, where

mix = {w ∈ {a, b, c}∗ | a, b, c occur in w the same number of times }.

It is not yet known whether the universal membership problem “M ∈
O(G)?” for ACGs is decidable. It is known ([10,19]) that this problem is
at least EXPSPACE-hard. Restricted to the class of lexicalized ACGs, the
universal membership problem becomes NP-complete ([16,19]).

As for the generative capacity of ACGs, no r.e. set has been found that can-
not be generated by any ACGs. The languages generated by lexicalized ACGs
form a subset of NP that contains some NP-complete languages ([16,19]).

It has been shown that many well-known grammar formalisms can be en-
coded by second-order ACGs in a direct way ([8,9,11]). The tree languages
generated by ACGs in G(2, 1) are exactly the regular tree languages, and the
string languages generated by ACGs in G(2, 2) are exactly the context-free
languages. De Groote and Pogodalla [11] prove that the string languages
generated by ACGs in G(2, 3) include those generated by linear non-deleting

context-free tree grammars, and the method employed there also shows that
the tree languages generated by ACGs in G(2, 2) include those generated by
linear non-deleting context-free tree grammars (see [15] for a complete proof).
De Groote and Pogodalla [11] also show that ACGs in G(2, 4) can encode lin-

ear context-free rewriting systems (LCFRSs, [18]), so that the string languages

7

Kanazawa

generated by the latter are included in those generated by the former. 2 It
is easy to see that the string languages generated by second-order ACGs are
semilinear. Salvati [16] shows that the object language of any second-order
ACG is in PTIME. 3

3 General closure properties

In this section, we prove some properties of the languages generated by arbi-
trary ACGs, not just string or tree ACGs.

Lemma 3.1 (Composition with a lexicon) Let G1 = 〈Σ0, Σ1,L1, s〉 ∈
G(m,n), and let L2 be a k-th order lexicon from Σ1 to Σ2. Then G2 =
〈Σ0, Σ2,L2◦L1, s〉 ∈ G(m,n+k−1) and O(G2) = { |L2(N)|β | N ∈ O(G1) }.

Let Σ = 〈A,C, τ〉 be a higher-order signature. Let c ∈ C and let L ⊆ {N ∈
Λlin(Σ) | `Σ N : τ(c) }. For M ∈ Λlin(Σ), we define M [c ← L] inductively as
follows:

x[c← L] = {x} for x ∈ X,

d[c← L] = {d} for d ∈ C with d 6= c,

c[c← L] = L,

(MN)[c← L] = {PQ | P ∈M [c← L] and Q ∈ N [c← L] },

(λx.M)[c← L] = {λx.P | P ∈M [c← L] }.

If L′ ⊆ Λlin(Σ), we define L′[c← L] by

L′[c← L] =
⋃

M∈L′

M [c← L].

Lemma 3.2 (Closure under substitution) Let G1 = 〈Σ1, Σobj,L1, s1〉
and G2 = 〈Σ2, Σobj,L2, s2〉 be in G(m,n). Suppose that c ∈ Cobj and

τobj(c) = L2(s2). Then there is a G ∈ G(m,n) such that O(G) = { |P |β |
P ∈ O(G1)[c← O(G2)] }. Moreover, if G1,G2 ∈ Lex, then G ∈ Lex.

Proof. Without loss of generality, we assume that A1∩A2 = ∅ and C1∩C2 =
∅. Let

A = A1 ∪ A2, C = C1 ∪ C2.

Define τ : C → T (A) and a lexicon L from Σ = 〈A,C, τ〉 to Σobj as follows.

2 Seki et al. [17] show that the family of multiple context-free languages coincides with the
family of languages generated by LCFRSs.
3 As for third-order ACGs, Yoshinaka and Kanazawa [19] show that ACGs in G(3, 2) can
generate string languages that are not semilinear, and Salvati [16] shows that ACGs in
G(3, 1) can generate NP-complete tree languages.

8

Kanazawa

Let

L (p) =

{

L1(p) if p ∈ A1,

L2(p) if p ∈ A2.

For d ∈ C1, if L1(d) has k occurrences of c, let

τ(d) = sk
2→ τ1(d), L (d) = λy1 . . . yk.Pd[y1, . . . , yk],

where Pd[y1, . . . , yk] ∈ Λlin(Σobj) and Pd[c, . . . , c] = L1(d). For d ∈ C2, let

τ(d) = τ2(d), L (d) = L2(d).

