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Abstract Seki et al. (Theoretical Computer Science 88(2):191-229, 1991) showed
that every m-multiple context-free language L is weakly 2m-iterative in the sense
that either L is finite or L contains a subset of the form {uow!uy...wh, oy | i €
N}, where wy ... wy, # €. Whether every m-multiple context-free language L is 2m-
iterative, that is to say, whether all but finitely many elements z of L can be written
as 7 = UgWiUj ... Wynlloy With wi...wy, # € and {uow’iul . .wémuz,n |ieN}CL,
has been open. We show that there is a 3-multiple context-free language that is not
k-iterative for any k.
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1 Introduction

The study of iterative properties of the languages of multiple context-free grammars
(MCFQ) [14] has had a peculiar historym Seki et al. [14] proved that any language
L generated by an MCFG of dimension m (i.e., m-MCFG) is weakly 2m-iterative (in
the sense of Greibach [3l2]): either L is finite or else it contains a subset of the form

{uowiuy ... whuom | i €N} (1)

for some strings ug, iy, .. ,upy, and wy, ..., wy, such that wy...wy, # SEI Seki et
al. [[14] called this theorem a “pumping lemma” for m-MCFLs. Their proof of the
theorem starts with an application of the pigeon-hole principle to a path in a derivation
tree in a way familiar from the pumping lemma for context-free languages; beyond
that, however, it involves much more intricate reasoning than in the context-free case,
due to the complex relation between derivation trees of an MCFG and the derived
strings. The proof goes roughly as follows.

Given a sufficiently long string z in the language L of an m-MCFG G, the deriva-
tion tree T for z must contain a “context” U] inside it that can be iterated any number
of times That is to say, T can be written as T = U'[U[T']], where U[T’] is a subtree
of T which contains T’ as a proper subtree, and for each i > 0, U'[U[T"]] is also a
derivation tree. Here, the notation U'[T"] is defined by

uor' =1,
Ui+l [T/] — U[UZ[T/H

In the case of a context-free grammar, each subtree of a derivation tree yields a
single string. In the case of an m-MCFG, in contrast, each subtree of a deriva-
tion tree is associated with a tuple of strings. Thus, the contribution of the iter-
able context U[] to the derived string is some function g mapping an n-tuple of
strings to another n-tuple, for some n < m. Such a function can be specified by
an equation of the form g(xi,...,x,) = (e,...,0) using variables x; and strings
o; over XU {xy,...,x,}, where X is the terminal alphabet, such that each x; oc-
curs in a unique ;. In the special case where o; = waj_1x;wy; forall j=1,...,n
W1,...,wp, € X*), iteration of U]| inside the derivation tree translates into itera-
tion of the strings wy,...,ws, inside the derived string, giving rise to a set of the
form . In general, since x; may end up in some o;; with j # i, the effect of iter-
ating U[] in T = U'[U[T’]] is rather hard to describe. As a consequence, derivation
trees of the form U'[U'[T’]] do not (necessarily) generate a set of the form . One
can see, however, that for large enough k, the k-fold composition gk of g with it-
self has the property that if g*(xy,...,x,) = (Bi,...,Bn), then forevery j = 1,...,n,

I Around the same time as Kasami et al. [9] first introduced multiple context-free grammars, essentially
the same formalism was proposed by Vijay-Shanker et al. [15] under the name linear context-free rewriting
systems (LCFRS). In this paper, we mostly follow the terminology of Seki et al. [14].

2 We let N denote the set of natural numbers {0,1,2,...} and € denote the empty string.

3 Formally, a context is a tree with a single special leaf node (“hole”), which is labeled by (1. When U]
is a context and T is a tree, U[T'| denotes the tree that results from removing the hole of U] and inserting
T in its place.
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B either is a constant string (i.e., string over X) or else contains x;. It follows
that g% (x1,...,x,) = g5(B1,...,Bx) = (w1 Biw2,...,wau_1B.w2,) for some constant
strings wi, ..., wa, such that wo; wy; = € whenever Bj is a constant string. It is not
difficult to see that this implies that g1 (xy,...,x,) = (Wi Biwh, ..., wh_ B.wh, ).
Thus, derivation trees U’[U T ¥[T7]] (i > 0) yield a subset of L of the required form
(I). Crucially, the original string z is not an element of this set.

By a strange quirk of fate, this proof was erroneously claimed by Radzinski [[13]]
to implicitly demonstrate a much stronger propertyE] namely, that every m-MCFL L is
2m-iterative (in the sense of Greibach [3])): all but finitely many z € L can be written as
2= UgW1U] ... WapUoy SUch that wy ... way, # € and {uow!uy ... wh, upy | i€ N} C L.
More strangely, Groenink [5] just took Radzinski’s word for it (see also [4]). A more
recent book by Kracht [[10] also states this property as a theorem.

We refer to the assertion that every m-MCFL is 2m-iterative as the strong pumping
lemma for m-MCFLs, to distinguish it from Seki et al.’s [14] theorem. It is clear that
no simple modification of the method of Seki et al. can establish the strong pump-
ing lemma for m-MCFLs. It is only when the iterable context U[] maps an n-tuple

(x1,...,xp) to an n-tuple of the form (wix;wa, ..., wp,_1X,w2,) that it is possible to
conclude, analogously to the context-free case, that the given string z contains factors
wi,..., Wz, that can be pumped up and down without pushing the resulting string

outside of the given m-MCFLE] Kanazawa [6]] called such a well-behaved iterable
context an even pump in his proof that an m-MCFG satisfying the condition of well-
nestedness always generates a 2m-iterative set. This proof works by induction on m.
The base case is handled by the fact that well-nested 1-MCFGs are just CFGs. For
the induction step, Kanazawa showed that given a well-nested m-MCFG G, one can
always find a well-nested (m — 1)-MCFG G’ for the language L’ consisting of strings
generated by G with derivation trees containing no even pump. Hence the language
L of G is a union of some 2m-iterative set and L', which, by induction hypothesis,
is a 2(m — 1)-iterative set. It follows that L is 2m-iterative, completing the induction.
This method is such that derivation trees of G’ have very different shapes from the
original derivation trees of G for the same strings. Whereas the method also works for
2-MCFGs in general, the well-nestedness property is essential for m > 3, and there is
no obvious way of extending it to the non-well-nested case.

In this paper, we prove that the strong pumping lemma indeed fails for non-well-
nested m-MCFGs for m > 3. We do so by exhibiting a particular 3-MCFG that gen-
erates a language that is non-iterative in a very strong sense. This language, which
we call H, is not k-iterative for any k. It is not even finitely pumpable in the sense
of Groenink [5,4]], a condition which is similar to k-iterativity but allows the number
of iterable factors to vary from string to string. In fact, H contains an infinite subset
{vn | n € N} consisting of strings that are almost anti-iterative in the following sense:
whenever v,, = ugwuy ... wiu and wy ... wy # € (for any k), it holds that

|{i|i>1and ugwius ... wiy € H}| < 1.

4 See footnote 10 of Radzinski [13]]. Radzinski refers to the technical report [9] rather than the journal
article [[14] based on it, but the proof is the same in both papers.

5 A string v is a factor of a string z if z = uvw for some strings u, w.
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Most of the rest of the paper is devoted to the proof of this property of the lan-
guage H (section [3). Before we get to it, we briefly review basic notions concerning
multiple context-free grammars for readers unfamiliar with this grammar formalism
(section[2). The proof in section [3|does not use any general properties of MCFLs, and
can be followed by anyone who understands the definition of the language H.

2 Multiple Context-Free Grammars

Like a context-free grammar, a multiple context-free grammar is a quadruple G =
(N,Z,P,S), where N is a finite set of nonterminals, X is a finite set of terminals, P
is a set of rules, and § is a designated nonterminal. While a nonterminal of a CFG
is associated with a set of terminal strings, a nonterminal of an MCFG is interpreted
as a g-ary relation on terminal strings, where ¢ is the dimension of the nonterminal.
Each nonterminal comes with a unique dimension. (So the set N can be thought of
as a ranked alphabet.) The dimension of the designated nonterminal S is always 1. A
rule is of the form

A((xl,. . .,(Zq) < Bl(xl,l,...,xlm ),...,B,,(x,hl,. .. ,x,wn),
where n > 0, A,By,...,B, are nonterminals of dimension ¢,qi,...,q,, respectively,
the x; ; are pairwise distinct variables, which are symbols not in X, and o, ..., 0y

are strings over XU {x; ; | 1 <i<n,1 < j<g;} such that each x; ; occurs at most
once in o ... 0.

