
In Robert van Rooy and Martin Stokhof, editors, Proceedings of the Thirteen Amsterdam Colloquium, December 17-19, 2001, pp. 126-131.

Learning Word-to-Meaning Mappings in Logical Semantics

Makoto Kanazawa
University of Tokyo

Abstract. I generalize Siskind’s problem of learning word-to-meaning mappings to logical
semantics, and formulate the heart of the problem as a problem in typed lambda calculus. I
show that every instance of this ‘mapping problem’ has infinitely many solutions, but many
of them are equivalent in a certain sense. I show an algorithm for finding a reasonably small
solution with respect to a certain ‘definability’ relation between terms.

Siskind (1996, 2000) discusses the problem of learning word-to-meaning map-
pings from sentences coupled with their meanings. In his setup, sentence mean-
ings are represented by first-order terms built up from constants and function sym-
bols (called conceptual symbols), and word meanings are represented by first-order
terms with zero or more individual variables. For instance, the meaning of John
lifted Mary may be represented by

CAUSE(John,GO(Mary,UP)),

where CAUSE, John, GO, Mary, and UP are conceptual symbols. The learner is
fed with a stream of word strings coupled with expressions like the one above, and
is expected to arrive at a word-to-meaning mapping like:

John 7→ John
lifted 7→ CAUSE(x,GO(y,UP))
Mary 7→ Mary

(1)

Semantic composition is supposed to be done by substitution. An equivalent way of
looking at it is to view word meanings as λ-terms like λxy.CAUSE(x,GO(y,UP)),
where all subterms are of first-order types, and semantic composition as application
plus β-reduction.

Siskind shows that one can reduce the complexity of learning by breaking down
the learning process into two phases. In the first phase, the learner forms, for each
word, the set of conceptual symbols involved in the meaning of that word. This can
be done efficiently by an online algorithm that maintains two sets of conceptual
symbols: the set of symbols that are possibly in the correct word meaning, and
the set of symbols that are necessarily in the correct word meaning. The second
phase then builds the correct meaning expression out of the symbol set learned in
the first phase. For instance, suppose that the learner has arrived at the following
association of words with symbol sets:

John : {John}
lifted : {CAUSE,GO,UP}
Mary : {Mary}

Then, given that the sentence John lifted Mary has meaning
CAUSE(John,GO(Mary,UP)), the learner can now uniquely determine the
word-to-meaning mapping given in (1).

126



The aim of this paper is to study a generalization of Siskind’s problem, where
conceptual symbols, as well as variables, can be of arbitrary types, and meaning
expressions are typed λ-terms built out of these, using λ-abstraction as well as
application. This is the usual setup of logical semantics. For instance, the sen-
tence every man finds a unicorn may have a meaning represented by ∀x[MAN(x)→
∃y[UNICORN(y)∧FIND(x,y)]], which is just a shorthand for

∀(e→t)→t(λxe.→t→t→t (MANe→t(x))

(∃(e→t)→t(λye.∧t→t→t(UNICORNe→t(y))(FINDe→e→t(y)(x))))). (2)

The meanings of the words in this sentence may be (suppressing the type when it
is clear):

every 7→ λue→tve→t .∀(λxe.→ (ux)(vx))
man 7→ MAN
finds 7→ FIND
a 7→ λue→tve→t .∃(λye.∧(uy)(vy))
unicorn 7→ UNICORN

(3)

(I mostly follow the notational convention of Hindley 1997, except that I may write
the application of two terms M and N either MN or M(N), depending on which is
more readable.)

Just as in the simple first-order case of Siskind, the problem of learning word-
to-meaning mappings can be broken down into two subproblems: the problem of
finding for each word the set of constants that appear in the meaning of that word,
and the problem of building the correct λ-term for each word using the symbol set
associated with that word. The first problem can be solved efficiently in exactly the
same way as in the case of Siskind. How to solve the second problem was rather
obvious in the case of Siskind, but becomes far from so in our generalized setting.
I formulate the heart of the problem as a problem in typed λ-calculus.

Mapping Problem. Given m sets of distinct variables

~x1 = xσ1,1
1,1 , . . . ,x

σ1,n1
1,n1

...

~xm = xσm,1
m,1 , . . . ,xσm,nm

m,nm

and a λI-term T ρ[~x1, . . . ,~xm] (with free variables~x1, . . . ,~xm) in βη-normal form, find
m λI-terms Sτ1

1 [~x1], . . . ,Sτm
m [~xm] and a BCIλ-term Dρ[yτ1

1 , . . . ,yτm
m ], each in βη-normal

form, such that
D[S1[~x1], . . . ,Sm[~xm]] .βη T [~x1, . . . ,~xm].

