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Abstract
I outline a natural algorithm for solving a central problem in the task of learning word-to-
meaning mappings, as formulated by Siskind (1996, 2000) and extended to the typed lambda
calculus setting by Kanazawa (2001). The algorithm is based on a new syntactical method for
proving the Interpolation Theorem for the implicational fragment of intuitionistic propositional
logic.

A central problem in the task of learning word-to-meaning mappings, as formu-
lated by Siskind (1996, 2000), can be illustrated by the following example. The learner
knows from the outset that the meaning of each word is represented by some first-order
term with zero or more free variables, and the sentence meaning is composed from the
meanings of the component words by performing a sequence of substitutions in a suit-
able order. Suppose that the learner has already inferred from evidence presented so far
that the meaning oflifted, whatever it is, is built up from three symbols CAUSE, GO,
and UP, together with some number of variables. Suppose that the learner is now given
the information that the meaning ofJohn lifted Maryis represented by the first-order
term

CAUSE(John,GO(Mary ,UP)).

The available evidence suffices to uniquely pin down the meaning oflifted to

CAUSE(x,GO(y,UP)),

which can be computed by a simple algorithm, even if the meanings ofJohnandMary
may still be indeterminate.

Following Kanazawa (2001), I generalize this problem to the typed lambda calcu-
lus setting as follows. The meaning of each word is represented by a closedλI -term
(with one or more constant symbols). The meaning of a sentence is obtained by plug-
ging the meanings of the words in a suitablemeaning recipe, represented by alinear
(or BCI) λ-term (containing one free variable for each of the words) of typet and
then computing theβ-normal form of the resultingλ-term. The central problem now
becomes:

Mapping Problem. Given a closedλI -term N of type t in β-normal form containing
constant symbolscA1

1 , . . . , c
Am
m ,d

B1
1 , . . . ,d

Bn
n (m≥ 1,n ≥ 0), find a closedλI -termM (of

typeE) satisfying the following conditions:

• The constant symbols appearing inM arecA1
1 , . . . , c

Am
m ;



• There is aλI -term P[zE] of type t with zE as its only free variable such that
P[M] →→β N.

In the above formulation,N is the meaning of a sentence,{cA1
1 , . . . , c

Am
m } is the set of

constant symbols that are in one of the words in the sentence, andP[zE] is supposed
to be the result of combining the meaning recipe for the sentence (aλI -term) and the
meanings of the remaining words (linearλ-terms). (P[zE] is not just anyλI -term—for
example, it must be a linearλ-term in casen = 0, but this point will be ignored.)

An instance of the Mapping Problem may be given by theλI -term

∀(λxe.→(thing x)(give Bill x John)) (1)

with its set of constants divided into{∀,→, thing} and{give,Bill , John}. (Here,∀,→,
thing, give, Bill , andJohn are constants of type (e→ t)→ t, t→ t→ t, e→ e→ e→ t,
e, ande, respectively.) The aboveλ-term is supposed to represent the meaning ofJohn
gave Bill everything, and the problem is to build a correct meaning foreverythingout
of ∀,→, thing.

Unlike in the first-order case of Siskind, the Mapping Problem in the general
higher-order setting has many solutions of varying strengths. The following are some
of the solutions, along with their types, to the above instance of the Mapping Problem:

λw((e→e→t)→t)→(t→t→t)→(e→t)→t.w (λue→e→t.∀(λxe.uxx))→ thing

: (((e→ t)→ t)→ (t→ t→ t)→ (e→ t)→ t)→ t
(2)

λue→t.∀(λxe.→(thing x)(ux)) : (e→ t)→ t (3)

λve→e→tye.∀(λxe.→(thing x)(vxy)) : (e→ e→ t)→ e→ t (4)

λwe→e→e→tzeye.∀(λxe.→(thing x)(wzxy)) : (e→ e→ e→ t)→ e→ e→ t (5)

The solutions (2)–(5) are linearly ordered in terms of their strength, with (2) as the
strongest. The notion of ‘strength’ in question is given by the following pre-order on
terms, which I call thedefinability ordering(Kanazawa 2001).

Definition 1. Let MA andNB be closedλ-terms (with constants) inβ-normal form.
NB is BCI-definablein terms ofMA (written NB � MA) if and only if there is a linear
λ-termPB[zA] without constants whose only free variable iszB such thatPC[MA] →→β
NB.

Note that ifNB � MA, the set of constants that occur inMA is the same as the set
of constants that occur inNB.

Proposition 2. Let MA and NB be closedλI-terms such that NB � MA. If MA solves
an instance of the Mapping Problem, then NB solves it, too.