A rule is interpreted like a universally quantified implication from right to left.
Define a predicate - that holds of expressions of the form A(uy,...,u,) (called
facts) inductively as follows:

- IfA(ui,...,uy) < is arule of G, then g A(uy,...,uy).

- IfA(ou,...,04) < Bi(x1,1,...,X14,)s-- -+ Ba(Xn1,-..,Xng,) isarule of G and kg
Bi(Wi1,...,wig,) fori=1,...,n, then -G A(uy,...,uy), where (u1,...,uy) is the
result of substituting w; ; for each x; j in (o,..., ¢).

When g A(ui,...,uy), we say that A(uy, ..., ug) is derivable (in G). (We sometimes
write - instead of - when the grammar is clear from the context.) The language of
G is defined by L(G) ={w e X* | Fg S(w) }.

An MCFG is an m-MCFG if the dimension of nonterminals does not exceed m.
The language of an m-MCFG is called an m-MCFL. It is shown by Seki et al. [14] that
each m-MCFG has an equivalent one such that the variables on the right-hand side of
any rule all appear in the left-hand side. Such an MCFG is called non-deleting.

A rule A(ay,...,04) < Bi(x11,...,%14,),-- - Bu(Xn1,-..,Xpng,) is called non-
permuting if for each i = 1,...,n and each j,k such that 1 < j < k < g, it is not the
case that

(p(OZl . OCq) =XikXij,
where ¢ is the homomorphism that erases all symbols in X and all variables other than

x; j and x; ;. An MCFG G is called non-permuting if all its rules are non-permuting.
Every m-MCFG has an equivalent non-deleting non-permuting m-MCFG [11}[10].
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A non-deleting non-permuting MCFG is called well-nested if every rule
A(ay,...,0) < Bi(x11,...,%14,),---Ba(Xng;- .., Xng,) satisfies the following con-
dition: whenever i #i',1 < j <k <gq;, 1 < j <k <gyp,itis not the case that

X(al . aq) =X j X jXikXit 1/

where y is the homomorphism that erases all symbols in X and all variables other
than x; j,x;x, Xy y,%;y . Kanazawa [6] showed that the languages of well-nested m-
MCEFGs are all 2m-iterative. See also [8] for the effect of the well-nestedness condi-
tion on the generative power of MCFGs.

In order to rigorously define the notion of a derivation tree, we view the rule set
P as a ranked alphabet where @ € P has rank n if the right-hand side of 7 has n
occurrences of nonterminals. A derivation tree of G = (N, X, P,S) is a local set of
trees over P, defined inductively as follows:

- If 1 =A(uy,...,uqy) < is arule in P, then 7 is a derivation tree for A(uy,...,uy).

- Ifr=A(ou,...,04) < Bi(x1,1,...,X1,4,)5- -, Bn(¥n1,...,Xng,) isarulein P and
for i=1,...,n, T; is a derivation tree for B;(wi1,...,Wiq,), then xT;...T, is a
derivation tree for A(uy,...,u,), where (u1,...,uq) is the result of substituting
wj,j foreach x; jin (ai,. .., o).

A derivation tree for A(u1, . .. ,u,) is a derivation tree of type A. A complete derivation
tree is a derivation tree of type S, and it is said to be a derivation tree for w if it is
a derivation tree for S(w). When T is a derivation tree for a fact A(uy,...,u,), we
also say T derives A(uy,...,uq). Clearly, -G A(uy,...,uy) holds if and only if G has
a derivation tree that derives A(uy, ..., ug).

When a derivation tree of type B contains a derivation tree of type A as a subtree,
the result of replacing that subtree by any other derivation tree of type A is again a
derivation tree of type B. When a complete derivation tree 7 for w has a path contain-
ing more nodes than the number of nonterminals, then there must be a nonterminal A
and two nodes on that path such that the subtree rooted at each of the two nodes is a
derivation tree of type A. This is the starting point of Seki et al.’s [[14] proof of their
pumping lemma.

Example 1 Consider the following 2-MCFG:

T S(xl#X2) <—D(x1,x2)

m: D(g,€) «

3! D(xlylaxZVZ) — E(X] ax2)7D(.YI7y2)
T4 : E(cxlé,cxgé) — D(xl,xg)

(my, my, M3, 4 are the names of the rules.) Here, S is the designated nonterminal, and
all other nonterminals are of rank 2. This grammar generates { w#w | w € D} }, where
Dj is the Dyck language over the alphabet {c,¢}. Note that the third rule is not well-
nested. Fi gure shows a derivation tree for cccccc#ecccec, alongside of the same tree
with each node annotated by the fact derived by the subtree rooted at that node.
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m my @ S(cecéecteccect)
71"3 M D(ccEc"cc',ccc'EcE)
/\
71'4/\71:3 7y : E(cccé,ccct) m3 : D(c¢,cC)
/\
71‘,'3 71:4/\71'2 3 ZD(‘CL_’,CE) 7yt E(cC,cC) m:D(€,€)
/\
71:4/\7172 n‘z 7y E(cé,c¢) m:D(g,e) m :D‘(s,s)
71,"2 ™ :D‘(s,s)

Fig. 1 A derivation tree for cccccc#ececec (left) and the same tree augmented with additional information
about what fact is derived at each step (right).

Fig. 2 Derivation tree for J (a1 a"cvedwdb"  b'*+1).

3 Counterexample to the Strong Pumping Lemma for 3-MCFLs

We fix two alphabets:
Z = {C7E7d7d-}7

£ =xu{a,b}.

Define a 3-MCFL H C £* by the following 3-MCFG, where we use the symbol H
itself as the designated nonterminal:

H(xZ) — J(x17x27x3)
J(axy,y cxaedy,dxs,ysb) < J(x1,%2,%3),J (y1,¥2,¥3)
J(a,€,b)

This is our counterexample to the strong pumping lemma. Note that the second rule
is not well-nested. When J(uy,uy,u3) is derivable in this grammar, we always have
uy = a1, u3 = b'*! for some k,I € N, and u» is either € or a string of the form
a"cvédwdb" for some v,w € H and m,n > 1. In the latter case, the (unique) derivation
tree for J(ak*!, a"cvedwdb”,b'+1) is a binary tree T where k and n are the numbers
of nodes on the leftmost and rightmost branches, respectively, of the left immediate
subtree of T, and m and [/ are the numbers of nodes on the leftmost and rightmost
branches, respectively, of the right immediate subtree of T (Figure [2).

The language H is related to a context-free language over X via the homomor-

phism y: £* — X* defined by:

e ifee{a,b},

yle) = e ifeeckX.
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It is easy to see that y(H) is a context-free language included in the Dyck language
D3 over the alphabet X, where (c,¢) and (d,d) are each regarded as a matching pair
of parentheses. The homomorphism W is an injection when restricted to the strings
in H, and for each v € H, y(v) encodes in an obvious way the unique derivation tree
for v. We can learn a lot about iterative properties of the 3-MCFL H from the CFL

y(H), so we begin by studying the latter.

3.1 Properties of the CFL V = y(H)

The goal of this section is to state a necessary condition for w € £ to be in
{w | ww is a factor of some string in y(H) }.

In what follows, we use regular expressions and (recursive) equations involving reg-

ular expressions to define various languages. In regular expressions, the vertical bar

“I” denotes union, and is assumed to have lower precedence than all other operators.
Define the reduction relation > € X* x X* by

> = { (vicéva,viva) | vi,va € Z* YU { (viddvy,viva) | vi,va € ¥ }.

We write >* for the reflexive transitive closure of the relation >, and >" for the n-fold
composition of > with itself (more precisely, >"*! is > composed with >", where
>0 is the identity relation). When v >* w, we say v reduces to w, and when v >" w, we
say v reduces to w in n steps. A string w € X* is said to be in normal form if neither
c¢ nor dd is a factor of w. It is well known that the relation >* has the confluence
(i.e., Church-Rosser) property and each string w € X* reduces to a unique string in
normal form, which is called the normal form of w. We write nf(w) for the normal
form of w. The Dyck language D’ over X is defined as D; = {w € Z* | nf(w) = € }.