Then G = 〈Σ, Σobj,L , s1〉 ∈ G(m,n) and it is not difficult to see O(G) =
{ |P |β | P ∈ O(G1)[c← O(G2)] }.

To make G lexicalized when G1 and G2 are, modify the construction as
follows. If d ∈ C1 is non-lexical in G , replace it with the following set of
constants

{ de | e ∈ C2 and τ2(e) ends in s2 },

and let

τ(de) = sk−1
2 → α1→ · · · → αl→ τ1(d),

L (de) = λy2 . . . ykz1 . . . zl.Pd[L2(e)z1 . . . zl, y2, . . . , yk],

where τ2(e) = α1→ · · · → αl→ s2, and k and Pd[y1, . . . , yk] are as above. 2

A lexicon L from Σ to Σ′ is called a relabeling if L (c) ∈ C ′ for all
c ∈ C and L (p) ∈ A′ for all p ∈ A. If L ⊆ Λlin(Σ

′), we let L −1(L) denote
{M ∈ Λlin(Σ

′) | L (M) ∈ L }.

Lemma 3.3 Let G = 〈Σ0, Σ1,L , s〉 be an ACG in G(m,n) and L1 be a

relabeling from Σ′
1 to Σ1. Let γ be a type in T (A′

1) such that L1(γ) = L (s).
Then one can find an ACG G ′ in G(m,n) such that

O(G ′) = {M ∈ Λlin(Σ
′
1) |M is β-normal and `Σ′

1
M : γ } ∩L

−1
1 (O(G)).

Moreover, if G ∈ Lex, then G ′ ∈ Lex.

Proof. Define a signature Σ′
0 by

A′
0 = { pβ | p ∈ A0, β ∈ T (A′

1),L1(β) = L (p) },

C ′
0 = { d〈c,N,β〉 | c ∈ C0, N ∈ Λlin(Σ

′
1), β ∈ T (A′

1),

L1(N) = L (c),L1(β) = L (τ(c)), and `Σ′

1
N : β },

τ ′
0(d〈c,N,β〉) = anti(τ(c), β),

9

Kanazawa

where

anti(p, β) = pβ, anti(α1→ α2, β1→ β2) = anti(α1, β1)→ anti(α2, β2).

Note that τ ′
0(d〈c,N,β〉) is always defined and is a most specific common anti-

instance of τ(c) and β.

Define a lexicon L0 = 〈σ0, θ0〉 from Σ′
0 to Σ0 and a lexicon L ′ = 〈σ′, θ′〉

from Σ′
0 to Σ′

1 as follows:

σ0(p
β) = p, σ′(pβ) = β,

θ0(d〈c,N,β〉) = c, θ′(d〈c,N,β〉) = N.

We have

L ◦L0 = L1 ◦L
′,

as is depicted in the following diagram:

`Σ0
c : τ(c)

L
`Σ1

L (c) : L (τ(c))

L0 L1

`Σ′

0
d〈c,N,β〉 : anti(τ(c), β)

L ′
`Σ′

1
N : β

Let G ′ = 〈Σ′
0, Σ

′
1,L

′, sγ〉. It is easy to see G ′ ∈ G(m,n), and G ′ ∈ Lex if
G ∈ Lex.

Claim. O(G ′) ⊆ {M ∈ Λlin(Σ
′
1) | M is β-normal and `Σ′

1
M : γ } ∩

L
−1
1 (O(G)).

Suppose M ∈ O(G ′). Clearly, M ∈ Λlin(Σ
′
1), M is β-normal, and

`Σ′

1
M : γ. Let P ∈ A(G ′) be such that L ′(P) ³β M . Since `Σ′

0
P : sγ, we

have `Σ0
L0(P) : s, so |L0(P)|β ∈ A(G). Since L (L0(P)) = L1(L

′(P)),
we have L1(M) = L1(|L

′(P)|β) = |L1(L
′(P))|β = |L (L0(P))|β =

|L (|L0(P)|β)|β ∈ O(G).

Claim. {M ∈ Λlin(Σ
′
1) | M is β-normal and `Σ′

1
M : γ } ∩ L

−1
1 (O(G)) ⊆

O(G ′).