Continuing with the example (1), which solution does one want? One certainly
does not want the strongest (2), which wildly overgenerates: for instance, it can be
used to produce

∀(λxe.→(give Bill x John)(thing x)) (6)



as a meaning forJohn gave Bill everything.1 Nor does one want the weakest (5), which
cannot even generate the meaning for a sentence likeJohn saw everything. The weak-
est meaning cannot be a principled solution because in general assigning the weakest
meaning to one word in a sentence is incompatible with assigning the weakest meaning
to another word in the same sentence. Kanazawa’s (2001) algorithm finds the solution
(4), which is too weak to generate the meaning for an intransitive sentence likeevery-
thing disappeared. In this paper, I outline an algorithm that finds (3), which has the
simplest type and happens to be the conventionally assumed meaning foreverything.

A solution to the Mapping Problem which has a simplest type can be found by
a syntactical proof of theInterpolation Theoremfor intuitionistic propositional logic,
which states:

Interpolation Theorem. If a sequent A1, . . . ,Am, B1, . . . , Bn ⇒ C is provable, then
there are provable sequents A1, . . . ,Am ⇒ E and E, B1, . . . , Bn ⇒ C such that all
propositional variables in C occur both in A1, . . . ,Am and in B1, . . . , Bn⇒ C.

There are two well-known syntactical methods for proving this theorem. Mae-
hara’s method (see Troelstra and Schwichtenberg 2000) works on sequent calcu-
lus and Prawitz’s (1965) method works on natural deduction. Both methods take
a (cut-free or normal) proofD : A1, . . . ,Am, B1, . . . , Bn ⇒ C as input and com-
pute two proofsD1 : A1, . . . ,Am ⇒ E andD0 : E, B1, . . . , Bn ⇒ C which sat-
isfy the condition in the theorem. Crucially for our purposes, the proofsD1

and D0 found by these methods in fact satisfy much stronger conditions. Let
NC[xA1

1 , . . . , x
Am
m , y

B1
1 , . . . , y

Bn
n ],ME[xA1

1 , . . . , x
Am
m ],PC[zE, yB1

1 , . . . , y
Bn
n ] be the λ-terms

corresponding to the proofsD,D1,D0, respectively. Then we have:

(i) PC[ME[xA1
1 , . . . , x

Am
m ], yB1

1 , . . . , y
Bn
n ] →→β NC[xA1

1 , . . . , x
Am
m , y

B1
1 , . . . , y

Bn
n ];

(ii) No two occurrences of the same propositional variable insideE arelinked inD1

orD0.

The condition (i) is pointed out by̌Cubríc (1994) for Prawitz’s method, and the con-
dition (ii) is stated by Carbone (1997), who works on sequent calculus. The notion of
links referred to in (ii) is easiest to explain with reference to cut-free sequent deriva-
tions: two occurrences of a variable in the endsequent are linked if they originated
opposite to each other in an initial sequent. The condition (ii) implies2 that each oc-
currence of a propositional variable insideE has a counterpart linked to it outsideE,
and the usual condition for an interpolant follows.

Let us deviate from standard usage and call a termME[xA1
1 , . . . , x

Am
m ]

an interpolant to the term NC[xA1
1 , . . . , x

Am
m , y

B1
1 , . . . , y

Bn
n ] if there is a term

PC[zE, yB1
1 , . . . , y

Bn
n ] such that M,N,P satisfy the above conditions (i) and (ii).

1One can indeed write a grammar (with syntax and semantics) whereeverythinghas the meaning
(2) andJohn gave Bill everythingis ambiguous between (1) and (6). One can do this with a Lambek
categorial grammar ifeverythingis allowed to be syntactically ambiguous. With alambda grammar
(Muskens 2001, to appear), one can even makeeverythingsyntactically unambiguous.

2The condition (ii) is stated for the relevance logicR, whose implicational fragment corresponds to
theλI -calculus. It needs to be strengthened for intuitionistic logic.



Replacing the constants∀,→, thing,give,Bill , John in (1)–(5) by free variables
x(e→t)→t

1 , xt→t→t
2 , xe→t

3 , y
e→e→e→t
1 , ye

2, y
e
3, respectively, we see that (3) is an interpolant

to (1) while (2), (4), (5) are not.
There are two complications, however. First, the Interpolation Theorem in

fact does not hold in the form stated above for the implicational fragment of
intuitionistic logic, which corresponds to the simply typedλ-calculus. Even if
A1, . . . ,Am, B1, . . . , Bn ⇒ C is a sequent in the implicational fragment, the interpo-
lation formulaE may have to contain∧. Moreover, Maehara’s and Prawitz’s methods
actually insert⊥ and∧ in places where they are not necessary; as a result, they produce
interpolation formulas more complex than (e→ t)→ t in the case at hand.

A way of circumventing this difficulty is to use a sequence of formulasE1, . . . ,Em

in place of a single formulaE in the statement of the theorem (see Wroński 1984 and
Pentus 1997). Both standard methods can be easily modified to accommodate this
change. The modified methods produce (3) when given (1) as input.