Lemma 2 The following conditions hold of all u,v,w,v' € X*:

(i) If vi>* vV € ¢X*, then nf(vw) € cX*.
(i) If vi>* V' € dX¥, then nf(vw) € dX*.
(iii) If v>* V' € Z*c, then nf(uv) € Z*c.
(v) If vi>* V' € Z*d, then nf(uv) € Z*d.
(v) If vi>* V' € E*cdX*, then nf(uvw) € Z*cdE*.
(Vi) If vi>* V' € Z*d¢X*, then nf(uvw) € Z*dcX*.

Proof (i). Since v >* V' € ¢X* implies vw I>* v'w € ¢X* and, by the confluence prop-
erty, nf(vw) = nf(v'w), it suffices to show that z € ¢X* implies nf(z) € ¢Z* for all
7 € Z*. We prove this by induction on the number of reduction steps from z to nf(z).
Suppose z = ¢y. If z = nf(z), then nf(z) € ¢X*. Otherwise, z = ¢y >" nf(z) for some
n> 1. Then ¢y > x >"~! nf(z) = nf(x) for some x € ¢X*. By the induction hypothesis
applied to x, we obtain nf(z) € cX*.

Part (ii)—(vi) may be proved similarly. a

Lemma 3 Let w € Z* and suppose nf(w) = ey ...e, for some ey,...,e, € X. Then
there exist ug, ..., u, € X* such that w = upeuj ...euu, and nf(u;) = € fori=0,...,n.
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Proof By induction on the number of reduction steps from w to e ... ey,. a
If K is a set of strings, let fac(K) be the set of factors of elements of K, i.e.,
fac(K) ={v|uww e K}.

Since the relation “is a factor of” is reflexive and transitive, fac(fac(K)) = fac(K)
always holds.

Lemma 4 For every w € fac(D3), it holds that nf(w) € (¢ |d)*(c | d)*.

Proof By the definition of normal form, nf(w) cannot contain c¢ or dd as a factor.
Now nf(w) cannot contain cd or dé as a factor, either. To see this, let uwy € Dj and
suppose cd or dé is a factor of nf(w). Then by Lemma part (v) and (vi), nf(uwv)
contains cd or d¢ as a factor, contradicting nf(uwv) = €. The desired conclusion now
follows easily. a

Lemma 5 If vw € Dj, then nf(v) € (c | d)* and nf(w) € (¢ | d)*.

Proof Suppose vw € D;. By LemmaE], nf(v) and nf(w) both belong to (¢ | d)*(c | d)*.
If nf(v) € (¢ | d)*(c | d)*, then by Lemma [2] part (i) and (ii), nf(vw) € (¢ | d)Z%,
contradicting vw € D3. Hence nf(v) € (¢ | d)*. Similarly, we can conclude nf(w) €
(¢| d)* using Lemma 2} part (iii) and (iv). O

The set Dy of Dyck primes over X is defined as D, = ¢Di¢ | dD4d. Tt is well
known and easy to see that D} indeed equals (D;)*.
Define context-free languages V,L,R byﬁ

V =¢€|LR,
L=cVc,
R=avd.

Then it is easy to see that V C D3, L C Dy, R C D».

Lemma 6 fac(V)NX? = {cc,c¢,éd,dc,dd,dc,dd}.

Proof First, note that V = € | LR implies that every v € V satisfies v € € | cX*d. Let
F be the set on the right-hand side of the equation to be proved. We can show by
induction on the length of v that v € V and w € fac(v) N X2 imply w € F. Suppose
veVandw € fac(v)NX2. Thenv € LR = ¢VdVd, so v = cvi&dv,d for some vy, v, €
V. Hence either w € fac({vi,v2}) N X2 or w € {cc,c¢,d¢,éd,dc,dd,dd} = F. By
induction hypothesis, fac({vi,v2})N X2 C F, so it follows that w € F. This establishes
fac(V)N X2 C F. To see the converse inclusion, just note that for u = ccéddédcéddd €
V, we have fac(u) N X% = F. O

Lemma7 V = y(H).

6 As usual, the sets V, L, R are understood to be the components of the least solution to these equations.
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Proof Applying the homomorphism y in each rule of the 3-MCFG for H, we get
H(XQ) — J(x1 ,xz,x3)

J(xl,ylcxzfdyzd_xg,y3) %J(xl7x23x3)7‘](.)717y27y3)
J(g,e,€)

In this grammar, whenever J(u;,up,u3) is derivable, u; = uz = €. So the first and
third arguments of J can be dropped, and the grammar can be simplified to

J(cxcdyd) < J(x),J(y)

J(€) +
This is just a context-free grammar for V. g
Lemma 8 DyNfac(V)=L|R.

Proof SinceV=¢|LRand L | R C D, itis clear that L | R C D, Nfac(V).

For the converse inclusion, we prove by induction on the length of x € V that
x =uvw and v € D, implies v € L | R. The base case of x = € is trivial. For the
induction step, let x = cyédzd, where y,z € V, and suppose x = uvw and v € D,. We
distinguish three cases.

Case 1. vis afactor of cyc. If v = cyé, then v € L, and if v is a factor of y, thenv € L | R
by the induction hypothesis. If v = ¢y, where y' is a prefix of y, then nf(v) = nf(cy’) €
c(c|d)* by Lemmal[5] So nf(v) # €, contradicting v € D». Likewise, if v = y'¢, where
y" is a suffix of y, then nf(v) = nf(y"¢) € (¢| d)*¢ and nf(v) # €, contradicting v € D;.
Case 2. v is a factor of dzd. This case is completely analogous to Case 1, and we can
concludeve L|R.

Case 3. v=1"V", where ' is a non-empty suffix of cy¢ and v" is a non-empty prefix of
dzd. Since v € Dy, v cannot equal x = cyédzd. So either V' is a suffix of y¢, in which
case nf(v) = nf(v'"') € (¢ | d)*¢(c | d)* by Lemmal[5] or else V" is a prefix of dz, in
which case nf(v) = nf('V) € (¢ | d)*d(c | d)*, again by Lemma [3] In either case,
nf(v) # &, contradicting v € D;.

We have seen that v € L | R holds in all cases, and the induction step is complete.
O

Lemma 9 DiNfac(V) =V |L|R.

Proof Since V. =¢|LRand L | R C D, itis clear that V | L | R C D} Nfac(V).

For the converse inclusion, suppose w € D} Nfac(V). Since any factor of a string
in fac(V) is itself in fac(V), it follows that w € (D> Nfac(V))*. By Lemma[8] w €
(L | R)* Nfac(V). Since any string in LL | RL | RR has one of éc,dc,dd as a factor,
Lemma@implies (LL | RL | RR) Nfac(V) = @. It follows that (L | R)> Nfac(V) = LR
and for n > 3,

(L | R)"Nfac(V)

(L | R)2 ﬂfac(V))(L | R)n—z ﬂfac(V)
LR(L | R)"~*Nfac(V)
L((RL | RR) Nfac(V))(L | R)" 3
J.

N
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So
we (| (L|R)|(L|R)*) Nfac(V)
=¢|(L|R)|LR
=V |L|R.
This proves Dy Nfac(V) CV |L|R. O

Lemma 10 Letuwe X* andve X . If uveV andvw €V, thenu=w = €.
Proof SinceV C D}, Lemmaimplies nf(v) € (¢|d)*N(c|d)*, and hence nf(v) = €.
It follows that nf(u) = nf(w) = €, too, and hence u,v,w are all in D}. By Lemma 9]
u,v,wareallin V | L | R. Since v # &, the strings uv and vw are bothin V — {e} = LR =
cVedVd. Sovendsind and beginsinc. If u # €, thenu € LR| L | R, sou € £*(¢ | d).
This implies either ¢c or dcis afactorof uv €'V, contradicting Lemma@ Therefore,
u = €. Similarly, we can use Lemma@to conclude w = €. O
We say that a string u is a proper prefix (proper suffix) of a string v if u is a prefix
(suffix) of v and u # v. Lemma [I0] implies that no proper prefix or proper suffix of a
string in V can belong to V, which is to say that V is both prefix-free and suffix-free.

