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Abstract

Parsing and generation (or surface realization) are two of the most impor-
tant tasks in the processing of natural language by humans and by computers.
This paper studies both tasks in the style of formal language theory, using
typed λ-terms to represent meanings. It is shown that the problems of
parsing and surface realization for grammar formalisms with “context-free”
derivations, coupled with a kind of Montague semantics (satisfying a certain
restriction) can be reduced in a uniform way to Datalog query evaluation. This
makes it possible to apply to parsing and surface realization known efficient
evaluation methods for Datalog. Moreover, the reduction has the following
complexity-theoretic consequences for all such formalisms: (i) the decision
problem of recognizing grammaticality (surface realizability) of an input string
(logical form) is in LOGCFL; and (ii) the search problem of computing all
derivation trees (in the form of shared forest) from an input string or input
logical form is in functional LOGCFL. These bounds are tight. The reduction
is carried out by way of “context-free” grammars on typed λ-terms, a relaxation
of the second-order fragment of de Groote’s abstract categorial grammar. The
method works whenever a grammar uses only “almost linear” λ-terms.

Keywords: Generation, Surface Realization, Parsing, Datalog, LOGCFL,

Montague Semantics, Abstract Categorial Grammar, Typed Lambda Calculus,

Almost Linear Lambda Term.

1 Introduction

The representation of context-free grammars (augmented with features) in terms
of definite clause programs is well-known. In the case of a bare-bone CFG, the
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corresponding program is in the function-free subset of logic programming, known
as Datalog. For example, determining whether a string John found a unicorn belongs
to the language of the CFG in (1) is equivalent to deciding whether the Datalog
program in (2) together with the database in (3) can derive the goal or query (4):1

S → NP VP

VP → V NP

V → V and V

NP → Det N

NP → John

V → found

V → caught

V → is

Det → a

N → man

N → unicorn

(1)

S(i, j) :− NP(i, k), VP(k, j).
VP(i, j) :− V(i, k), NP(k, j).
V(i, j) :− V(i, k), and(k, l), V(l, j).
NP(i, j) :− Det(i, k), N(k, j).
NP(i, j) :− John(i, j).
V(i, j) :− found(i, j).

V(i, j) :− caught(i, j).
V(i, j) :− is(i, j).
Det(i, j) :− a(i, j).
N(i, j) :− man(i, j).
N(i, j) :− unicorn(i, j).

(2)

John(0, 1). found(1, 2). a(2, 3). unicorn(3, 4). (3)

?−S(0, 4). (4)

In the Datalog representation, terminals and nonterminals of the CFG are in-
terpreted as binary predicates on positions within the input string. The database
representing a string can be viewed as a certain type of directed graph (called a
string graph). We depict a string graph by a diagram like (5), where circles rep-
resent nodes (string positions) and boxes are labels of directed edges, which, by
convention, point from left to right.

0 John 1 found 2 a 3 unicorn 4 (5)

By naive (or seminaive) bottom-up evaluation (see, e.g., [76] or [1]), the answer
to a query like (4) can be computed in polynomial time in the size of the database, for
any fixed Datalog program. This method of evaluation generates all facts derivable
from the program together with the input database in the order of the height of
the Datalog derivation tree, until no new fact is derivable. By recording ground
instances of rules used to derive facts, a packed representation of the complete set
of Datalog derivation trees for a given query can also be obtained in polynomial
time using this technique. Since a Datalog derivation tree uniquely determines a
grammar derivation tree and vice versa (Figure 1), the translation gives a reduction

1The term query means different things in logic programming/Prolog and relational database
theory/finite model theory. The use of the term in this paper follows the logic programming/Prolog
tradition.
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Figure 1: A CFG derivation tree (left) and a Datalog derivation tree (right).
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Figure 2: A TAG with one initial tree (left) and one auxiliary tree (right)

of context-free recognition and parsing to query evaluation in Datalog. This is of
course all well known and well understood, even though the Datalog parlance is not
universally adopted.

In this paper, I extend this reduction in two directions. First, I show that
a similar reduction to Datalog is possible for more powerful grammar formalisms
that have “context-free” derivations, such as (multi-component) tree-adjoining gram-
mars [37, 80], IO macro grammars [24], and (parallel) multiple context-free gram-
mars [66]. For instance, the tree-adjoining grammar in Figure 2 is represented by
the Datalog program in (6).

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i2, i1, i2).

(6)

Second, I extend the technique to the problem of tactical generation (surface real-
ization) for such “context-free” grammar formalisms supplemented with a kind of
Montague semantics [57], under a certain restriction to be made precise below. The
method of reduction is uniform in both cases, and essentially relies on the encoding
of different formalisms in terms of abstract categorial grammars [17].

The reduction to Datalog makes it possible to apply to parsing and generation
sophisticated evaluation techniques for Datalog queries; in particular, an application
of generalized supplementary magic-sets rewriting [8] automatically yields Earley-
style algorithms for both parsing and generation. The reduction can also be used
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to obtain a tight upper bound, namely LOGCFL, on the computational complexity
of the problem of recognition of input strings as well as of the problem of checking
surface realizability of input logical forms.2 This means that, in rough complexity-
theoretic terms, these problems are no more difficult than the recognition problem
for context-free languages.

With regard to parsing and recognition of input strings, polynomial-time algo-
rithms and the LOGCFL upper bound on the computational complexity are already
known for the grammar formalisms covered by our results [22]. Also, efficient tab-
ular algorithms have already been obtained for many of these formalisms, and a
general perspective on tabular parsing, in the names of deductive parsing [69] and
parsing schemata [70], which can be equivalently expressed in terms of Datalog, is
already available. Nevertheless, I believe that my method of reduction to Datalog
is of independent interest, as it shows that efficient tabular parsing (recognition)
algorithms are automatically obtained from various types of grammars in a uniform
way. Concerning generation, where the input is a structured expression involving
binding, the present results seem to be entirely new.3

Since the precise statement of my method of reduction and the proof of its
correctness are quite technical, I first give an informal exposition of the method in
Section 2. I develop the theory formally, complete in all details, in Section 3. I then
discuss some consequences and extensions of the main results in Section 4, before
giving a brief conclusion in Section 5.

The main results of the present paper were first announced in [42]; Sections 1
and 2.1, part of Section 2.2, and Section 4.3 are based on that paper.

2LOGCFL is the class of decision problems that can be reduced to some context-free language
by a deterministic Turing machine operating in logarithmic space, and lies between the complexity
classes NL and AC1 (see [35]). Since LOGCFL is a subclass of NC, problems in LOGCFL are
efficiently parallelizable. There are context-free languages that are complete for LOGCFL under
log-space reduction (see [27]).

3As I explain below, the present method primarily applies to exact generation only, where the
input logical form is supposed to exactly match the logical form produced by the grammar.
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2 An informal exposition

2.1 Context-free grammars on λ-terms

Let us consider an augmentation of the CFG (1) with Montague semantics, which
uses λ-terms as representations of meanings:4

S(X1X2) → NP(X1) VP(X2)
VP(λx.X2(λy.X1yx)) → V(X1) NP(X2)
V(λyx.∧t→t→t(X1yx)(X2yx)) → V(X1) and V(X2)
NP(X1X2) → Det(X1) N(X2)
NP(λu.u Johne) → John

V(finde→e→t) → found

V(catche→e→t) → caught

V(=e→e→t) → is

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))) → a

N(mane→t) → man

N(unicorne→t) → unicorn

(7)

Here, the left-hand side of each rule is annotated with a λ-term that tells how the
meaning of the left-hand side is composed from the meanings of the right-hand side
nonterminals, represented by upper-case variables X1, X2, . . . . Note that λ-terms
may contain any number of constants, whose types are indicated by superscripts.5

In such a grammar, the meaning of a sentence is computed from its derivation
tree. For example, given the derivation tree of John found a unicorn (the left tree
in Figure 1), we can decorate each nonterminal node with a λ-term in accordance
with the grammar rule being applied at that node, obtaining the decorated tree in
Figure 3. The λ-term decorating the root node,

(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)),

β-reduces to the λ-term

∃(λy.∧(unicorn y)(find y John)) (8)

encoding the first-order logic formula representing the meaning of the sentence (i.e.,
its logical form):

∃y(unicorn(y) ∧ find(John, y)).

4Grammars like this one are basically generalized phrase structure grammars [25] without fea-
tures or metarules.

5We follow standard notational conventions in typed λ-calculus, rather than Montague’s [57].
Thus, an application M1M2M3 (written without parentheses) associates to the left, λx.λy.M is
abbreviated to λxy.M , and α → β → γ stands for α → (β → γ).

1107



M. Kanazawa

S
(
(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x))

)

NP(λu.u John)

John

VP
(
λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)

)

V(find)

found

NP
(
(λuv.∃(λy.∧(uy)(vy))) unicorn

)

Det
(
λuv.∃(λy.∧(uy)(vy))

)

a

N(unicorn)

unicorn

Figure 3: A decorated derivation tree of a CFG with Montague semantics.

Thus, computing the logical form(s) of a sentence—the task of semantic interpre-
tation6—involves parsing and λ-term normalization. Conversely, to find a sentence
expressing a given logical form—the task of surface realization—it suffices to find
a derivation tree whose root node is decorated with a λ-term that β-reduces to the
given logical form; the desired sentence can simply be read off from the derivation
tree. At the heart of both tasks is the computation of the derivation tree(s) that
yield the input. In the case of surface realization, this may be viewed as parsing
the input λ-term with a “context-free” grammar that generates a set of λ-terms (in
β-normal form), which is obtained from the given CFG with Montague semantics
by stripping off terminal symbols:

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

(9)

Determining whether a given logical form is surface realizable with the original gram-
mar (7) is equivalent to recognition with the resulting context-free λ-term grammar
(CFLG) (9). As with CFG recognition/parsing, solving the problem of recognition
for CFLGs almost amounts to solving the problem of parsing; so algorithms and

6This is sometimes called “semantic parsing” or “parsing to logical form”.
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complexity results for the former translate into algorithms and complexity results
for the problem of surface realization.

In a CFLG such as (9), there is a mapping f from nonterminals to their semantic
types:

f =





S 7→ t,

NP 7→ (e→ t)→ t,

VP 7→ e→ t,

V 7→ e→ e→ t,

Det 7→ (e→ t)→ (e→ t)→ t,

N 7→ e→ t





.

A rule that has B on the left-hand side and B1, . . . , Bn as right-hand side nonter-
minals has its left-hand side annotated with a well-formed λ-term M that has type
f(B) under the type environment X1 : f(B1), . . . , Xn : f(Bn), or in symbols:

⊢ X1 : f(B1), . . . , Xn : f(Bn)⇒M : f(B).

For example, in the case of the third rule of (9), we have

⊢ X1 : e→ e→ t, X2 : e→ e→ t⇒ λyx.∧t→t→t(X1yx)(X2yx) : e→ e→ t. (10)

What we are calling a context-free λ-term grammar is nothing but an alterna-
tive notation for an abstract categorial grammar [17] whose abstract vocabulary is
second-order, with the restriction to linear λ-terms removed.7 In the linear case,
Salvati [62] showed the recognition/parsing complexity to be in P, and exhibited an
algorithm similar to Earley parsing for TAGs. Second-order linear ACGs are known
to be expressive enough to encode well-known mildly context-sensitive grammar
formalisms in a straightforward way, including TAGs and (non-deleting) multiple
context-free grammars (also known as linear context-free rewriting systems) [18, 19].

For example, the following linear CFLG is an encoding of the TAG in Figure 2,
where f(S) = o→o and f(A) = (o→o)→o→o (see [18] for details of this encoding):

S(λy.X1(λz.z)y) :− A(X1).
A(λxy.ao→o(X1(λz.bo→o(x(co→oz)))(do→oy))) :− A(X1).
A(λxy.xy).

(11)

In encoding a string-generating grammar, a CFLG uses o as the type of string
position and o→ o as the type of string. Each terminal symbol is represented by a

7A λ-term is a λI-term if each occurrence of λ binds at least one occurrence of a variable. A
λI-term is linear if no subterm contains more than one free occurrence of the same variable.
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constant of type o→ o, and a string a1 . . . an is encoded by the λ-term

/a1 . . . an/ = λz.ao→o
1 (. . . (ao→o

n z) . . . ),

which has type o→ o.8

A string-generating grammar coupled with Montague semantics may be repre-
sented by a synchronous CFLG, a pair of CFLGs with matching rule sets, as in
Figure 4.9 The transduction between strings and logical forms in either direction
consists of parsing the input λ-term with the source-side grammar and normaliz-
ing the λ-term(s) constructed in accordance with the target-side grammar from the
derivation tree(s) output by parsing.

2.2 Reduction to Datalog

We can show that under a weaker condition than linearity, a CFLG can be rep-
resented by a Datalog program. The presentation in this section is informal and
not fully precise; formal definitions and rigorous proof of correctness are deferred to
Section 3.

We use the grammar (9) as an example, which is repeated below:

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

(9)

Note that all λ-terms in this grammar are almost linear in the sense of satisfying
the following conditions:

• every occurrence of λ binds at least one occurrence of a variable (i.e., they are
λI terms), and

8It is known that the class of string languages generated by linear CFLGs under this encoding
coincides with the class of multiple context-free languages [63]. The class of tree languages generated
by linear CFLGs has been characterized by Kanazawa [45].

9The use of a pair of ACGs with a common abstract vocabulary as a synchronous grammar has
already been advocated by de Groote [17].
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S(λz.Y1(Y2z), X1X2) :− NP(Y1, X1), VP(Y2, X2).
VP(λz.Y1(Y2z), λx.X2(λy.X1yx)) :− V(Y1, X1), NP(Y2, X2).
V(λz.Y1(/and/(Y2z)), λyx.∧t→t→t(X1yx)(X2yx)) :− V(Y1, X1), V(Y2, X2).
NP(λz.Y1(Y2z), X1X2) :− Det(Y1, X1), N(Y2, X2).
NP(/John/, λu.u Johne).
V(/found/, finde→e→t).
V(/caught/, catche→e→t).
V(/is/, =e→e→t).

Det(/a/, λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(/man/, mane→t).
N(/unicorn/, unicorne→t).

S(λz.Y1(Y2z)) :− NP(Y1), VP(Y2).
VP(λz.Y1(Y2z)) :− V(Y1), NP(Y2).
V(λz.Y1(/and/(Y2z))) :− V(Y1), V(Y2).
NP(λz.Y1(Y2z)) :− Det(Y1), N(Y2).
NP(/John/).
V(/found/).
V(/caught/).
V(/is/).
Det(/a/).
N(/man/).
N(/unicorn/).

S(X1X2) :− NP(X1), VP(X2).
VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).
V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2).
NP(X1X2) :− Det(X1), N(X2).
NP(λu.u Johne).
V(finde→e→t).
V(catche→e→t).
V(=e→e→t).

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).
N(mane→t).
N(unicorne→t).

Figure 4: The grammar in (7) expressed as a synchronous CFLG (top), with its
two components separated out. The first component is a linear CFLG encoding the
CFG (1), and the second component is the CFLG (9).

• for every subterm N , if a variable x occurs free more than once in N , x has
an atomic type,

where the type of an occurrence of a variable is determined by the typing assigned
to the λ-term by the grammar. The reduction to Datalog is guaranteed to be correct
only when the grammar is almost linear in this sense.

The key to our construction is the principal typing of an almost linear λ-term.
In this informal exposition, we represent principal typings graphically by means
of hypergraphs of a certain kind. A hypergraph is a generalization of a directed
graph where an edge (called a hyperedge) may be incident on any number of nodes,
depending on its label.10

10The connection between CFLGs and hypergraphs goes beyond the present informal exposition.
See [45] for the relation between linear CFLGs and hyperedge replacement grammars, a context-free
grammar formalism generating sets of hypergraphs.
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For example, take the λ-term

λyx.∧t→t→t(X1yx)(X2yx) (12)

annotating the left-hand side of the third rule of the grammar (9). Recall that
the function f mapping nonterminals to their types gives a typing of the λ-term
annotating the left-hand side of each rule. The typing assigned to the λ-term (12)
is expressed by the typing judgment (10):

⊢ X1 : e→ e→ t, X2 : e→ e→ t⇒ λyx.∧t→t→t(X1yx)(X2yx) : e→ e→ t. (10)

(Note that the bound variables x and y both have type e in this typing.) Given the
typing judgment (10), we can build the hypergraph for the λ-term (12):

∧

X1

y

X2

x

3 2

1 (13)

In a diagram like this, circles represent nodes, and circles with numbers attached to
them are external nodes of the hypergraph. Each hyperedge is represented by a box
with a label inside and tentacles connecting it to the nodes that it is incident on.
The tentacles of a hyperedge are ordered; in this paper, we adopt the convention
that they are ordered clockwise starting from the 12 o’clock position. Thus, the
hyperedge with label X2 in (13) has three tentacles, with the first tentacle leading
to the node right above it, the second to the node right below it, and the third to
the node right below the hyperedge with label X1. We call the first node in the
sequence of nodes that a hyperedge is incident on the result node of the hyperedge.

In general, the hypergraph graph(M) for a typed almost linear λ-term M is
constructed by induction on the structure of M , as follows. If α is a type, let |α| be
the number of occurrences of atomic types in α.11

11In this paper, we greatly overload the notation | · |. In addition to the use just defined, we use
it to mean the number of nodes of a tree, the length of a string, and the number of components of
a tuple. It should be clear from the context which meaning is intended.
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For a variable or a constant a of type α, graph(a) consists of |α| nodes v1, . . . , v|α|,
all of which are external nodes, and a single hyperedge labeled by a, which is incident
on v1, . . . , v|α|, in this order. Given the typing in (10), we have:

graph(∧) = ∧

3 2

1

graph(X1) = X1

3 2

1

graph(X2) = X2

3 2

1

graph(y) =
y

1

graph(x) =
x

1

If M is an application M1M2, where M1 and M2 are of type α → β and α,
respectively, graph(M) is constructed from the union of graph(M1) and graph(M2)
by identifying the last |α| external nodes of graph(M1) with the external nodes of
graph(M2); the remaining external nodes of graph(M1) become the external nodes
of M . If M1 and M2 share a free variable x (which must be of atomic type since
M is almost linear), then the x-labeled hyperedge in graph(M1) and the x-labeled
hyperedge in graph(M2), as well as the nodes that they are incident on, are also
identified.

graph(X1y) =
X1

y

2

1

graph(X1yx) =
X1

y x

1

graph(X2y) =
X2

y

2

1

graph(X2yx) =
X2

y x

1
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graph(∧(X1yx)) =

∧

X1

y x

2

1

graph(∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

1

Finally, if M is a λ-abstraction λx.M1, then graph(M) is obtained from
graph(M1) by appending the sequence of nodes that the x-labeled hyperedge is
incident on to the sequence of external nodes.

graph(λx.∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

2

1

graph(λyx.∧(X1yx)(X2yx)) =

∧

X1

y

X2

x

3 2

1

= (13)

There are several important points to note about this construction:

• If M has type α, graph(M) has |α| external nodes.

• For each free variable x in M , there is exactly one hyperedge labeled by x in
graph(M).
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• When M is in η-long β-normal form, graph(M) is what is called a term graph
(see [59]) with external nodes; in particular, for each node v in graph(M),
there is exactly one hyperedge whose result node is v.

To convert an almost linear CFLG rule

B(M) :− B1(X1), . . . , Bn(Xn)

into a Datalog rule, we take graph(M) and name its nodes with Datalog variables
(for which we use i1, i2, i3, . . . ). In the case of the third rule of the grammar (9),

V(λyx.∧t→t→t(X1yx)(X2yx)) :− V(X1), V(X2), (14)

we get:

i1

∧

i2

X1

i3

y

i5

X2

i4

x

3 2

1 (15)

Then we do three things to the CFLG rule:

(i) replace the left-hand side λ-term M by the sequence of external nodes of
graph(M),

(ii) replace each right-hand side variable Xi by the sequence of nodes that the
Xi-labeled hyperedge is incident on in graph(M), and

(iii) for each hyperedge in graph(M) labeled by a constant b, add to the right-
hand side of the rule an atom b(~v), where ~v is the sequence of nodes that the
hyperedge is incident on.

Applying this procedure to (14) produces the following result:

V(i1, i4, i3) :− ∧(i1, i5, i2), V(i2, i4, i3), V(i5, i4, i3).

For another example, consider the ninth rule of the CFLG in Figure 9:

Det(λuv.∃(e→t)→t(λy.∧t→t→t(uy)(vy))).

1115



M. Kanazawa

The hypergraph for this λ-term is

i1

∃

i2

∧

i3

u

i5

v

i4

y

5

4

3

2

1

and the corresponding Datalog rule is

Det(i1, i5, i4, i3, i4) :− ∃(i1, i2, i4), ∧(i2, i5, i3).

Applying the same procedure to all the rules in (9), we get the following Datalog
program:

S(i1) :− NP(i1, i2, i3), VP(i2, i3).
VP(i1, i4) :− V(i2, i4, i3), NP(i1, i2, i3).
V(i1, i4, i3) :− ∧(i1, i5, i2), V(i2, i4, i3), V(i5, i4, i3).
NP(i1, i4, i5) :− Det(i1, i4, i5, i2, i3), N(i2, i3).
NP(i1, i1, i2) :− John(i2).
V(i1, i3, i2) :− find(i1, i3, i2).
V(i1, i3, i2) :− catch(i1, i3, i2).
Det(i1, i5, i4, i3, i4) :− ∃(i1, i2, i4), ∧(i2, i5, i3).
N(i1, i2) :−man(i1, i2).
N(i1, i2) :− unicorn(i1, i2).

(16)

The construction of the database representing the input λ-term is similar, but
slightly more complex. A simple case is the λ-term (8), where each constant occurs
just once:

∃(λy.∧(unicorn y)(find y John)) (8)

This is an almost linear λ-term in η-long β-normal form, from which we obtain the
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S((λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

NP(λu.u John) VP(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.find y x)))

V(find) NP((λuv.∃(λy.∧(uy)(vy))) unicorn)

Det(λuv.∃(λy.∧(uy)(vy))) N(unicorn)

Figure 5: The CFLG derivation tree for (8)

following hypergraph:

1

∃

2

∧

3

unicorn

5

find

4

y

6

John

1

The hyperedges of this hypergraph that are labeled by constants in the λ-term
constitute the facts in the database representing the λ-term:

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4). find(5, 6, 4). John(6). (17)

(Note that here, we are using database constants 1, 2, 3, . . . , rather than Datalog
variables, to name nodes.) The external nodes of the hypergraph (of which there is
only one in this example) determine the query:

?−S(1). (18)

The λ-term (8) is in the language of the CFLG (9). Correspondingly, the answer
to the query (18) against the program in (16) and the database in (17) is “yes”.
Figures 5 and 6 show the associated CFLG and Datalog derivation trees.

The situation becomes more complex when the input λ-term contains more than
one occurrence of the same constant. Such is the case with the λ-term (19) (this is
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S(1)

NP(1, 1, 6)

John(6)

VP(1, 6)

V(5, 6, 4)

find(5, 6, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

Figure 6: The Datalog derivation tree for the query (18) against the database in
(17) and the program in (16).

the λ-term associated with John found and caught a unicorn by the grammar (7)):

∃(λy.∧(unicorn y)(∧(find y John)(catch y John))). (19)

Let us apply the same procedure to (19) as we did to (8). The hypergraph for (19)
is the following:

1

∃

2

∧

3

unicorn

4

y

5

∧

6

find

7

John

8

catch

9

John

1 (20)

From this hypergraph, we would get the database (21) and the query (22):

∃(1, 2, 4). ∧(2, 5, 3). unicorn(3, 4). ∧(5, 8, 6). find(6, 7, 4). John(7).
catch(8, 9, 4). John(9).

(21)

?−S(1). (22)
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S
(
(λu.u John)(λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.(λyx.∧(find y x)(catch y x)) y x))

)

NP(λu.u John) VP
(
λx.(λuv.∃(λy.∧(uy)(vy))) unicorn (λy.(λyx.∧(find y x)(catch y x)) y x)

)

V
(
λyx.∧(find y x)(catch y x)

)

V(find) V(catch)

NP
(
(λuv.∃(λy.∧(uy)(vy))) unicorn

)

Det
(
λuv.∃(λy.∧(uy)(vy))

)
N(unicorn)

Figure 7: The CFLG derivation tree for (19).

It turns out, however, that (21) is not the correct database corresponding to the
input λ-term (19). Even though (19) is generated by the CFLG in (9) with the
derivation tree in Figure 7, the answer to the query (22) against the database (21)
and the program (16) is “no”, as the reader can easily verify.

To obtain the desired database, we need to modify (20) by identifying the two
hyperedges labeled by John and the nodes they are incident on, as follows:

1

∃

2

∧

3

unicorn

4

y

5

∧

6

find

7

John

8

catch

1 (23)

This gives the database (24).

∃(1, 2, 4). ∧(2, 5, 3). ∧(5, 8, 6). unicron(3, 4). find(6, 7, 4). John(7).
catch(8, 7, 4).

(24)

Against this database and the program in Figure 16, the query (22) is correctly
answered “yes”. Figure 8 shows the associated Datalog derivation tree for this query.
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S(1)

NP(1, 1, 7)

John(7)

VP(1, 7)

V(5, 7, 4)

∧(5, 8, 6) V(6, 7, 4)

find(6, 7, 4)

V(8, 7, 4)

catch(8, 7, 4)

NP(1, 5, 4)

Det(1, 5, 4, 3, 4)

∃(1, 2, 4) ∧(2, 5, 3)

N(3, 4)

unicorn(3, 4)

Figure 8: The Datalog derivation tree for the query (22) against the database (24)
and the program in (16).

Note that the database (24) can also be obtained from the following non-β-normal
λ-term, which β-reduces to (19):

∃(λy.∧(unicorn y)((λx.∧(find y x)(catch y x)) John)). (25)

The hypergraph for (25) is identical to (23), except for the presence of an additional
hyperedge labeled by x (incident on the node named “7”).

The general rule is that the input λ-term should first be β-expanded to an
almost linear λ-term that is the most “compact” in the sense of containing the
fewest occurrences of constants, before the hypergraph and the associated database
and query are extracted out of it. This explains why the two hyperedges labeled by
∧ in (23) cannot be identified, because there is no almost linear λ-term with just one
occurrence of ∧ that β-reduces to (19). On the level of hypergraphs, the necessary
operation is similar to the conversion of term graphs to their fully collapsed form
(see [59]). This is by no means an accurate formulation, however, because the “fully
collapsed form” does not always correspond to an almost linear λ-term, and there is
some subtlety involved in the treatment of hyperedges labeled by bound variables.12

A precise method of converting the input λ-term N to the desired almost linear
λ-term N◦ will be given by Algorithm 1 in Section 3.7.13

Note that the way we obtain a database from an input λ-term generalizes
the standard database representation of a string: from the λ-term encoding

12For example, the algorithm β-expands d(b(λu.a(uc)))(b(λv.a(vc))) to (λx.dxx)(b(λu.a(uc))),
but does not β-expand d(λu.a(uc))(λu.a(uc)) to (λx.dxx)(λu.a(uc)), which would correspond to
the fully collapsed form.