A second complication is that interpolants in the sense of (i), (ii) are not unique in
general. Maehara’s method (in the modified form) finds possibly different interpolants
for different sequent derivations corresponding to the sameλ-term; however, not all
interpolants are found in this way. Prawitz’s method finds one particular interpolant,
but there is no good way of characterizing this interpolant except for the fact that it is
the one found by Prawitz’s method. In particular, astrongestinterpolant (in the sense
that its type implies the types of all others) is sometimes missed by both these methods.

In a paper in preparation, I describe an algorithm for computing a strongest inter-
polant. The algorithm is similar to the (modified) Prawitz method in that it works by
induction on natural deduction proofs, but it is different in that in my method, assump-
tions never switch classes in the partition of the assumptions into two classes during
the course of the induction, like they do in the Prawitz method.

For example, given a natural deduction proof

x1 : (p4→ p7→ p9)→ p10

y1 : p8→ p9

x2 : (p1→ p6)→ p7→ p8

y2 : p5→ p6

x3 : p3→ p4→ p5

y3 : p2→ p3

x4 : p1→ p2 w : p1
p2

→E

p3
→E

p4→ p5
→E u : p4

p5
→E

p6
→E

p1→ p6
→I ,w

p7→ p8
→E v : p7

p8
→E

p9
→E

p7→ p9
→I , v

p4→ p7→ p9
→I ,u

p10
→E



my algorithm produces

x1 : (p4→ p7→ p9)→ p10

z1 : ((p2→ p6)→ p8)→ (p3→ p5)→ p9

x2 : (p1→ p6)→ p7→ p8

z2 : p2→ p6

x4 : p1→ p2 w : p1

p2
→E

p6
→E

p1→ p6
→I ,w

p7→ p8
→E v : p7

p8
→E

(p2→ p6)→ p8
→I , z2

(p3→ p5)→ p9
→E

x3 : p3→ p4→ p5 z3 : p3

p4→ p5
→E u : p4

p5
→E

p3→ p5
→I , z3

p9
→E

p7→ p9
→I , v

p4→ p7→ p9
→I ,u

p10
→E

(((p2→ p6)→ p8)→ (p3→ p5)→ p9)→ p10
→I , z1

while the Prawitz method produces

x1 : (p4→ p7→ p9)→ p10

z1 : ((((p2→ p3)→ p5)→ p6)→ p8)→ p9

x2 : (p1→ p6)→ p7→ p8

z2 : ((p2→ p3)→ p5)→ p6

x3 : p3→ p4→ p5

z3 : p2→ p3

x4 : p1→ p2 w : p1

p2
→E

p3
→E

p4→ p5
→E u : p4

p5
→E

(p2→ p3)→ p5
→I , z3

p6
→E

p1→ p6
→I ,w

p7→ p8
→E v : p7

p8
→E

(((p2→ p3)→ p5)→ p6)→ p8
→I , z2

p9
→E

p7→ p9
→I , v

p4→ p7→ p9
→I ,u

p10
→E

(((((p2→ p3)→ p5)→ p6)→ p8)→ p9)→ p10
→I , z1

which is strictly weaker. It remains to be seen whether there are instances of the
Mapping Problem involving linguistically natural word meanings for which the choice
among different interpolants is significant.

The decision to base a learning algorithm on interpolation has repercussions on the
question of whatλ-terms can be possible word meanings. The algorithm can only find
λ-termsME[xA1

1 , . . . , x
Am
m ] that are interpolants to themselves. In addition to (2), (4),

(5), this rules out otherwise innocent-looking

λue→t.u Johne, λv(e→t)→tue→t.seemt→t(vu), λue→txe.try t→e→t(ux)x,

λv(e→t)→txe.v(λye.finde→e→t y x),

in favor of
Johne, seemt→t, try t→e→t, finde→e→t,

while allowing both of

λv(e→t)→txe.try t→e→t(v(λye.finde→e→t y x))x, λyexe.try t→e→t(finde→e→t y x)x.

(I ignore intensionality for simplicity.) While this may not exactly be the restriction
one wants, some such restriction on theλI -terms that can represent word meanings
should add a welcome new perspective to type-logical semantics.



Even with the restriction to ‘self-interpolants’, my algorithm may not necessarily
find the correct meaning. For instance, if the meaning ofseeksis represented by an
unanalyzed constantseek((e→t)→t)→e→t rather than in terms oftry t→e→t andfinde→e→t,
from thede rereading ofJohn seeks a unicorn

∃
(e→t)→t(λye.∧(unicorne→t y)(seek((e→t)→t)→e→t(λue→t.uy)Johne)),

the algorithm finds Montague’s

seeke→e→t
∗ = λye.seek((e→t)→t)→e→t(λue→t.uy),

rather thanseek((e→t)→t)→e→t, which may not be a desirable result. This and many
other problems must be dealt with in order to achieve a successful generalization of
Siskind’s elegant approach to type-logical semantics. I will pursue this goal further in
future work.
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