Lemma 11

VIR)(eR[d)"(¢|cR|d)|
c|Ld|d)(c|Ld)"(V|L)]

(V| R)(eR | d)*ed(c | Ld)*(V | L).

Proof Suppose w € fac(V). By Lemmafd} nf(w) € (¢ | d)"(c | d)" for some m,n >0,
and by Lemma (3| there are strings uo, ..., Un+, such that nf(y;) = € for each i =
0,...,m+n and

fac(V) C(V[LIR)| _
(
(

weu(€|duy...(¢|d)un(c|d)myr...(c|d)umin.
Since u; is a factor of w € fac(V), u; € D5 Nfac(V). Lemma 9] then implies u; € V. |
L|R.
By Lemma@ each of the following sets is disjoint from fac(V):

ccld),  (c|dyd,

d(cld), (¢|d)c.
This implies that the following conditions hold:

up €V |Rifm>1, 2)

Unpin €V |Lifn>1, 3)

u; € € | R if u; is preceded by ¢, 4

u; € R if u; is preceded by ¢ and is followed by ¢ or d, (@)
u; = € if u; is preceded by d, (6)

u; = € if u; is followed by c, @)

u; € € | Lif u; is followed by d, (8)

u; € L if u; is preceded by c or d and is followed by d. 9)
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Case . m=n=0.Thenw=up €V |L|R.

Case 2. m > 1,n=0. Then w € ug(¢ | d)uy ... (¢ | d)un. By , , , and @, we
getwe (V| R)(¢R|d)*(¢|cR| d).

Case 3. m=0,n> 1. Then w € up(c | d)...up—1(c | d)uy. By , , , and (@),
wegetwe (c|Ld |d)(c|Ld)*(V |L).

Case 4. m,n > 1. By , @, , and , we see that u,, = €. Since (éc | dc | dd) N
fac(V) = o,

weuy(¢|duy...(d|d)un—1éduyi(c|d).. umin_1(c|d)tmin.

By @), @), (3), (6. (7). and (9), we see that w € (V | R)(¢R | d)*cd(c | Ld)*(V | L).
This proves the lemma. O

Lemma 12 If w € T and ww € fac(V), then one of the following conditions holds:

() we (eR|d)".
(ii) w € R(CR| d)*e.
(iii) we (c|Ld)™.
(iv) wed(c|Ld)*L.

V) we (V|R)(CR|d)"éd(c | Ld)"(V | L) for some m,n > 0 such that m # n.
Proof Suppose w # € and ww € fac(V'). Since w € fac(V), by LemmalT1]

fac(V)C(V|L|R)|
VIR)(ER|d)"(¢|cR|d) |
c|Ld|d)(c|Ld)"(V[L)

|
V |R)(R | d)*cd(c | Ld)*(V | L).

o~ o~ o~ o~

Case 1. w€ V | L|R. Since w # &, w € LR | L | R. Tt follows that ww has one of
dc,éc,dd as a factor, which contradicts ww € fac(V) by Lemma @ So this case is
impossible.

Case 2. w e (V| R)(¢R|d)*(¢| ¢R|d). If w starts in c, then ww contains either éc or
dc as a factor, which contradicts ww € fac(V') by Lemma@ So

we (e|R) (R |d) (¢| R | d).

Case 2.1. w € (CR | d)*(¢ | eR | d). If w ends in ¢, ww contains either ¢ or &d as a
factor, which contradicts ww € fac(V) by Lemma@ So in this case w € (¢R | d)*(¢R |
d)=(¢R|d)".

Case 2.2. w € R(¢R | d)*(¢ | €R | d) In this case, w starts in d. If w ends in d, then
ww contains either dd as a factor, contradicting ww € fac(V') by Lemma@ So in this

case w € R(CR | d)*c.

Case3.w e (c|Ld|d)(c|Ld)*(V | L). This case is exactly symmetric to Case 2, and
we can conclude w € (¢ | Ld)" or w € d(c | Ld)*L.
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Case4.w € (V| R)(¢R|d)*cd(c | Ld)*(V | L). Let myn > 0 be such that

we (V|R)(ER|d)"ed(c|Ld)"(V | L).
We show that m # n. Suppose, by way of contradiction, m = n. Then ww contains a
factor u that belongs to

d(c| Ld)"(V | L)(V | R)(cR | d)"e.

Note that .

W' ed(c|d)*(c|d)"e.
It is easy to see from this that nf(u) has either cd or dé as a factor. But since u
is a factor of ww, u € fac(V) C fac(D}). By Lemma |} nf(u) € (¢ | d)*(c | d)*, a
contradiction.

We have proved that one of (i)—(v) holds in each case. O

3.2 Properties of the 3-MCFL H

Lemma [12|immediately yields a necessary condition for membership in {w € s |
ww € fac(H)}. For w to be in this set, it must be that y(w)y(w) = y(ww) €
y(fac(H)) = fac(y(H)) = fac(V), so either y(w) = €, in which case w € a™ | bT, or
y(w) must satisfy one of the five conditions in Lemma This will be used in the
next section to give a necessary condition for membership in

{we ET | wwe fac(H) Y Nfac({v, |n €N}),

where {v, | n € N} is a certain infinite subset of H. In this section, we establish some
general properties of H that will be useful in the next section.

Lemma 13 For every v € V, there is a unique string w € H such that y(w) = v.

Proof We prove by induction on the length of v € V that there is a unique triple
(wi,wa2,w3) such that J(wy,wa,w3) is derivable and y(w;) = v. It is clear from the
grammar for H that - J(wy,wp,w3) and y(w;) = € imply w; = a,wy = €,w3 = b.
This takes care of the case v = €. Now suppose v € LR. Then v = cu;éduyd for some
uy,up € V. Note that the choice of u; and u; is unique. For, if v = cu|édu},d for some
“/1 ,u’z €V, then “/1 either is a prefix of u; or contains u; as a prefix, which implies
Uy = u’l by Lemma Similarly, u'z either is a suffix of uy or contains u, as a suffix,
and it follows that up = u). If - J(wi,w2,w3) and y(wz) = v, then w, cannot be &
and there must be some x1,y; € a*, x2,y» € H, and x3,y3 € b™ such that

FJ(x1,x0,x3),

= J(y1,y2:53),
w) =axy,
wa = yicxaldyrdxs,
w3 = y3b.
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Since y(wy) = v, we have cy(xp)edw(y2)d = cujéduad. Since x2,y, € H, both y(xy)
and y(y2) are in y(H) = V. It follows that y(x2) = u; and y(y2) = u». By induc-
tion hypothesis, (x1,x2,x3) and (yi,y2,y3) are uniquely determined by u; and uy,
respectively. Since u; and u, are uniquely determined by v, the triple (w1, wp, w3) is
uniquely determined by v. O

Let $ be a symbol not in £. We use this symbol to mark the beginning and end of
a string in H.

Lemma 14 fac($H$)N({$}UL)2 = {$$, $a, aa,ac,b$,bb,bé,bd, ca,cé,ed,da,dd,db}.

Proof Let F denote the set on the right-hand side of the equation. We prove by in-
duction on the length of u, that - J(uy,ua,u3) implies fac($u$) N ({$} UL)2 C F.
For the induction basis, observe that fac($e$) N ({$} UL)? = {$$} C F. Now sup-
pose for some x1,x2,x3,y1,y2,y3 such that - J(x1,x2,x3) and - J(y1,y2,y3), we have
Uy = axy,uy = ylcxzc'dychx3, u3 = y3b. It follows from the induction hypothesis ap-
plied to x; and y; that

fac(cx2¢) N E% C (F — {$$,$a,b$}) U{cc,ca, b}

=F —{$$,8a,0$}
fac(dy,d) N £% C (F — {$$,$a,b$}) U{dd, da,bd}
= F —{$$,8a,b$}.

Since y; € a® and x3 € b, we get

fac($y1cxaedy,dxs$) N ({$}UL)?
C {$a,aa,ac} U (fac(cx2¢) N E?) U {ed} U (fac(dy,d) N E?) U {db,bb,b$}
CF.