Suppose that M ∈ Λlin(Σ
′
1), M is β-normal, `Σ′

1
M :γ, and L1(M) ∈ O(G).

Let M̂ [x1, . . . , xn] be a constant-free linear λ-term such that M̂ [a′
1, . . . , a

′
n] =

M , where a′
1, . . . , a

′
n ∈ C ′

1. For i = 1, . . . , n, let L1(a
′
i) = ai. Then L1(M) =

M̂ [a1, . . . , an]. Since L1(M) ∈ O(G), there is a P ∈ A(G) such that L (P)³β

M̂ [a1, . . . , an]. Let P̂ [y1, . . . , ym] be a constant-free linear λ-term such that

10

Kanazawa

P̂ [c1, . . . , cm] = P , where c1, . . . , cm ∈ C0. We have

y1 : τ0(c1), . . . , ym : τ0(cm) ` P̂ [y1, . . . , ym] : s. (1)

Since L (P) = P̂ [L (c1), . . . ,L (cm)] ³β M̂ [a1, . . . , an] by non-erasing
non-duplicating β-reduction, we can find, for i = 1, . . . ,m, a constant-free
linear λ-term N̂i with FV(N̂i) ⊆ {x1, . . . , xn} such that

N̂i[x1 := a1, . . . , xn := an] = L (ci), P̂ [N̂1, . . . , N̂m]³β M̂ [x1, . . . , xn].

For 1 ≤ i ≤ m, let Ni = N̂i[x1 := a′
1, . . . , xn := a′

n], so that

L1(Ni) = L (ci). (2)

Then
P̂ [N1, . . . , Nm]³β M (3)

by non-erasing non-duplicating β-reduction. Since `Σ′

1
M : γ, we get

`Σ′

1
P̂ [N1, . . . , Nm] : γ (4)

by the Subject Expansion Theorem.

Let D be the unique λ→Σ′

1
-deduction of (4). For each i = 1, . . . ,m, D

contains a subdeduction Di of

`Σ′

1
Ni : βi (5)

for some βi ∈ T (A′
1), such that

y1 : β1, . . . , ym : βm ` P̂ [y1, . . . , ym] : γ. (6)

It is easy to see that applying the lexicon L1 to each step of D gives a λ→Σ1
-

deduction D ′ of
`Σ1

P̂ [L (c1), . . . ,L (cm)] : L (s).

Since P̂ [L (c1), . . . ,L (cm)] = L (P), we see that L1 maps Di to the unique
λ→Σ1

-deduction of
`Σ1

L (ci) : L (τ(ci)).

It follows that
L1(βi) = L (τ(ci)). (7)

By (2), (5), and (7),
d〈ci,Ni,βi〉 ∈ C ′

0.

Let τ ′
0(d〈ci,Ni,βi〉) = δi for i = 1, . . . ,m. By the definition of τ ′

0,

〈δ1, . . . , δm, sγ〉

is a most specific common anti-instance of

〈τ(c1), . . . , τ(cm), s〉 and 〈β1, . . . , βm, γ〉.

11

Kanazawa

By the Principal Pair Theorem, it follows from (1) and (6) that

y1 : δ1, . . . , ym : δm ` P̂ [y1, . . . , ym] : sγ

and hence
`Σ′

0
P̂ [d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] : sγ.

Therefore, P̂ [d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] ∈ A(G ′). Since

L
′(P̂ [d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉]) = P̂ [L ′(d〈c1,N1,β1〉), . . . ,L

′(d〈cm,Nm,βm〉)]

= P̂ [N1, . . . , Nm],

we conclude from (3) that M ∈ O(G ′). 2

4 String languages of ACGs

4.1 ACGs and full AFLs

Let us consider the family Lstr(m,n) of string languages generated by ACGs
in G(m,n) (m,n ≥ 2). Lemma 3.2 implies that Lstr(m,n) is closed under
substitution. Since Lstr(2, 2) includes all regular sets, it follows that Lstr(m,n)
is closed under union, concatenation, Kleene star, and homomorphism.

We now prove that Lstr(m,n) is closed under intersection with regular sets.

Lemma 4.1 (Closure under intersection with regular sets) Let G =
〈Σ0, ΣV ,L , s〉 be a string ACG in G(m,n) and let R be a regular lan-

guage over V . Then one can find an ACG G∩R in G(m,n) such that

O(G∩R) = O(G) ∩ { /w/ | w ∈ R }.