13The input λ-terms we have used as examples are both almost linear. Since the class of almost
linear λ-terms is not closed under β-reduction, a β-normal λ-term generated by an almost linear
CFLG is not necessarily almost linear. Thus, in general, the input λ-term has to be β-expanded
to an almost linear λ-term before any hypergraph can be obtained by the method outlined above,
even when no constant occurs more than once in the input λ-term.
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/a1 . . . an/ = λz.ao→o
1 (. . . (ao→o

n z) . . . ) of a string a1 . . . an, we obtain the database
{a1(0, 1), . . . , an(n− 1, n)} and the query ?−S(0, n), as the reader may verify.

2.3 An outline of the proof of correctness

Let us give a rough idea of the proof of correctness of our reduction, presented
informally in Section 2.2.

For the reader familiar with the notion of a principal typing, it should be clear how
the hypergraph graph(M) for an almost linear λ-term M corresponds to a principal
(i.e., most general) typing of M , where occurrences of constants are treated like
mutually distinct free variables. For instance, corresponding to the hypergraph (20)
for the almost linear λ-term (19), we have the principal typing

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2, unicorn : 4→ 3, ∧2 : 6→ 8→ 5,

find : 4→ 7→ 6, John1 : 7, catch : 4→ 9→ 8, John2 : 9 ⇒ 1. (26)

Note that distinct occurrences of ∧ and of John in (19) are regarded as distinct free
variables. In the case of the λ-term (25), which has just one occurrence of John,
we have

∃ : (4→ 2)→ 1, ∧1 : 3→ 5→ 2, unicorn : 4→ 3, ∧2 : 6→ 8→ 5,

find : 4→ 7→ 6, John : 7, catch : 4→ 7→ 8 ⇒ 1 (27)

as its principal typing, corresponding to (23).14

What is special about almost linear λ-terms is that when an almost linear λ-
term with constants (in η-long form) is “maximally compact” in the sense that it
has no β-equal almost linear λ-term with fewer occurrences of constants, its principal
typing exactly characterizes the set of almost linear λ-terms (in η-long form) that
are β-equal to it. More precisely, let M be such a maximally compact almost linear
λ-term in η-long form and let Γ ⇒ α be its principal typing. Then we have the
following equivalence for every almost linear λ-term M ′ in η-long form:

M ′ has a typing Γ′ ⇒ α for some subset Γ′ of Γ

if and only if M ′ is β-equal to M . (28)

14The exact correspondence between graph(M) and a principal typing of M requires M to be in
η-long form. Note that this notion of typing of a λ-term with constants is different from the notion
of typing expressed by judgments like (10), where constants have fixed, pre-assigned types. In the
rigorous presentation of Section 3, typings like (26) and (27) will be replaced by typings of pure
λ-terms that result by replacing distinct occurrences of constants by distinct free variables.
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The main ingredients of the proof of this property of almost linear λ-terms are
the following:

• A principal typing of an almost linear λ-term is negatively non-duplicated in
the sense that each atomic type has at most one negative occurrence in it
(cf. [2]).

• All λ-terms that share a negatively non-duplicated typing are βη-equal [3].
This is a generalization of the Coherence Theorem (see [56]).

• The leftmost β-reduction from an almost linear λ-term is non-erasing and
almost non-duplicating in the sense that for each β-redex (λx.P )Q that is
contracted, x can occur free more than once in P only when the type of x is
atomic.

• If there is a non-erasing, almost non-duplicating β-reduction from a pure (i.e.,
constant-free) λ-term M to N , every typing of N is a typing of M . This is a
generalization of the Subject Exapnsion Theorem (see [31]).

Now let P be the Datalog program constructed from the given almost linear
CFLG G , and let N be the input λ-term (in η-long β-normal form). Suppose that
our algorithm first β-expands N to an almost linear λ-term N◦. Let Γ ⇒ α be a
principal typing of N◦, and let D and ?−S(α) be the database and query constructed
from this typing.

Suppose that there is a Datalog derivation tree T for the query ?−S(α) against
the program P and the database D. Given the one-one correspondence between the
rules of G and the rules of P, the Datalog derivation tree T determines a CFLG
derivation tree T ′. (See Figures 5, 6, 7, 8 for examples.) The former, however,
contains more information than the latter. Each ground instance ρ of a Datalog rule
used in T corresponds to a typing of the λ-term in the corresponding CFLG rule.
For instance, the ground instance

V(5, 7, 4) :− ∧(5, 8, 6), V(6, 7, 4), V(8, 7, 4)

of the third rule of (16) that is used in the Datalog derivation tree in Figure 8 gives
the following typing judgment:

⊢ ∧ : 6→ 8→ 5, X1 : 4→ 7→ 6, X2 : 4→ 7→ 8⇒ λyx.∧(X1yx)(X2yx) : 4→ 7→ 5.

Piecing together all these typing judgments corresponding to ground instances of
rules used in T gives a typing judgment

⊢ Γ′ ⇒ P : α′,
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where P is the (non-β-normal) almost linear λ-term at the root node of T ′. Since α′

and Γ′ correspond to the root node and the leaf nodes of T , respectively, we must
have α′ = α and Γ′ ⊆ Γ. By the special property (28) of almost linear λ-terms,
it follows that P is βη-equal to N◦ and hence to N , which implies that T ′ is a
derivation tree for N .

Let us now consider the converse direction and suppose that a derivation tree
T ′ of G has its root node labeled by S(P ) and P β-reduces to N . By the one-one
correspondence between the rules of G and the rules of P, T ′ determines a “skele-
tal” Datalog derivation tree made up of non-ground instances of rules of P, where
predicates have Datalog variables as arguments, instead of database constants. The
question is whether one can replace these Datalog variables with database constants
from D in such a way that leaf nodes will correspond to facts in D, so that the
derivation tree will become a derivation tree for S(α) against P and D. This is
possible precisely when P has a typing Γ′ ⇒ α with Γ′ ⊆ Γ. By the special property
(28) again, this must be so since P is almost linear and is βη-equal to N and hence
to N◦.

2.4 The scope of the present method

The present method of reduction to Datalog is directly applicable only to formalisms
expressible in almost linear CFLGs. Almost linear λ-terms suffice to represent for-
mulas in a logical language with quantification over individual variables only, so
when the meaning representation language used in a surface realization problem is
such a language, the input to the corresponding CFLG recognition problem will
always be an almost linear λ-term. For instance, in the extensional subfragment
of Montague’s [57] fragment of English, the translations of English sentences will
fall within such a language. Consequently, it is possible to extend the grammar
(7) to one that covers a large portion of Montague’s [57] fragment while keeping
the semantic half of the grammar almost linear. However, even when almost linear
λ-terms suffice to encode the target logical forms, we sometimes need grammar rules
that are not almost linear.15

For example, suppose we add to the synchronous grammar in Figure 4 the fol-
lowing rules:

NP(λz.Y1(/and/(Y2z)), λu.∧t→t→t(X1(λx.ux))(X2(λx.ux))) :− NP(Y1, X1), NP(Y2, X2).
VP(/sang/, singe→t).
NP(/Bill/, λu.u Bille).

15This is already evidenced in the grammar of Montague [57], which has a rule similar to the
first of the three rules below.
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With these rules, the grammar can now generate John and Bill sang, with the logical
form

∧(sing John)(sing Bill). (29)

Let us see how we might convert to Datalog the “semantic half” of the three
synchronous rules above:

NP(λu.∧t→t→t(X1(λx.ux))(X2(λx.ux))) :− NP(X1), NP(X2).
VP(singe→t).
NP(λu.u Bille).

(30)

Recall that f(NP) = (e→ t)→ t, so the type of the variables X1 and X2 in the
first rule of (30) are (e→ t)→ t and the type of u is e→ t. This means that the
λ-term M on the left-hand side of this rule is not almost linear. The method we
described was not meant to apply to a case like this, but suppose we extend it to
cover this case. We would get the following hypergraph.16

i1

∧

i2

X1

i5

X2

i3

u

i4

x

1

2

3

Thus, from the three CFLG rules in (30), we get the following Datalog rules:

NP(i1, i3, i4) :− ∧(i1, i5, i2), NP(i2, i3, i4), NP(i5, i3, i4).
VP(i1, i2) :− sing(i1, i2).
NP(i1, i1, i2) :− Bill(i2).

(31)

16This graph corresponds to the principal typing of the λ-term M .
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As for the λ-term (29), there are two conceivable hypergraphs that can be asso-
ciated with it:

1

∧

2

sing

3

John

4

sing

5

Bill

1
1

∧

2

sing

3

John Bill

1

The first graph is what we obtain with the method described above. The second
graph is the result of identifying the two edges labeled by sing and the nodes they
are incident on. The corresponding databases are:

∧(1, 4, 2). sing(2, 3). sing(4, 5). John(3). Bill(5). (32)

∧(1, 2, 2). sing(2, 3). John(3). Bill(3). (33)

Against the database (32) and the program consisting of the rules in (16) and
(31), the query

?−S(1).

is answered “no”. Against the database (33) and the same program, the same query
is answered “yes”, but there are too many Datalog derivation trees for this query.
In addition to the correct one corresponding to the CFLG derivation tree for (29),
there are three others, corresponding to the CFLG derivation trees for the following
λ-terms:

∧(sing John)(sing John)

∧(sing Bill)(sing John)

∧(sing Bill)(sing Bill)

This means that if (33) is used to solve the task of finding sentences expressing
meaning (29), the output obtained contains not just John and Bill sang, but also
John and John sang, Bill and John sang, and Bill and Bill sang. Thus, neither (32) nor
(33) gives a correct reduction of surface realization to Datalog query evaluation.

As for applications to parsing and recognition, the present method directly ap-
plies to string-generating grammars with no copying operation, like multiple context-
free grammars, but not to formalisms like macro grammars [24] and parallel multiple
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context-free grammars [66], where derivations involve copying of strings. To repre-
sent grammar rules that duplicate strings, a CFLG must use multiple occurrences
of the same variable of type o→ o, and so cannot be almost linear. An almost lin-
ear CFLG can represent tree grammars with copying operations, however, because
trees are represented by λ-terms of atomic type o. It turns out that this provides
an indirect way of applying the present method to grammars with string copying,
using as input a representation of a finite set of trees that yield a given input string.
This point will be elaborated in Section 4.2.

2.5 The present approach to generation

In this section, I clarify some basic assumptions I make in this work about the mean-
ing representation language and the task of surface realization. These assumptions
do not concern the formal result about the reduction of almost linear CFLGs to
Datalog, but rather the kind of application of the formal result to grammars for
natural language I have in mind.

In Montague’s [57] work, the meaning representation language, which incorpo-
rates a form of λ-calculus, is just a convenient tool used to give a model-theoretic
semantics to the object language, and can in principle be dispensed with. In con-
trast, this work assumes that the level of semantic representation is crucial and that
grammar rules specifically refer to λ-terms as structured, “syntactic” objects. Any
computation on meanings must be performed on some form of representation or
other; using λ-terms as semantic representations seems to be a convenient choice.

The formalism of λ-calculus can be used in different ways for different purposes.
The example grammar I have given uses λ-terms to more or less directly represent
formulas of the language of some logic (subsuming at least first-order logic), using
appropriately typed constants for logical and non-logical symbols of the language.
Binding of a variable by a quantifier is represented by an application of the constant
representing the quantifier to a λ-abstract.17 A pleasant consequence of this is
that two formulas that are related by renaming of bound variables translate into
α-equivalent λ-terms and are treated as the same. However, since constants are just
uninterpreted symbols, all other cases of logically equivalent pairs of formulas come
out as distinct λ-terms.

This use of λ-calculus, as an alternative syntax for the language of some logic, is
of course not the only way to use λ-calculus as a meaning representation language.
For example, logical connectives and quantifiers may be defined in terms of equality
(at different types), à la Henkin [29].18 It is also common to represent truth values,

17Following Church [14], Barwise and Cooper [7], and Lloyd [53], among many others.
18For example, the universal quantifier (over individuals) may be defined as ∀

(e→t)→t =

1126



Parsing and Generation as Datalog Query Evaluation

Boolean functions, etc., with pure (i.e., constant-free) λ-terms, using τ → τ → τ as
the type of truth values.19 One can even represent finite models as λ-terms and cast
sentence meanings as functions from finite models to truth values [30]. These more
sophisticated uses of λ-calculus, however, almost always take us outside of the realm
of almost linear λ-terms, so the main result of this paper will not be applicable.20

The main result of this paper applies to surface realization as understood to be
the problem of finding a sentence such that the logical form associated with it by
the grammar exactly matches the input logical form. This means that the question
of whether or not the input logical form is surface realizable depends on the exact
shape of the input. If we take our example grammar (7), the answer is different for
each of the following pairs:

(34) a. ∃(λy.∧(unicorn y)(find y John))

b. ∃(λy.∧(find y John)(unicorn y))

(35) a. ∃(λy.∧(unicorn y)(∧(find y John)(catch y John)))

b. ∃(λy.∧(∧(unicorn y)(find y John))(catch y John))

(36) a. ∃(λx.∧(man x)(∃(λy.∧(unicorn y)(find y x))))

b. ∃(λy.∧(unicorn y)(∃(λx.∧(man x)(find y x))))

(37) a. ∃(λy.∧(man y)(= y John))

b. man John

It is generally agreed in computational linguistics that the input to surface realiza-
tion should not be informed by the particularities of the grammar and that ideally,
both members of these pairs should lead to the same result, since they are obviously
logically equivalent [68]. While accounting for the full range of logical equivalence
is clearly intractable, capturing commutativity and associativity of conjunction is
considered particularly important in machine translation applications, and partly
for this reason it is popular in computational linguistics to use a “flat” and “un-
ordered” meaning representation language where equivalences like (34) and (35) are
built in (see, e.g., [15] or [51]). Another motivation for flat semantics is the need
for compact “underspecified” representation of a range of different scope readings
of sentences with multiple scope-taking operators. Generation from flat semantics

λue→t. =(e→t)→(e→t)→t u (λxe. =e→e→t x x)
19The truth values “true” and “false” are encoded by the λ-terms λxy.x and λxy.y, respectively.

These are known as Church Booleans.
20Surface realization in such a setting is still decidable since Salvati [65] proves that recognition

is decidable for general CFLGs. It is an open question how far the class of almost linear λ-terms
can be extended without making the resulting CFLG recognition problem intractable.
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has been shown to be NP-hard [50], however, so adopting a flat representation lan-
guage is (for all we know) incompatible with polynomial-time algorithms for surface
realization.

Typed λ-terms, with “hierarchical” and “ordered” structures, do not seem to be
particularly well suited to encoding of flat semantics, but it is possible to adapt to
λ-calculus the idea of Koller et al. [49], who have proposed to use regular tree gram-
mars that generate finite sets of trees as a formalism for underspecification. Trees
cannot properly represent variable binding, so a reasonably compact description of
a “regular” set of λ-terms will improve upon Koller et al.’s [49] proposal.21 It turns
out that in certain cases, a database serves as such a compact representation. In
Section 4.2, I present a result extending the main result to handle certain regular
sets of λ-terms as input to the recognition problem for almost linear context-free
λ-term grammars. Notwithstanding this possibility of accommodating underspec-
ification, I believe that thorough understanding of the simpler problem of “exact”
surface realization should take precedence.

The underlying theme of this work is that the problem of surface realization can
and should be studied in the style of formal language theory, just like parsing. For
this purpose, the problem of surface realization should be formulated in abstract,
general terms. The primary goals of any such study would be to identify the compu-
tational complexity class for which the problem is complete, and to provide natural,
efficient algorithms (insofar as is allowed by the complexity lower bound) to solve the
problem. The formalism in which the input to surface realization is encoded should
be sufficiently rich to support constructs (e.g., variable binding) that are necessary
to express natural language meaning, but should not be tied to one particular logical
language. Typed λ-calculus seems to fit this role very well; it has a wide variety of
uses, its formal properties have been extensively studied, and its use is also fairly
common in computational linguistics. All other things being equal, a general, math-
ematically elegant, and well-understood formalism should be preferred over ad hoc,
application-specific, ill-understood alternatives.

3 Formal development

3.1 Preliminaries

3.1.1 Datalog

A database schema is a pair D = (R, U), where R is a finite set of predicates, each
of fixed arity, and U is a (possibly infinite) set of database constants. A ground fact

21See [64] for a definition of a regular or recognizable set of typed λ-terms.
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over D is
p(~s),

where p is a predicate in R of arity k, and ~s is a k-tuple of constants in U , for some
k. A database over D is a finite set of ground facts over D. If D is a database, the
universe of D, written UD, is the finite set of constants appearing in D.

We assume that we are given a countably infinite supply of variables. A Datalog
program over R is a finite set of rules, which are function-free definite clauses of the
form

p0(~x0) :− p1(~x1), . . . , pn(~xn),

where n ≥ 0, pi are predicates, each of fixed arity, and ~xi are tuples of variables
(not necessarily distinct) of appropriate length, matching the predicate’s arity. A
predicate together with its arguments constitutes an atom. The left-hand side of a
rule (the part to the left of :−) is called the head, and the right-hand side the body.
The atoms that constitute the body are the subgoals of the rule.22 The predicates in a
program P are divided into the intensional predicates and the extensional predicates.
A predicate is an intensional predicate if it appears in the head of some rule, and
an extensional predicate otherwise. An extensional database for P is a database D
for a schema D = (R, U) for some U , where R consists of the extensional predicates
of P. We call ground facts in an extensional database extensional facts. We follow
the logic programming parlance and call a negative Horn clause a query.23 In this
paper, we are mainly interested in simple (i.e., non-conjunctive) ground queries of
the form

?− p(~s),

where ~s is a tuple of constants from UD (of appropriate length).
Given a Datalog program P and an extensional database D, a ground fact p(~s)

is derivable from P and D, written

P ∪D ⊢ p(~s),

if and only if either p(~s) ∈ D or there is a ground instance

p(~s) :− p1(~s1), . . . , pn(~sn)

22In Datalog, it is often required that the variables in the head of a rule all appear in the body,
but we do not assume this restriction. In particular, we allow rules with empty body (i.e., facts) in
Datalog programs.

23In relational database theory and finite model theory, the term query sometimes means a
function that maps a finite relational structure to a finite relational structure. A query in this
sense may be expressed by a pair (P, R′) consisting of a Datalog program P and a subset R′ of
its intensional predicates [16]. See [1] for a similar use of the term “datalog query”. The logic
programming parlance was used by Ullman [77] in the context of Datalog query evaluation.
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of a rule in P such that

P ∪D ⊢ pi(~si)

for each i = 1, . . . , n. A derivation tree is a tree whose nodes are labeled by ground
facts in accordance with the above inductive definition. That is to say, a derivation
tree for p(~s) from P and D is either a tree with a single node labeled by an extensional
fact p(~s) ∈ D, or a tree of the form

p(~s)

T1 · · · Tn

where there exists some ground instance p(~s) :− p1(~s1), . . . , pn(~sn) of a rule in P

and Ti is a derivation tree for pi(~si) for i = 1, . . . , n.

It is easy to see that for a fixed Datalog program P, the problem of determining,
given a database D and a fact q, whether P∪D ⊢ q holds can be solved in polynomial
time in the size of (D, q). For some Datalog program, this problem is known to be
P-complete (see [48] for an overview of complexity issues). Among the most basic
polynomial-time algorithms for this problem are naive and seminaive bottom-up
evaluation (see [1] or [76]). In these methods, derived facts that share the same
predicate are grouped together into a relation, and relational algebra operations
are used to expedite the iterative, bottom-up computation of the relations. In the
application of Datalog to recognition and parsing, however, the number of derivable
facts is usually not large, so it is not so unreasonable to process one fact at a time.
Under this simplification, seminaive bottom-up evaluation can be expressed by the
following pseudocode. If π is a rule, we write ground(π, U) to denote the set of
ground instances of π using only constants from U .

1: procedure Seminaive(P, D)
2: D0 ← ∅

3: D1 ← D ∪ { p(~s) | p(~s) ∈ ground(π, UD) for some π ∈ P }
4: ∆1 ← D1

5: i← 1
6: while ∆i 6= ∅ do

7: ∆i+1 ←





p(~s)

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




−Di

8: Di+1 ← Di ∪∆i+1

9: i← i + 1
10: end while

11: return Di
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12: end procedure

In this algorithm, Di is the set of ground facts whose derivation trees have minimal
height i− 1.

Derivation trees are assembled from ground instances of rules. If, in addition to
derived ground facts, we record ground instances of rules used to derive facts, we
can obtain a packed representation of all derivation trees for ground facts derivable
from the given program and the input database:24

1: procedure Seminaive-parse(P, D)
2: D0 ← ∅

3: D1 ← D ∪ { p(~s) | p(~s) ∈ ground(π, UD) for some π ∈ P }
4: G1 ← D1

5: ∆1 ← D1

6: i← 1
7: while ∆i 6= ∅ do

8: ∆i+1 ←





p(~s)

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




−Di

9: Gi+1 ←





π′

∣∣∣∣∣∣∣∣

π = p(~x) :− p1(~x1), . . . , pn(~xn) ∈ P,
p1(~s1), . . . , pj−1(~sj−1) ∈ Di, pj(~sj) ∈ ∆i,
pj+1(~sj+1), . . . , pn(~sn) ∈ Di−1 for some j ∈ [1, n],
and π′ = p(~s) :− p1(~s1), . . . , pn(~sn) ∈ ground(π, UD)




∪Gi

10: Di+1 ← Di ∪∆i+1

11: i← i + 1
12: end while

13: return Gi

14: end procedure

In the implementation of seminaive-parse, the operations in lines 8 and 9 should
be performed simultaneously. In this algorithm, the final value of Gi records all rule
instances whose subgoals are derivable facts, and constitutes a propositional Horn
clause program.25

There is a natural way to associate an alternating Turing machine operating
in logarithmic space with each Datalog program [67, 48], and this is useful for the
complexity analysis of Datalog programs. Alternating Turing machines (ATMs) [13]
are a generalization of non-deterministic Turing machines. The set of states of

24The algorithms seminaive and seminaive-parse can also be written in the style of chart

parsing [69, 71]. The set ∆i will correspond to the agenda. See Section 4.3 below.
25At the end of the execution of seminaive-parse, we have Di = Di−1, but not necessarily

Gi = Gi−1; it would require one more iteration for Gi to stabilize.
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an ATM is partitioned into existential and universal sates. If a configuration is
in an existential state, at least one of the successor configurations must lead to
acceptance, whereas if a configuration is in a universal sate, all of its successor
configurations must lead to acceptance. A computation tree of an ATM M is a finite
rooted directed tree whose nodes are configurations of M such that the root node
is an initial configuration, each existential configuration has just one of its successor
configurations as its child, and each universal configuration has all of its successor
configurations as its children. An accepting computation tree is a computation tree
whose leaves are all accepting configurations. An ATM M operates (simultaneously)
in space S(n) and tree size Z(n) if on each input x of length n accepted by M , there
is an accepting computation tree of size at most Z(n) in which each configuration
uses at most space S(n). Ruzzo [61] characterizes the complexity class LOGCFL as
the class of problems for which there is an ATM operating in logarithmic space and
in polynomial tree size.

A log-space-bounded ATM MP simulating a Datalog program P may behave as
follows. The input to MP is a pair (D, q) of an extensional database D for P and
a ground fact q; MP accepts (D, q) if and only if P ∪D ⊢ q. This ATM uses k + 1
work tapes, where k is at least as large as the maximal arity of the predicates in P

and the maximal number of variables in rules of P. Each of the first k work tapes
serves as a pointer to a position on the input tape where an occurrence of a constant
starts. The last work tape is used to check identity of two occurrences of constants
(which we assume to be coded as binary strings). Part of MP’s finite control is used
to store a predicate or a rule in P. We call the combination of this part of the finite
control and the first k work tapes the “storage area”. The storage area of MP either
stores a ground fact p(~s), using the work tapes to store the sequence ~s of constants,
or a ground instance of a rule π = p(~x) :− p1(~x1), . . . , pn(~xn), using the work tapes
to store a ground substitution for the variables in π. The machine starts by copying
the ground fact q on the input tape onto its storage area. Whenever MP has a
ground fact q′ in the storage area, it tries to verify P∪D ⊢ q′. If q′ is an extensional
fact, it verifies that q′ appears in the database on the input tape and accepts. If q′

is an intensional fact, the machine uses existential branching and guesses a ground
instance πθ of a rule π = p(~x) :− p1(~x1), . . . , pn(~xn) in P whose head matches q′,
and places πθ in the storage area. The machine then uses universal branching and
for all i = 1, . . . , n, places pi(~xi)θ in the storage area, and repeats the procedure. It
should be clear that if there is a derivation tree T for P∪D ⊢ q, then the ATM MP

on input (D, q) has an accepting computation tree of size |T | ·O(f(n)), where |T | is
the size of T , f is a polynomial, and n is the size of the input (D, q).

Lemma 3.1. Let P be a Datalog program and g(n) be a polynomial. The following
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problem is in LOGCFL:

{ (D, q, 1
m) | there is a derivation tree for P ∪D ⊢ q of size ≤ g(m) }

Proof. The idea is from [26]. We modify MP by including bounds on the size
of Datalog derivation trees in each configuration. The modified ATM starts by
computing g(m). This computation and the storage of the resulting value (in binary)
can both be done within logarithmic space. When the machine is in a configuration
storing an extensional fact q′ and a bound b (a natural number in binary), it checks
that q′ appears in D and b ≥ 1, and accepts. When the machine is in a configuration
storing an intensional fact p(~s) and a bound b, it checks that b > 1 and guesses
a ground instance p(~s) :− p1(~s1), . . . , pn(~sn) of some rule, together with bounds
b1, . . . , bn on the size of the derivations trees for p1(~s), . . . , pn(~sn), such that b1 +
· · ·+bn = b−1. It then uses universal branching to write pi(~si) and bi in the storage
area and try to find a derivation tree for pi(~si) of size ≤ bi. It is clear that the size
of any accepting computation tree of this ATM on input of size n is bounded by
some polynomial in n.

We call a node in a derivation tree an extensional node if it is labeled by an
extensional fact (i.e., facts from the database), and an intensional node otherwise.
A derivation tree is called tight [79] if no fact occurs more than once on any of its
paths. Note that whenever T is a derivation tree for P ∪D ⊢ p(~s) that is not tight,
one can turn T into a tight derivation tree for P∪D ⊢ p(~s) by deleting some nodes
from T .

The following elementary lemma will be useful later.

Lemma 3.2. Let P be a Datalog program. Then there is a polynomial g(n) such
that whenever there is a derivation tree for P ∪D ⊢ p(~s) with l extensional nodes,
there is a derivation tree P∪D ⊢ p(~s) with n ≤ l extensional nodes whose size does
not exceed g(n).

Proof. Let k be the number of intensional predicates in P, r be the maximal arity
of intensional predicates in P, and m be the maximal number of subgoals of rules
in P.

If p is an extensional predicate, p(~s) must be in D and there is a one-node
derivation tree for P∪D ⊢ p(~s). In the following, we assume that p is an intensional
predicate.

We first show that there is a constant c (depending on P) such that if P ⊢ p(~s),
then there is a derivation tree for p(~s) with at most c nodes. (Note that P ⊢ p(~s)
means that p(~s) is derivable without using any extensional facts.) Let T be a smallest
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derivation tree for P ⊢ p(~s). Without loss of generality, we can assume that all
constants that appear in T appear in p(~s), so that there are at most r of them. This
is because if T contains other constants, they can be safely replaced by constants in
~s. Since T must be a tight derivation tree, the height of T is bounded by krr − 1.
Therefore, the size of T is bounded by mkrr

(if m ≥ 2) or krr (if m ≤ 1).