Therefore, fac($H$) N ({$} UL)> C F. To see the converse inclusion, note that for
v = aacacéddbcdaccddbdbb € H, we have fac($v$) N ({$JUL)> =F —{$$}. O

Lemma 15 Letu,w € £* and v e £F. If uv € H and vw € H, then u =w = €.

Proof Since v # €, Lemma [14] implies that both uv and vw start in a and end in b.
Hence v starts in a and ends in b. By Lemma [I4] the only symbols that can follow
a in v are a and ¢, and the only symbols that can precede b in v are b and d. So v €
atcL*db™. Since y(v) # € and y(uv) and y(vw) are both in w(H) =V, Lemma
implies that y(u) = y(w) = €. Hence y(uv) = y(vw), and by Lemma[13] uv = vw.
But y(u) = y(w) = € implies u € a* and w € b*, and it easily follows thatu =w = €.

O

Lemma [[5]implies that H is both prefix-free and suffix-free.

Lemma 16 (i) H C €| (a*c)teL*d(dbt)*.
Gi) If = J(u1,uz,u3) and uy € (a*c)*(¢L*d | €)(db*)!, then uy = d**' and uz = b1
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Proof (i). Suppose v # € and v € H. We reason using Lemma|[T4] The first symbol of
v must be a. Also, in v, the only symbols that can follow a are a and ¢, and the only
symbols that can follow ¢ are a and ¢. Since the last symbol of v must be b, it follows
that v has a prefix that belongs to (a™¢)*¢. By a symmetric reasoning, v has a suffix
that belongs to d(db*)*. Therefore, v € (a*c)*cL*d(db™)*.

(ii). We prove this parﬂ by induction on the length of uy. Suppose - J(uy,uz,u3).
Ifu, =€ € (a*c)*(¢E*d | €)(db*)°, then we must have u; = a' and u3 =b'. If u # €,
then there exist x;,x2,x3,y1,y2,y3 such that b J(x1,x2,x3), - J(y1,y2,y3), u1 = ax,
us = y1cx2edyrdxs, uz = y3b. Suppose uy € (a*c)k(Ef*d | €)(db*)". Since y; € a* and
x3 € b*, we have k,[ > 1, and part (i) of the lemma implies that for some m,n > 0,

xy € (a*c)"1(eE*d | €)(db*)™,
ys € (a*c)"(eE*d | €)(db*)!~".
k1 and us = b1,
O

By induction hypothesis, x; = a* and y3 = b*. Therefore, u; = a

Note that by Lemma [I4] in any string in H, ¢ always precedes d and d always
follows €.

Lemma 17 For all u,v € £*, the following conditions hold:

(1) If ucv € H, then for some k > 1,
ue(e|L*(c|d))d, d'eveH(e|(c|d)E")
(ii) If udv € H, then for some | > 1,
udb' € (¢ | £*(c|d))H, vebl(e|(c|d)E").
(iii) If ucdv € H, then for some k,l > 1,
ue (e|L£*(c|d))dcH, veHdb (e|(¢|d)E").

Proof Each of the three conditions can be proved by easy induction on the combined
length of u and v. We only prove (i). Suppose ucv € H. Since ucv # €, there must be
yi €at, x2,y2 € H, and x3 € bt such that ucv = y;cx2édy,dxs. If u = yy, then we can
take a* = y. Otherwise, either u = y| cxy, v = xjédy,dx; for some x5, x4 such that x, =
xhexy, or u = yicxpédyly, v = yydxs for some 5,y such that y» = y5cy5. In the former
case, we can apply the induction hypothesis to x5, x and obtain x}, € (¢ | £*(c | d))a*
and a“cxy € H(e | (¢ | d)£*) for some k > 1. It follows that u = y;cx € £*(c | d)a*
and acv = a*cxljedy,dxs € H(G| d)E*. In the latter case, we can apply the induction
hypothesis to y5,y} and obtain y, € (¢ | £*(c | d))a* and d¥cyy € H(e | (¢ | d)E¥)
for some k > 1, and we can similarly infer u = yjcx,édy), € 2 (e | d)a* and dfev =
dieyljdxs € H(¢ | d)E*. O

Lemma 18 Suppose w € fac($HS). For all k,1 > 0, the following conditions hold:

7 By part (i), part (i) can be equivalently stated with a™ and b™ in place of a* and b*, but it will turn
out to be slightly more convenient in this form.
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@ we($|c] d_)akCHC_d(fl*C)l(E_ d) implies k =1+ 1.
(i) w € (c|d)(db*)*edHdb' (¢ | d | $) implies k+1 = 1.

Proof We only prove part (i), since part (ii) is exactly symmetric. Suppose that w €
fac($H$) and for some u € H,

we (s |cldw,
w € d'cucd(a*c) (¢ d).

By Lemma part (i), there is a string z € H such that w' is a prefix of some string
in z(e | (¢ | d)E*). Since w' starts in a or c, the string z cannot be &. Hence there
are some strings xp,Xx2,%3,¥1,Y2,y3 such that - J(x,x2,x3), & J(y1,¥2,y3), and z =
y]cxzédyzd_x3. So

w' is a prefix of some string in yjcxaédy,dxs(g | (¢ | d)E¥).

Note that x;,y; € a* and x3,y3 € bT. So clearly, y; = a¥, and either x,¢ is a prefix
of uc, or else uc is a prefix of xo¢. Since u € H and x; € H, neither u nor x, can
start in ¢. It follows that u = € if and only if x, = €. If u # € and x, # €, then
either u is a non-empty prefix of x, or vice versa, and Lemma [I5]implies that u = x».
Hence we always have a*cucd = yjcx,&d. It follows that y»d has a prefix belonging
to (a*c)!(¢| d). Since y; € H, by Lemma part (i), either /=0and y, =€ orl > 1
and y, has a prefix belonging to (a*c)'¢. We can now apply Lemma part (ii), to
J(y1,y2,y3) and obtain k =1+ 1. O

3.3 Almost Anti-iterative Elements of H

Given a language K and a string w € K, an iteration tuple for w in K is a tuple of
strings (ug,w1,u1,. .., Wk, u;) such that

- W=uopwiuy...wWrlg,
- wi...w; # €, and
— upwiuy ... wiu € K foralli > 0.

The notion of an iteration tuple is a generalization of the notion of an iterative pair
[1]. A language K is said to be k-iterative if all but finitely many strings in K have an
iteration tuple (uo,wy,u1,...,wy,uy) (of length 2k + 1) in K. We simply say that K
is iterative if all but finitely many strings in K have an iteration tuple (of any length)
in K. (Iterativity is a slight weakening of the property Groenink [5/4] called finite
pumpability.)

We prove a theorem that implies that the language H is not iterative. In fact, the
theorem states something much stronger. We say that a string v € K is anti-iterative in
Kifv=ugwiuy ... wiu, and wy ... wy # € (for any k > 1) imply uow’iul ...w};uk ¢K
for all i > 1. We say that v € K is almost anti-iterative in K if v = ugwyuy ... wiruy
and wy ...wy # € (for any k > 1) imply that there is at most one natural number i > 1
such that uow’iul .. .w;'cuk € K. Clearly, if v is almost anti-iterative in K, then there is
no iteration tuple for v in K.
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Now for each n > 0, define a string v,, € H as follows:

Vo =€,

Va1 = d"Heveédv,db™ !

It is easy to see - J(a"*!,v,,b"*1) for all n € N. The strings v, are precisely those
elements of H that have a derivation tree whose immediate subtree is a perfect binary
tree. We will show that each v,, is almost anti-iterative in H.

We start with some lemmas (Lemmas [T9H22)) stating some general properties of
the strings v, that are intuitively obvious from the way they are defined. We give a
fairly rigorous proof to each of these lemmas.

Lemma 19 v, € (atc)"(¢E*d | €)(db*)" for all n.

Proof Forn=0,vy= €= (a*c)’(db*)’, so the desired condition holds. Forn > 1,
we prove by induction on 7 that v, € (a*¢)"¢E*d(db")". For n = 1, v; = acéddb €
(atc)'eE*d(db™)". For n > 2, assume v, 1 € (atc)" 'c£*d(db*)"~'. Then v, =
d"cv,_1édv,_1db" € (atc)"eL*d(dbT)". O

Lemma 20 fac({v, |neN})NH={v,|neN}.