I denote this problem by T ρ[~x1; . . . ;~xm], and I call 〈Sτ1
1 [~x1], . . . ,Sτm

m [~xm]〉 a solution to
this problem.

In the solution to a mapping problem, Sτi
i [~xi]’s represent the ‘meaning recipe’ of

individual words, where the free variables~xi are supposed to be filled by conceptual
symbols. Dρ[yτ1

1 , . . . ,yτm
m ] then gives the meaning recipe for the sentence. Thus I

127



assume that simultaneous binding of multiple occurrences of a variable is possible
in word meanings, but not in meaning recipes for sentences.1

Note that in the above formulation, the free variables ~x1, . . . ,~xm in a mapping
problem T ρ[~x1; . . . ;~xm] are all distinct; in actual learning, the conceptual symbol
sets of some words in a sentence may overlap. So the problem for the learner facing
a single sentence-meaning pair corresponds, in general, to (a disjunction of) mul-
tiple mapping problems. Also, the learner may have already formed a hypothesis
meaning for some of the words in the sentence currently processed, in which case
an additional issue of combining two constraints arises (more on this below). For
these reasons, the mapping problem as formulated above models only the ‘heart’ of
the problem for the learner. Nevertheless, it is a good place to start formal analysis.

A ‘mapping problem’ of a more restricted kind corresponding to Siskind’s setup
always has at most one solution, and the condition under which a solution exists is
easy to state. As for the general version, we have

Theorem 1. Every mapping problem has infinitely many solutions.

Theorem 2. For any sequence of terms ~M = Mσ1
1 , . . . ,Mσn

n , let Uρ[~M] =
λyσ1→···→σn→ρ.yM1 . . .Mn. Then, for every mapping problem T ρ[~x1; . . . ;~xm] such
that T ρ[~x1, . . . ,~xm] is a BCIλ-term, 〈Uρ[~x1], . . . ,Uρ[~xm]〉 solves T ρ[~x1; . . . ;~xm].

We can also prove a slightly more complex form of Theorem 2 for λI mapping
problems in general.

‘Universal’ solutions like Uρ[~x] are not very interesting: they not only derive
correct sentence meanings but also many unwanted ones. The following example
illustrates the case of a λI mapping problem.

Example 3. Consider a mapping problem T t [~x1;~x2], where ~x1 =

x(e→t)→t
1,1 ,xt→t→t

1,2 ,xe→t
1,3 , ~x2 = xe→t

2,1 , and T t [~x1,~x2] = x1,1(λze.x1,2(x1,3z)(x2,1z)).
This corresponds to the situation where the learner is faced with a sentence
everyone walks coupled with the meaning:

∀z(PERSON(z)→WALK(z)),

having arrived at the word-to-symbol-set association:

everyone : {∀,→,PERSON}
walks : {WALK}

A solution 〈Ut [~x1,W(e→e→t)→e→t ], x2,1〉, where W(e→e→t)→e→t = λye→e→txe.yxx,
corresponds to the word-to-meaning mapping:

everyone 7→ λy((e→t)→t)→(t→t→t)→(e→t)→((e→e→t)→e→t)→t .y(∀)(→)(PERSON)(W)
walks 7→ WALK

〈Ut [~x1,W(e→e→t)→e→t ], x2,1〉 solves not only T t [~x1;~x2], but also V t [~x1;~x2] =
x1,1(λze.x1,2(x2,1z)(x1,3z)), corresponding to

∀z(WALK(z)→ PERSON(z)).

1One might want to restrict Dρ[yτ1
1 , . . . ,yτm

m ] even further to the so-called Lambek-van Benthem
fragment (van Benthem 1991); this will complicate some results slightly.

128



Of course, 〈λve→t .x1,1(λze.x1,2(x1,3z)(vz)), x2,1〉, corresponding to the word-to-
meaning mapping:

everyone 7→ λve→t .∀z(PERSON(z)→ vz)
walks 7→ WALK

only solves the former.

Certainly, the second solution in the above example is preferable to the first as
a hypothesis for the learner. Perhaps what the learner should find is a ‘minimal’
solution, in the sense of solving as few unwanted problems as possible. To define a
suitable sense of minimality, I introduce a ‘definability relation’ ¹ between terms
and a slightly weaker notion ¹ρ.

Definition 4. Let Mσ[~x] and Nτ[~x] be two λ-terms in βη-normal form with the same
set of free variables.