Now suppose P∪D ⊢ p(~s) and let T be a smallest derivation tree for P∪D ⊢ p(~s)
with n ≤ l extensional nodes. As before, we can assume without loss of generality
that all constants in T occur in p(~s) or in facts labeling extensional nodes, so that
there are at most (n + 1)r of them. The intensional nodes of T may be divided into
the following three types:

Type 0 Intensional nodes that are not ancestors of any extensional nodes.

Type 1 Intensional nodes that have just one child that is an ancestor of some
extensional node.

Type 2 Intensional nodes that have two or more children that are ancestors of
extensional nodes.

Since the case of n = 0 has already been taken care of, assume n ≥ 1. It is easy to
see that the number of intensional nodes of type 2 is at most n− 1.

To find a bound on the number of type 1 nodes, note first that all children of
type 1 nodes are type 0 nodes, except one, which is either an extensional node, a
type 1 node, or a type 2 node. We call two type 1 nodes equivalent if they are
related by the smallest equivalence relation extending the child-of relation restricted
to type 1 nodes. Each equivalence class of type 1 nodes is linearly ordered by the
child-of relation, and its minimal element is the parent of an extensional node or
of a type 2 node. Since T must be tight by the minimality of T , the size of each
equivalence class of type 1 nodes cannot exceed k((n+1)r)r. Since there are at most
2n − 1 equivalence classes of type 1 nodes, the number of type 1 nodes is bounded
by (2n− 1)k((n + 1)r)r.

We finally turn to type 0 nodes. Note that all children of type 0 nodes are type 0
nodes. We call a type 0 node maximal if it is not a child of a type 0 node. Since we
are assuming n ≥ 1, any maximal type 0 node has a parent, which is either a type
1 node or a type 2 node. This implies that either there is no type 0 node or m ≥ 2.
Note that there may be up to m− 1 or m− 2 maximal type 0 nodes that share the
same parent (m − 1 if the parent is type 1, m − 2 if the parent is type 2). Type
0 nodes that are not maximal are in a unique subtree rooted at a maximal type 0
node. Since we have seen that such a subtree has at most mkrr

nodes, there are at
most ((n− 1)(m− 2) + (2n− 1)k((n + 1)r)r(m− 1))mkrr

type 0 nodes in total.
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Therefore, the number of nodes of T is bounded by

2n− 1 + (2n− 1)k((n + 1)r)r + ((n− 1)(m− 2) + (2n− 1)k((n + 1)r)r(m− 1))mkrr

when n ≥ 1, which is O(nr+1).

3.1.2 Untyped λ-calculus with constants

In this and the next two sections, we review some basic concepts in λ-calculus
we will need in what follows, introducing some nonstandard notions and notations
along the way. For a more thorough introduction to the subject, see [6], [31], [73],
or [32]. Like Sorensen and Urzyczyn [73], we make an explicit distinction between
λ-terms and notations that represent them. It is important for our purposes to be
completely precise about basic notions such as “subterm occurrence”, “substitution”,
“β-reduction”, “descendant”, etc.

Following Statman [74], we consider a λ-term as an abstract object—namely,
a binary tree equipped with some additional structure. We use a fixed scheme of
naming nodes in a tree with strings of 0s and 1s. A binary tree domain is a finite,
prefix-closed subset T of {0, 1}∗ such that w1 ∈ T implies w0 ∈ T . A node of
the form wi with i ∈ {0, 1} is a child of the node w. A node is a leaf, a unary
node, or a binary node according to whether it has 0, 1, or 2 children. We write
T (0), T (1), T (2), for the sets of leaves, unary nodes, and binary nodes, respectively,
of T . We write v ≤ w to mean v is a prefix of w, and v < w to mean v ≤ w and
v 6= w. The lexicographic order on {0, 1}∗ is the strict total order ≺ extending <
such that u0t ≺ u1t′ for every u, t, t′ ∈ {0, 1}∗. We say that v is to the left of w if
v ≺ w. We let |w| denote the length of the string w. If w ∈ T , then the height of w
in T is max{ |v| | wv ∈ T }. Note that v < w implies that the height of v is greater
than the height of w.

We assume that we are given a fixed countably infinite set V = {v0, v1, v2, . . . }
of variables. Let C be a finite set of constants. A λ-term over C is a structure
(T , f, b), where

• T is a binary tree domain,

• f is a function from a subset of T (0) to C ∪ V,

• b is a function from T (0) − dom(f) to T (1) such that for all w ∈ dom(b),
b(w) < w.

Let M = (T , f, b) be a λ-term over C. If c ∈ C and f(w) = c, we say that c occurs
at w in M , and call the node w an occurrence of c in M . If x ∈ V and f(w) = x,
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then we say that x occurs free at w in M , and call w a free occurrence of x in M .
For w ∈ dom(b), we call b(w) the binder of w. The set of variables that occur free in
M is written FV(M); its elements are the free variables of M . When FV(M) = ∅,
M is a closed λ-term (over C). When no constant occurs in M , M is called a pure
λ-term.

Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms (over C). Then the
application of M to N is the λ-term MN = (T , f, b) defined as follows:

T = {ǫ} ∪ 0TM ∪ 1TN ,

f = { (0w, fM (w)) | w ∈ dom(fM ) } ∪ { (1w, fN (w)) | w ∈ dom(fN ) },

b = {(0w, 0bM (w)) | w ∈ dom(bM ) } ∪ { (1w, 1bN (w) | w ∈ dom(bN ) }.

It is easy to see that the map (M, N) 7→MN is one-to-one and every λ-term whose
root is a binary node is an application.

Let M be as above. For each variable x ∈ V, we define the λ-term λx.M =
(T , f, b) by:

T = 0TM ,

f = { (0w, fM (w)) | w ∈ dom(fM ) and fM (w) 6= x },

b = { (0w, 0bM (w)) | w ∈ dom(bM ) } ∪ { (0w, ǫ) | w ∈ dom(fM ) and fM (w) = x }.

A λ-term of the form λx.M is called a λ-abstract. Clearly, any λ-term P whose root
is a unary node is a λ-abstract; indeed, given any variable x 6∈ FV(P ), P can be
written uniquely as λx.M .

A λ-expression over C is an expression built up from variables, constants, paren-
theses, the dot “.”, and the symbol λ by the following rules:26

• If c ∈ C, then c is a λ-expression over C.

• If x ∈ V, then x is a λ-expression over C.

• If M, N are λ-expressions over C, then (MN) is a λ-expression over C.

• If M is a λ-expression over C and x ∈ V, then (λx.M) is a λ-expression over
C.

Then each λ-expression represents a λ-term, under the convention that a constant
or variable a ∈ C ∪ V represents the λ-term

({ǫ}, {(ǫ, a)},∅).

26A λ-expression is called a pre-term by Sorensen and Urzyczyn [73].
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It is clear that a λ-expression has the same tree structure as the λ-term it represents.
If M = (T , f, b) is a λ-term, a writing of M [74] is a function ℓ : T (1) → V

satisfying the following conditions:

• If u, v ∈ T (1), w ∈ T (0), u < v < w, and b(w) = u, then ℓ(u) 6= ℓ(v).

• If u ∈ T (1), v ∈ T (0), u < v, and v ∈ dom(f), then ℓ(u) 6= f(v).

It is clear that every λ-term has a writing; in particular, there is always a writing ℓ
of M such that ℓ is one-to-one and ran(ℓ) ∩ FV(M) = ∅.27

Given a λ-term M = (T , f, b) together with a writing ℓ, we can define a function
subM,ℓ from T to λ-expressions as follows:

subM,ℓ(w) =





f(w) if w ∈ dom(f),

ℓ(b(w)) if w ∈ dom(b),

λx. subM,ℓ(w0) if w ∈ T (1) and ℓ(w) = x,

(subM,ℓ(w0) subM,ℓ(w1)) if w ∈ T (2).

Then it is easy to see that subM,ℓ(ǫ) is a λ-expression representing M . The λ-term
represented by subM,ℓ(w) is usually called the subterm of M occurring at w; but
“subterm” is only defined relative to a writing ℓ of M .

We use usual abbreviations in writing λ-expressions. We omit the outermost
parentheses from λ-expressions and write MNP for (MN)P , λx.MN for λx.(MN),
and λx1x2 . . . xn.M for λx1.(λx2. . . . (λxn.M) . . . ).

We define the operation of substitution of a λ-term for a free variable in another
λ-term. Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms and x be a variable

in V. Let X = { v ∈ T
(0)

M | fM (v) = x }. The result of substituting N for x in M is
the λ-term M [x := N ] = (T , f, b) defined by

T = TM ∪XTN ,

f = { (w, fM (w)) | w ∈ dom(fM )−X } ∪ { (vw, fN (w)) | v ∈ X, w ∈ dom(fN ) },

b = bM ∪ { (vw, vbN (w)) | v ∈ X, w ∈ dom(bN ) }.

It follows from this definition that for all λ-terms P, Q, N , all y ∈ V − {x}, and all
z ∈ V − ({x} ∪ FV(N)), we have

x[x := N ] = N,

y[x := N ] = y,

27Such a writing corresponds to what Loader [54] calls a regular λ-term.
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(PQ)[x := N ] = P [x := N ] Q[x := N ],

(λx.P )[x := N ] = λx.P,

(λz.P )[x := N ] = λz.(P [x := N ]).

The simultaneous substitution of λ-terms N1, . . . , Nk for pairwise distinct variables
x1, . . . , xk in a λ-term M is defined similarly, and is written M [x1:=N1, . . . , xk :=Nk].
We write M [x1, . . . , xk] to indicate that {x1, . . . , xk} ⊆ FV(M [x1, . . . , xk]), and write
M [N1, . . . , Nk] for (M [x1, . . . , xk])[x1 := N1, . . . , xk := Nk].

Let M = (T , f, b) be a λ-term. Suppose that w ∈ T (2) is a binary node of
M such that w0 ∈ T (1). Such a node w is called a β-redex. Note that for every
writing ℓ of M , the λ-term represented by subM,ℓ(w) is of the form (λx.P )N . Let
X = { v | w0v ∈ T (0), b(w0v) = w0 }. (The set of leaves of M whose binder is w0 is
w0X.) We write

M
w
→β M ′

if M ′ = (T ′, f ′, b′), where

T ′ = {u ∈ T | w 6≤ u } ∪ {wv | w00v ∈ T } ∪ {wvu | v ∈ X, w1u ∈ T },

f = { (u, f(u)) | u ∈ dom(f), w 6≤ u } ∪ { (wv, f(w00v)) | w00v ∈ dom(f) } ∪

{ (wvu, f(w1u)) | v ∈ X, w1u ∈ dom(f) },

b′ = { (u, b(u)) | u ∈ dom(b), w 6≤ u } ∪

{ (wv, b(w00v) | w00v ∈ dom(b), w 6≤ b(w00v) } ∪

{ (wv, wv′) | w00v ∈ dom(b), b(w00v) = w00v′ } ∪

{ (wvu, b(w1u)) | v ∈ X, w1u ∈ dom(b), w 6≤ b(w1u) } ∪

{ (wvu, wvu′) | v ∈ X, w1u ∈ dom(b), b(w1u) = w1u′ }.

See Figure 9. If ℓ is a writing of M and (λx.P )N is the λ-term represented by
subM,ℓ(w), then for every writing ℓ′ of M ′ such that ℓ′ agrees with ℓ on {u ∈ T (1) |
u < w }, subM ′,ℓ′(w) represents P [x := N ].

From here on, we will let λ-expressions denote λ-terms, rather than themselves,
unless we explicitly indicate otherwise, keeping in mind that distinct λ-expressions
may represent the same λ-term. For example, if M = c(λy.d((λx.yxx)(yzz))),

then the node 101 of M is a β-redex, and M
101
→β c(λy.d(y(yzz)(yzz))) =

c(λy.d((yxx)[x := yzz])).
We write M →β M ′ if M

w
→β M ′ for some β-redex w in M . We say that M

β-reduces to M ′ (or M ′ β-expands to M) and write M ։β M ′ if there is a finite
sequence of λ-terms M0, M1, . . . , Mn (n ≥ 0) such that

M = M0 →β M1 →β · · · →β Mn = M ′.
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Figure 9: A one-step β-reduction. The dotted arrows represent the binding map.

If M and M ′ are related by the symmetric transitive closure of the relation ։β , we
say M is β-equal to M ′ and write M =β M ′.

Theorem 3.3 (Church-Rosser Theorem). If M ։β N and M ։β P , then there
exists a Q such that N ։β Q and P ։β Q.

See [6] for a proof.
A λ-term is called β-normal if it does not contain a β-redex. If a λ-term β-

reduces to a β-normal λ-term, the latter is called the β-normal form of the former.
By the Church-Rosser Theorem for β-reduction, any λ-term M has at most one
β-normal form. If a λ-term M has a β-normal form, we denote it by |M |β.

If M ։β M ′, each node of M ′ is a descendant of a unique node (its ancestor) of
M . For example, in M = (λx.yxx)(zw) ։β y(zw)(zw) = M ′, both occurrences of
z in M ′ are descendants of the unique occurrence of z in M . We give the definition
of the ancestor-descendant relation for one-step β-reduction as follows.28

Let M = (T , f, b), M ′ = (T ′, f ′, b′), and suppose w is a β-redex in M and

M
w
→β M ′. We write (M, u)

w
◮ (M ′, u′) to mean that the node u′ of M ′ is a

descendant of the node u of M . Let u ∈ T . There are four cases to consider:
Case 1. w 6≤ u. Then (M, u)

w
◮ (M ′, u′) if and only if u′ = u.

Case 2. u = w or u = w0. Then there is no u′ such that (M, u)
w
◮ (M ′, u′).

Case 3. u = w00s. Case 3a. If u ∈ dom(b) and b(u) = w0, then there is no u′

such that (M, u)
w
◮ (M ′, u′). Case 3b. Otherwise, (M, u)

w
◮ (M ′, u′) if and only if

u′ = ws.
Case 4. u = w1s. Then (M, u)

w
◮ (M ′, u′) if and only if u′ = wvs for some v

such that w00v ∈ dom(b) and b(w00v) = w0.

28See [10] for a formal definition of the ancestor-descendant relation using the technique of
labeling bracket pairs, originally due to Newman [58].
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It is clear that each node of M ′ is a descendant of a unique node of M . In Cases
1 and 3b, the node u of M has just one descendant in M ′. In Case 4, it has as
many descendants in M ′ as there are leaves in M whose binder is w0. We write

(M, u)
w
◮k (M ′, u′) to mean that the node u′ of M ′ is the k-th among the descendants

of the node u of M under the lexicographic ordering of the nodes of M ′.
Here are some important properties of the ancestor-descendant relation. The

proof is by straightforward inspection.

Lemma 3.4. Let M = (T , f, b) and M ′ = (T ′, f ′, b′), and suppose (M, u)
w
◮

(M ′, u′).

(i) u ∈ T (i) if and only if u′ ∈ T ′(i) for i = 0, 1, 2.

(ii) u ∈ dom(f) if and only if u′ ∈ dom(f ′).

(iii) u ∈ dom(b) if and only if u′ ∈ dom(b′).

(iv) If u ∈ dom(b), then (M, b(u))
w
◮ (M ′, b′(u′)).

We write (M, v)
w1,...,wn

◮ (M ′, v′) if there are sequences M0, M1, . . . , Mn and
v0, v1, . . . , vn such that (M, v) = (M0, v0), (M ′, v′) = (Mn, vn), and for 1 ≤ i ≤ n,

(Mi−1, vi−1)
wi

◮ (Mi, vi). The following theorem says that if M ։β M ′ and M ′ is in
β-normal form, the ancestor-descendant relation between the nodes of M and the
nodes of M ′ does not depend on the β-reduction sequence from M to M ′.

Theorem 3.5. If (M, u)
w1,...,wn

◮ (|M |β , v) and (M, u′)
v1,...,vm

◮ (|M |β, v), then u =
u′.

Proof. The proof is via an equivalent definition of the ancestor-descendant relation
in terms of simply labeled λ-calculus λA [10]. This calculus defines β-reduction
on labeled λ-terms, where each node carries a label, and the label of a node is
passed to the node’s descendants. If u is the only node labeled by a in a labeled
λ-term M , the set of descendants of u in |M |β consists of those nodes labeled by a,
which is independent of the β-reduction path from M to |M |β because λA , being
an orthogonal combinatory reduction system, enjoys the Church-Rosser Property
(see [10] for details).

A unary node w of M = (T , f, b) is an η-redex if w0 is a binary node and w01 is
the only node whose binder is w. If ℓ is a writing of M , then the λ-term represented
by subM,ℓ(w) is of the form λx.Px, where x 6∈ FV(P ). We write

M
w
→η M ′
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w

0

0

1

w

w

η

Figure 10: A one-step η-reduction. The node w01 is the unique node whose binder
is w.

if M ′ = (T ′, f ′, b′), where

T ′ = {u ∈ T | w 6≤ u } ∪ {wv | w00v ∈ T },

f ′ = { (u, f(u)) | u ∈ dom(f), w 6≤ u } ∪ { (wv, f(w00v) | w00v ∈ dom(f) },

b′ = { (u, b(u)) | u ∈ dom(b), w 6≤ u } ∪

{ (wv, b(w00v) | w00v ∈ dom(b), b(w00v) < w } ∪

{ (wv, wv′) | w00v ∈ dom(b), b(w00v) = w00v′ }.

See Figure 10. If ℓ is a writing of M and λx.Px is the λ-term represented by
subM,ℓ(w), then for every writing ℓ′ of M ′ such that ℓ′ agrees with ℓ on {u ∈ T (1) |
u < w }, the λ-term represented by subM ′,ℓ′(w) is P . The notions of η-reduction, η-
expansion, and η-equality are defined analogously to β-reduction, β-expansion, and
β-equality. We write M ։η M ′ to mean M η-reduces to M ′ and M =η M ′ to mean
M is η-equal to M ′. The transitive closure of the union of ։β and ։η is written
։βη, and similarly for =βη.

The following are lemmas needed to prove the Church-Rosser Theorem for βη-
reduction (see [6] for a proof):

Lemma 3.6 (η-Postponmenet Theorem). If M ։η Q ։β T , then there exists a
λ-term P such that M ։β P ։η T .

Lemma 3.7 (Commuting Lemma). If M ։β P and M ։η Q, then there exists a
λ-term T such that P ։η T and Q ։β T .

The following lemma is straightforward (see [31]):

Lemma 3.8. If M is in β-normal form and M ։η M ′, then M ′ is in β-normal
form.
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A λ-term M is a λI-term if every unary node of M binds at least one leaf. A
λ-term M is affine if every variable occurs free in M at most once, and every unary
node of M binds at most one leaf. A λ-term is linear if it is an affine λI-term. The
class of λI-terms and the class of affine λ-terms are both closed under β-reduction
and η-equality.

We introduce some nonstandard notations. The sequence of constants in M =

(T , f, b), denoted
−−→
Con(M), is

−−→
Con(M, ǫ), where

−−→
Con(M, w) is defined as follows:

−−→
Con(M, w) =





() if w ∈ dom(b),

() if w ∈ dom(f) and f(w) ∈ V,

(f(w)) if w ∈ dom(f) and f(w) ∈ C,
−−→
Con(M, w0) if w ∈ T (1),
−−→
Con(M, w0)

a−−→
Con(M, w1) if w ∈ T (2),

where
a

denotes juxtaposition. The sequence of free variables of M , denoted
−→
FV(M),

is
−→
FV(M, ǫ), where

−→
FV(M, w) is defined as follows:

−→
FV(M, w) =





() if w ∈ dom(b),

(f(w)) if w ∈ dom(f) and f(w) ∈ V,

() if w ∈ dom(t) and f(w) ∈ C,
−→
FV(M, w0) if w ∈ T (1),
−→
FV(M, w0)

a−→
FV(M, w1) if w ∈ T (2),

If
−−→
Con(M) = (c1, . . . , cn) and {x1, . . . , xn} ∩ FV(M) = ∅ (with x1, . . . , xn pair-

wise distinct), we let M̂ [x1, . . . , xn] denote the pure λ-term such that (x1, . . . , xn)

is a subsequence of
−→
FV(M̂ [x1, . . . , xn]) and M = M̂ [c1, . . . , cn]. For example,

if M = λy.c(y(c(zd)), then
−−→
Con(M) = (c, c, d),

−→
FV(M) = (z), M̂ [x1, x2, x3] =

λy.x1(y(x2(zx3))), and
−→
FV(M̂ [x1, x2, x3]) = (x1, x2, z, x3).

3.1.3 Simply typed λ-calculus with constants

Given a set A of atomic types, we let T (A) denote the set of types built up from
atomic types using → as the sole type constructor. In other words, T (A) is the
smallest set extending A such that

α, β ∈ T (A) implies (α→ β) ∈ T (A).

We omit the outermost parentheses in writing types, and write α→ β→ γ to mean
α→ (β→ γ).

1142



Parsing and Generation as Datalog Query Evaluation

For α ∈ T (A), we write |α| to denote the number of occurrences of atomic types
in α. The notation α denotes the sequence of atomic types (with repetitions) that
appear in α from right to left, defined as follows:

p = (p) if p ∈ A,

α→ β = β
a

α.

As before,
a

denotes juxtaposition of sequences. For example, p→ p→ q = (q, p, p).
Note that the length of α is |α|.

The set of positions within α, denoted 〈α〉, is defined as follows:

〈p〉 = {ǫ},

〈α→ β〉 = {ǫ} ∪ 1〈α〉 ∪ 0〈β〉.

Then for every type α, 〈α〉 is a binary tree domain that has no unary nodes. The
subtype of α that occurs at position w ∈ 〈α〉, subtype(α, w) in symbols, is defined
as follows:

subtype(α, ǫ) = α,

subtype(α→ β, 1w) = subtype(α, w),

subtype(α→ β, 0w) = subtype(β, w).

The polarity of position w, pol(w), is 1 if the number of occurrences of 1 in w is
even, −1 otherwise. We say that β occurs positively (negatively) at position w in α
if subtype(α, w) = β and pol(w) = 1 (pol(w) = −1).

A type substitution is a mapping σ from T (A) to T (A′), written in postfix
notation, satisfying the condition (α→ β)σ = ασ→ βσ. A type relabeling is a type
substitution that sends atomic types to atomic types. Note that 〈α〉 = 〈β〉 if and
only if there exist a type γ and type relabelings σ1 and σ2 such that α = γσ1 and
β = γσ2. If |α| = n and q1, . . . , qn ∈ A, then we let 〈α〉(q1, . . . , qn) denote the unique
type β in T (A) such that β = (q1, . . . , qn) and 〈α〉 = 〈β〉. For any type β, we have
〈β〉(β) = β.

A higher-order signature is a triple (A, C, τ), where A is a finite set of atomic
types, C is a finite set of constants, and τ is a mapping from C to T (A). We write
Λ(Σ) for the set of λ-terms over C.

A type environment is a finite partial function from V to T (A). A type environ-
ment Γ = {(x1, α1), . . . , (xn, αn)} is usually written as a list x1 : α1, . . . , xn : αn.
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Let Γ be a type environment and M = (T , f, b) ∈ Λ(Σ). A function t : T →
T (A) is a type decoration of M under Γ if dom(Γ) = FV(M) and

t(w) =





Γ(f(w)) if w ∈ dom(f) and f(w) ∈ V,

τ(f(w)) if w ∈ dom(f) and f(w) ∈ C,

γ if w ∈ dom(b) and t(b(w)) = γ→ δ,

γ→ δ for some γ if w ∈ T (1) and t(w0) = δ,

γ→ δ if for some v ∈ T (2), w = v0, t(v) = δ, and t(v1) = γ.

If t is a type decoration of M (under Γ), we call (M, t) a typed λ-term over Σ (under
Γ).

A typed λ-term (M, t) can be visualized in the form of a natural deduction: each
unary and binary node w is labeled with its type t(w), each node w ∈ dom(f) is
labeled with a:γ, where f(w) = a and t(w) = γ, and each node w ∈ dom(b) is labeled
with [γ]v, where b(w) = v and t(w) = γ. For example, the following figure depicts a
typed λ-term (M, t) under the type environment z : p, where M = (λy.y(yz))(λx.x):

[p→ p]0
[p→ p]0 z : p

p
p

(p→ p)→ p
0 [p]1

p→ p 1

p

To aid legibility, we have also placed the label v next to the horizontal line right
above each unary node v.29

Another familiar representation of a typed λ-term is by means of a λ-expression
together with a type superscript on each of its subexpression. For instance, one way
of representing the above example of a typed λ-term is

((λyp→p.(yp→p(yp→pzp)p)p)(p→p)→p(λxp.xp)p→p)p.

We call an expression of the form Γ⇒ α, where Γ is a type environment and α
is a type, a sequent. A sequent Γ⇒ α is a typing of M if there is a type decoration
t of M under Γ such that t(ǫ) = α. In this case, we write

⊢Σ Γ⇒M : α.

29The resulting figure is identical to the natural deduction as defined in, e.g., [75], except that
we use strings in {0, 1}∗, rather than variables, as markers for closed assumptions, and we label
open assumptions with variables or constants. Hindley [31] also uses node addresses as assumption
markers in natural deductions, albeit in a different way.
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and say that t is a type decoration for the typing judgment Γ ⇒ M : α. When Γ is
empty, we omit the symbol ⇒ and write ⊢Σ M : α. Reference to Σ is dropped when
M is pure.

We say that an (untyped) λ-term M is typable if it has a typing. It is known
that every typable λ-term has a β-normal form. A sequent is said to be inhabited
if there is a pure λ-term M (an inhabitant) such that ⊢ Γ ⇒ M : α. A sequent is
inhabited if and only if it is a theorem of intuitionistic logic.30

Let M = (T , f, b) ∈ Λ(Σ) and t be a type decoration of M . If ℓ is a writing of
M and w ∈ T , then it is clear that

tw(v) = t(wv) for wv ∈ T

determines a type decoration tw for subM,ℓ(w), and we have

⊢Σ { (x, t(wv)) | f(wv) = x} ∪ { (ℓ(b(wv)), t(wv)) | b(wv) < w } ⇒ subM,ℓ(w) : t(w).

An important property of a typed λ-term in β-normal form is the so-called
subformula property:

Theorem 3.9. Let M = (T , f, b) be a pure untyped λ-term in β-normal form. If t
is a type decoration for x1 : α1, . . . , xn : αn ⇒M : α0, then for every w ∈ T , t(w) is
a subtype of αi for some i ∈ {0, . . . , n}.

Proof. The theorem is a consequence of the following statement, which is easy to
see: for every w ∈ T , if w 6= ǫ and w 6∈ dom(f), then there exists a v ∈ T such that
t(v) = t(w)→ α or t(v) = α→ t(w) for some α.

In general, the same typing of a λ-term may have more than one type decoration.
See [31] for the proof of the following theorem:

Theorem 3.10. If M ∈ Λ(Σ) is a λI-term, any typing of M has a unique type
decoration.

Thus, a λI-term M together with a typing of M can be treated in the same way as
a typed λ-term.