Proof. By closure under union, it suffices to consider the case where R is
an ε-free regular language over V . Then R is accepted by a nondeterministic
finite automaton M = 〈Q, V, δ, qI , {qF}〉 without ε-transitions which has just
one final state. Define a signature ΣM = 〈Q,CM, τM〉 by

CM = { ar→q | a ∈ V, r ∈ δ(q, a) }, τM(ar→q) = r→ q.

Define a lexicon LM = 〈σM, θM〉 from ΣM to ΣV by

σM(q) = o for all q ∈ Q, θM(ar→q) = a.

Then LM is a relabeling, and we have `ΣM
N : qF → qI if and only if

LM(N) =βη /w/ for some w ∈ R. By Lemma 3.3, we can form an ACG
G ′ = 〈Σ′

0, ΣM,L ′, sqF→qI 〉 ∈ G(m,n) such that

O(G ′) = {M ∈ Λlin(ΣM) |M is β-normal and `ΣM
M : qF → qI }∩L

−1
M

(O(G)).

Then G∩R = 〈Σ′
0, ΣV ,LM ◦L ′, sqF→qI 〉 is the required ACG. 2

12

Kanazawa

To see that Lstr(m,n) is closed under inverse homomorphism, we can use
the following fact:

Fact ([7]). If a family of languages includes the regular sets and is closed

under substitution and intersection with regular sets, then it is closed under

inverse homomorphism.

Theorem 4.2 The family of string languages generated by ACGs in G(m,n)
is a substitution-closed full AFL for all m,n ≥ 2.

Corollary 4.3 The family of string languages generated by ACGs is a

substitution-closed full AFL.

4.2 Lexicalized ACGs

Now let us consider the family Llex
str(m,n) of string languages generated by

ACGs in G(m,n) ∩ Lex (m,n ≥ 2). By Lemma 3.2, Llex
str(m,n) is closed

under substitution. Since Llex
str(2, 2) includes all ε-free regular sets, it follows

that Llex
str(m,n) is closed under union, concatenation, Kleene plus, and ε-free

homomorphism. Lemma 4.1 holds with G(m,n) ∩ Lex in place of G(m,n),
so Llex

str(m,n) is also closed under intersection with regular sets.

We do not know whether Llex
str(m,n) is closed under inverse homomorphism;

this cannot be proved in the same way as for Lstr(m,n). We can prove,
however, that the family of string languages generated by all lexicalized ACGs
is closed under inverse homomorphism. A homomorphism h from V ∗

1 to V ∗
2 is

a k-limited erasing on L ⊆ V ∗
1 if for every uvw ∈ L, h(v) = ε implies |v| ≤ k.

Fact ([7]). If a family of ε-free languages includes the ε-free regular sets and is

closed under substitution, intersection with regular sets, and k-limited erasing

for all k, then it is closed under inverse homomorphism.

Lemma 4.4 The family of string languages generated by lexicalized ACGs is

closed under k-limited erasing for all k.

Proof. Let G = 〈Σ, ΣV1
,L , s〉 be a lexicalized string ACG generating L ⊆ V +

1

and h : V ∗
1 → V ∗

2 be a k-limited erasing on L. We can assume without loss
of generality that for every c ∈ C, L (c) contains exactly one occurrence of a
constant. Let Lh be the first-order lexicon from ΣV1

to ΣV2
such that Lh(a) =

/h(a)/ for all a ∈ V1. We construct a lexicalized ACG G ′ = 〈Σ′, ΣV2
,L ′, s〉

generating h(L) as follows. We let A′ = A and L ′(p) = L (p) for all p ∈ A′.
For each non-empty subset {c1, . . . , ci} of C with i ≤ k + 1 elements, C ′

contains the constant d{c1,...,ci} with τ ′(d{c1,...,ci}) = (τ(c1)→· · ·→τ(ci)→s)→s
and L ′(d{c1,...,ci}) = Lh(λx.xL (c1) . . . L (ci)), provided that this definition
makes d{c1,...,ci} lexical. We omit the proof of correctness. 2

Theorem 4.5 The family of string languages generated by lexicalized ACGs

is a substitution-closed AFL.

13

Kanazawa

Since we know from [15] that
⋃

n Llex
str(2, n) is the set of ε-free languages in

⋃

n Lstr(2, n), Theorem 4.2 implies the following:

Corollary 4.6 The family of string languages generated by second-order lex-

icalized ACGs is a substitution-closed AFL.