(i) We say that Nτ[~x] is BCI-definable by Mσ[~x] and write Nτ[~x]¹Mσ[~x] if there
is a closed BCIλ-term Pσ→τ such that

Pσ→τMσ[~x] .βη Nτ[~x].

We write Nτ[~x] ' Mσ[~x] if Nτ[~x] ¹ Mσ[~x] and Nτ[~x] º Mσ[~x]; and write
Nτ[~x]≺Mσ[~x] if Nτ[~x]¹Mσ[~x] but Nτ[~x] 6ºMσ[~x].

(ii) We write Nτ[~x]¹ρ Mσ[~x] if λyτ→ρ.yNτ[~x]¹Mσ[~x]. We write Nτ[~x]'ρ Mσ[~x]
if Nτ[~x]¹ρ Mσ[~x] and Nτ[~x]ºρ Mσ[~x]; and write Nτ[~x]≺ρ Mσ[~x] if Nτ[~x]¹ρ
Mσ[~x] but Nτ[~x] 6ºρ Mσ[~x].

Clearly, Nτ[~x]¹Mσ[~x] implies Nτ[~x]¹ρ Mσ[~x] for all ρ. Also, if τ ‘ends in’ ρ,
Nτ[~x]¹ρ Mσ[~x] implies Nτ[~x]¹Mσ[~x]. The two relations do not coincide in general:
xe¹t λye→t .yx, but xe 6¹ λye→t .yx. Both¹ and¹ρ are reflexive and transitive. Also,
both relations are decidable. The latter follows from the known fact that every type
is inhabited by finitely many BCIλ-terms in βη-normal form (van Benthem 1991).

Theorem 5. If 〈S1[~x1], . . . ,Sm[~xm]〉 solves T ρ[~x1; . . . ;~xm], and Si[~xi] ¹ρ P[~xi], then
〈S1[~x1], . . . ,Si−1[~xi−1],P[~xi],Si+1[~xi+1], . . . ,Sm[~xm]〉 solves T ρ[~x1; . . . ;~xm].

Even though a mapping problem has infinitely many solutions, many of
them turn out to be equivalent with respect to ' and 'ρ. A trivial example
is T t [xe;ye→t ] = yx, which has just two solutions modulo ', namely 〈x, y〉 and
〈λye→t .yx, y〉 (which, in turn, are equivalent with respect to 't). I conjecture that
every mapping problem has only finitely many solutions modulo '.

The relations ¹ and ¹ρ can be naturally extended to solutions of mapping
problems. In general, a mapping problem T ρ[~x1; . . . ;~xn] can have more than one
¹ρ-incompatible minimal solution.

Example 6. A problem T t [xe;ye→e→t ;ze] = yzx has the following solutions, among
others:

〈λye→e→tze.yzx, y, λye→e→tv(e→e→t)→e→t .v(λxz.yzx)z〉,

〈λye→e→tv(e→e→t)→e→t .vyx, y, λye→e→t .yz〉.

129



Since λye→e→tze.yzx Ât λye→e→tv(e→e→t)→e→t .vyx and
λye→e→tv(e→e→t)→e→t .v(λxz.yzx)z〉 ≺t λye→e→t .yz, the two solutions are in-
compatible with respect to ¹t . Their ‘meet’,

〈λye→e→tze.yzx, y, λye→e→t .yz〉,

does not solve Tt [xe;ye→e→t ;ze], and indeed the two solutions can be shown to be
minimal with respect to ¹t . (Note that in this particular example, all solutions
solve the same two problems, namely, T t [xe;ye→e→t ;ze] and V t [xe;ye→e→t ;ze] =
yxz. In the presence of an additional word-meaning recipe (e.g., ue→t), however,
they generate different sets of sentence meanings, so they should not be treated as
equivalent.)

The above example suggests that it may not be desirable for the purpose of
learning to collect all minimal solutions to a given mapping problem. Below, I
present a simple algorithm that finds a ‘reasonably small’ solution to a mapping
problem.

In a term λx1 . . .xn.yN1 . . .Nm in β-normal form, each Ni is called an argument.
A subargument is either an argument or a subargument of an argument.

Algorithm A. Let a mapping problem T ρ[~x1; . . . ;~xm] be given. Associate with
each ~xi the smallest subargument Pi that contains all occurrences of variables in
~xi. Reorder ~x1, . . . ,~xm so that if Pi is a subargument of Pj, i < j. At the i-th cy-
cle of the following iteration, a new variable ui of a suitable type will be created.
V ρ

i [~xi+1, . . . ,~xm] will contain as its free variables some (but not necessarily all) of
u1, . . . ,ui, in addition to~xi+1, . . . ,~xm.