A typing Γ ⇒ α of M is a principal typing of M if for every typing Γ′ ⇒ α′ of
M , there is a type substitution σ such that Γ′ ⇒ α′ = (Γ ⇒ α)σ. We call a type
decoration t of M (under some type environment) a principal type decoration of M
if for every type decoration t′ of M (under some type environment), there is a type
substitution σ such that t′ = σ ◦ t. Clearly, the typing determined by a principal
type decoration is a principal typing.

30We use the symbol ⇒ in the same way as Mints [56] does. This is the way Hindley [31] uses the
symbol 7→. Although ⊢Σ Γ ⇒ M : α implies dom(Γ) = FV(M), it is always possible to weaken the
antecedent in the sense that ⊢Σ Γ ⇒ M : α implies ⊢Σ Γ, x : β ⇒ (λy.M)x : α, where x, y 6∈ FV(M).
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Theorem 3.11 (Principal Type Theorem). If M is typable, then M has a principal
typing and a principal type decoration.

See [31] for a proof.

Let M = (TM , fM , bM ) and N = (TN , fN , bN ) be λ-terms and x be a variable in

FV(M). Let X = { v ∈ T
(0)

M | fM (v) = x }. Let M [x := N ] = (T , f, b) be the result
of substituting N for x in M . The following lemmas are straightforward:

Lemma 3.12. Suppose that tM and tN are type decorations for Γ1, x : β ⇒ M : α
and Γ2 ⇒ N :β, respectively, and that Γ1 and Γ2 agree on (FV(M)−{x})∩FV(N).
Then we can define a type decoration t for Γ1 ∪ Γ2 ⇒M [x := N ] : α by

t(w) =

{
tM (w) if w ∈ TM ,

tN (v′) if w = vv′ for some v ∈ X and v′ ∈ TN .

Lemma 3.13. Suppose that t is a type decoration for Γ⇒M [x := N ] : α such that
for some type β, t(v) = β for every v ∈ X. Pick a v ∈ X. Then we can define type
decorations tM and tN for Γ1, x : β ⇒M : α and Γ2 ⇒ N : β, respectively, by

tM (w) = t(w) for all w ∈ TM ,

tN (w) = t(vw) for all w ∈ TN ,

where Γ1 and Γ2 are the restrictions of Γ to FV(M) and to FV(N), respectively.

Let M [x1, . . . , xn] be a pure λ-term such that FV(M [x1, . . . , xn]) = {x1, . . . , xn}.
For any c1, . . . , cn ∈ C, we have

⊢Σ M [c1, . . . , cn] : α if and only if ⊢ x1 : τ(c1), . . . , xn : τ(cn)⇒M [x1, . . . , xn] : α.

Let (M, t) be a typed λ-term. If M
w
→β M ′, then t, in conjunction with the

ancestor-descendant relation, induces a type decoration t′ of M ′, defined by

t′(v′) = t(v) if (M, v)
w
◮ (M ′, v′).

This is denoted by (M, t)
w
→β (M ′, t′). Note that even though we do not have

(M, w)
w
◮ (M ′, w), it is always the case that t′(w) = t(w), since t(w) = t(w00) and

(M, w00)
w
◮ (M ′, w).

Theorem 3.14 (Subject Reduction Theorem). If ⊢Σ Γ ⇒ M : α and M ։β M ′,
then ⊢Σ Γ′ ⇒M ′ : α, where Γ′ is the restriction of Γ to FV(M ′).
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See, e.g., [31] for a proof.
Let M = (T , f, b) and suppose M

w
→β M ′. This β-reduction step is called

erasing if there is no v ∈ T (0) such that b(v) = w0, and duplicating if for some
v, v′ ∈ T (0), v 6= v′ and b(v) = b(v′) = w0. (The right child w1 of the β-redex w has
no descendant in an erasing β-reduction step, and has more than one in a duplicating
β-reduction step.) A β-reduction from M to M ′ is non-erasing (non-duplicating) if
it consists entirely of non-erasing (non-duplicating) β-reduction steps.

Theorem 3.15 (Subject Expansion Theorem). If ⊢Σ Γ ⇒ M ′ : α and M ։β M ′

by non-erasing, non-duplicating β-reduction, then ⊢Σ Γ⇒M : α.

See [31]. As a special case, if M is linear and M ։β M ′, then ⊢Σ Γ⇒M ′ :α implies
⊢Σ Γ⇒M : α.

As with β-reduction, the η-reduction relation between untyped λ-terms induces
the η-reduction relation between typed λ-terms. A typed λ-term (M, t), where
M = (T , f, b), is in η-long form if every node w ∈ T satisfies the following condition:

• t(w) = β→ γ for some β, γ implies that either w ∈ T (1) or w = v0 for some
v ∈ T (2).

If (M, t) has a node w that does not satisfy this condition, there is a unique typed λ-
term (M ′, t′) such that (M ′, t′)

w
→η (M, t). Both nodes w and w00 of (M ′, t′) satisfy

the condition, and t′(w0) = γ, t′(w01) = β, both of which are shorter than β→ γ.
Thus, every typed λ-term can be converted to one in η-long form by a sequence of
η-expansion steps applied to nodes that do not satisfy this condition. It is easy to
see that the resulting λ-term is unique; we call it the η-long form of the original
λ-term.

We say that an untyped λ-term M ∈ Λ(Σ) is in η-long form relative to Γ⇒ α if
there is a type decoration t of M under Γ such that t(ǫ) = α and (M, t) is in η-long
form. We say that M is in η-long form if M is η-long relative to some typing (or,
equivalently, relative to its principal typing).

The following lemmas are from [34]:

Lemma 3.16. Let M and N be λ-terms and x be a variable in FV(M). Suppose
that tM and tN are type decorations for Γ1, x:β ⇒M :α and Γ2 ⇒ N :β, respectively,
and that Γ1 and Γ2 agree on (FV(M)−{x})∩FV(N). Let t be the type decoration
for Γ1 ∪ Γ2 ⇒ M [x := N ] : α defined according to Lemma 3.12. If (M, tM ) and
(N, tN ) are in η-long form, then (M [x := N ], t) is in η-long form.

Lemma 3.17. If M is in η-long form relative to Γ ⇒ α and M ։β M ′, then M ′

is in η-long form relative to Γ′ ⇒ α, where Γ′ is the restriction of Γ to FV(M ′).
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Thus, the β-normal form of an η-long λ-term is η-long.
We refer to an occurrence of a type β in a sequent x1 : α1, . . . , xn : αn ⇒ α0 or

a typing judgment x1 : α1, . . . , xn : αn ⇒ M : α0 by a pair (i, v), with 0 ≤ i ≤ n
and v ∈ 〈αi〉, such that subtype(αi, v) = β. We say that an occurrence (i, v) is
positive (resp., negative) and write pol(i, v) = +1 (pol(i, v) = −1) if either i = 0
and pol(v) = 1 (pol(v) = −1) or i ≥ 1 and pol(v) = −1 (pol(v) = 1). For example,
in x : p, y : p→ q ⇒ q, the pairs (1, ǫ) and (2, 0) refer to the first occurrences of p
and q, respectively, which are both negative, and the pairs (2, 1) and (0, ǫ) refer to
the second occurrences of p and q, respectively, which are both positive. A sequent
or typing judgment is balanced if every atomic type has at most one positive and at
most one negative occurrence in it.

Theorem 3.18 (Coherence Theorem). All inhabitants of a balanced sequent are
βη-equal. In particular, if Γ ∪ Γ′ ⇒ α is a balanced sequent and both ⊢ Γ ⇒ M : α
and ⊢ Γ′ ⇒M ′ : α hold, then M =βη M ′.

See [56] for a proof.
According to Hirokawa [33], the first of the following theorems is due to Bel-

nap [9]. See [33] for the proof of the second.

Theorem 3.19 ([9]). If M is a pure affine λ-term, then the principal typing of M
is balanced.

Theorem 3.20 ([33]). If a pure λ-term M in β-normal form has a balanced typing,
then M is affine.

Theorem 3.19 together with the Coherence Theorem (Theorem 3.18) implies that
a pure affine λ-term is uniquely determined by its principal typing up to βη-equality.

3.1.4 Links in typed λ-terms

It will be convenient for our purposes to introduce a strengthening of the notion of
η-long form. We say that a typed λ-term (M, t) with M = (T , f, b) is in strict η-long
form if every node w ∈ T satisfies the following condition:

• if t(w) = β→ γ, then either (i) w ∈ T (1) and b(v) = w for some v ∈ T (0), (ii)
w ∈ T (1) and β is an atomic type, or (iii) w = v0 for some v ∈ T (2).

Note that if M is a λI-term and (M, t) is in η-long form, then (M, t) is in strict η-long
form. For every typed λ-term (M, t) in η-long form, there is a typed λ-term (M ′, t′)
in strict η-long form such that both (M ′, t′) ։β (M, t) and (M ′, t′) ։η (M, t).
Unlike η-long form, strict η-long form is not preserved under β-reduction, but we
have the following:
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Lemma 3.21. Lemma 3.16 holds with “strict η-long form” in place of “η-long
form”.

As with η-long form, we speak of an untyped λ-term being in strict η-long form
relative to a typing.

Clearly, if M ∈ Λ(Σ) is a closed λ-term and
−−→
Con(M) = (c1, . . . , cn), then M is

in (strict) η-long form relative to α if and only if M̂ [x1, . . . , xn] is in (strict) η-long
form relative to x1 : τ(c1), . . . , xn : τ(cn)⇒ α.

Lemma 3.22. Let M be a pure λ-term, and suppose that t is a type decoration of
M such that (M, t) is in strict η-long form. Let t̃ be a principal type decoration of
M . Then there is a type relabeling σ such that t = σ ◦ t̃.

Proof. It is easy to see that if an atomic type p occurs anywhere in (M, t), then
it must be that there is a node of M that is assigned type p by t, or else there is
a unary node of M that is assigned a type of the form p→ γ. In both cases, the
relevant node must be assigned a type of the same shape by t̃.

Lemma 3.22 implies the following:

Remark 3.23. Suppose that M ∈ Λ(Σ) is a λ-term in strict η-long form relative

to x1 : γ1, . . . , xn : γn ⇒ γ0,
−−→
Con(M) = (d1, . . . , dm), and y1 : β1, . . . , ym : βm, x1 :

α1, . . . , xn : αn ⇒ α0 is a principal typing of M̂ [y1, . . . , ym]. Then M̂ [y1, . . . , ym] is
in strict η-long form relative to y1 : β1, . . . , ym : βm, x1 : α1, . . . , xn : αn ⇒ α0, and
moreover, we have

〈βi〉 = 〈τ(di)〉 for i = 1, . . . , m,

〈αi〉 = 〈γi〉 for i = 0, . . . , n.

Let (M, t) be a pure typed λ-term, where M = (T , f, b). We associate with
(M, t) a certain directed graph G(M,t) = (V(M,t), E(M,t)).

31 The set V(M,t) of vertices
of G(M,t) consists of all triples of one of the forms

(w, v, ↑) and (w, v, ↓),

where w ∈ T and v ∈ 〈t(w)〉(0). (Recall that 〈t(w)〉(0) is the set of leaves of 〈t(w)〉,
that is, the set of positions where atomic types occur in t(w).) Triples (w, v, ↑) and
(w, v, ↓) correspond to the same position in t(w). The existence of an edge from
(w, v,−) to (w′, v′,−) (where “−” is to be filled by ↑ or ↓) implies that the same

31Our graph is essentially the natural deduction counterpart of the logical flow graph of Buss [12].
See [41] for an equivalent definition.
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atomic type must occur at v in t(w) and at v′ in t(w′) (i.e., subtype(t(w), v) =
subtype(t(w′), v′)). The last component of the triples indicates the “direction of
travel”, which is explained below. The set E(M,t) of edges of G(M,t) is defined as
follows:

((w, v, ↑), (w′, v′, ↑)) ∈ E(M,t) iff either w ∈ T (1), w0 = w′, and v = 0v′, or

w ∈ T (2), w0 = w′, and 0v = v′.

((w, v, ↓), (w′, v′, ↓)) ∈ E(M,t) iff either w′ ∈ T (1), w = w′0, and 0v = v′, or

w′ ∈ T (2), w = w′0, and v = 0v′.

((w, v, ↑), (w′, v′, ↓)) ∈ E(M,t) iff either w ∈ T (1), w = b(w′) and v = 1v′, or

w′ ∈ T (1), b(w) = w′ and 1v = v′.

((w, v, ↓), (w′, v′, ↑)) ∈ E(M,t) iff for some u ∈ T (2),

either w = u0, w′ = u1, and v = 1v′, or

w = u1, w′ = u0, and 1v = v′.

Note that the edges in E(M,t) come in pairs: given an edge in E(M,t), one can
interchange source and destination, then reverse the direction of the arrows in the
third component of both vertices, and obtain another edge in E(M,t).

The meaning of the graph G(M,t) becomes easy to grasp when it is superimposed
on the natural deduction representing (M, t). Each pair of edges is represented
by a single curve connecting two occurrences of an atomic type; the two edges in
the pair correspond to the two ways of traversing the curve, with the direction
of traversal at each end point of the curve matching the direction of the arrow
in the third component of the tuple (w, v,−) corresponding to that point. Thus,
((w, v, ↓), (w′, v′, ↓)) is an edge of the graph G(M,t) if there is a curve that departs
downward from the atomic type occurrence at position v in the type labeling the
node w of the natural deduction tree for (M, t) and reaches from above the atomic
type occurrence at position v′ in the type labeling the node w′; similarly for other
combinations of ↑ and ↓. See Figure 11 for an example.

It is easy to see that for any pure typed λ-term (M, t), if there is a directed path
from (w, v, d) to (w′, v′, d′), where d, d′ ∈ {↑, ↓}, then pol(v) = pol(v′) if and only if
d = d′.

Note that the graph depicted in Figure 11 contains a directed cycle:

(0, 10, ↓)− (1, 0, ↑)− (10, ǫ, ↑)− (1, 1, ↓)− (0, 11, ↑)− (000, 1, ↓)− (001, ǫ, ↑)−

(0010, 0, ↑)− (0, 10, ↓)
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p

(p → p) → p p → p

[p]1p

p[p → p]0

z : p[p → p]0

0 1

Figure 11: A natural deduction with links.

It is not hard to see that any cycle must involve the two children w0, w1 of a binary
node w and positions u, v of t(w1) such that

• pol(u) = −pol(v),

• there is a directed path from (w0, 1u, ↑) to (w0, 1v, ↓) inside the subtree rooted
at w0, and

• there is a directed path from (w1, v, ↑) to (w1, u, ↓) inside the subtree rooted
at w1.

This implies that there exists an n ≥ 0 such that w0n is a β-redex.

Lemma 3.24. If (M, t) is a pure typed λ-form in β-normal form, then G(M,t)

contains no directed cycle.

Let M = (T , f, b) be a pure untyped λ-term with FV(M) = {x1, . . . , xn}, and
let t be a type decoration for x1 : α1, . . . , xn : αn ⇒ M : α0. We augment the graph
G(M,t) with the nodes of the form

(i, v, d)

where 0 ≤ i ≤ n, v ∈ 〈αi〉
(0), d ∈ {↑, ↓}, and the edges

((i, v, ↑), (w, v, ↓)) and ((w, v, ↑), (i, v, ↓))

with 1 ≤ i ≤ n and f(w) = xi, and

((0, v, ↑), (ǫ, v, ↑)) and ((ǫ, v, ↓), (0, v, ↓)).
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We refer to the resulting extended graph as G(M,t). Note that when G(M,t) has a
directed path from (i, v, ↑) to (w, u, d) with w ∈ T , we have pol(i, v) = pol(u) if and
only if d = ↑, and likewise when G(M,t) has a directed path from (w, u, d) to (i, v, ↓).

In terms of G(M,t), we define two binary relations on the set

{ (i, v) | 0 ≤ i ≤ n, v ∈ 〈αi〉
(0) }

of occurrences of atomic types in x1 : α1, . . . , xn : αn ⇒ α0. We say that (i, v) is
linked to (i′, v′) in (M, t) if G(M,t) contains a directed path from (i, v, ↑) to (i′, v′, ↓).

We say that (i, v) is connected to (i′, v′) in (M, t) if G(M,t) contains an undirected
path from (i, v, d) to (i′, v′, d′) for some d, d′ ∈ {↑, ↓}. Note that the relation of
being linked is symmetric, but not necessarily transitive; the relation of being con-
nected is symmetric and transitive. Clearly, if (i, v) is connected to (i′, v′), then
subtype(αi, v) = subtype(αi′ , v′).

The following is clear from the definitions of G(M,t) and of principal typing:

Lemma 3.25. Let M be a pure λ-term and t be a principal type decoration of M ,
with the associated principal typing x1 : α1, . . . , xn : αn ⇒ α0. Then (i, v) and (i′, v′)
are connected in (M, t) if and only if subtype(αi, v) = subtype(αi′ , v′).

It is clear that the graph G(M,t), where M = (T , f, b), is completely determined
by M and { (w, 〈t(w)〉) | w ∈ T }. This means that if σ is a type relabeling,
G(M,t) = G(M,σ◦t). Thus, Lemmas 3.22 and 3.25 give

Lemma 3.26. Let M be a pure λ-term and t be a type decoration of M under the
type environment x : γ1, . . . , xn : γn such that (M, t) is in strict η-long form. Let
x1 : α1, . . . , xn : αn ⇒ α0 be a principal typing of M . Then (i, v) and (i′, v′) are
connected in (M, t) if and only if subtype(αi, v) = subtype(αi′ , v′).

Moreover, we have

Lemma 3.27. Let M be a pure λI-term in β-normal form and t be a type decoration
of M under the type environment x : γ1, . . . , xn : γn such that (M, t) is in η-long
form. Let x1 : α1, . . . , xn : αn ⇒ α0 be a principal typing of M . Then (i, v) and
(i′, v′) are related by the transitive closure of the relation of being linked in (M, t) if
and only if subtype(αi, v) = subtype(αi′ , v′).

Proof. Since G(M,t) does not contain any directed cycles, the fact that M is a λI-
term implies that every directed path can be extended to one that starts in a node
of the form (i, v, ↑) and ends with one that ends in a node of the form (i′, v′, ↓).

The usefulness of the notion of being linked will become clear later.
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3.2 Context-free λ-term grammars

A context-free λ-term grammar (CFLG) is a quintuple G = (N , Σ, f, P, S), where
N is a finite alphabet of nonterminals, Σ = (A, C, τ) is a higher-order signature,
f is a function from N to T (A), S is a distinguished member of N , and P is a
finite set of rules of the form:

B(M) :− B1(X1), . . . , Bn(Xn),

where X1, . . . , Xn are pairwise distinct variables and M is a λ-term in Λ(Σ) that is
in η-long form relative to

X1 : f(B1), . . . , Xn : f(Bn)⇒ f(B).

It is not required that M be in β-normal form. The language of a CFLG G =
(N , Σ, f, P, S) is defined in terms of the predicate ⊢G . For a nonterminal B ∈ N

and a closed λ-term P ∈ Λ(Σ),

⊢G B(P )

holds if and only if there exist a rule

B(M) :− B1(X1), . . . , Bn(Xn)

in P and closed λ-terms Qi (i = 1, . . . , n) such that

P = M [X1 := Q1, . . . , Xn := Qn],

⊢G Bi(Qi).

When this holds, we have a derivation tree for B(P ) of the form

B(P )

T1 . . . Tn

where Ti is a derivation tree for Bi(Qi) (i = 1, . . . , n). Note that ⊢G B(P ) implies
⊢Σ P : f(B).

The language of G is

L(G ) = { |N |β | ⊢G S(N) }.

Thus, the language of a CFLG is a set of closed β-normal λ-terms that are in η-long
form relative to a certain type (namely f(S)) (cf. Lemmas 3.16 and 3.17).
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In example grammars we have given, we have not always adhered to the condition
that λ-terms in rules be in η-long form. Any rule with a non-η-long λ-term M should
be understood as an abbreviation for the “official” rule that has the η-long form of
M instead. The reason that we only allow λ-terms in η-long form in the language
of a CFLG is that we do not wish to distinguish between λ-terms that are η-equal.

Example 3.28. The earlier example CFLG (9) in official notation is G =
(N , Σ, f, P, S), where

N = {S, NP, VP, V, Det, N},

Σ = (A, C, τ),

A = {e, t},

C = {∧, John, find, catch, =, ∃, man, unicorn},

τ =





∧ 7→ t→ t→ t,

John 7→ e,

find 7→ e→ e→ t,

catch 7→ e→ e→ t,

= 7→ e→ e→ t,

∃ 7→ (e→ t)→ t,

man 7→ e→ t,

uncorn 7→ e→ t





,

f =





S 7→ t,

NP 7→ (e→ t)→ t,

VP 7→ e→ t,

V 7→ e→ e→ t,

Det 7→ (e→ t)→ (e→ t)→ t,

N 7→ e→ t





,

and P consists of the following rules:

S(X1(λx.X2x)) :− NP(X1), VP(X2).

VP(λx.X2(λy.X1yx)) :− V(X1), NP(X2).

V(λyx.∧(X1yx)(X2yx)) :− V(X1), V(X2).

NP(λu.X1(λx.X2x)(λx.ux)) :− Det(X1), N(X2).

NP(λu.u John).
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V(λyx.find y x).

V(λyx.catch y x).

V(λyx.= y x).

Det(λuv.∃(λy.∧(uy)(vy))).

N(λx.man x).

N(λx.unicorn x).

3.3 Datalog programs associated with CFLGs

We associate with a CFLG G = (N , Σ, f, P, S), where Σ = (A, C, τ), a Datalog
program program(G ), whose set of intensional predicates is N and whose set of
extensional predicates is C. The arity of B ∈ N is |f(B)|, and the arity of d ∈ C
is |τ(d)|.

In order to facilitate the definition of program(G ) and the statement of the next
lemma, we adopt the following conventions:

Convention 1. If
B(M) :− B1(X1), . . . , Bn(Xn)

is a rule in P, then M is in strict η-long form relative to

X1 : f(B1), . . . , Xn : f(Bn)⇒ f(B).

Convention 2. If
B(M) :− B1(X1), . . . , Bn(Xn)

is a rule in P, then
−→
FV(M) = (X1, . . . , Xn) and all occurrences of constants in M

precede the occurrences of X1, . . . , Xn.

It is easy to transform a rule that does not obey these conventions into
an equivalent one that does by changing M to the strict η-long form of
(λX1 . . . Xn.M)X1 . . . Xn, so adopting this convention does not lead to any loss
of generality. It is also possible to complicate the definition of program(G ) and the
statement and proof of the lemma to make the following results not depend on the
conventions.

We now give the definition of program(G ), assuming Conventions 1 and 2. Con-
sider a rule

π = B0(M) :− B1(X1), . . . , Bn(Xn),

in P. Let
−−→
Con(M) = (d1, . . . , dm),
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and let

y1 : β1, . . . , ym : βm, X1 : α1, . . . , Xn : αn ⇒ M̂ [y1, . . . , ym] : α0

be a principal typing of M̂ [y1, . . . , ym]. (Recall that M̂ [y1, . . . , ym] is a pure λ-term

such that M̂ [d1, . . . , dm] = M .) Note that by Convention 2,
−→
FV(M̂ [y1, . . . , ym]) =

(y1, . . . , ym, X1, . . . , Xn). By Convention 1 and Remark 3.23,

〈βi〉 = 〈τ(di)〉 for i = 1, . . . , m,

〈αi〉 = 〈f(Bi)〉 for i = 0, . . . , n.
(38)

The Datalog rule ρπ corresponding to π is defined as

B0(α0) :− d1(β1), . . . , dm(βm), B1(α1), . . . , Bn(αn),

where atomic types in αi, βi are considered Datalog variables. Clearly, ρπ does not
depend on the choice of variables y1, . . . , ym. Also, the choice of atomic types in
αi, βi is immaterial. So it does not matter which principal typing of M̂ [y1, . . . , ym]
we use.32

The Datalog program associated with G is defined as

program(G ) = { ρπ | π ∈P }.

Remark 3.29.

B0(~s0) :− d1(~t1), . . . , dm(~tm), B1(~s1), . . . , Bn(~sn)

is an instance of ρπ if and only if

⊢ y1 : 〈τ(d1)〉(~t1), . . . , ym : 〈τ(dm)〉(~tm), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [y1, . . . , ym] : 〈f(B0)〉(~s0).

Example 3.30. For the CFLG G of Example 3.28, program(G ) consists of the rules
in (16) in Section 2.2. For example, let M3 be the λ-term in the third rule π3 of G .

We have
−−→
Con(M3) = (∧), and the following is a principal typing of M̂3[z1]:

z1 : i2→ i5→ i1, X1 : i3→ i4→ i2, X2 : i3→ i4→ i5 ⇒ λyx.z1(X1yx)(X2yx) : i3→ i4→ i1.

32This definition of ρπ is applicable to arbitrary CFLG rules satisfying Conventions 1 and 2.
When M is almost linear, the definition of ρπ given here is equivalent to the definition given in
Section 2.2 in terms of the hypergraph representation graph(M) of a principal typing of M .
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We thus obtain

ρπ3 = V(i1, i4, i3) :− ∧(i3, i5, i2), V(i2, i4, i3), V(i5, i4, i3).

Note that the hypergraph representation (15) of M3 encodes the same information
as its principal typing.

The following is a key fact about program(G ) that holds of any CFLG G satis-
fying Conventions 1 and 2. It basically says that under the correspondence between
π and ρπ defined above, a CFLG derivation tree plus a typing (of a certain kind)
for the associated λ-term corresponds to a Datalog derivation tree, and vice versa.
Its proof is quite straightforward, if rather tedious. If ~u is a tuple (sequence) of
constants, we let |~u| denote its length, i.e., the number of its components.

Lemma 3.31. Let G = (N , Σ, f, P, S) with Σ = (A, C, τ) be a CFLG, and let U
be some set of constants. Let e1, . . . , el ∈ C, B ∈ N , and ~u1, . . . , ~ul, ~s be sequences
of constants from U such that |~ui| = |τ(ei)| and |~s| = |f(B)|. The following are
equivalent:

(i) There exists P ∈ Λ(Σ) such that

⊢G B(P ),
−−→
Con(P ) = (e1, . . . , el),

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zl : 〈τ(el)〉(~ul)⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s).

(ii) There exists a derivation tree T for

program(G ) ∪ { ei(~ui) | 1 ≤ i ≤ l } ⊢ B(~s)

such that (e1(~u1), . . . , el(~ul)) lists the labels of the extensional nodes of T in
the order from left to right.

Proof. (i) ⇒ (ii). Induction on the derivation of ⊢G B(P ). Assume that ⊢G B(P )
is inferred from

⊢G Bi(Pi) (i = 1, . . . , n)

using a rule

π = B(M) :− B1(X1), . . . , Bn(Xn)

such that

P = M [X1 := P1, . . . , Xn := Pn].
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Let m = |
−−→
Con(M)| and li = |

−−→
Con(Pi)| for i = 1, . . . , n. Then l = m + l1 + · · · + ln

and

P̂ [z1, . . . , zl] = M̂ [z1, . . . , zm]

[X1 := P̂1[zh(1,1), . . . , zh(1,l1)], . . . , Xn := P̂n[zh(n,1), . . . , zh(n,ln)]],
−−→
Con(M) = (e1, . . . , em),
−−→
Con(Pi) = (eh(i,1), . . . , eh(i,li)),

where
h(i, j) = m + l1 + · · ·+ li−1 + j.