Proof Clearly, it suffices to show the inclusion, fac({v, |[n € N})NH C {v,|neN}.
We prove by induction on n € N that w € fac(v,) NH implies w = vy for some k < n.
Since vg = € € H, the induction basis is immediate. Now assume w € H and w is
a factor of v, | = a"*'cv,édv,db"'. By Lemma |16 part (i), either w = € or w €
(atc)teE*d(db™) . If w= g, then w = vq. It remains to consider the case where w €
(ate)teE*d(db™) . If w(w) = w(vay1), then w = v, by Lemma If w(w) #
W (V,i1), then either w is a factor of v,édv,db" ! or w is a factor of @' cv,édv,.

Case 1. wis a factor of v,édv,db"t!. Since w starts in a, there must be a non-empty
suffix y of v, starting in a such that w is a prefix of yédv,db™"! or of ydb"*!. Since
y is a suffix of v, € H, Lemma [I5] implies that y cannot be a proper prefix of any
element of H. Since w € H, it follows that y is not a proper prefix of w. Since w is a
prefix of yédv,db"*! or of ydb"*!, w must be a prefix of y.

Case 2. w is a factor of @"*'¢v,édv,. Since w ends in b, there must be a non-empty
prefix x of v, ending in b such that w is a suffix of a"*!cx or of a"*!cv,édx. By an
analogous reasoning to the previous case, we can conclude that w is a suffix of x.

In both cases, w is a factor of v,, and the induction hypothesis gives w = v; for some
k<n. O

Lemma 21 Suppose w € fac(${v, | n € N}$). For all k,1 > 0, the following condi-
tions hold:

(A we ($|c|d)d(c|cHed)d (c | ¢|d) implies k =1+1.

(i) we (c|d|d)b*(edHd | d)b (¢ |d | $) implies k+1=1.
(iii) w € (c | d)b*edd! (c | d) implies k = 1.
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Proof (i). Suppose uwv = $v,$ and

we ($|c|adw,
w ed(c|cHed)d (c|¢|d). (10)

By Lemma part (i), kK > 1 and there is a z € H such that w'v € z(¢ | (Eld_)f*)ﬂi.
Since w' starts in a, z # €. Lemma[20]implies that z = vy = a¥cvy_ édvi_1db*. So

w'v € d'evi_ edvi_1db*(e | (G| d)E)$. (11)

By , either w' € a*cal(c| ¢ | d) orw' € a*cHedd! (c | €| d).

Case 1. w' € d*cd!(c | ¢ | d). Then either k = 1, vy _; = &, [ = 0, and w' = d¥c¢, or

k > 2 and v;_; has a prefix that belongs to a’(c | ¢ | d), which implies / = k— 1. In
either case, we getk =1+ 1.

Case 2. w' € d*cxéda'(c | ¢ | d) for some x € H. Then either v;_|C is a prefix of
XC or xc is a prefix of vg_jcC. Since neither v;_; nor x can start in ¢, it follows that
vi—1 = € if and only if x = €. If vy # € and x # €, then either v;_; is a non-empty
prefix of x or x is a non-empty prefix of vi_;. Lemma [5] then implies vx_; = x. So
we always have a“cvy_éd = d*cxéd. By , it follows that v;_;d has a prefix that
belongs to a(c | ¢| d). But the definition of v, implies that v;_d always has a prefix
in @*~!(c | d). Therefore, ] =k — 1 and so k = [ + 1.

(ii). Exactly symmetric to part (i).
(iii). Suppose uwv = $v,$ and

w=w'écdw’,
w' e (c| )b, w'ed(c|d).
By Lemma|[17] part (iii), there exist x,y € H and ',/ > 1 such that
uw' €$(e | £ (c|d))d ex,  w'veydb(e|(¢|d)E)s.

Since x and y are factors of v,, Lemma @] implies that x = v; and y = v; for some
i,j>0.Ifi > 1, then v; has db' as a suffix, so it follows that k = i. If i = 0, then uw’
ends in ¢, so w = ¢ and k = 0. So we always have k = i. By a symmetric reasoning,
we get [ = j. It follows that

uwy = uw'édw'v € $(e | £*(c | d))d" cviédvidb” (e | (¢ | d)£*)$.

Since v,¢ has a prefix that belongs to a*(c | €) and v;d has a prefix that belongs to
a'(c| d), part (i) of this lemma implies K’ = k4 1 = [ + 1. Therefore, k = /. O

We will make frequent use of Lemmas [I§] and 21] in what follows. It will be
important not to confuse part (i) and (ii) of Lemma|[I8] on the one hand, and part (i)
and (ii) of Lemma 21} on the other. The former state general properties of elements
of H, while the latter express special properties of the strings v;,.

Lemma 22 Suppose w € fac({v, |n € N}).
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W) If y(w) €L, thenw = aicv;géfor some i,k > 0 such that i <k-+1.
(ii) If y(w) € R, then w = dvidb’ for some j.k > 0 such that j < k+1.
(iii) If w(w) € LR, then w = d'cvicdvidb’ for some i, j k > 0 such that i, j < k+ 1.

Proof (i). Suppose uwv = v, and y(w) € L = ¢V¢. By Lemma in the string w, b
cannot precede a or ¢ and neither a nor b can follow ¢. Hence w = a’cx¢ for some
i € N and some x such that y(x) € V.

Since uwv = ua‘cxév =v, € H, Lemma “ part (i), 1mpl1es that there must be
some [/ > 1 and y € H such that [ > i, d' is a suffix of ua’ and a'cxcév € y(e | (¢ |
d)£*). This means that y must contain a’c as a prefix, so Lemmalmphes y=v =

a'evi_ édv;_db'. Hence

aexcv € alcw,lédvl,ld_bl(e | (¢] d)L").

This implies the following:
Either xc is a prefix of v;_;¢, or else v;_C is a prefix of xc. (12)
We claim x = v;_;. The desired conclusion follows from this by putting k =1 —1.

Case 1.1 =1. Then v;_; = vy = €. Since y(x) € V implies that x cannot start in ¢, it
is clear from (I2)) that x must be €. So the claim holds in this case.

Case 2. 1 > 2. Tt follows from that either w(x)c is a prefix of y(v;_1)¢ or vice
versa. Since [ — 1 > 1, y(v;_;) starts in c¢. Then y(x) must also start in ¢. Hence either
y(x) is a non-empty prefix of y(v;_) or y(v;_1) is a non-empty prefix of y(x). By
Lemmal[10] we get y(v;_1) = y(x). Consequently, x is not a prefix of v;_, and v;_;
is not a prefix of x, so by @]) we can conclude v;_; = x.

(ii). This is proved in an exactly symmetric way to (i).

(iii). By Part (i) and (ii) of this lemma, w = d'cviédv,db’ for some i, J,k >0 such
thati < k+1and j <[+ 1. Since w contains a factor that belongs to (c | d)b*éda’ (¢ |
d), part (iii) of Lemma 21| gives k = I. O

We now state and prove our main lemma. Let
L={cv,c|neN},
R={dv,d|neN},
LR = {cv,édvyd | n € NY.

Then Lemma[22]implies
v~ (L)Nfac({v, |n e N}) Ca'L, (13)
v~ (R)Nfac({v, | n € N}) C Rb", (14)
v (LR) Nfac({v, |n € N}) C a*LRb". (15)
Lemma 23 [f w € fac({v, | n € N}) and ww € fac(H), then

v(w) € c* | Ldc* | d* |d*éR | Vede™ | dedV.
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Proof Since ¢ clearly belongs to the required set, assume y(w) € X, Since ww €
fac(H) implies y(w)y(w) € fac(V), y(w) must satisfy one of the five cases of
Lemma [I2}

y(w) € (CR|d)".

w(w) € R(CR | d)*¢.

y(w) € (c|Ld)".

- y(w) ed(c|Ld)"L.

. y(w) e (V|R)(CR|d)"e¢d(c| Ld)"(V | L) for some m,n > 0 such that m # n.

e

Below we treat the five cases in turn.

Case 1. y(w) € (¢R | d)*. We show that y(w) € d* | d*éR. Suppose by way of
contradiction that y(w) € d*éR(CR | d)*. Lemma |14| says that in the string w, a
cannot precede d or ¢, b can follow only d, and d can be followed only by b. Together
with (T4), this allows us to infer

w e b*(db™)*cRb* ((¢R | d)b*)* (R | d)b*.