Let V ρ
0 [~x1, . . . ,~xm] = T ρ[~x1, . . . ,~xm].

For i = 1, . . . ,m, do the following:

• Find the smallest subargument Qτ
i [~xi,v1, . . . ,vk,yτ1

1 , . . . ,yτl
l ] of V ρ

i−1[~xi, . . . ,~xm]
that contains all occurrences of variables in ~xi, where v1, . . . ,vk are among
u1, . . . ,ui−1, and yτ1

1 , . . . ,yτl
l are the free variables of Qτ

i other than~xi,v1, . . . ,vk.

• Let Si[~xi] = λv1 . . .vkyτ1
1 . . .yτl

l .Mτ[~xi,v1, . . . ,vk,yτ1
1 , . . . ,yτl

l ].

• Replace Qτ
i by uτ1→···→τl→τ

i yτ1
1 . . .yτl

l in Vi−1[~xi, . . . ,~xm], obtaining
Vi[~xi+1, . . . ,~xm].

When the above procedure is over, 〈S1[~x1], . . . ,Sm[~xm]〉 is a solution to
T ρ[~x1; . . . ;~xm].

Algorithm A is nondeterministic and different executions can lead to different
results when Pi = Pj for some i 6= j. This can only be so if the head variable of Pi

is not among~xi for some i; otherwise the output of the algorithm is unique.

Example 7. Let us apply Algorithm A to the mapping problem corresponding to
the following situation. The learner has arrived at the word-to-symbol-set associa-
tion:

every : {∀,→}
man : {MAN}
finds : {FIND}
a : {∃,∧}
unicorn : {UNICORN}

130



and is faced with the sentence every man finds a unicorn, coupled with the meaning
(2). Algorithm A produces just one result in this case, and the solution corresponds
to the following word-to-meaning mapping:

every 7→ λue→tve→t .∀(λxe.→ (ux)(vx))
man 7→ MAN
finds 7→ FIND
a 7→ λue→twe→e→txe.∃(λye.∧(uy)(wyx))
unicorn 7→ UNICORN

(4)

Note that the solution corresponding to (4) in the above example is smaller
(≺t) than the solution corresponding to (3). The relative merit of (4) vis-a-vis (3) is
debatable. It is possible to modify Algorithm A, so that it produces (3) rather than
(4) on this example, but the resulting variant will be a more complicated algorithm.2

A mapping problem is supposed to model an individual stage in the second
phase of the learning process, when the learner is processing a single sentence
coupled with its meaning. In actual learning, some words in the current sentence
may have already appeared in the preceding sentences during the second phase, so
that the learner has meanings already hypothesized for them. When an algorithm
like Algorithm A is applied to the mapping problem corresponding to the current
sentence-meaning pair, it may produce a meaning for some old word that is ¹t-
incompatible with the meaning already hypothesized. In such a case, the learner
presumably needs to find an upper bound with respect to¹t of the two word mean-
ings, assuming that the old hypothesis is not to be completely abandoned. An
upper bound always exists (Ut [~x] is one), but to formulate an algorithm for finding
a reasonably small upper bound is not trivial. A question like this motivates inves-
tigation of the structure of the partial orders on equivalence classes of terms that
are induced by the two relations ¹ and ¹ρ. I have to leave this and other issues for
future work.

References

Benthem, Johan van. 1991. Language in Action: Categories, Lambdas and Dy-
namic Logic. Amsterdam: North-Holland. (Second edition, 1995, Cambridge,
Mass.: MIT Press.)

Hindley, J. Roger. 1997. Basic Simple Type Theory. Cambridge: Cambridge Uni-
versity Press.

Siskind, J. Mark. 1996. A computational study of cross-situational techniques for
learning word-to-meaning mappings. Cognition 61(1–2), 39–91. (Reprinted in
Michael Brent, ed., 1996, Computational Approaches to Language Acquisition,
pp. 39–91, Amsterdam: Elsevier.)

Siskind, J. Mark. 2000. Learning word-to-meaning mappings. In Peter Broeder
and Jaap Murre, eds., Models of Language Acquisition: Inductive and Deduc-
tive Approaches, pp. 121–153. Oxford: Oxford University Press.

2Algorithm A (and its variant) can produce a counter-intuitive result when a duplicat-
ing β-contraction is involved in the reduction D[S1[~x1], . . . ,Sn[~xn]] .βη T [~x1, . . . ,~xn], where
〈S1[~x1], . . . ,Sn[~xn]〉 is the desired solution.

131