By assumption,

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zl : 〈τ(el)〉(~ul)⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s). (39)

By Lemma 3.13, any type decoration for (39) splits into type decorations for

z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : α1, . . . , Xn : αn

⇒ M̂ [z1, . . . , zm] : 〈f(B)〉(~s)

and

zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)] : αi (40)

(i = 1, . . . , n). In order to apply the induction hypothesis to (40), we need

〈αi〉 = 〈f(Bi)〉 for each i = 1, . . . , n. (41)

If P̂ [z1, . . . , zl] is not λI, type decorations for (39) need not be unique, and indeed
there may be one for which (41) fails. We show that a desirable type decoration for
(39) can be obtained from a principal typing of P̂ [z1, . . . , zl] by type relabeling.

Since Convention 1 ensures that Pi is in strict η-long form relative to f(Bi)
and M is in strict η-long form relative to X1 : f(B1), . . . , Xn : f(Bn) ⇒ f(B),
it follows that P̂i[zh(i,1), . . . , zh(i,li)] is in strict η-long form relative to zh(i,1) :

τ(eh(i,1)), . . . , zh(i,li) :τ(eh(i,li))⇒ f(Bi) and M̂ [z1, . . . , zm] is in strict η-long form rel-
ative to z1 :τ(e1), . . . , zm :τ(em), X1 :f(B1), . . . , Xn :f(Bn)⇒ f(B). By Lemma 3.21,
there is a type decoration t

P̂ [z1,...,zl]
for

z1 : τ(e1), . . . , zl : τ(el)⇒ P̂ [z1, . . . , zl] : f(B)
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that is obtained by combining the type decoration for

z1 : τ(e1), . . . , zm : τ(em), X1 : f(B1), . . . , Xn : f(Bn)⇒ M̂ [z1, . . . , zm] : f(B)

and the type decoration for

zh(i,1) : τ(eh(i,1)), . . . , zh(i,li) : τ(eh(i,li))⇒ P̂i[zh(i,1), . . . , zh(i,li)] : f(Bi)

for i = 1, . . . , n, such that (P̂ [z1, . . . , zl], t
P̂ [z1,...,zl]

) is in strict η-long form.

Let t̃
P̂ [z1,...,zl]

be a principal type decoration for P̂ [z1, . . . , zl] with the associated

principal typing
z1 : δ1, . . . , zl : δl ⇒ γ.

By Lemma 3.13, t̃
P̂ [z1,...,zl]

splits into type decorations for

z1 : δ1, . . . , zm : δm, X1 : γ1, . . . , Xn : γn ⇒ M̂ [z1, . . . , zm] : γ (42)

and

zh(i,1) : δh(i,1), . . . , zh(i,li) : δh(i,li) ⇒ P̂i[zh(i,1), . . . , zh(i,li)] : γi (i = 1, . . . , n). (43)

By Lemma 3.22, we must have

〈δi〉 = 〈τ(ei)〉 for i = 1, . . . , l,

〈γ〉 = 〈f(B)〉,

〈γi〉 = 〈f(Bi)〉 for i = 1, . . . , n.

By (39), there is a type substitution σ such that

δiσ = 〈τ(ei)〉(~ui),

γσ = 〈f(B)〉(~s)

that leaves atomic types that do not appear in δ1, . . . , δl, γ unchanged. Then σ is a
type relabeling, and there are sequences ~s1, . . . , ~sn of atomic types such that

γiσ = 〈f(Bi)〉(~si) for i = 1, . . . , n.

Without loss of generality, we may assume that ~s1, . . . , ~sn are sequences of constants
from U . (Otherwise we may replace any constants not in U by constants in U .)

Applying σ to (42) and (43), we get
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⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [z1, . . . , zl] : 〈f(B)〉(~s), (44)

and

⊢ zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)]〈f(Bi)〉(~si) (45)

for i = 1, . . . , n.

By (45), the induction hypothesis applies to Pi, giving a Datalog derivation tree
Ti for

program(G ) ∪ { eh(i,j)(~uh(i,j)) | 1 ≤ j ≤ li } ⊢ Bi(~si) (46)

such that (eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))) lists the labels of the extensional nodes
of Ti from left to right.

By (44) and Remark 3.29,

B(~s) :− e1(~u1), . . . , em(~um), B1(~s1), . . . , Bn(~sn) (47)

is an instance of ρπ. Combining (46) and (47), we obtain a Datalog derivation tree
T for

program(G ) ∪ { ei(~ui) | 1 ≤ i ≤ l } ⊢ B(~s),

such that (e1(~u1), . . . , el(~ul)) lists the labels of the extensional nodes of T from left
to right.

(ii)⇒ (i). Induction on T . Assume that T is of the form

p(~s)

e1(~u1) · · · em(~um) T1 · · · Tn

and the root node of T is obtained by an application of an instance

B(~s) :− e1(~u1), . . . , em(~um), B1(~s1), . . . , Bn(~sn)

of some ρπ, where m ≤ l and

π = B(M) :− B1(X1), . . . , Bn(Xn), (48)
−−→
Con(M) = (e1, . . . , em). (49)
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Let li be the number of extensional nodes of Ti. Then l = m + l1 + · · ·+ ln, and for
i = 1, . . . , n, Ti is a derivation tree for

program(G ) ∪ {eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))} ⊢ Bi(~si),

where h(i, j) = m + l1 + · · · + li−1 + j, and (eh(i,1)(~uh(i,1)), . . . , eh(i,li)(~uh(i,li))) lists
the labels of the extensional nodes of Ti from left to right.

By Remark 3.29, we have

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um), X1 : 〈f(B1)〉(~s1), . . . , Xn : 〈f(Bn)〉(~sn)

⇒ M̂ [z1, . . . , zm] : 〈f(B)〉(~s). (50)

By induction hypothesis, for i = 1, . . . , n, there exists Pi ∈ Λ(Σ) such that

⊢G Bi(Pi), (51)
−−→
Con(Pi) = (eh(i,1), . . . , eh(i,li)), (52)

and

⊢ zh(i,1) : 〈τ(eh(i,1))〉(~uh(i,1)), . . . , zh(i,li) : 〈τ(eh(i,li))〉(~uh(i,li))

⇒ P̂i[zh(i,1), . . . , zh(i,li)] : 〈f(Bi)〉(~si). (53)

Let
P = M [X1 := P1, . . . , Xn := Pn].

Then by (48), (51), (49), and (52),

⊢G B(P ),
−−→
Con(P ) = (e1, . . . , em, eh(1,1), . . . , eh(1,l1), . . . , eh(n,1), . . . , eh(n,ln))

= (e1, . . . , el).

We have

P̂ [z1, . . . , zl] =

M̂ [z1, . . . , zm][X1 := P̂1[zh(1,1), . . . , zh(1,l1)], . . . , Xn := P̂n[zh(n,1), . . . , zh(n,ln)]].

By Lemma 3.12 applied to (50) and (53), we get

⊢ z1 : 〈τ(e1)〉(~u1), . . . , zm : 〈τ(em)〉(~um),
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zh(1,1) : 〈τ(eh(1,1))〉(~uh(1,1)), . . . , zh(1,l1) : 〈τ(eh(1,l1))〉(~uh(1,l1)),

...

zh(n,1) : 〈τ(eh(n,1))〉(~uh(n,1)), . . . , zh(n,ln) : 〈τ(eh(n,ln))〉(~uh(n,ln))

⇒ P̂ [z1, . . . , zl] : 〈f(B)〉(~s).

Hence P satisfies the required properties.

Example 3.32. Let G be the CFLG of Example 3.28. Let

P = (λu.u John)(λx.

(λx.

(λu.

(λuv.∃(λy.∧(uy)(vy)))

(λx.

(λx.unicorn x)

x)(λx.ux))

(λy.

(λyx.find y x)

y x))

x).

Then ⊢G S(P ). The derivation tree for S(P ) (in abbreviated notation) was shown

in Figure 5 in Section 2.2. We have
−−→
Con(P ) = (John, ∃, ∧, unicorn, find) and

P̂ [z1, z2, z3, z4, z5] = (λu.uz1)(λx.

(λx.

(λu.

(λuv.z2(λy.z3(uy)(vy)))

(λx.

(λx.z4x)

x)(λx.ux))

(λy.

(λyx.z5yx)

yx))

x).
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By one direction of Lemma 3.31, whenever we have

⊢ z1 : u1,1, z2 : (u2,3→ u2,2)→ u2,1,

z3 : u3,3→ u3,2→ u3,1, z4 : u4,2→ u4,1, z5 : u5,3→ u5,2→ u5,1

⇒ P̂ [z1, z2, z3, z4, z5] : s, (54)

we must have

program(G ) ∪ {John(u1,1), ∃(u2,1, u2,2, u2,3), ∧(u3,1, u3,2, u3,3),

unicorn(u4,1, u4,2), find(u5,1, u5,2, u5,3)} ⊢ S(s). (55)

The Datalog derivation tree for (55) will have the same shape as the one in Figure 6
in Section 2.2. Conversely, whenever (55) has a derivation tree of this shape, we
must have (54), by (the proof of) the other direction of Lemma 3.31

Let Σ = (A, C, τ) be a higher-order signature and U be some set of database
constants. We write DΣ,U for the database schema (C, U), where each d ∈ C has
arity |τ(d)|. Let D be a database over DΣ,U and α ∈ T (A). We define a set Λ(D, α)
of closed λ-terms over Σ as follows:

Λ(D, α) =
{

M ∈ Λ(Σ)

∣∣∣∣∣
FV(M) = ∅,

−−→
Con(M) = (d1, . . . , dn), {d1(~s1), . . . , dn(~sn)} ⊆ D,

⊢ z1 : 〈τ(d1)〉(~s1), . . . , zn : 〈τ(dn)〉(~sn)⇒ M̂ [z1, . . . , zn] : α

}
.

Example 3.33. Let Σ′ be the extension of the higher-order signature Σ in Ex-
ample 3.28 with an additional constant ¬ of type t→ t. Let U = {a, b, 0, 1}, and
consider the following database D over DΣ′,U :

man(1, a), man(0, b), unicorn(0, a), unicorn(1, b),

∧(1, 1, 1), ∧(0, 1, 0), ∧(0, 0, 1), ∧(0, 0, 0), ¬(0, 1), ¬(1, 0),

∃(1, 1, a), ∃(1, 1, b).

The set Λ(D, 1) contains, e.g.,

∧(∃(λx.man x))(∃(λy.unicorn y)),

∃(λx.∧(man x)(¬(unicorn x))),

but not, e.g.,
∃(λx.∧(man x)(unicorn x)).
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Lemma 3.34. Let M, M ′ ∈ Λ(Σ).

(i) If M ։β M ′, then M ∈ Λ(D, α) implies M ′ ∈ Λ(D, α).

(ii) If M ′ ։β M by non-erasing non-duplicating β-reduction, then M ∈ Λ(D, α)
implies M ′ ∈ Λ(D, α).

Proof. Let M ∈ Λ(D, α) and
−−→
Con(M) = (d1, . . . , dn). By the definition of Λ(D, α),

for some ~s1, . . . , ~sn such that {d1(~s1), . . . , dn(~sn)} ⊆ D,

⊢ z1 : 〈τ(d1)〉(~s1), . . . , z1 : 〈τ(dn)〉(~sn)⇒ M̂ [z1, . . . , zn] : α.

(i). Suppose M ։β M ′. Let m = |
−−→
Con(M ′)| and g : {1, . . . , m} → {1, . . . , n} be

the function such that the ith occurrence of a constant in M ′ is a descendant of the
g(i)th occurrence of a constant in M . Then

−−→
Con(M ′) = (dg(1), . . . , dg(m)) and

M̂ [z1, . . . , zn] ։β M̂ ′[zg(1), . . . , zg(m)].

By the Subject Reduction Theorem (Theorem 3.14),

⊢ { zg(i) : 〈τ(dg(i))〉(~sg(i)) | 1 ≤ i ≤ m } ⇒ M̂ ′[zg(1), . . . , zg(m)] : α,

and thus

⊢ y1 : 〈τ(dg(1))〉(~sg(1)), . . . , ym : 〈τ(dg(m))〉(~sg(m))⇒ M̂ ′[y1, . . . , ym] : α.

This shows M ′ ∈ Λ(D, α).
(ii). Suppose M ′ ։β M by non-erasing non-duplicating β-reduction. Then

|
−−→
Con(M ′)| = n and there is a permutation g of {1, . . . , n} such that the ith occur-
rence of a constant in M ′ is the ancestor of the g(i)th occurrence of a constant in

M . We have
−−→
Con(M ′) = (dg(1), . . . , dg(n)) and M̂ ′[zg(1), . . . , zg(n)] ։β M̂ [z1, . . . , zn]

by non-erasing non-duplicating β-reduction. By the Subject Expansion Theorem
(Theorem 3.15),

⊢ z1 : 〈τ(d1)〉(~s1), . . . , zn : 〈τ(dn)〉(~sn)⇒ M̂ ′[zg(1), . . . , zg(n)] : α.

Therefore, M ′ ∈ Λ(D, α).

The next lemma is an immediate consequence of Lemma 3.31:

Lemma 3.35. Let G = (N , Σ, f, P, S) be a CFLG. Let U be some set of database
constants, D be a database over DΣ,U , and ~s be a sequence of constants from U such
that |~s| = |f(S)|. The following are equivalent:
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{P ∈ Λ(Σ) | ⊢G S(P ) } ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅ ⇐⇒ program(G ) ∪D ⊢ S(~s)

⇓

L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅

Figure 12: A general property of program(G ).

(i) There exists some P ∈ Λ(D, 〈f(S)〉(~s)) such that ⊢G S(P ).

(ii) program(G ) ∪D ⊢ S(~s).

Lemma 3.36. Let G , U, D,~s be as in Lemma 3.35. If program(G )∪D ⊢ S(~s), then
L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

Proof. By Lemma 3.34, part (i) and Lemma 3.35.

See Figure 12. The converse of Lemma 3.36 does not hold in general, but we
shall see below some special cases where it does hold (Theorems 3.40, 3.65, and 4.3).

3.4 Databases determined by λ-terms

Let M ∈ Λ(Σ) be a closed λ-term in strict η-long form relative to γ such that
−−→
Con(M) = (d1, . . . , dm). Define

database(M) = { di(βi) | 1 ≤ i ≤ m },

tuple(M) = α

where
y1 : β1, . . . , ym : βm ⇒ M̂ [y1, . . . , ym] : α

is a principal typing of M̂ [y1, . . . , ym].33 Here, atomic types that occur in
β1, . . . , βm, α are regarded as database constants. Note that by Remark 3.23,
〈γ〉(tuple(M)) = α and Λ(database(M), 〈γ〉(tuple(M))) is well-defined. The fol-
lowing is obvious from the above definition:

Lemma 3.37. If M ∈ Λ(Σ) is a closed λ-term in strict η-long form relative to γ,
then M ∈ Λ(database(M), 〈γ〉(tuple(M))).

33When M is almost linear, the definition of (database(M), tuple(M)) here is equivalent to the
definition in terms of graph(M) given in Section 2.2.
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Note that if M is in strict η-long form relative to γ, then |M |β is in η-long form
relative to γ and belongs to Λ(database(M), 〈γ〉(tuple(M))) (Lemma 3.34). We
shall see below that in some special cases |M |β is the only η-long β-normal λ-term
in Λ(database(M), 〈γ〉(tuple(M))) (Lemmas 3.41 and 3.54).

Example 3.38. Consider the λ-term (8) from Sections 2.1–2.2:

M = ∃(λy.∧(unicorn y)(find y John)).

Using the principle typing

z1 : (4→2)→1, z2 : 3→5→2, z3 : 4→3, z4 : 4→6→5, z5 : 6⇒ z1(λy.z2(z3y)(z4yz5)) : 1

of M̂ [z1, z2, z3, z4, z5], we obtain

database(M) = {∃(1, 2, 4), ∧(2, 5, 3), unicorn(3, 4), find(5, 6, 4), John(6)},

tuple(M) = (1).

Lemma 3.54 below implies that M is the only λ-term in Λ(database(M), 1) that is
in η-long β-normal form relative to the type t.

3.5 From CFLGs to Datalog: The case of linear CFLGs

We first treat the special case of linear CFLGs because the reduction to Datalog as
well as the proof of its correctness can be made much simpler in this case than in
the more general case of almost linear CFLGs.

The crucial property is the following:

Lemma 3.39. Let Σ = (A, C, τ) be a higher-order signature, U be a set of database
constants, D be a database over DΣ,U , and α ∈ T (A). For every linear closed
λ-term M ∈ Λ(Σ), M ∈ Λ(D, α) if and only if |M |β ∈ Λ(D, α).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the β-reduction
M ։β |M |β must be non-erasing and non-duplicating, the “if” direction follows by
part (ii) of the same lemma.

Theorem 3.40. Let G = (N , Σ, f, P, S) be a linear CFLG. Let U be some set of
database constants, D be a database over DΣ,U , and ~s be a sequence of constants
from U such that |~s| = |f(S)|. The following are equivalent:

(i) L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

(ii) program(G ) ∪D ⊢ S(~s).
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Proof. In view of Lemmas 3.35 and 3.36, it suffices to show that ⊢G S(P ) and
|P |β ∈ Λ(D, 〈f(S)〉(~s)) imply P ∈ Λ(D, 〈f(S)〉(~s)). But this is immediate from
Lemma 3.39, since ⊢G S(P ) implies that P is linear.

Lemma 3.41. If M is an affine λ-term in strict η-long form relative to γ, then
|M |β is the only λ-term in Λ(database(M), 〈γ〉(tuple(M))) that is in η-long β-
normal form relative to γ.

Proof. Let
−−→
Con(M) = (d1, . . . , dm), and let

y1 : β1, . . . , ym : βm ⇒ α (56)

be a principal typing of M̂ [y1, . . . , ym]. Then database(M) = { di(βi) | 1 ≤ i ≤ m }.
Note that M̂ [y1, . . . , ym] is a pure affine λ-term. By Theorem 3.19, (56) is a balanced
typing.

We know from Lemmas 3.17, 3.34 and 3.37 that |M |β is in η-long form rel-
ative to γ and that |M |β ∈ Λ(database(M), 〈γ〉(tuple(M))). Suppose M ′ ∈

Λ(database(M), 〈γ〉(tuple(M))) and |
−−→
Con(M ′)| = n. Then there is a function

g : {1, . . . , n} → {1, . . . , m} such that
−−→
Con(M ′) = (dg(1), . . . , dg(n)) and

⊢ z1 : βg(1), . . . , zn : βg(n) ⇒ M̂ ′[z1, . . . , zn] : α.

Substituting yg(i) for zi, we get

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ M̂ ′[yg(1), . . . , yg(n)] : α.

By the Coherence Theorem (Theorem 3.18), M̂ ′[yg(1), . . . , yg(n)] =βη M̂ [y1, . . . , yn],
and so M ′ =βη M . It follows that if M ′ is in η-long β-normal form relative to γ,
then M ′ = |M |β.

Theorem 3.42. Let G = (N , Σ, f, P, S) be a linear CFLG. Suppose that N ∈
Λ(Σ) is a linear λ-term in η-long β-normal form relative to f(S). Then the following
are equivalent:

(i) N ∈ L(G ).

(ii) program(G ) ∪ database(N) ⊢ S(tuple(N)).

Proof. Immediate from Lemma 3.41 and Theorem 3.40.

Let us analyze the computational complexity of this reduction.
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Lemma 3.43. Given a linear λ-term N ∈ Λ(Σ) in η-long β-normal form relative
to f(S), the pair (database(N), S(tuple(N))) can be computed by a deterministic
log-space-bounded Turing machine.

Proof (sketch). We sketch how a deterministic log-space-bounded Tur-
ing machine M that has multiple heads on the input tape can compute
(database(N), S(tuple(N)), relying on the fact that an extra head can be
simulated by a log-space-bounded work tape. We assume that the input λ-term N
is given in the form of a λ-expression; the λ symbol, parentheses, and constants in
N are represented by individual symbols of the input alphabet of M , and variables
are represented by strings of the form vl, where v is a special symbol and l is a
natural number written in binary (i.e., a string over {0, 1}).

Let
−−→
Con(N) = (c1, . . . , cn). The output of M will be of the form

c1(k1,1, . . . , k1,r1), . . . , cn(kn,1, . . . , kn,rn), S(k0,1, . . . , k0,r0),

where ri = |τ(ci)| for i = 1, . . . , n and r0 = |f(S)|, and each ki,j is a natural number
in binary. Let vi,j be the jth leaf (counting from the right) of 〈τ(ci)〉 if 1 ≤ i ≤ n
and 1 ≤ j ≤ ri, and let v0,j be the jth leaf (from right) of 〈f(S)〉 for 1 ≤ j ≤ r0.
If either 1 ≤ i ≤ n and pol(vi,j) = 1 or i = 0 and pol(vi,j) = −1, then for some
p ≤

∑ri
i=0 ri, the pair (i, vi,j) represents the pth negative atomic type occurrence in

z1 : τ(c1), . . . , zn : τ(cn)⇒ N̂ [z1, . . . , zn] : f(S). (57)

In this case, ki,j will be the binary representation of p (which can be computed in
logarithmic space). If either 1 ≤ i ≤ n and pol(vi,j) = −1 or i = 0 and pol(vi,j) = 1,
then the pair (i, vi,j) represents a positive atomic type occurrence in (57). In this
case, ki,j will be ki′,j′ , where (i′, j′) is the unique pair such that (i, vi,j) is linked to

(i′, vi′,j′) in (N̂ [z1, . . . , zn], t), where t is the type decoration that is determined by
the typing (57). (Uniqueness is guaranteed by the linearity of N .)

For each pair (i, j) for which (i, vi,j) is positive, the machine M computes
the corresponding pair (i′, j′) by starting from (i, vi,j , ↑) and following edges of
G

(N̂ [z1,...,zn],t)
. The machine does this without explicitly computing the type dec-

oration t. In order to represent a vertex (w, v, d) of G
(N̂ [z1,...,zn],t)

, the machine M

can place one of its heads at the beginning of the subexpression of N occurring at
node w, and store (v, d) in its finite control. This is possible because the fact that
N̂ [z1, . . . , zn] is β-normal implies that for all nodes w of N̂ , t(w) is a subtype of
some type in {τ(c1), . . . , τ(cn), f(S)} ⊆ { τ(c) | c ∈ C } ∪ {f(S)} by the subformula
property, and there are only finitely many possible values of v. Traversal of edges
in G

(N̂ [z1,...,zn],t)
, which is deterministic because N̂ [z1, . . . , zn] is linear, can easily
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be done using an extra head. For example, suppose M is in a configuration rep-
resenting (w, 1v, ↑), where w is a unary node (λ-abstract) and t(w) = γ → δ. The
machine’s head is at the first symbol of a string of the form (λvl.P ). In order to
switch to a configuration representing (w′, v, ↓), where b(w′) = w, M can use an
extra head to locate the occurrence of vl bound by the lambda. For another ex-
ample, suppose M is in a configuration representing (w1, v, ↓), where w is a binary
node (application) and t(w0) = γ→ δ. The machine’s head is at the first symbol of
Q in a string of the form (PQ). In order to switch to a configuration representing
(w0, 1v, ↑), the machine can move the head to the first symbol of P by counting in
binary unmatched closing parentheses encountered along the way, which requires no
more than logarithmic space.

Thus, for every linear CFLG G , the set L(G ) is log-space-reducible to { (D, q) |
program(G ) ∪D ⊢ q }. Since for every Datalog program P, the language { (D, q) |
P∪D ⊢ q } is in P, it immediately follows that L(G ) is in P for every linear CFLG G ,
a fact first proved by Salvati [62]. A more careful analysis gives a tight complexity
upper bound:

Theorem 3.44. For every linear CFLG G , L(G ) belongs to LOGCFL.

Proof. Let G = (N , Σ, f, P, S), and let g(n) be the polynomial associated with
program(G ) by Lemma 3.2. We show that whenever N ∈ L(G ), there is a derivation

tree for program(G ) ∪ database(N) ⊢ S(tuple(N)) of size ≤ g(|
−−→
Con(N)|). The

proof of this claim is by a more careful use of Lemma 3.31 than in the proof of
Theorem 3.42.

Let N ∈ Λ(Σ) be a linear λ-term in η-long β-normal form relative to f(S).

Assume N ∈ L(G ). Let
−−→
Con(N) = (d1, . . . , dm) and let

y1 : β1, . . . , ym : βm ⇒ α

be a principal typing of N̂ [y1, . . . , ym]. Then

database(N) = { di(βi) | 1 ≤ i ≤ m },

tuple(N) = α.

Since G is linear, there exists some linear λ-term P ∈ Λ(Σ) such that ⊢G S(P )
and P ։β N . Since the β-reduction from P to N must be non-erasing and non-

duplicating, |
−−→
Con(P )| = m, and P̂ [yh(1), . . . , yh(m)] ։β N̂ [y1, . . . , ym] for some per-

mutation h on {1, . . . , m}. This means

⊢ y1 : 〈τ(d1)〉(β1), . . . , ym : 〈τ(dm)〉(βm)⇒ P̂ [yh(1), . . . , yh(m)] : 〈f(S)〉(α).
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By Lemma 3.31, there is a derivation tree for program(G ) ∪ database(N) ⊢ S(α)
with m extensional nodes. By Lemma 3.2, it follows that there is a derivation
tree for program(G ) ∪ database(N) ⊢ S(α) of size at most g(m). Therefore,

(database(N), S(tuple(N)), 1
|
−−→
Con(N)|) belongs to the set

{ (D, q, 1
n) | there is a derivation tree for program(G ) ∪D ⊢ q of size ≤ g(n) }.

(58)
Now assume N 6∈ L(G ). Then by Theorem 3.42, it is not

the case that program(G ) ∪ database(N) ⊢ S(tuple(N)), and

(database(N), S(tuple(N)), 1
|
−−→
Con(N)|) does not belong to (58).

By Lemmas 3.1 and 3.43, we conclude that L(G ) is log-space reducible to a
problem in LOGCFL. Since the class of functions computable in logarithmic space
is closed under composition, L(G ) itself is in LOGCFL.

3.6 Almost affine λ-terms

A typed λ-term (M, t), where M = (T , f, b) ∈ Λ(Σ), is almost affine if for every
w, w′ ∈ T such that w 6= w′, f(w) = f(w′) ∈ V or b(w) = b(w′) implies that
t(w) = t(w′) is an atomic type. An untyped λ-term M is almost affine relative to
Γ⇒ α if there is a type decoration t for Γ⇒M : α such that (M, t) is almost affine.
We say that a typable λ-term is almost affine if it is almost affine relative to some
typing, or equivalently, relative to its principal typing.

If a typed λ-term is almost affine, then so is its η-long form. The class of almost
affine untyped λ-terms is closed under η-reduction, but not under β-reduction. For
example, a pure λ-term M = (λx.yxx)(zw) is almost affine relative to y : o, z : o→
o, w : o⇒ o, but |M |β = y(zw)(zw) is not (relative to any typing).

We say that a λ-term M ∈ Λ(Σ) is almost linear if M is an almost affine λI-term.
A sequent is negatively non-duplicated if no atomic type has more than one

negative occurrence in it. The following result generalizes the Coherence Theorem
(Theorem 3.18):

Theorem 3.45 (Aoto and Ono [3]). All inhabitants of a negatively non-duplicated
sequent are βη-equal.34

The following is a slight generalization of a result by Aoto [2]:

Theorem 3.46. If Γ⇒ α is a principal typing of an almost affine pure λ-term M ,
then Γ⇒ α is negatively non-duplicated.