5 Tree languages of ACGs

Let us now look at the family Ltree(m,n) of tree languages generated by ACGs
in G(m,n) (m ≥ 2, n ≥ 1).

The tree concatenation of L1, L2 ⊆ TF is the result of tree substitution
L1[c ← L2] (where c ∈ F0) and is denoted by L1 ·c L2. The iterated tree

concatenation L∗,c is defined to be
⋃

n≥0 Ln,c, where

L0,c = {c}, Ln+1,c = Ln,c ∪ Ln,c ·c L.

When variables are added to a ranked alphabet, they assume rank 0. A tree

homomorphism is a mapping h : F → TF ′∪X such that h(f) ∈ TF ′∪{x1,...,xn} for
all f in Fn. It is linear if xi occurs at most once in h(f), and non-deleting if for
each i = 1, . . . , n, xi occurs at least once in h(f). If h is a tree homomorphism
and T is a tree, h(T) is defined by induction as follows:

h(fT1 . . . Tn) = h(f)[h(T1)/x1, . . . , h(Tn)/xn].

The methods used in the previous section yield the following result about
Ltree(m,n):

Theorem 5.1 The family of tree languages generated by ACGs in G(m,n)
is closed under union, tree concatenation, linear non-deleting tree homomor-

phism, and intersection with regular tree languages.

The closure under iterated concatenation requires a fresh method; we only
have one that works with second-order ACGs.

Theorem 5.2 The family of tree languages generated by ACGs in G(2, n) is

closed under iterated tree concatenation.

Given a symbol c 6∈ F , the c-insertion is a mapping 〈c〉 : TF →P(TF∪{c})
(c has rank 1 in F ∪ {c}) defined as follows:

〈c〉(fT1 . . . Tn) = { ck(fT ′
1 . . . T ′

n) | k ≥ 0 and T ′
i ∈ 〈c〉(Ti) for i = 1, . . . , n },

where ckT denotes the tree c(. . . (c
︸ ︷︷ ︸

k times

T) . . .). This mapping is extended to a

mapping from tree languages to tree languages by 〈c〉(L) =
⋃

T∈L〈c〉(T).

Lemma 5.3 Ltree(m,n) is closed under c-insertion.

14

Kanazawa

We refer the reader to [3] for the definition of linear non-deleting (bottom-
up or top-down) finite tree transducers (with ε-rules).

Theorem 5.4 The family of tree languages generated by ACGs in G(m,n)
is closed under linear non-deleting finite tree transduction.

Proof. Let L ⊆ TF be a tree language in Ltree(m,n), and let c 6∈ F . By
Lemma 5.3, there is a tree ACG G = 〈Σ, ΣF∪{c},L , s〉 in G(m,n) generating
〈c〉(L).

Let M = 〈Q,F, F ′, {qF}, δ〉 be a linear non-deleting bottom-up tree trans-
ducer (with ε-rules) with just one final state. Define a signature ΣM =
〈Q,CM, τM〉 by

CM = { f q1→···→qn→q
U | f(q1(x1), . . . , qn(xn))→ q(U) ∈ δ } ∪ { cq→q′

U | q(x1)→ q′(U) ∈ δ },

τM(f q1→···→qn→q
U) = q1→ · · · → qn→ q, τM(cq→q′

U) = q→ q′.

Define a relabeling L in
M

= 〈σM, θin
M
〉 from ΣM to ΣF∪{c} by

σM(q) = o for all q, θin
M

(f q1→···→qn→q
U) = f, θin

M
(cq→q′

U) = c.

By Lemma 3.3, we can find an ACG G ′ ∈ G(m,n) such that O(G ′) = {M ∈
Λlin(ΣM) | M is β-normal and `M : qF } ∩ (L in

M
)−1(〈c〉(L)). Define a first-

order lexicon L out
M

= 〈σM, θout
M
〉 from ΣM to ΣF ′ by

θout
M

(f q1→···→qn→q
U) = λx1 . . . xn.U, θout

M
(cq→q′

U) = λx1.U.