Recall that R consists of the strings dv;d. Recall also that v; = € when i = 0 and
v; = d'cvi_1cdv;—1db' otherwise. So if w contains a factor that belongs to

dvidb’ (¢ | d),
then w contains a factor that belongs to
(d|d)b'db’(¢|d),
and part (ii) of Lemma allows us to infer j =i+ 1. Hence w must be of the forrrﬂ
W= uxy ... Xmédvidb 1y . vz,
where m,n > 0 and

ueb*,

db’  for some p; > 1,

Xi
yi € (Gdvg,d | d)b% ™ for some g; > 0,
€ (édvd | d)b*  for some [ > 0.
Lemma [21] part (ii), also implies
giv1=qi+1 fori=1,....n—1,
q=k+1 ifn>1.

So
qgi=k+i fori=1,... n.

8 We will appeal to Lemma similarly in Cases 2-5 without explicitly going through this kind of
reasoning.
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It immediately follows that
ci_bk+1y1 ...Yyn contains dbF 1 ag a suffix. (16)

Note that this holds even when n = 0.
Next, we claim that

dvidb**'y| .. .y, has a suffix that belongs to d(db* )<+, (17)

By Lemma [I9] this is clearly true when n = 0. When n > 1, we can prove by in-
duction on i € {1,...,n} that dv;db**1y;...y; always has a suffix in d(db*)*+i+1,
For i = 0, dvidb**! has a suffix in d(db*)**! by Lemma For 1 < i< n, as-
sume that dvidb*y| ...y;_1 has a suffix in d(db*)**. If y; = db%*! = db**, then
it follows that dvdb**ly;...y; has a suffix in d(db*)*H+1 If y; = edv,,dbi™! =
¢dvyy i db*TT1 | then y; has a suffix in d(db* )+ by Lemma

Now note that

ww has a factor in édvidb**'yy .. ypzux; ... xpedvidb* (¢ | d). (18)

Since ww € fac(H), this factor must also belong to fac(H ). We distinguish two cases.

Case 1.1. 7 € év,db*. Then by Lemma ZUXy ... Xy has a suffix in d(db*)!T1+m,
so by Lemmal|[I8] part (ii), we get [ +1+m+1=k+1, ie.,

k=1+m+1. 19)
By (I6), w contains as a factor
Ay lz e dptH édv,db*.
Since this factor belongs to fac({ v, | n € N}), we must have
l=k+n+1

by Lemma [2T] part (iii). But this last equation contradicts (T9).

Case 1.2. z € db*. By , we see that dvidb*ty| .. y,zux; ...x,, has a suffix in
d(db* ) H1t+m — g(dp*)kntm+2 By Lemma |18} part (ii), we obtain from
that k+n+m+2+1=k+ 1, a contradiction.

_ We have derived a contradiction in each case. So the assumption that y(w) €
d*CR(CR | d)™ is incorrect and y(w) must be in d* | d*CR.
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Case 2. y(w) € R(¢R | d)*é. We derive a contradiction. By Lemma|14} in the string
w, ¢ can be followed only by d and d can be followed only by b. Together with ,
this allows us to infer R o

weRbT((eR|d)bT)e.
By Lemma[21] part (ii), w must be of the form

w= dvkd_bk“yl .. InC,

where n > 0 and o
yi € (€dvy,d | d)b% 1 for some g; > 0.

Lemma [21] part (ii), also implies
giv1=¢qi+1 fori=1,....n—1,
qg=k+1 ifn>1.

So we have
gi=k+i fori=1,... n.

Asin Case 1, we can see that vidb* "y ...y, has a suffix that belongs to d (db* )<+ 1,
Since ww has a factor in

vidb*yy . ypédvidb* T (e | d)
and this factor belongs to fac(H), Lemma part (ii), implies k+n+1+1=k+1,

a contradiction.

Case 3. y(w) € (c | Ld)™. This case is exactly symmetric to Case 1 and we can
derive y(w) € ¢* | Ldc*.

Case 4. y(w) € d(c | Ld)*L. This case is exactly symmetric to Case 2 and we can
derive a contradiction.

Case 5. y(w) € (V|R)(R|d)"ed(c | Ld)"(V | L) for some m,n > 0 such that m # n.

We show that y(w) € dtédV | Vede™. By Lemma a cannot precede ¢ or d, and
b cannot follow ¢ or d. Together with (T3)), (T4), and (13), this allows us to infer

w € (b* | a*LRb* | Rb*)((éR | d)b*)"éd(a* (c | Ld))"(a* | a"LRb* | a*L).
By Lemma 2] part (i) and (i), we can write w as
W=2XX]...XpCdYyy ... V1Y,
where
x € b* | a*cviédvidb* ! | dvidb* ! for some k > 0,
yea* |d T eviedvidb* | a T evie for some 1> 0,
x; € (edvyd | d)bP*! for some p; >0,

yi € a(c| cvyéd)  for some g; > 0.
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Lemma@ part (i) and (i), also implies

pir1=pi+1 fori=1,....m—1, (20)
giv1=¢qi+1 fori=1,....n—1. 2D

We first show that
yx=v; forsome j. (22)

Since ww contains dy, ...y yxx] ...x,¢ as a factor and ww € fac(H),

(c|d)yx(¢|d)nfac(H) # 2. (23)
By Lemma|[T4] the only symbol that can follow ¢ in yx is d and the only symbol that
can precede d in yx is ¢. So x = dvidb*! if and only if y = a""'cv,é. Lemma
also implies th_at neither a nor ¢ can fol]ow b or d in yx, so we cannot have both
x € a*eviédvidb* ! and y € a/*eviédv,db*. Hence

yx € a*b* | a*cviédvidb* ™ | a' T eviédvidb® | a'eviédvidb T

If yx € a*b*, Lemma [T4] together with implies yx = & = vy. Otherwise, Lem-
mas [I8]and [T9] together with (23) imply

yx = cz”lcvjc“dvjd_b-’Jrl =V,

where j =k or j = I. This establishes (22).
Since m # n, either m > 1 or n > 1. We distinguish three cases:

Case 5.1. m > 1,n > 1. In this case, ww contains a factor in

(c|d)yivjxi(¢|d).

This factor is in fac(H). Since y(ww) € fac(V) C fac(D3), we have y(yiv;x1) €
fac(D3). By Lemmad] nf(y/(y1v;x1)) € (€] d)*(c | d)*, and it follows that

YIVx| € aq'HcvjEdvpld_bp'+l | aq'Hcvqlc‘dvjd_bp‘H.
So
(c|d) (@ evjedv,, dbP T | a? T vy édv;db? ) (¢ | d) Nfac(H) # @.

By Lemmas [I8]and [T9] we obtain p; = ¢; = j. By (20) and (ZI), then, we get p,, =
j+m—1andg, = j+n—1. Since

XmCdyy € (€dvjim—1d | d)b™eda’™ (c | cvjin_10d)

is a factor of w, we get j+m = j+n by Lemma 2] part (iii), but this contradicts
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Case 5.2. m > 1,n = 0. Since
WW = XX{ ... XpCdV X1 ... XpCddy

and y(ww) € fac(V) C fac(D;), we get y(dvx;) € fac(D3). By Lemma

nf(y(dvx)) =nf(dy(x1)) € (¢|d)*(c | d)*. Hence we must have
X1 = d_bpl+1.

By @0), pi = p1+i—1fori=1,...,m. We consider three subcases, depending on
whether x € b*, and whether x; = db”' T foralli = 1,... m.

Case 5.2.1. x € b* and x; = dbP'* for all i = 1,...,m. Then since yx = vj, either
x=y==¢orj=I1+1andy € da*'cv,édv,db*. Hence

v(w) edredv.

Case 5.2.2. x & b* and x; =dbP1* foralli=1,...,m. Then j =k+1, yx = v;,{, and
dvidb**! is a suffix of x. Since w contains a factor in

dvidb* ' x) (¢ | d) = dvidb* 1 abP T (2 | d),

we get p = k+ 1 by Lemma 21} part (ii). By Lemma[T9} we also see that xx; ... Xy
has a suffix in d(db*)*+"*1. Since ww has a factor in

XX+ Xy Cdvi1X1 (€| d) = xx1 ... Xp&dvi 1 dDFT2(C | d)
C E*d(db* ) edHdb 2 (e | d),
we get by Lemma|[T8] part (ii),
ktm+1+1=k+2,

which contradicts m > 1.