34This theorem can be stated in the same style as the Coherence Theorem: If Γ ∪ Γ′ ⇒ α is a
negatively non-duplicated sequent and both ⊢ Γ ⇒ M : α and ⊢ Γ′ ⇒ M ′ : α hold, then M =βη M ′.
See [46].
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Proof. Let Γ = x1 : α1, . . . , xn : αn and let t be a principal type decoration for
M associated with the typing Γ ⇒ α. Suppose that (i, v), (i′, v′) are two distinct
negative occurrences of the same atomic type p in Γ⇒ α. By Lemma 3.25, (i, v) is
connected to (i′, v′) in (M, t). This means that G(M,t) contains an undirected path
from (i, v, d) to (i′, v′, d′) for some d, d′ ∈ {↑, ↓}. Since both (i, v) and (i′, v′) are
negative, by the property of G(M,t) mentioned above immediately after its definition,
we must have d = d′. We may assume d = d′ = ↑. Since there cannot be a directed
path from (i, v, ↑) to (i′, v′, ↑), this implies that there are three nodes ν1, ν2, ν3 of
G(M,t) such that

• ν1 6= ν3,

• there is a directed path from (i, v, ↑) to ν1,

• (ν1, ν2) and (ν3, ν2) are edges of G(M,t), and

• there is an undirected path from (i′, v′, ↑) to ν3.

The first and third conditions can obtain only in two cases:

• ν2 = (j, u, ↓) for some j ∈ {1, . . . , n} and ν1 = (w1, u, ↑), ν3 = (w3, u, ↑), where
f(w1) = f(w3) = xj .

• ν2 = (w2, 1u, ↓), ν1 = (w1, u, ↑), ν3 = (w3, u, ↑), and b(w1) = b(w3) = w2.

In both cases, since (M, t) is almost affine, it must be the case that t(w1) = t(w3) = p
and u = ǫ. However, since pol(i, v) = −1 and pol(ǫ) = 1, there cannot be a directed
path from (i, v, ↑) to ν1 = (w1, ǫ, ↑), a contradiction.

Theorems 3.45 and 3.46 show that a principal typing of an almost affine pure
λ-term uniquely characterizes it up to βη-equality.

Although we do not need it in establishing the results to follow, we note that
the converse of Theorem 3.46 also holds [46]:

Theorem 3.47. Suppose Γ ⇒ α is a negatively non-duplicated sequent. For every
pure λ-term M such that ⊢ Γ⇒M :α, there exists a λ-term M ′ such that M ′ =βη M
and M ′ is almost affine relative to Γ⇒ α.

Let M ∈ Λ(Σ) be a typable λ-term, and let t be a principal typing for M . A
β-reduction step M

w
→β M ′ is almost non-duplicating if either it is non-duplicating

or subtype(t(w0), 1) = t(w1) is atomic. A β-reduction M ։β M ′ is almost non-
duplicating if it consists entirely of almost non-duplicating β-reduction steps.
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Example 3.48. Let M = (λx.(λz.yzz)(xz))(λz.uz). Then

M
ǫ
→β (λz.yzz)((λz.uz)z)
ǫ
→β y((λz.uz)z)((λz.uz)z)

is almost non-duplicating, whereas

M
00
→β (λx.y(xz)(xz))(λz.uz)
ǫ
→β y((λz.uz)z)((λz.uz)z)

is not, because the second step duplicates the subterm (λz.uz), whose type must be
non-atomic.

A β-reduction M0
w1→β M1

w2→β · · ·
wn→β Mn is called leftmost if for i = 1, . . . , n,

wi is the leftmost β-redex of Mi−1, i.e., wi is the first β-redex of Mi−1 under the
lexicographic ordering ≺ of the nodes of Mi−1.

Lemma 3.49. If M ∈ Λ(Σ) is almost affine, then the leftmost β-reduction from M
to |M |β is almost non-duplicating.

Proof. Let M = M0
w1→β M1

w2→β · · ·
wn→β Mn = |M |β by leftmost β-reduction, and let

Mi = (Ti, fi, bi). We show that each step of this reduction is almost non-duplicating.
Let t be a principal type decoration of M , and for i = 0, . . . , n, let ti be the type
decoration for Mi such that

(M, t) = (M0, t0)
w1→β (M1, t1)

w2→β · · ·
wn→β (Mn, tn).

To prove the lemma, it suffices to show that for every i and every unary node

w ∈ T
(1)

i , either

(i) w is to the left of any β-redex in Mi,

(ii) subtype(ti(w), 1) is an atomic type, or

(iii) there is at most one w′ ∈ Ti such that bi(w
′) = w.

The condition holds of (M0, t0) by the assumption that M is an almost affine λ-term.
Assume that (Mi, ti) satisfies the condition, and let v be a unary node of Ti+1. Then
v is a descendant of a unary node w of Ti distinct from wi0.

Suppose that (i) holds of w. Then w is to the left of wi. Clearly, v must be to
the left of any β-redex in Mi+1, satisfying (i).
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Suppose that (ii) holds of w. Since ti+1(v) = ti(w), it holds that
subtype(ti+1(v), 1) is an atomic type. So v satisfies (ii).

Suppose that (iii) holds of w. Assume that v does not satisfy (iii), i.e., there are
v′, v′′ ∈ Ti+1 such that v′ 6= v′′ and bi+1(v′) = bi+1(v′′) = v. Then v′ and v′′ must be
descendants of the unique node w′ of Ti such that bi(w

′) = w. For this to hold, it
must be the case that w < wi and wi1 ≤ w′. Then v = w. Since wi is the leftmost
β-redex of Mi, there is no β-redex in Mi to the left of w, and it follows that there
is no β-redex in Mi+1 to the left of v.

We now define a certain equivalence relation between nodes in a λ-term. Let
M = (T , f, b), and let w, w′ ∈ T . We say that w and w′ are congruent in M and
write w ∼=M w′, if the following conditions hold:

• { v | wv ∈ T } = { v | w′v ∈ T },

• for all v such that wv ∈ T (0), either

– wv, w′v ∈ dom(f) and f(wv) = f(w′v),

– wv, w′v ∈ dom(b) and b(wv) = b(w′v), or

– wv, w′v ∈ dom(b) and b(wv) = wu and b(w′v) = w′u for some u < v.

It is clear that if w ∼=M w′, then for every writing ℓ of M , the λ-expressions subM,ℓ(w)
and subM,ℓ(w

′) represent the same λ-term.

The following is clear from the definition of the ancestor-descendant relation for
one-step β-reduction.

Lemma 3.50. Let M
w
→β M ′ be a duplicating β-reduction step. If (M, w1)

w
◮

(M ′, v1) and (M, w1)
w
◮ (M ′, v2), then v1

∼=M ′ v2.

Let M = (TM , fM , bM ) be a λ-term. Suppose that v1, . . . , vk are nodes in TM

such that v1
∼=M . . . ∼=M vk. Let w be a node in TM such that for all i, w < vi, and

bM (viu) < w holds whenever bM (viu) < vi. It is clear that there must be such a w.
Define expand(M, w, {v1, . . . , vk}) = (T , f, b) as follows:

T = { v ∈ TM | w 6< v } ∪ {w0} ∪ {w00v | wv ∈ TM ,¬∃i(vi < wv) } ∪
{w1u | v1u ∈ TM },

f = { (v, fM (v)) | w 6< v, v ∈ dom(fM ) } ∪
{ (w00v, fM (wv)) | wv ∈ dom(fM ),¬∃i(vi < wv) } ∪
{ (w1u, fM (v1u)) | v1u ∈ dom(fM ) }
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b = { (v, bM (v)) | w 6< v, v ∈ dom(bM ) } ∪
{ (w00v, bM (wv)) | bM (wv) < w,¬∃i(vi ≤ wv) } ∪
{ (w00v, w00u) | bM (wv) = wu,¬∃i(vi ≤ wv) } ∪
{ (w00vi, w0) | 1 ≤ i ≤ k } ∪
{ (w1u, bM (v1u)) | bM (v1u) < w } ∪ { (w1u, w1s) | bM (v1u) = v1s }.

It is clear that expand(M, w, {v1, . . . , vk}) is a λ-term, and we have

expand(M, w, {v1, . . . , vk})
w
→β M and (expand(M, w, {v1, . . . , vk}), w1)

w
◮ (M, vi)

for i = 1, . . . , k.

Lemma 3.51. Let M ∈ Λ(Σ), where Σ = (A, C, τ), and let t be a type decoration
of M . Suppose that w, w′ are two nodes of M such that w ∼=M w′. If t(w) is an
atomic type, then t(w) = t(w′).

Proof. Let ℓ be a writing of M and let N = subM,ℓ(w) = subM,ℓ(w
′). Let

Γw = { (x, t(wv)) | x = f(wv) ∈ V } ∪ { (ℓ(b(wv)), t(wv)) | b(wv) ≤ w }

Γw′ = { (x, t(w′v)) | x = f(w′v) ∈ V } ∪ { (ℓ(b(w′v)), t(w′v)) | b(w′v) ≤ w′ }.

Then we have

⊢Σ Γw ⇒ N : t(w),

⊢Σ Γw′ ⇒ N : t(w′).

Since w ∼=M w′, we must have Γw = Γw′ . By the Subject Reduction Theorem
(Theorem 3.14),

⊢Σ Γ′ ⇒ |N |β : t(w),

⊢Σ Γ′ ⇒ |N |β : t(w′)

where Γ′ = Γw ↾ FV(|N |β). By assumption, t(w) is some atomic p, so |N |β must be
of the form

yP1 . . . Pl

for some variable y, or else of the form

cP1 . . . Pl

for some constant c. In the former case, y : γ1 → · · · → γl → p is in Γ′, and in the
latter case, τ(c) = γ1 → · · · → γl → p for some types γ1, . . . , γl. In either case, we
must have t(w′) = p.
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The following lemma generalizes the Subject Expansion Theorem (Theo-
rem 3.15):

Lemma 3.52. Let M, M ′ ∈ Λ(Σ) be typable λ-terms. Suppose M ։β M ′ by non-
erasing, almost non-duplicating β-reduction. If ⊢Σ Γ⇒M ′ : α, then ⊢Σ Γ⇒M : α.

Proof. Clearly, it suffices to consider the case where the β-reduction consists of just
one step and Γ⇒ α is a principal typing of M ′. Let M = (T , f, b), M ′ = (T ′, f ′, b′),
and M

w
→β M ′. Let t be a principal type decoration of M , t′ be the type decoration

of M ′ induced by t (i.e., (M, t)
w
→β (M ′, t′)), and t̃ be a principal type decoration

of M ′ (with the associated typing Γ ⇒ α). If the β-reduction step M
w
→β M ′ is

non-erasing and non-duplicating, then ⊢Σ Γ ⇒ M : α by the Subject Expansion
Theorem. So suppose that this β-reduction step is duplicating. Let

{ v | b(w00v) = w0 } = {v1, . . . , vk},

where k ≥ 2. Since the β-reduction step is almost non-duplicating, we have t(w1) =
p for some atomic type p. For each i ∈ {1, . . . , k}, we have

(M, w1)
w
◮ (M ′, wvi)

and t′(wvi) = p. Since t̃ is a principal type decoration of M ′, there is a type
substitution σ such that t′ = σ ◦ t̃. It follows that for each i = 1, . . . , k, there is an
atomic type qi such that t̃(wvi) = qi. By Lemma 3.50, we have

wv1
∼=M ′ . . . ∼=M ′ wvk,

and by Lemma 3.51, it follows that

q1 = · · · = qk.

Define a function t̃1 : T → T (A) as follows:

t̃1(v) =





t̃(v) if w 6≤ v,

t̃(w) if v = w,

q1→ t̃(w) if v = w0,

t̃(wu) if v = w00u,

t̃(wv1u) if v = w1u.

It is clear that t̃1 is a type decoration of M . Although (M, t̃1)
w
→β (M ′, t̃) does not

necessarily hold, it is easy to see that t̃1 is a type decoration for Γ⇒M : α.
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Lemma 3.53. If M is an almost linear λ-term, M and |M |β have the same prin-
cipal typing.

Proof. Since M is almost affine, by Lemma 3.49, the leftmost β-reduction from M to
|M |β is almost non-duplicating. Since M is a λI-term, this β-reduction must also be
non-erasing. By the Subject Reduction Theorem (Theorem 3.14) and Lemma 3.52,
any typing of M is a typing of |M |β and vice versa.

3.7 From CFLGs to Datalog: The case of almost linear CFLGs

Given Aoto and Ono’s [3] generalization of the Coherence Theorem (Theorem 3.45),
we easily obtain a generalization of Lemma 3.41 to almost affine λ-terms.

Lemma 3.54. Let M be an almost affine λ-term in strict η-long form relative to γ.
Then |M |β is the only λ-term in Λ(database(M), 〈γ〉(tuple(M))) that is in η-long
β-normal form relative to γ.

Proof. The proof parallels that of Lemma 3.41. Let
−−→
Con(M) = (d1, . . . , dm), and let

y1 : β1, . . . , ym : βm ⇒ α (59)

be a principal typing of M̂ [y1, . . . , ym]. Then database(M) = { di(βi) | 1 ≤ i ≤ m }.
Note that M̂ [y1, . . . , ym] is a pure almost affine λ-term in strict η-long form. By
Theorem 3.46, (59) is negatively non-duplicated.

We know from Lemmas 3.17, 3.34, and 3.37 that |M |β is in η-long β-normal
form relative to γ and that |M |β ∈ Λ(database(M), 〈γ〉(tuple(M))). Suppose N ∈

Λ(database(M), 〈γ〉(tuple(M))) and |
−−→
Con(N)| = n. Then there is a function g :

{1, . . . , n} → {1, . . . , m} such that
−−→
Con(N) = (dg(1), . . . , dg(n)) and

⊢ z1 : βg(1), . . . , zn : βg(n) ⇒ N̂ [z1, . . . , zn] : α.

Substituting yg(i) for zi, we get

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ N̂ [yg(1), . . . , yg(n)] : α.

By Theorem 3.45, N̂ [yg(1), . . . , yg(n)] =βη M̂ [y1, . . . , yn], and so N =βη M . It follows
that if N is in η-long β-normal form relative to γ, then N = |M |β .

A CFLG G = (N , Σ, f, P, S) is almost linear if for every π ∈P, the λ-term on
the left-hand side of π is almost linear. An example of an almost linear CFLG is the
grammar in Example 3.28. Almost linear CFLGs can encode IO context-free tree
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grammars [21] in a straightforward way, similarly to de Groote and Pogodalla’s [19]
encoding of linear context-free tree grammars.35

Lemma 3.39 and Theorem 3.40 do not generalize to the almost linear case, and
there is no simple analogue of Theorem 3.42 for almost linear CFLGs. The reason
is that Λ(D, α) need not be closed under the converse of non-erasing almost non-
duplicating β-reduction (in contrast to part (ii) of Lemma 3.34), despite the fact
that the Subject Expansion Theorem generalizes to such β-reduction (Lemma 3.52).
This is so even when D = database(N) and α = 〈γ〉(tuple(N)) for an almost linear
λ-term N ∈ Λ(Σ) in η-long β-normal form relative to γ.

Example 3.55. Consider the λ-term (19) from Section 2.2:

N = ∃(λy.∧(unicorn y)(∧(find y John)(catch y John))),

where the types of the constants ∃, ∧, unicorn, find, John, catch are as follows:

∃ : (e→ t)→ t,

∧ : t→ t→ t,

unicorn : e→ t,

find : e→ e→ t,

John : e,

catch : e→ e→ t.

We have
−−→
Con(N) = (∃, ∧, unicorn, ∧, find, John, catch, John). A principal typ-

ing of
N̂ [z1, z2, z3, z4, z5, z6, z7, z8] = z1(λy.z2(z3y)(z4(z5yz6)(z7yz8)))

is

z1:(4→2)→1, z2:3→5→2, z3:4→3, z4:6→8→5, z5:4→7→6, z6:7, z7:4→9→8, z8:9⇒ 1,

which gives rise to

database(N) = {∃(1, 2, 4), ∧(2, 5, 3), unicorn(3, 4), ∧(5, 8, 6), find(6, 7, 4), John(7),
catch(8, 9, 4), John(9)},

35With respect to string languages, it is easy to see that almost linear CFLGs generating λ-terms
representing strings are no more powerful than linear CFLGs (see footnote 41). What this means is
that encodings of “non-linear” grammars like IO macro grammars [24] and parallel multiple context-
free grammars [66] in terms of CFLGs cannot be almost linear. However, our reduction to Datalog
applies to these cases indirectly if we take almost linear CFLGs encoding tree analogues of these
grammars (i.e., IO context-free tree grammars and what one might call “parallel multiple regular
tree grammars”) and use regular sets of trees as input. See Section 4.2 below.
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tuple(N) = (1).

Now consider the λ-term (25):

N◦ = ∃(λy.∧(unicorn y)((λx.∧(find y x)(catch y x)) John)).

Although N◦ ։β N by non-erasing almost non-duplicating β-reduction, it is easy
to see that N◦ 6∈ Λ(database(N), 1). This does not contradict Lemma 3.52, because

N̂◦[y1, y2, y3, y4, y5, y6, y7] 6։β N̂ [z1, z2, z3, z4, z5, z6, z7, z8],

no matter how one picks the variables y1, y2, y3, y4, y5, y6, y7.

Let G = (N , Σ, f, P, S) be an almost linear CFLG, and suppose that N ∈
Λ(Σ) is in η-long β-normal form relative to f(S). In order to find a database D
and a tuple ~s such that N ∈ L(G ) if and only if program(G ) ∪ D ⊢ S(~s), what
we do is to β-expand N to a ‘most compact’ almost linear λ-term N◦ such that
N◦ ։β N in the sense that for any almost linear P ∈ Λ(Σ), if P ։β N and
two occurrences of the same constant in N have a common ancestor in P , then
they have a common ancestor in N◦. Thus, for every constant c ∈ C, N◦ contains
the fewest occurrences of c among all almost linear λ-terms that β-reduce to N .
We have P ∈ Λ(database(N◦), tuple(N◦)) if and only if P ։β N for all almost
linear P ∈ Λ(Σ) in η-long form,36 and the desired equivalence of N ∈ L(G ) and
program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)) follows. We show that such N◦ can be
computed efficiently.

Let us call a node v of a λ-term M = (T , f, b) a pivot if (i) v ∈ T (0) ∪ T (2), and
(ii) v = v′0 implies v′ ∈ T (1). A pivot v is duplicated if v 6∈ dom(b) and there is
another pivot v′ ∈ T such that v ∼=M v′. If some type decoration of M assigns a
node v an atomic type, then v must be a pivot. If M is in η-long form and v is a
pivot of M , then the principal type decoration of M assigns v an atomic type.

Algorithm 1.

1: procedure Collapse(M)
2: M◦ ←M
3: while there is a duplicated pivot in M◦ do

4: Let V be the set of duplicated pivots of maximal height in M◦

5: Let v1 be the leftmost (i.e., lexicographically first) node in V
6: Let {v2, . . . , vk} = { v | v is a pivot, v 6= v1, and v1

∼=M◦ v }
7: Let w be the pivot of minimal height such that w < vi for i = 1, . . . , k

36This corresponds to the special property (28) mentioned in Section 2.3.
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8: M◦ ← expand(M◦, w, {v1, . . . , vk})
9: end while

10: return M◦

11: end procedure

It is clear that the node w picked in line 7 is such that
expand(M◦, w, {v1, . . . , vk}) in line 8 is defined.

Lemma 3.56. Let M be a typable λ-term in η-long form, and consider the execution
of Algorithm 1 on input M . If wi is the node w that is picked in line 7 during the ith
iteration of the while loop, then the following conditions hold after the ith iteration
of the while loop.

(i) M◦ is a typable λ-term in η-long form.

(ii) M◦ ։β M by non-erasing, almost non-duplicating β-reduction.

(iii) If u1 and u2 are pivots of M such that u1
∼=M u2 and (M◦, u′

1)
wi,...,w1

◮ (M, u1)

and (M◦, u′
2)

wi,...,w1

◮ (M, u2), then u′
1 and u′

2 are also pivots and u′
1
∼=Mi

u′
2.

Proof. Let M0 = M , and let Mi be the value of M◦ after the ith iteration of the
while loop. We show that the conditions (i), (ii), and (iii) hold by induction on i,
on the understanding that u′

1 = u1 and u′
2 = u2 when i = 0.

The three conditions clearly hold when i = 0. Assume that the three conditions
hold of Mi and let v1, v2, . . . , vk be the nodes that the algorithm picks in lines 5–6
during the (i + 1)st iteration of the while loop. Since Mi is typable and in η-long
form, the principal type decoration ti of Mi assigns v1 an atomic type p, and by
Lemma 3.51, ti(v2) = · · · = ti(vk) = p. As in the proof of Lemma 3.52, this allows
us to define a type decoration for Mi+1 = expand(Mi, wi+1, {v1, . . . , vk}) that assigns

p to the node wi+11. It follows that the β-reduction step Mi+1
wi+1
→ β Mi is almost

non-duplicating. It is also easy to see that Mi+1 is in η-long form. So (i) and (ii)
hold of Mi+1. To see that (iii) holds of Mi+1, let s1 and s2 be pivots of Mi such

that s1
∼=Mi

s2, and let s′
1 and s′

2 be the nodes such that (Mi+1, s′
1)

wi+1

◮ (Mi, s1)

and (Mi+1, s′
2)

wi+1

◮ (Mi, s2). It is easy to see that s′
1 and s′

2 are also pivots, so it
suffices to show s′

1
∼=Mi+1 s′

2. If s1 = s2, then clearly s′
1 = s′

2. If s1 6= s2, since v1

is a duplicated pivot of maximal height in Mi and v1, v2, . . . , vk are all of the same
height, it cannot be the case that s1 < vi or s2 < vi for any i. This ensures that

{ s | s1s is a node of Mi } = { s | s′
1s is a node of Mi+1 }, (Mi+1, s′

1s)
wi+1

◮ (Mi, s1s),
and likewise for s2 and s′

2. By Lemma 3.4, it is easy to check that the remaining
conditions for s′

1
∼=Mi+1 s′

2 are satisfied.
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Lemma 3.57. Algorithm 1 always terminates.

Proof. One can prove by induction that the following condition holds at each stage
of the algorithm: every pivot v in M◦ = (TM◦ , fM◦ , bM◦) that is not in dom(bM◦) is
either an ancestor of a pivot in M or else a β-redex such that v00 and v1 are pivots
not in dom(bM◦). It follows that every pivot in M◦ that is not in dom(bM◦) contains
an ancestor of a node in M , and the number of nodes in M◦ that are ancestors of
nodes in M strictly decreases at each iteration of the while loop.

We now prove two lemmas (Lemmas 3.60 and 3.61) needed to show that
Collapse(M) is more compact than any almost affine λ-term that β-reduces to
M . These lemmas require us to introduce two new binary relations on nodes. The
following lemma is needed to prove the first of these lemmas:

Lemma 3.58. Let M = (T , f, b) ∈ Λ(Σ), and v, v′ ∈ T be two nodes such that
v ∼=M v′. Suppose M = M0

w1→β M1
w2→β · · ·

wn→β Mn = |M |β. Let v0 = v, v′
0 = v′,

and for 1 ≤ i ≤ n, let vi and v′
i be nodes of Mi that satisfy one of the following

conditions:

(i) (Mi−1, vi−1)
wi

◮k (Mi, vi) and (Mi−1, v′
i−1)

wi

◮k′ (Mi, v′
i), where k = k′ if both

wi1 ≤ vi−1 and wi1 ≤ v′
i−1 hold.

(ii) vi−1 = vi = wi and (Mi−1, v′
i−1)

wi

◮ (Mi, v′
i).

(iii) (Mi−1, vi−1)
wi

◮ (Mi, vi) and v′
i−1 = v′

i = wi.

Then vn
∼=|M |β v′

n. Moreover, (M, vu)
w1,...,wn

◮ (|M |β, vns) implies (M, v′u)
w1,...,wn

◮

(|M |β, v′
ns).

Proof. Let Mi = (Ti, fi, bi) for i = 0, 1, . . . , n. For i = 1, . . . , n, define ŵi by:

ŵi =





v′
ir if wi = vir,

vir if wi = v′
ir,

wi if vi 6≤ wi and v′
i 6≤ wi.

Then it is not hard to see that there are λ-terms M̂i = (T̂i, f̂i, b̂i) for i = 0, 1, . . . , n
such that

vi, v′
i ∈ T̂i,

{u | u ∈ Ti, vi 6< u, v′
i 6< u } = {u | u ∈ T̂i, vi 6< u, v′

i 6< u },
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{u | viu ∈ Ti } = {u | v′
iu ∈ T̂i },

{u | v′
iu ∈ Ti } = {u | viu ∈ T̂i },

and

M = M̂0
ŵ1→β M̂1

ŵ2→β · · ·
ŵn→β M̂n = |M |β.

Moreover, we can check that the following conditions hold for i = 0, 1, . . . , n by
induction:

• viu ∈ dom(fi) if and only if v′
iu ∈ dom(f̂i),

• if viu ∈ dom(fi), then fi(viu) = f̂i(v
′
iu),

• viu ∈ dom(bi) if and only if v′
iu ∈ dom(b̂i),

• if viu ∈ dom(bi), then vi ≤ bi(viu) if and only if v′
i ≤ b̂i(v

′
iu),

• if viu ∈ dom(bi) and vi ≤ bi(viu), then for some s, bi(viu) = vis and b̂i(v
′
iu) =

v′
is,

• if viu ∈ dom(bi) and bi(viu) < vi, then bi(viu) = b̂i(v
′
iu),

• i ≥ 1 and (Mi−1, vi−1u)
wi

◮ (Mi, vis) imply (M̂i−1, v′
i−1u)

ŵi

◮ (M̂i, v′
is).

From these conditions, we can see that vn
∼=|M |β v′

n and that (M, vu)
w1,...,wn

◮

(|M |β, vns) implies (M, v′u)
ŵ1,...,ŵn

◮ (|M |β , v′
ns). By Theorem 3.5, we can conclude

that (M, vu)
w1,...,wn

◮ (|M |β, vns) implies (M, v′u)
w1,...,wn

◮ (|M |β , v′
ns).

Let M = (T , f, b) ∈ Λ(Σ). We call two nodes w, w′ of M homologous and write
w ≈M w′ if there are v, v′, u satisfying the following conditions:

• w = vu, w′ = v′u,

• v ∼=M v′, and

• v and v′ are pivots.

The relation ≈M is symmetric, but not transitive. We call two nodes w, w′ of M
similar if w ≈∗M w′ (i.e., if they stand in the reflexive transitive closure of the relation
of being homologous).
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Example 3.59. Let

M = λyzvw.w(v(λx.z(yx)(yx)))(v(λx.z(yx)(yx))).