By composing G ′ with L out
M

we can form a desired ACG in G(m,n) generating
the image of L under M. 2

The above theorem does not imply closure under inverse tree homomor-
phism. Although Ltree(2, 1) (the family of regular tree languages) is closed
under inverse tree homomorphism, we have no good reason to expect that
the same holds of Ltree(m,n) with other choices of m,n. 4 However, one can
express an inverse linear tree homomorphism with the composition of a c-
insertion, an inverse relabeling, and a third-order lexicon, and this leads to
the following result:

Theorem 5.5 The family of tree languages generated by m-th order ACGs is

closed under inverse linear tree homomorphism.

References

[1] Aho, Alfred V. Indexed grammars—An extension of context-free grammars.
Journal of the Association for Computing Machinery 15, 647–671, 1968.

4 Note that the family of tree languages generated by context-free tree grammars is not
closed under h−1 even when h is linear and non-deleting ([2]).

15

Kanazawa

[2] Arnold, André and Max Dauchet. Forêts algébriques et homomorphismes
inverses. Information and Control 37, 182–196, 1978.

[3] Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications. Available online at http://www.grappa.univ-lille3.fr/tata/,
2002.

[4] Gazdar, Gerald. Applicability of indexed grammars to natural languages. In
U. Reyle and C. Rohrer, editors, Natural Language Parsing and Linguistic
Theories, pages 69–94. Dordrecht: Reidel, 1988.

[5] Gécseg, Ferenc and Magnus Steinby. Tree languages. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Vol. 3: Beyond
Words, pages 1–68. Berlin: Springer, 1997.

[6] Ginsburg, Seymour and Sheila Greibach. Abstract families of languages. In
Studies in Abstract Families of Languages, pages 1–32. Memoir No. 87.
Providence, R.I.: American Mathematical Society, 1969.

[7] Greibach, Sheila and John Hopcroft. Independence of AFL operators. In Studies
in Abstract Families of Languages, pages 33–40. Memoir No. 87. Providence,
R.I.: American Mathematical Society, 1969.

[8] de Groote, Philippe. Towards abstract categorial grammars. In Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, pages 148–155, 2001.

[9] de Groote, Philippe. Tree-adjoining grammars as abstract categorial grammars.
In Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+6), pages 101–106. Universitá di Venezial, 2002.

[10] de Groote, Philippe, Bruno Guillaume, and Sylvain Salvati. Vector addition
tree automata. In Proceedings of the 19th Annual IEEE Symposium on Logic
in Computer Science, pages 64–73, 2004.

[11] de Groote, Philippe and Sylvain Pogodalla. On the expressive power of abstract
categorial grammars: Representing context-free formalisms. Journal of Logic,
Language and Information 13, 421–438, 2004.

[12] Hindley, J. Roger. BCK-combinators and linear λ-terms have types. Theoretical
Computer Science 64, 97–105, 1989.

[13] Hindley, J. Roger. Basic Simple Type Theory. Cambridge: Cambridge University
Press, 1997.

[14] Joshi, Aravind K. and Yves Schabes. Tree-adjoining grammars. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, Vol. 3:
Beyond Words, pages 69–123. Berlin: Springer, 1997.

[15] Kanazawa, Makoto and Ryo Yoshinaka. Lexicalization of second-order ACGs.
NII Technical Report. NII-2005-012E. National Institute of Informatics, Tokyo,
2005.

16

http://www.grappa.univ-lille3.fr/tata/

Kanazawa

[16] Salvati, Sylvain. Problèmes de Filtrage et Problèmes d’analyse pour les
Grammaires Catégorielles Abstraites. Doctoral thesis. Institut National
Polytechnique de Lorraine, 2005.

[17] Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On
multiple context-free grammars. Theoretical Computer Science 88, 191–229,
1991.

[18] Weir, David J. Characterizing Mildly Context-Sensitive Grammar Formalisms.
Ph.D. dissertation. University of Pennsylvania, 1988.

[19] Yoshinaka, Ryo and Makoto Kanazawa. The complexity and generative capacity
of lexicalized abstract categorial grammars. In Philippe Blache, Edward Stabler,
Joan Busquets, and Richard Moot, editors, Logical Aspects of Computational
Linguistics: 5th International Conference, LACL 2005, pages 330–346. Berlin:
Springer, 2005.

17

	Introduction
	Preliminaries
	Abstract Families of Languages
	Type Assignment System
	Trees and Strings as Linear -terms
	Abstract Categorial Grammars

	General closure properties
	String languages of ACGs
	ACGs and full AFLs
	Lexicalized ACGs

	Tree languages of ACGs
	References