Case 5.2.3. x = édvy, 1j—1dbP' ™" for some h € {2,...,m}. (Recall x; = dbP1 1) We
can assume / to be the largest such number, i.e., x; = db”' " forall i € {h+1,...,m}.
By Lemma xp, has a suffix in d(db*)P1". 1t follows that x . ..x,, has a suffix in
d(db*)P1*™. Since ww has a factor in

Xp o X@dvixi (€| d) = xp... xpedv;dbP (¢ | d)
C E*d(db*)P " edHdb" T (¢ | d),
we get by Lemmal[I8] part (ii),
p1+m+1 :p1+la

which contradicts m > 1.
Case 5.3. m = 0,n > 1. This case is exactly symmetric to the preceding case, and we
can conclude

w(w) evedce™.

This concludes the proof of the lemma. a
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Theorem 24 For each n > 0, the string v, is almost anti-iterative in H.
Before embarking on the proof of the theorem, let us consider a simple example:

vy = aac accdd bédaccddbdb b .
—~ —— ———

wi I wo w3
In this example, uy = up = u3z = €. Note

y(wi)=c, y(w)€R, wy(ws)=¢.
We have

wiuywiw3 = aac aac acédd béd accddbdb béd acéddbdbbb € H,
—— = N——

V1 V] V]

v2
but
w%ul w%wg =

aac aac aac acédd béd acéddbdb béd acéddbdb béd aceddbdb bbb ¢ H
—_— = S—— S——

Vi Vi Vi Vi

V2

¢H

After the occurrence of d following the third occurrence of vy, one should find b3,
rather than b2, in order to have a string in H (as required by Lemma part (ii)).

Proof (of Theorem[24)) Suppose that v, = ugwyuj ... wug and wy ... wy # €. If there is
some j such that w? is not in fac(H ), then there is no i > 3 such that uowi1 uj.. .w;(uk S
H, and the conclusion of the theorem is clearly satisfied. Hence we may assume that
each w? belongs to fac(H).

Suppose that ugw’ ... whuy € H for some h > 1. We show that such / is unique.
Since w? is a factor of W_? and hence belongs to fac(H ), by Lemma each y(w;)
must belong to one of the six sets

c*, Ldc*, d*, d*CR, Véde™, dreav.

Since wy...wy # €, we have ugwiuy ... wiuy # uow’ful ...wZuk. By Lemma we
know that y(uowiui ... wiix) # W(uowus ... whuy). Therefore, it cannot be that
y(w;) = € forall j. Since both y(ugwyu ... wiur) and W (ugwiuy ... whuy) belong to
V, the string y(w) ... y(w;) must have the same number of occurrences of ¢, ¢,d, d.
It follows that there is a j such that y(w;) € Ldc* | d*éR | Véde™ | dTedV.
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Case 1. y(w;) € Ldc*. Lemma 14|implies that in the string w, b can follow only d.
So
wj€vd(a*c)*a

for some v € fac({v, | n € N}) such that y(v) € L. By Lemma 22} v € a*cv,¢ for
some [ > 0. LemmalEl also implies that in ugwuy ... wyug, (i) the only symbols that
can precede a are a, ¢, and d, (ii) the only symbols that can follow a are a and ¢, and
(iii) the only symbols that can follow c or d are q, ¢, and d. Hence we can write

upwiuy ... wj_uj1 € (e| £*(c| d))a™,
wj € a™cevied(a*c)Pa™,
Upwiitj1 . wity € (a*c)(¢ | d)E*,

for some [,mg,my,mp,p,q > 0. We get mo+m; =1+ 1 by Lemma@ part (i), and
mo+m; = p+ g+ 1 by Lemmal|I8] part (i). Hence [ = p+¢.

Let g > j the largest number such that ujwjyi...us_1w, € (a*c)*a*. Let r be the
number of occurrences of ¢ in w1 ...w,. Then for every i > 1,

ujw;+1uj+1 owhig € (@ )T (E | d) B

Thus, w?ujw;’.+1uj+1 .. .wZuk has a factor in

d(a*c)Pa™ ™ cviéd(a*c)Pa™ (a* )TtV (¢ | d).
Since this factor is in fac(H), Lemma part (i), implies

my+mp=p+q+(h—1)r+1

= (h—1)r+1+1. @)

Note that the string w? has a factor in
d(a*c)Pa™ ™ cviéd(a*c)Pa™ ™ cvié.

Since we assumed that w? € fac(H), this factor is also in fac(H). By Lemma V¢
has a prefix that belongs to (a*c)'¢. By Lemma part (i), then, we have

my+mp=p+1+i+1

25
=p+I+2. (25)
From (24) and (23), we get
(h—Dr=p+1.
Since p > 0, this implies r # 0 and
1
h= &_‘_1,
r

which shows that % is unique.

Case 2. y(wj) € d*CR. This case is exactly symmetric to the preceding case.
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Case 3. y(w;) € Védc™. We can use Lemmal[14]to infer

w; € véd(a“c)ta*,

* L\ K 5§k
UjWjpiUjt .. Wil € (a”c)*eX

for some string v € fac({v, | n € N}) such that y(v) € V. By Lemma[21] part (i), we
can write

wj € vedd" e d ed™,

h=1¢  ca'ces*

UjW i1 Ujg1 - Wil € a"™ca
C (a*c)l’ 3
for some [{,my,my > 0 and /5 > 1 such that m| +my = [;. Similarly to Case 1, there
must be some r > 0 such that

1 j * N +(I—1)r ¢
UWip tjy1 - Wity € (a”c)! (i=lrzs
for all i > 1. Then w"u;w", u; ... w"u, has a factor in
JHIW 1%+ K"k

(c|d)a" ™ veda e a'  ed™ (at )t DrEss

C (c|d)a" eca™ved(a*c)PhT=Dragx, (26)

This factor is in fac(H). Note that the above inclusion holds even when [} = r =0,
since /1 = 0 implies m; = 0.

We show that a™v € H. Recall y(v) € Vand v € fac({v, |[n € N}). If y(v) =€,
then v € (a | b)*, but since ca™v¢ € fac(H), Lemma |14 implies a™'v = € € H.
If y(v) € LR, Lemma implies that a™v € a*cv;édv;db* for some I. Since
ca™vc € fac(H), it follows from Lemma (19| and Lemma part (i) and (ii), that
amv =aeviedvidb!T = v €H.

So the set is included in

(c|d)a" '\ cHed (a )2t ht=Drags,

Since there is an element of fac(H) belonging to this set, we obtain by Lemma
part (i)
Lh+1=hL+] +(h— 1)r+1.

Since h > 1, r > 0 and [, > 1, this is a contradiction.

Case 4. y(wj) € d*edV. This case is exactly symmetric to the preceding case. O
Corollary 25 The language H is not iterative.

Corollary 26 There is a 3-MCFL that is not k-iterative for any k.
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4 Conclusion

We have proved that the language H is a 3-MCFL that is not iterative. A simple
consequence of this theorem is that if % is a subclass of the class MCFL of multiple
context-free languages and % consists entirely of iterative sets, then the language H
does not belong to ¢ and hence ¢ must be a proper subclass of MCFL.

Kanazawa and Salvati [8]] showed that the class MCFL,,,, of well-nested multiple
context-free languages is properly included in MCFL, and in particular, the language
{w#w | w € D} } belongs to MCFL — MCFL,,,,. Since every language in MCFLy,, is
k-iterative for some k, the language H serves as a further witness to the separation of
MCFL and MCFL,,.

Another subclass of MCFL that only contains languages that are k-iterative for
some k is the class of languages in Weir’s control language hierarchy [L6[12l[7]. As
far as we know, it has been an open question whether the inclusion of the control
language hierarchy in the class of multiple context-free languages is proper. The lan-
guage H serves as a witness to the properness of the inclusion.

Corollary 27 There is a 3-MCFL that does not belong to Weir’s control language
hierarchy.
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