Monadic Quantifiers Recognized by Deterministic Pushdown Automata: Corrigendum (January 1, 2014)

Makoto Kanazawa
National Institute of Informatics, Tokyo, Japan
kanazawa@nii.ac.jp

Lemma 3 on page 142 of my paper for the 19th Amsterdam Colloquium (Kanazawa 2013), attributed to Harrison 1978, was stated incorrectly. It should be corrected as follows:

Lemma 3. Let \(L \subseteq \Sigma^* \) be a DCFL. There exists a regular set \(R \subseteq L \) satisfying the following property: for every \(w \in L - R \), there exist \(x_1, x_2, x_3, x_4, x_5 \) such that

(i) \(w = x_1x_2x_3x_4x_5 \);
(ii) \(x_2x_4 \neq \varepsilon \);
(iii) for every \(z \in \Sigma^* \) and \(n \in \mathbb{N} \), \(x_1x_2x_3x_4z \in L \) if and only if \(x_1x_2^n x_3x_4^n z \in L \).

We also need to refer to Proposition 8 on page 146, which can be proved with the help of the following lemma:

Lemma A. Let \(L \subseteq \Sigma^* \) be a regular language. There exists a positive integer \(p \) satisfying the following property: for every \(w \in L \) with \(|w| \geq p \), there exist \(x_1, x_2, x_3 \) such that

(i) \(w = x_1x_2x_3 \);
(ii) \(x_2 \neq \varepsilon \);
(iii) \(|x_1x_2| \leq p \);
(iv) for every \(z \in \Sigma^* \) and \(n \in \mathbb{N} \), \(x_1x_2z \in L \) if and only if \(x_1x_2^n z \in L \).

The paragraph after Lemma 4 should be corrected as follows:

To prove the “only if” direction of Theorem 1, suppose that \(W_Q \) is recognized by a deterministic PDA. By Parikh’s theorem, \(V_Q \) is semilinear. If \(W_Q \) is regular, then by Proposition 8, \(V_Q \) satisfies the conditions of the theorem. If \(W_Q \) is not regular, then, by Lemma 3, there must be \(w = x_1x_2x_3x_4x_5 \in W_Q \) that satisfies the conditions (i)–(iii) of Lemma 3. . . .

It’s not immediately obvious how Lemma 3 follows from Harrison’s (1978) iteration theorem for DCFL. See my blog post at http://makotokanazawa.blogspot.jp/2013/12/machine-based-approach-to-pumping.html for a direct proof of Lemma 3.

References