This is a λ-term in η-long β-normal form, and the following is a natural deduction
representation of (M, t), where t is a principal type decoration of M :

[2→ 2→ 1]000

[(5→ 3)→ 2]00

[4→ 4→ 3]0
[5→ 4]ǫ [5]0000011

4

4→ 3

[5→ 4]ǫ [5]0000011

4
3

5→ 3 0000011

2

2→ 1

[(5→ 3)→ 2]00

[4→ 4→ 3]0
[5→ 4]ǫ [5]000011

4

4→ 3

[5→ 4]ǫ [5]000011

4
3

5→ 3 000011

2
1

(2→ 2→ 1)→ 1
000

((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
00

(4→ 4→ 3)→ ((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
0

(5→ 4)→ (4→ 4→ 3)→ ((5→ 3)→ 2)→ (2→ 2→ 1)→ 1
ǫ

Note that a node v of M is a pivot if and only if t(v) is an atomic type. We have

• 000001 ∼=M 00001 (the two occurrences of v(λx.z(yx)(yx)) (with type 2) are
congruent)

• 0000011001 ∼=M 000001101 (the first and second occurrences of yx (with type
4) are congruent)

• 000011001 ∼=M 00001101 (the third and fourth occurrences of yx (with type
4) are congruent)

Consequently, we have

• 00000110010 ≈M 0000110010 (the first and third occurrences of y are homol-
ogous),

• 0000011010 ≈M 000011010 (the second and fourth occurrences of y are homol-
ogous),

• 00000110010 ≈M 0000011010 (the first and second occurrences of y are ho-
mologous),

• 0000110010 ≈M 000011010 (the third and fourth occurrences of y are homol-
ogous),
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and all four occurrences of y in (the above λ-expression for) M are similar. Note
that M β-expands to an almost linear λ-term

M ′ = λyzvw.(λx1.wx1x1)(v(λx.(λx2.zx2x2)(yx))))),

in which all four occurrences of y in M have a common ancestor.

Lemma 3.60. Let M ∈ Λ(Σ) be a typable λ-term and suppose M ։β |M |β by
almost non-duplicating β-reduction. If two distinct nodes of |M |β share a common
ancestor in M , then they are similar.

Proof. Consider two distinct nodes v, v′ of |M |β that share a common ancestor in

M . Let M = M0
w1→β M1

w2→β · · ·
wn→β Mn = |M |β be an almost non-duplicating

β-reduction, and let ti be a principal type decoration of Mi. Let vn = v, v′
n = v′, and

for i = 1, . . . , n, let vi−1 and v′
i−1 be the nodes of Mi−1 such that (Mi−1, vi−1)

wi

◮ki

(Mi, vi) and (Mi−1, v′
i−1)

wi

◮k′

i
(Mi, v′

i). By assumption, v0 = v′
0. We first prove the

following:

Claim. For some distinct nodes u, u′ of |M |β, it holds that u ≤ v, u′ ≤ v′, u ∼=|M |β u′,
and u and u′ are pivots.

Since v and v′ are distinct, there is an i ≥ 1 such that vi−1 = v′
i−1 and vi 6= v′

i.
We must have wi1 ≤ vi−1, wi1 ≤ v′

i−1, and ki 6= k′
i. Let m = max{ i | 1 ≤ i ≤

n, wi1 ≤ vi−1, wi1 ≤ v′
i−1, ki 6= k′

i }. There must be nodes um, u′
m of Mm such

that (Mm−1, wm1)
wm

◮ km
(Mm, um), (Mm−1, wm1)

wm

◮ k′
m

(Mm, u′
m), um ≤ vm, and

u′
m ≤ v′

m. By Lemma 3.50, we have um
∼=Mm u′

m. Since by assumption the β-
reduction step Mm−1

wm→β Mm is almost non-duplicating, tm−1(wm1) must be an
atomic type. It follows that um and u′

m are pivots; in particular, neither um nor u′
m

is a unary node.

For i = m + 1, . . . , n, define ui and u′
i as follows:

ui =





wi if ui−1 = wi,

the node such that (Mi−1, ui−1)
wi

◮ki
(Mi, ui) if wi1 ≤ ui−1,

the node such that (Mi−1, ui−1)
wi

◮1 (Mi, ui) otherwise.

u′
i =





wi if u′
i−1 = wi,

the node such that (Mi−1, u′
i−1)

wi

◮k′

i
(Mi, u′

i) if wi1 ≤ u′
i−1,

the node such that (Mi−1, u′
i−1)

wi

◮1 (Mi, u′
i) otherwise.
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It is easy to see by induction that such ui and u′
i always exist, and it holds that

ui ≤ vi and u′
i ≤ v′

i. By the assumption about m, we have that for i ∈ {m+1, . . . , n},
if wi1 ≤ ui−1 and wi1 ≤ u′

i−1, then ki = k′
i. By Lemma 3.58, it follows that

un
∼=|M |β u′

n.
For i = m− 1, . . . , n, define a type decoration t′

i for Mi by

t′
m−1 = tm−1,

(Mi−1, t′
i−1)

wi→β (Mi, t′
i) for i = m, . . . , n.

Then it is easy to see tm−1(wm1) = t′
i(ui) = t′

i(u
′
i) for all i = m, . . . , n. Since

tm−1(wm1) is an atomic type, it follows that un and u′
n are pivots. So we have

proved the above claim, with u = un and u′ = u′
n.

Now we show that v and v′ are similar by induction on |v| − |u|+ |v′| − |u′|. Let
s, s′ be such that v = us and v′ = u′s′. If s = s′, then v and v′ are homologous and
hence similar. Suppose s 6= s′. By Lemma 3.58, the nodes v = us and us′ of |M |β
share a common ancestor in M . By the above claim applied to us, us′ in place of
v, v′, we must have s = s1s2, s′ = s′

1s′
2, s1 6= s′

1, us1
∼=|M |β us′

1, and us1 and us′
1 are

pivots. Since |us|− |us1|+ |us′|− |us′
1| = |s2|+ |s

′
2| < |s|+ |s

′| = |v|− |u|+ |v′|− |u′|,
the induction hypothesis applies; hence us and us′ are similar. Since us′ and u′s′

are homologous, it follows that us and u′s′ are similar.

Lemma 3.61. Let M = (T , f, b) ∈ Λ(Σ) be a closed typable λ-term in η-long form,
and let M◦ = Collapse(M). Suppose that u1 and u2 are distinct nodes of M such
that u1 ≈

∗
M u2. Unless u1 is a pivot and u1 ∈ dom(b), u1 and u2 share a common

ancestor in M◦.

Proof. Clearly, it suffices to consider the case where u1 ≈M u2. There must be a pair
of pivots s1, s2 such that s1

∼=M s2 and for some u, u1 = s1u and u2 = s2u. By the
assumption about u1, u2, we have s1, s2 6∈ dom(b). At each stage of the execution of
Algorithm 1, let u′

1, u′
2, s′

1, s′
2 be the ancestors of u1, u2, s1, s2, respectively, in M◦.

By Lemma 3.56, s′
1 and s′

2 are pivots and s′
1
∼=M◦ s′

2. We must have s′
1 = s′

2 at
the end of the execution of Algorithm 1. Since the nodes v1, v2, . . . , vk picked in
lines 5–6 of the algorithm are duplicated pivots of maximal height in M◦, we cannot
have s′

1 < vi or s′
2 < vi for some i ∈ {1, 2, . . . , k} until s′

1 = s′
2. Hence, until s′

1 = s′
2,

we have u′
1 = s′

1u and u′
2 = s′

2u. This means that at the first stage where s′
1 = s′

2

holds, we have u′
1 = u′

2. Therefore, u1 and u2 have the same ancestor.

Lemma 3.62. Let M ∈ Λ(Σ) be a closed λ-term in η-long β-normal form and
M◦ = Collapse(M). Suppose M ′ ։β M by almost non-duplicating β-reduction.

Let m = |
−−→
Con(M◦)| and n = |

−−→
Con(M ′)|. The following hold:
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(i) |M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β for some g : {1, . . . , n} →
{1, . . . , m}.

(ii) If M ′ is almost affine, then so is M◦.

Proof. (i) Consider two occurrences v1, v2 of a free variable zi in |M̂ ′[z1, . . . , zn]|β .

Since each free variable occurs just once in M̂ ′[z1, . . . , zn], the unique occurrence u of
zi in M̂ ′[z1, . . . , zn] is the common ancestor of the nodes v1 and v2 of |M̂ ′[z1, . . . , zn]|β .
This means that the node u of M ′ is the common ancestor of the nodes v1 and v2

of M . By Lemma 3.60, we have v1 ≈
∗
M v2. Since some constant occurs at v1

and v2 in M , Lemma 3.61 implies that v1 and v2 have the same ancestor in M◦.
This means that the same free variable occurs at v1 and v2 in |M̂◦[y1, . . . , ym]|β .

Therefore, there is a function g : { i | zi ∈ FV(|M̂ ′[z1, . . . , zn]|β) } → {1, . . . , m}

such that if v is an occurrence of zi in |M̂ ′[z1, . . . , zn]|β, then v is an occurrence

of yg(i) in |M̂◦[y1, . . . , ym]|β. Some zi may not occur in |M̂ ′[z1, . . . , zn]|β, but by
extending g to a function from {1, . . . , n} → {1, . . . , m} in an arbitrary way, we
have |M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β.

(ii) Let tM◦ be a principal type decoration of M◦ = (TM◦ , fM◦ , bM◦). Suppose

that M◦ is not almost affine. Then there are two distinct leaves v1, v2 ∈ T
(0)

M◦ such
that bM◦(v1) = bM◦(v2) and tM◦(v1) = tM◦(v2) is a non-atomic type. Since M◦ is

in η-long form, we have v1 = u10 and v2 = u20 for some u1, u2 ∈ T
(2)

M◦ . Since the β-
reduction from M◦ to M = (TM , fM , bM ) is non-erasing and almost non-duplicating,
it is easy to see that by taking the leftmost (i.e., lexicographically first) descendants

at each step, we can arrive at u′
1, u′

2 ∈ T
(2)

M such that u′
10, u′

20 are descendants of v1

and v2, respectively, and bM (u′
10) = bM (u′

20). Now let v′
1 and v′

2 be the ancestors
of u′

10 and u′
20, respectively, in M ′ = (TM ′ , fM ′ , bM ′). By Lemma 3.4, part (iv), we

see that bM ′(v′
1) = bM ′(v′

2). Let tM ′ be a principal type decoration of M ′. Since M ′

is almost affine, either v′
1 = v′

2 or tM ′(v′
1) = tM ′(v′

2) is an atomic type q. Let tM

be a type decoration of M such that (M ′, tM ′) ։β (M, tM ). If tM ′(v′
1) = tM ′(v′

2) =

q, then tM (u′
10) = tM (u′

20) = q, contradicting u′
1, u′

2 ∈ T
(2)

M . Hence v′
1 = v′

2.
By Lemma 3.60, u′

10 ≈∗M u′
20. By Lemma 3.61, v1 = v2, a contradiction. This

contradiction shows that M◦ is almost affine.

Lemma 3.63. Let M ∈ Λ(Σ) be a closed λI-term in η-long β-normal form relative
to γ, and let M◦ = Collapse(M). The following hold:

(i) M◦ is a λI-term in η-long form.

(ii) If M ′ ։β M by non-erasing almost non-duplicating β-reduction, then M ′ ∈
Λ(database(M◦), 〈γ〉(tuple(M◦))).
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Proof. Part (i) is by Lemma 3.56, parts (i) and (ii).

For part (ii), let
−−→
Con(M◦) = (d1, . . . , dm) and let

y1 : β1, . . . , ym : βm ⇒ α

be a principal typing of M̂◦[y1, . . . , ym]. Then di(βi) ∈ database(M◦) for i =

1, . . . , m, and 〈γ〉(tuple(M◦)) = α. Let n = |
−−→
Con(M ′)|. By Lemma 3.62, there

is a function g : {1, . . . , n} → {1, . . . , m} such that

|M̂◦[y1, . . . , ym]|β = |M̂ ′[yg(1), . . . , yg(n)]|β

Since M ′ ։β M by non-erasing almost non-duplicating β-reduction, we also have

M̂ ′[yg(1), . . . , yg(n)] ։β |M̂ ′[yg(1), . . . , yg(n)]|β by non-erasing almost non-duplicating
β-reduction. Then by the Subject Reduction Theorem (Theorem 3.14) and
Lemma 3.52, we have

⊢ { yg(i) : βg(i) | 1 ≤ i ≤ n } ⇒ M̂ ′[yg(1), . . . , yg(n)] : α.

This means that M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))).

Lemma 3.63 does not say that Λ(database(M◦), 〈γ〉(tuple(M◦))) is closed under
non-erasing almost non-duplicating β-expansion, but together with Lemma 3.54
implies the following, which corresponds to the special property (28) highlighted in
the rough proof sketch given in Section 2.3.

Lemma 3.64. Let M ∈ Λ(Σ) be a closed λ-term in η-long β-normal form relative
to γ, and suppose that M◦ = Collapse(M) is almost linear. Then for every almost
linear closed λ-term M ′ ∈ Λ(Σ) in η-long form relative to γ, M ′ ։β M if and only
if M ′ ∈ Λ(database(M◦, 〈γ〉(tuple(M◦))).

Proof. First note that M ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))) by Lemma 3.37 and
part (i) of Lemma 3.34.

Suppose M ′ ։β M . By Lemma 3.49, the leftmost β-reduction from M ′ to
M = |M ′|β is non-erasing and almost non-duplicating. Lemma 3.63 then implies
M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))).

Conversely, suppose M ′ ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))). By part (i) of
Lemma 3.34 again, |M ′|β ∈ Λ(database(M◦), 〈γ〉(tuple(M◦))). Since by Lemma 3.17
|M ′|β must be in η-long form relative to γ, Lemma 3.54 implies |M ′|β = M .

The following theorem is the main result of the paper.
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Theorem 3.65. Let G = (N , Σ, f, P, S) be an almost linear CFLG. Suppose that
N ∈ Λ(Σ) is a λ-term in η-long β-normal form relative to f(S). Then the following
are equivalent:

(i) N ∈ L(G ).

(ii) N◦ = Collapse(N) is almost linear and program(G ) ∪ database(N◦) ⊢
S(tuple(N◦)).

Proof. (i) ⇒ (ii). Suppose N ∈ L(G ). Then there is a closed λ-term P ∈ Λ(Σ) in
η-long form such that ⊢G S(P ) and P ։β N . Since G is almost linear, P is almost
linear. By part (ii) of Lemma 3.62 and part (i) of Lemma 3.63, N◦ = Collapse(N)
is almost linear. By Lemma 3.64, P ∈ Λ(database(N◦), 〈f(S)〉(tuple(N◦))).
Lemma 3.35 then implies program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)).

(ii)⇒ (i). By Lemma 3.35, there is an almost linear λ-term P ∈ Λ(Σ) in η-long
form such that ⊢G S(P ) and P ∈ Λ(database(N◦), 〈f(S)〉(tuple(N◦))). Since N◦ is
almost linear, Lemma 3.64 implies that P ։β N . Therefore, N ∈ L(G ).

Notice that when G is a linear CFLG and N is a linear λ-term, Theorems 3.42
and 3.65 both hold of G and N , even though N◦ 6= N in general.

Let us turn to the complexity analysis of the reduction. Since it is easy to see
that Algorithm 1 runs in polynomial time, an immediate corollary to Theorem 3.65
is that the language of every almost linear CFLG belongs to the complexity class P.
As in the linear case, we can obtain a tight complexity upper bound. Recall that ≺
is the lexicographic order on {0, 1}∗. We write ≈M ∩ ≺ for the intersection of the
two relations ≈M and ≺, thought of as sets of ordered pairs.

Lemma 3.66. Let M = (T , f, b) be a λ-term, and suppose that u1 (≈M ∩ ≺) v and
u2 (≈M ∩ ≺) v. Then there exists a v′ such that

(i) either v′ (≈M ∩ ≺) u1 or v′ = u1, and

(ii) either v′ (≈M ∩ ≺) u2 or v′ = u2.

Proof. There are û1, û2 and pivots w1, w, s, s2 such that

w1
∼=M w, w1 ≺ w, u1 = w1û1, v = wû1,

s2
∼=M s, s2 ≺ s, u2 = s2û2, v = sû2.

Since w and s are prefixes of v, either w ≤ s or s ≤ w. We may assume w ≤ s. We
have

s = wŝ, û1 = ŝû2
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for some ŝ.
Case 1. There is an s′ such that w ≤ b(ss′) < s. Since s2

∼=M s, it must be the
case that w ≤ b(ss′) = b(s2s′) < s2. So there is an ŝ2 such that

s2 = wŝ2, ŝ2 ≺ ŝ.

Since wŝ2 = s2
∼=M s = wŝ and w1

∼=M w, the definition of the congruence relation
∼=M implies that w1ŝ2 and w1ŝ are pivots and

w1ŝ2
∼=M w1ŝ.

Therefore,

u1 = w1û1 = w1ŝû2 ≈M w1ŝ2û2 ≈M wŝ2û2 = s2û2 = u2.

Let v′ = w1ŝ2û2. Since ŝ2 ≺ ŝ and w1 ≺ w, we have v′ ≺ u1 and v′ ≺ u2.
Case 2. There is no s′ such that w ≤ b(ss′) < s. Since w1

∼=M w, we must have

s2
∼=M s = wŝ ∼=M w1ŝ,

and w1ŝ is a pivot. Therefore,

u2 = s2û2 ≈M w1ŝû2 = w1û1 = u1,

and the conclusion clearly holds with either v′ = u1 or v′ = u2.

The next lemma easily follows from Lemma 3.66.

Lemma 3.67. If u ≈∗M v, then there exists a w such that w (≈M ∩ ≺)∗ u and
w (≈M ∩ ≺)∗ v.

Lemma 3.68. Let G = (N , Σ, f, P, S) be an almost linear CFLG. There is a log-
space-bounded deterministic Turing machine that takes as input a λ-term N ∈ Λ(Σ)
in η-long β-normal form relative to f(S) and decides whether Algorithm 1 returns
an almost linear N◦, and if so, computes (database(N◦), S(tuple(N◦))).

Proof (sketch). Let N = (T , f, b). We assume that N is given as a λ-expression as
before. We must avoid computing the output N◦ = Collapse(N) of Algorithm 1
explicitly. By Lemmas 3.60 and 3.61, N◦ is almost affine if and only if for every pair
of nodes v, v′ ∈ T (0) such that b(v) = b(v′), it holds that v ≈∗N v′. By Lemma 3.67,
this is so if and only if w (≈N ∩ ≺)∗ v′, where w is the leftmost node such that
w (≈N ∩ ≺)∗ v.37 Checking whether two nodes are homologous clearly requires no

37In fact, by refining the proof of Lemma 3.60, it is not hard to see that it suffices to take the
leftmost w such that b(w) = b(v) = b(v′) and check w (≈N ∩ ≺)∗ v and w (≈N ∩ ≺)∗ v′.
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more than logarithmic space, so the relation (≈N ∩ ≺)∗ can be decided in logarith-
mic space as well. It follows that the similarity of v and v′ can also be checked in
logarithmic space. It is also easy to see that N◦ is a λI-term if and only if N is, and
clearly this can be checked in logarithmic space.

Now suppose that N is λI and N◦ is almost linear. Let
−−→
Con(N) = (d1, . . . , dm),

and let

y1 : β1, . . . , ym : βm ⇒ β0

z1 : γ1, . . . , zn : γn ⇒ γ0

be principal typings of N̂ [y1, . . . , ym] and N̂◦[z1, . . . , zn], respectively. Let
{w1, . . . , wm} = dom(f), where w1 ≺ . . . ≺ wm. (We have f(wi) = di.) Let

I = { i ∈ {1, . . . , m} | there is no k < i such that wk ≈
∗
N wi }.

Let g : {1, . . . , m} → I be the function such that wg(i) ≈
∗
N wi for i ∈ {1, . . . , m}.

By Lemmas 3.60 and 3.61, we must have a bijection h : {1, . . . , n} → I such that
N̂◦[yh(1), . . . , yh(n)] ։β N̂ [yg(1), . . . , yg(m)]. Let σ be a most general unifier of

{ (βi, βj) | i ∈ I, wi ≈
∗
N wj }

Then
{ yi : βiσ | i ∈ I } ⇒ β0σ (60)

is a principal typing of N̂ [yg(1), . . . , yg(m)]. By Lemma 3.53, (60) is a principal typing

of N̂◦[yh(1), . . . , yh(n)] as well, and we have

database(N◦) = { di(βiσ) | i ∈ I },

tuple(N◦) = β0σ.

By Theorem 3.46, (60) is negatively non-duplicated. For every i ∈ {0, . . . , m} and
v ∈ 〈βi〉

(0), let pi,v = subtype(βi, v). Then if (i1, v1), (i2, v2) are distinct negative
occurrences and i1, i2 ∈ {0} ∪ I, then pi1,v1σ 6= pi2,v2σ. Now consider a positive
occurrence (i, v) of pi,v such that i ∈ {0} ∪ I. The fact that N̂ [y1, . . . , ym] is a
λI-term implies that in (N̂ [y1, . . . , ym], t̂), where t̂ is a principal type decoration of
N̂ [y1, . . . , ym], the occurrence (i, v) is linked to some negative occurrence (i′, v′) of
pi,v = pi′,v′ . If i′ ∈ {1, . . . , m}, let j = g(i′); otherwise let j = i′ = 0. Then it must
be that pi,vσ = pi′,v′σ = pj,v′σ. Note that although (i, v) may be linked to more than

one (i′, v′) in (N̂ [y1, . . . , ym], t̂), the pair (j, v′) is uniquely determined independently
of the choice of (i′, v′) because (60) is negatively non-duplicated.

1189



M. Kanazawa

As in the proof of Lemma 3.43, a deterministic log-space-bounded Turing ma-
chine can compute a negative occurrence (i′, v′) linked to a positive occurrence (i, v)
by following edges of G

(N̂ [y1,...,ym],t̂)
= G

(N̂ [y1,...,ym],t)
, where t is the type decoration

for y1 : τ(d1), . . . , ym : τ(dm) ⇒ N̂ [y1, . . . , ym] : f(S). Again, the type decoration t
is not explicitly computed. There may be more than one maximal directed path
starting from (i, v), but any such path will do, so the machine simply picks the first
relevant edge that it can find at each point. Once the machine reaches a configura-
tion representing (wi′ , v′, ↑), it can then find the least j such that wj (≈N ∩ ≺)∗ wi′

using no more than logarithmic space.

Theorem 3.69. For every almost linear CFLG G , L(G ) belongs to LOGCFL.

Proof. The proof is similar to that of Theorem 3.44. Note that if P ։β N by

non-erasing β-reduction, then |
−−→
Con(P )| ≤ |

−−→
Con(N)|. This implies that whenever

program(G ) ∪ database(N◦) ⊢ S(tuple(N◦)) holds, there is a derivation tree for it
whose size is bounded by a polynomial in the number of occurrences of constants in
N .

4 Some consequences and extensions

4.1 Further complexity-theoretic consequences

We have seen that the problem of recognition for a fixed almost linear CFLG is in
LOGCFL. Since there is a context-free language that is LOGCFL-complete [27], it
follows that LOGCFL is a tight upper bound on the computational complexity of
fixed almost linear CFLG recognition.

Let us sketch some further complexity-theoretic consequences of this work. These
concern three different types of problems: (i) the problem of uniform recognition for
subclasses of almost linear CFLGs, (ii) the problem of parsing for a fixed almost
linear CFLG, and (iii) the problem of finding one target λ-term from an input λ-
term for a fixed almost linear synchronous CFLG.

4.1.1 Uniform recognition

If the grammar is not fixed and is part of the input, the recognition problem (known
as uniform recognition) is known to be P-complete for general context-free grammars,
and PSPACE-complete for non-deleting multiple context-free grammars [38, 39].
Since it is easy to translate non-deleting multiple context-free grammars into linear
CFLGs, the latter gives a lower bound on the complexity of uniform recognition for

1190



Parsing and Generation as Datalog Query Evaluation

almost linear CFLGs. The EXPTIME-completeness of the program complexity of
general Datalog query evaluation [16] provides an upper bound; currently I do not
know whether either of these bounds is tight, however.

A lower complexity bound for uniform recognition can be obtained for restricted
subclasses of almost linear CFLGs. We call a Datalog program P k-bounded if k is
at least as large as the maximal arity of predicates in P and the number of variables
in any rule of P. For a k-bounded Datalog program P, the number of work tapes
needed in the “storage area” in the log-space-bounded ATM MP simulating P does
not exceed k. (The description of MP was given in Section 3.1.1.) With additional
work tapes to serve as pointers to rules and predicates in the Datalog program, the
program can be moved from the finite control of the ATM to part of the input.
The resulting log-space-bounded ATM can decide, given input (P, D, q) with P k-
bounded, whether P ∪ D ⊢ q. Now consider the class of k-bounded almost linear
CFLGs, i.e., almost linear CFLGs G such that program(G ) is k-bounded. As in
the proof of Lemma 3.68, it is clear that the translation from G to program(G ) can
be done in logarithmic space. This means that there is a log-space reduction from
the uniform recognition problem for k-bounded almost linear CFLGs to a problem
in ALOGSPACE = P. Since uniform recognition for CFGs whose rules are all of
the form A→ BC or A→ ǫ is already P-complete [36], it follows that the uniform
recognition problem for k-bounded almost linear CFLGs is P-complete.

It is folklore [55] that the uniform recognition problem for the class of context-
free grammars without ǫ-productions is in LOGCFL. What corresponds to an ǫ-
production in the case of CFLGs is a rule of the form

B(M)

(with an empty right-hand side) where M is a pure λ-term. We can eliminate all
such ǫ-rules from an almost linear CFLG by the same method that Kanazawa and
Yoshinaka [47] used for linear CFLGs, so the uniform recognition problem for the
class of almost linear CFLGs without ǫ-rules is of interest. If G is such a CFLG,
then all leaves of Datalog derivation trees for program(G ) are extensional nodes. By
the analysis in the proof of Lemma 3.2, we can show that the uniform recognition
problem for the class of ǫ-free k-bounded almost linear CFLGs is in LOGCFL.

4.1.2 Parsing

It is also interesting to ask the computational complexity of parsing, as opposed to
recognition. Functional LOGCFL (written FLLOGCFL) is the class of solution search
problems that can be solved by a deterministic log-space-bounded Turing machine
with a LOGCFL oracle [26]. It is a natural functional analogue of LOGCFL. Gottlob
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et al. [26] show that given an ATM M with simultaneous log-space and poly-size
bounds, the problem of finding a first accepting computation tree of M on input w
(within a given polynomial size bound) is in functional LOGCFL. In the course of
proving this result, they also show that the set of all accepting computation trees
(within a given polynomial size bound), in the form of a ‘shared forest’, can be
computed by a log-space-bounded Turing machine with a LOGCFL oracle. We can
use this result to show that the problem of parsing for a fixed almost linear CFLG
is in functional LOGCFL, but here we opt to give the following direct proof, which
is straightforward and more informative.

Let P be a Datalog program, D an extensional database for P, and q a ground
fact. The ‘shared forest’ representation of the set of all derivation trees for P∪D ⊢ q
is just the set F all ground instances

p(~s) :− p1(~s1), . . . , pl(~sl)

of rules p(~x) :− p1(~x1), . . . , pl(~xl) ∈ P that can appear in some derivation tree for
P ∪ D ⊢ q which use only constants from D ∪ {q}.38 Suppose that the number of
extensional nodes in any derivation tree for P ∪D ⊢ q is bounded by a number k,
depending only on D. In order to see whether p(~s) :− p1(~s1), . . . , pl(~sl) is in F , one
need only check whether there are derivation trees (with no more than k extensional
nodes) for

P ∪D ⊢ pi(~si) (i = 1, . . . , l)

and one for
P ∪ {p(~s)} ∪D ⊢ q

in which p(~s) appears on exactly one of its leaves. Let g(n) be the polynomial that
Lemma 3.2 associates with P. Then derivation trees for P∪D ⊢ pi(~si) (i = 1, . . . , l)
can be found from among those with at most g(k) nodes, if there are any. It is not
hard to see that the same reasoning as in the proof of Lemma 3.2 shows that the
minimal size of the required kind of derivation tree for P ∪ {p(~s)} ∪ D ⊢ q can be
bounded by g(k + 1). Thus, answers to these questions can be obtained through
oracle queries to two sets

{ (D, q1, 1
m) | there is a derivation tree for P ∪D ⊢ q1 of size ≤ g(m) },

{ ({q2} ∪D, q1, 1
m) | there is a derivation tree for P ∪ {q2} ∪D ⊢ q1 of size ≤ g(m)

with q2 on exactly one leaf }.

38It would be more appropriate to call the set F the “reduced” shared forest, since a shared
parse forest in general may contain useless elements.
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The former is in LOGCFL by Lemma 3.1. A slight modification of its proof shows
that the latter is in LOGCFL, too, and it is easy to combine the two into a single
LOGCFL oracle. Thus, if (D, q, 1

k) is given as input, the set F can be computed in
logarithmic space with a LOGCFL oracle by cycling through all ground instances
of all rules in P.

Let P = program(G ) for some almost linear CFLG, and suppose (D, q) is ob-
tained from a λ-term N as in Theorems 3.65 and 3.69. Then we can take the
number k to be |

−−→
Con(N)|, and the set F can be computed in logarithmic space with

a LOGCFL oracle.

With the one-one correspondence between the rules of the Datalog program
program(G ) and the rules of the CFLG G , the set F can also be taken to be a
shared forest representation of the set of all derivation trees of G for the input λ-
term N . Thus, given an almost CFLG G , the problem of computing the shared
forest of all derivation trees of G for an input λ-term N is in functional LOGCFL.

4.1.3 Transduction with almost linear synchronous CFLGs

Suppose we are given a synchronous CFLG consisting of a pair of almost linear
CFLGs. Given an input λ-term M generated by one of the component CFLGs (call
it the “source-side” grammar), the set of all derivation trees of M can be efficiently
computed in the form of a shared forest, as we have seen above. In order to find a
“target-side” λ-term N that the synchronous grammar pairs with M , we can take
one of the derivation trees T , construct a λ-term P that the “target-side” CFLG
associates with T , and then compute the β-normal form N = |P |β of P . It is of
course impossible to explicitly enumerate all such N , because there may be infinitely
many derivation trees of M ; nor is there any simple “packed” representation of all
such N (because the set of all such N is in general as complex as the language
of an arbitrary almost linear CFLG). Let us therefore consider the computational
complexity of finding one λ-term N that the synchronous grammar pairs with M .

As in [26], a deterministic log-space-bounded Turing machine with a LOGCFL
oracle can compute a single derivation tree T of M (whenever there is one). It is easy
to see that given a derivation tree T , the λ-term P that the target-side grammar
associates with T can be computed in logarithmic space. Although the size of |P |β
is in general exponential in the size of P and so it is not feasible to compute |P |β
explicitly, the pair (database(P ), tuple(P )) can be computed in logarithmic space
as in the proof of Lemma 3.68. Since P is almost linear, by Lemma 3.54, |P |β is
the only λ-term in η-long β-normal form in Λ(database(P ), 〈γ〉(tuple(P ))), where γ
is the type that the target-side grammar assigns to P . So (database(P ), tuple(P ))
serves as a kind of compact representation of |P |β . (In fact, when |P |β is a tree,
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(database(P ), tuple(P )) is a representation of a term graph that unfolds to (the hy-
pergraph representation of) |P |β.) All in all, given a fixed almost linear synchronous
CFLG, the problem of finding one target-side λ-term N corresponding to an input
source-side λ-term M is in functional LOGCFL, if we allow as output a compact
representation of N in the form of a pair of a database and a tuple of constants.

Note that in the special case where P is linear and |P |β is an encoding of a string
or a tree, (database(P ), tuple(P )) is nothing but an explicit hypergraph represen-
tation of the latter. Thus, with respect to a fixed synchronous grammar consisting
of a linear string grammar (e.g., a CFG or MCFG) and an almost linear Montague
semantics, the problem of explicitly computing one surface realization of an input
logical form is in functional LOGCFL.

4.2 Regular sets as input

4.2.1 Parsing as intersection for linear CFLGs

In ordinary parsing/recognition of string languages, it is sometimes useful to allow
as input a regular set of strings (usually represented as a finite automaton), rather
than a single string. The resulting generalization of the problem is a key element
of the view of “parsing as intersection”, where the “shared parse forest” that is the
output of parsing is given in the form of a grammar generating the intersection of
the language of the original grammar and the input regular set. Various dynamic
parsing techniques can then be regarded as variants of Bar-Hillel et al.’s [5] original
proof of the closure of the context-free languages under intersection with regular
sets [52].

Many well-known grammar formalisms, including context-free grammars, tree-
adjoining grammars [37], (parallel) multiple context-free grammars [66], and IO
macro grammars [24], have the property that given a regular set R, any grammar G
can be “specialized” into a grammar G′ generating the intersection of the language
of G and R, in such a way that G is the image of G′ under a simple “projection”
that maps nonterminals of G′ to nonterminals of G. Kanazawa [40] has shown that
the same property holds of de Groote’s [17] abstract categorial grammars. Linear
context-free λ-term grammars are nothing but abstract categorial grammars whose
abstract vocabulary is second-order. Via encoding in linear CFLGs, Kanazawa’s [40]
result provides a uniform proof of closure under intersection with regular sets for
linear formalisms such as context-free grammars, (multi-component) tree-adjoining
grammars, and multiple context-free grammars.

Theorem 3.40 shows how the recognition problem for linear CFLGs in a gener-
alized form, where an input is a set of λ-terms represented by a pair of a database
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and a type, reduces to Datalog query evaluation. It is easy to see that any regular
set of strings or trees can be represented in this way. In the string case, a non-
deterministic finite automaton with an initial state qI and just one final state qF

translates into the pair (D, qF → qI), where D is the database consisting of all facts
of the form c(q, r) such that the automaton has a transition from state q to state r
labeled by c. In the tree case, a nondeterministic bottom-up finite automaton with
a unique final state qF translates into the pair (D, qF ), where D is the database
consisting of all facts f(q, qn, . . . , q1) such that the automaton has a transition rule
f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn). More generally, any set of λ-terms that
can be expressed as the set Λ(D, α) with a database D and a type α can be used as
an input to recognition with a linear CFLG.

With Lemma 3.31, the problem of parsing in this generalized setting reduces to
the problem of computing (a representation of) the set of all derivation trees from a
Datalog program P and a database D. The connection to parsing as intersection is
that the specialized grammar generating the intersection language corresponds to the
propositional Horn clause program consisting of the database D and an appropriate
subset of the set

⋃
π∈P

ground(π, UD) of ground instances of rules in P.

4.2.2 Almost linear CFLGs and deterministic databases

As we noted, Theorem 3.40 does not hold of almost linear CFLGs, because there
is no analogue of part (ii) of Lemma 3.34 for non-erasing almost non-duplicating
β-reduction: if D is a database over DΣ,U and α ∈ T (A), the set Λ(D, α) is not
always closed under the converse of non-erasing almost non-duplicating β-reduction.
One sufficient condition for this closure property to hold is given by the following
definition:

• D is said to be deterministic if for all types γ1, . . . , γm and all atomic types
p, q,

Λ(D, γ1→ · · · → γm→ p) ∩ Λ(D, γ1→ · · · → γm→ q) 6= ∅

implies p = q.

It is not difficult to show that determinism is a decidable property of databases, but
I leave a detailed analysis of this notion for another occasion.39

Lemma 4.1. Let Σ = (A, C, τ) be a higher-order signature, M, M ′ ∈ Λ(Σ) be typable
λ-terms, and D be a deterministic database over DΣ,U . If M ′ ։β M by non-erasing
almost non-duplicating β-reduction, then M ∈ Λ(D, α) implies M ′ ∈ Λ(D, α).

39In particular, I have been unable to settle the question whether database(N◦) is deterministic
whenever N◦ is almost linear.
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Proof. Let M = (T , f, b), M ′ = (T ′, f ′, b′) be typable closed λ-terms, and let t′ be
a principal type decoration of M ′. Assume M ∈ Λ(D, α) and M ′ w

→β M by a
non-erasing almost non-duplicating one-step β-reduction. Let {v1, . . . , vk} = { v |
b′(w00v) = w0 }. By assumption, k ≥ 1. Since the case k = 1 is taken care of by
Lemma 3.34, part (ii), assume k ≥ 2 and t′(w1) = p for some atomic type p. Since
M ∈ Λ(D, α), there is a type decoration t̂ for

z1 : δ1, . . . , zm : δm ⇒ M̂ [z1, . . . , zm] : α,

where
−−→
Con(M) = (c1, . . . , cm) and for i = 1, . . . , m, we have ci(δi) ∈ D and 〈τ(ci)〉 =

〈δi〉.
To show that M ′ ∈ Λ(D, α), it suffices to prove that

t̂(wv1) = t̂(wvi) for all i ∈ {1, . . . , n}. (61)

For, if (61) holds, then it is easy to see that there are a subset {i1, . . . , im′} of
{1, . . . , m} and a function g : {1, . . . , m} → {i1, . . . , im′} satisfying the following
conditions:

ci = cg(i) for all i ∈ {1, . . . , m},

M̂ ′[zi1 , . . . , zim′
]

w
→β M̂ [zg(1), . . . , zg(m)],

⊢ zi1 : δi1 , . . . , zim′
: δim′

⇒ M̂ [zg(1), . . . , zg(m)] : α,

⊢ zi1 : δi1 , . . . , zim′
: δim′

⇒ M̂ ′[zi1 , . . . , zim′
] : α,

M̂ ′[ci1 , . . . , cim′
] = M ′.

The reasoning here is similar to that in the proof of Lemma 3.52.
We prove (61). Let ℓ′ be a writing of M ′. There exists a writing ℓ of M that

agrees with ℓ′ on {u ∈ T ′(1) | u < w } such that subM ′,ℓ′(w1) = subM,ℓ(wvi) for
i = 1, . . . , k. Let N = subM ′,ℓ′(w1) and let n be the number of occurrences of
constants in N . Clearly, we have a function h : {1, . . . , k}×{1, . . . , n} → {1, . . . , m}
such that

sub
M̂ [z1,...,zm],ℓ

(wvi) = N̂ [zh(i,1), . . . , zh(i,n)].

Let FV(N) = {y1, . . . , yr}. Then ℓ and t̂ determine types γ1, . . . , γr such that

⊢ y1 : γ1, . . . , yr : γr, zh(i,1) : δh(i,1), . . . , zh(i,n) : δh(i,n) ⇒ N̂ [zh(i,1), . . . , zh(i,n)] : t̂(wvi).

Similarly, ℓ′ and t′ determine types γ′
1, . . . , γ′

r such that

⊢Σ y1 : γ′
1, . . . , yr : γ′

r ⇒ N : p.
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There are two cases to consider.

Case 1. |N |β = yj
~Q and γ′

j = ~β′→ p. Then we must have γj = ~β→ t̂(wvi) for

all i ∈ {1, . . . , k}. Hence t̂(wv1) = t̂(wvi) for all i ∈ {1, . . . , k}.

Case 2. |N |β = cj
~Q and τ(cj) = ~β′ → p. Then for all i ∈ {1, . . . , k},

|N̂ [zh(i,1), . . . , zh(i,n)]|β = zh(i,1)
~Pi and δh(i,1) = ~βi→ t̂(wvi) for some ~Pi and ~βi such

that ~β′ and ~βi are sequences of types of the same length. Since ch(i,1) = cj , it must

be that 〈τ(cj)〉 = 〈δh(i,1)〉, which implies that t̂(wvi) = qi for some atomic qi. Then
we have

⊢ zh(i,1) :δh(i,1), . . . , zh(i,n) :δh(i,n) ⇒ λy1 . . . yr.N̂ [zh(i,1), . . . , zh(i,n)] :γ1→· · ·→γr→qi,

which implies

λy1 . . . yr.N ∈ Λ(D, γ1→ · · · → γr→ qi).

Since D is deterministic, it follows that q1 = qi.

Lemma 4.2. Let Σ = (A, C, τ) be a higher-order signature, U be a set of database
constants, D be a deterministic database over DΣ,U , and α ∈ T (A). For every
almost linear closed λ-term M ∈ Λ(Σ), M ∈ Λ(D, α) if and only if |M |β ∈ Λ(D, α).

Proof. The “only if” direction is by Lemma 3.34, part (i). Since the β-reduction
M ։β |M |β must be non-erasing and almost non-duplicating (Lemma 3.49), the
“if” direction follows from Lemma 4.1.

Theorem 4.3. Let G = (N , Σ, f, P, S) be an almost linear CFLG and B ∈ N .
Let U be some set of constants, D be a deterministic database over DΣ,U , and ~s be
a sequence of constants from U such that |~s| = |f(S)|. The following are equivalent:

(i) L(G ) ∩ Λ(D, 〈f(S)〉(~s)) 6= ∅.

(ii) program(G ) ∪D ⊢ S(~s).

Proof. The implication from (ii) to (i) is by Lemma 3.36.

(i) ⇒ (ii). Assume (i). Then there is an almost linear λ-term P ∈ Λ(Σ) such
that ⊢G S(P ) and |P |β ∈ Λ(D, 〈f(S)〉(~s)). Since P is almost linear, Lemma 4.2
implies P ∈ Λ(D, 〈f(S)〉(~s)). Then (ii) follows by Lemma 3.35.

It is easy to see that if D is a database representing a finite automaton A (on
strings), then D is deterministic if and only if A is. If D is a database representing
a bottom-up tree automaton A , then, again, D is deterministic if and only if A

is. So Theorem 4.3 applies when a regular set is given as input in the form of a
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deterministic finite (string or tree) automaton.40 The string case of this result is not
useful, however, because every almost linear CFLG generating λ-term encodings of
strings is equivalent to some linear CFLG.41

With respect to tree languages, almost linear CFLGs are more powerful than
linear CFLGs, and can encode grammars that allow copying of subtrees, like IO
context-free tree grammars. For these grammars, Theorem 4.3 implies that parsing
as intersection where input is given in the form of a deterministic bottom-up tree
automaton reduces to Datalog query evaluation.

4.2.3 An application to string grammars with copying

This last point can be exploited to show that there is a way of representing recogni-
tion/parsing (of ordinary single-string input) with respect to some string grammars
with copying operations, such as IO macro grammars and parallel multiple context-
free grammars, in terms of Datalog query evaluation, even though Theorem 3.65
is powerless for that purpose. Such a string grammar can always be turned into
a corresponding tree grammar that generates a tree language whose yield image is
the language of the string grammar. Since tree copying can be represented by al-
most linear λ-terms, these tree grammars can be encoded in almost linear CFLGs.
Moreover, we can associate with every string w a regular set of trees that yield w so
that the language of the tree grammar has a non-empty intersection with that set
of trees if and only if w is in the language of the original string grammar.

For example, consider the following parallel multiple context-free grammar [66]:42

S(x1x2) :− A(x1, x2).

A(1, 0).

A(x1x21, x20) :− A(x1, x2).

40When the automaton has more than one final state, non-empty intersection is equivalent to a
disjunction of queries of the form “?− S(qI , q)” (in the string case) or “?− S(q)” (in the tree case),
one for each final state q. To reduce this to a single query, one can add the rules of the form
“S′ :− S(qI , q)” or “S′ :− S(q)” for all final states q, and use the query “?− S′”.

41This can be seen as follows. Suppose that P ∈ Λ(Σ) is an almost linear closed λ-term such
that |P |β = /c1 . . . cn/ = λz.c1(. . . (cnz) . . . ). Then by Lemma 3.49, P ։β |P |β by non-erasing,

almost non-duplicating β-reduction. But Lemma 3.60 implies that
−−→
Con(P ) is some permutation

(cj1
, . . . , cjn

) of (c1, . . . , cn), and P̂ [zj1
, . . . , zjn

] ։β λz.z1(. . . (znz) . . . ) by non-erasing, almost non-
duplicating β-reduction. However, it is easy to see that the set of non-affine pure λ-terms is closed
under non-erasing almost non-duplicating β-reduction. Since λz.z1(. . . (znz) . . . ) is linear, it follows

that P̂ [zj1
, . . . , zjn

], and hence P , must be linear.
42The notation here follows that of elementary formal systems [72, 4, 28], which are logic pro-

grams on strings.
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This grammar generates the language {wn | n ≥ 1 }, where wn = 1010
2 . . . 10

n. The
third rule involves copying of the variable x2. The translation of this grammar into
a CFLG looks as follows:

S
(
λz.X(λx1x2.x1(x2z))

)
:− A(X).

A
(
λw.w(λz.1z)(λz.0z)

)
.

A
(
λw.X(λx1x2.w(λz.x1(x2(1z)))(λz.x2(0z)))

)
:− A(X).

Here, f(S) = o→ o, and f(A) = ((o→ o)→ (o→ o)→ o)→ o. This grammar is not
almost linear, since the bound variable x2 in the λ-term on the left-hand side of the
third rule must have a non-atomic type in the principal typing of the λ-term.

Here is a grammar that generates a set of trees whose yield image is the language
of the above PMCFG:

S(c(x1, x2)) :− A(x1, x2).

A(1, 0).

A(c(x1, c(x2, 1)), c(x2, 0)) :− A(x1, x2).

Here, c is a symbol of rank 2, and 1 and 0 are symbols of rank 0. A grammar like
this, where a nonterminal denotes a relation on trees and a rule may duplicate trees,
may be called a parallel multiple regular tree grammar, in analogy with a multiple
regular tree grammar [60, 23]. For example, the tree

c(c(1, c(0, 1)), c(0, 0))

is generated by the above tree grammar with the following derivation:

S(c(c(1, c(0, 1)), c(0, 0)))

A(c(1, c(0, 1)), c(0, 0))

A(1, 0)

The yield of this tree is 10100 = w2.
It is straightforward to encode the above tree grammar into an almost linear

CFLG:

S
(
X(λx1x2.cx1x2)

)
:− A(X).

A
(
λw.w10

)
.

A
(
λw.X(λx1x2.w(cx1(cx21))(cx20))

)
:− A(X).
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Here, f(S) = o and f(A) = (o→ o→ o)→ o. This CFLG G translates into the
following Datalog program PG :

S(i1) :− c(i2, i4, i3), A(i1, i2, i4, i3).

A(i1, i1, i3, i2) :− 1(i2), 0(i3).

A(i1, i2, i8, i3) :− c(i3, i5, i4), c(i5, i7, i6), 1(i7), c(i8, i9, i6), 0(i9), A(i1, i2, i6, i4).

The above Datalog program PG can be used to parse input strings with respect
to the original PMCFG. For example, if the input string is 10100, we first form a
deterministic bottom-up tree automaton A that recognizes the set of trees over the
ranked alphabet {1(0), 0

(0), c(2)} whose yield is 10100. The states of this automaton
are of the form qw, where w is one of the non-empty substrings of this string:

0, 1, 00, 01, 10, 010, 100, 101, 0100, 1010, 10100

For each of these strings w and nonempty strings u, v such that w = uv, the au-
tomaton A has the rule

c(qu(x1), qv(x2))→ qw(c(x1, x2)).

which gives rise to the extensional fact

c(qw, qv, qu).

Moreover, for each symbol a occurring in w, the automaton has the rule

a→ qa(a)

which translates into the extensional fact

a(qa).

The database obtained this way is deterministic. In the present case, we get the
database D consisting of the following facts (we write w instead of qw):43

0(0). 1(1).

c(00, 0, 0). c(01, 0, 1). c(10, 1, 0).

43If the PMCFG rules contain occurrences of the empty string ǫ, then the corresponding PMRTG
will have a special rank 0 symbol corresponding to ǫ, and one needs to take all substrings of the
input string, not just non-empty ones, in the construction of the automaton A . The automaton
will then represent the syntactic monoid of the singleton set consisting of the input string.
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c(010, 0, 10). c(010, 01, 0).

c(100, 1, 00). c(100, 10, 0).

c(101, 1, 01). c(101, 10, 1).

c(0100, 0, 100). c(0100, 01, 00). c(0100, 010, 0).

c(1010, 1, 010). c(1010, 10, 10). c(1010, 101, 0).

c(10100, 1, 0100). c(10100, 10, 100). c(10100, 101, 00). c(10100, 1010, 0).

By Theorem 4.3,
PG ∪D ⊢ S(10100) (62)

if and only if G generates (the λ-term representation of) a tree whose yield is 10100.
This is so if and only if the original PMCFG generates this string. Since the rules of
the PMCFG are in one-one correspondence with the rules of G , parsing the string
with this PMCFG reduces to the problem of computing all derivation trees for (62),
in the form of a shared forest.

This reduction generally applies to the yield images of the tree languages that
can be generated by almost linear CFLGs. It is shown in unpublished work [44] that
the class of tree languages generated by almost linear CFLGs coincides with the class
of output languages of tree-valued attribute grammars or attributed tree transducers
(see [11]). As a consequence, the class of yield images of these tree languages is
simply the class of output languages of string-valued attribute grammars, studied by
Engelfriet [22].

Clearly, the deterministic bottom-up tree automaton A (and the corresponding
database) associated with the input string can be constructed in logarithmic space.
Note that all trees accepted by A have the same number of constants, namely 2n−1
for input string of length n.44 This implies that recognition and parsing with these
grammars are in (functional) LOGCFL, matching the result of Engelfriet [22].45

4.2.4 An application to generation from underspecified semantics

Koller et al. [49] have proposed to use a regular tree grammar as an underspecified
representation of various readings of sentences with multiple scope-taking operators.
However, when the operators include variable-binders, a tree is not ideally suited to
represent the scope relation because one needs to associate a variable name to each

44This number assumes that A does not have a special symbol representing the empty string.
45Note that parsing as intersection with these grammars, where the input is a regular set of

strings, can also be represented as Datalog query evaluation. The deterministic bottom-up tree
automaton that determines the database and query can be obtained from the syntactic monoid of
the input regular set.
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S
(
λz.Y (λy1y2.y1(y2z)), X

)
:− NP_VP(Y, X).

NP_VP
(
λw.Y (λy1y2.w(λz.y1z)(λz.didn’t(y2z))), ¬X

)
:− NP_VP(Y, X).

NP_VP
(
λw.w(λz.Y1z)(λz.Y2z), X1(λx.X2x)

)
:− NP(Y1, X1), VP(Y2, X2).

NP_VP
(
λw.Y1(λy1y2.w(λz.y1z)(λz.y2(Y2z))), X2(λx.X1x)

)
:− NP_V(Y1, X1), NP(Y2, X2).

NP_V
(
λw.Y (λy1y2.w(λz.y1z)(λz.didn’t(y2z))), λx.¬(Xx)

)
:− NP_V(Y, X).

NP_V
(
λw.w(λz.Y1z)(λz.Y2z), λy.X1(λx.X2yx)

)
:− NP(Y1, X1), V(Y2, X2).

VP
(
λz.didn’t(Y z), λx.¬(Xx)

)
:− VP(Y, X).

VP
(
λz.Y1(Y2z), λx.X2(λy.X1yx)

)
:− V(Y1, X1), NP(Y2, X2).

NP
(
λz.Y1(Y2z), λv.X1(λx.X2x)(λx.vx)

)
:− Det(Y1, X1), N(Y2, X2).

Det
(
/a/, λuv.∃(λx.∧(ux)(vx))

)
.

Det
(
/every/, λuv.∀(λx.→(ux)(vx))

)
.

Det
(
/no/, λuv.∀(λx.→(ux)(¬(vx)))

)
.

Det
(
/not every/, λuv.¬(∀(λx.→(ux)(vx)))

)
.

N
(
/book/, λx.book x

)
.

N
(
/student/, λx.student x

)
.

V
(
/read/, λyx.read y x

)
.

Figure 13: A synchronous CFLG.

occurrence of a binder to represent the binding relation. These variable names must
be chosen in such a way as to avoid clashes of variables, and some mechanism is
needed to identify α-equivalent representations (i.e., representations that differ only
in renaming of bound variables).

A compact representation of a set of λ-terms, rather than trees, will improve
upon Koller et al.’s [49] approach. We can use a deterministic database D over a
database schema DΣ,U associated with a higher-order signature Σ as a representation
of a set of λ-terms over Σ. If the syntax-semantics is given as a “synchronous” CFLG
whose semantics side is an almost linear CFLG G , then Theorem 4.3 tells us that
D can serve as an “underspecified” input to surface realization.

For example, the synchronous CFLG in Figure 13 generates every student didn’t

read a book with six possible readings:

∀(λx.→(student x)(¬(∃(λy.∧(book y)(read y x)))))

∀(λx.→(student x)(∃(λy.∧(book y)(¬(read y x)))))

¬(∀(λx.→(student x)(∃(λy.∧(book y)(read y x)))))

¬(∃(λy.∧(book y)(∀(λx.→(student x)(read y x)))))

∃(λy.∧(book y)(∀(λx.→(student x)(¬(read y x)))))
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∃(λy.∧(book y)(¬(∀(λx.→(student x)(read y x)))))

The set of these λ-terms can be represented by the following database:

student(s, x). book(b, y). read(r, x, y).

¬(¬, r). ¬(∃¬, ∃). ¬(∀¬, ∀). ¬(∀∃¬, ∀∃).

∧(∧, r, b). ∧(∧¬, ¬, b). ∧(∧∀, ∀, b). ∧(∧∀¬, ∀¬, b).

∃(∃, ∧, y). ∃(∃¬, ∧¬, y). ∃(∀∃, ∧∀, y). ∃(∀∃¬, ∧∃¬, y).

→(→, r, s). →(→¬, ¬, s). →(→∃, ∃, s). →(→∃¬, ∃¬, s).

∀(∀, →, x). ∀(∀¬, →¬, x). ∀(∀∃, →∃, x). ∀(∀∃¬, →∃¬, x).

In this database (call it D), we use mnemonic names like ∀∃¬, instead of integers,
as database constants. For instance, λ-terms in Λ(D, ∀∃) contain ∀ and ∃, but not
¬. A database like this can be thought of as a hypergraph that can be obtained
from the disjoint union of the hypergraphs corresponding to the above six almost
linear λ-terms by identifying certain nodes and hyperedges. It is easy to check
that this database is deterministic; it can then be used together with the Datalog
program associated with the semantic side of the synchronous grammar in Figure 13
to obtain a shared parse forest of all derivation trees of sentences that have at least
one reading in common with the sentence every student didn’t read a book—namely,
no student read a book, not every student read a book, and the same sentence itself.
This procedure is more efficient than the brute-force method, where each reading of
the sentence is input to a surface realization routine in turn.46

4.3 Magic sets and Earley-style algorithms

The magic-sets rewriting of a Datalog program allows bottom-up evaluation to avoid
deriving useless facts by mimicking top-down evaluation of the original program. The
result of the generalized supplementary magic-sets rewriting of Beeri and Ramakr-
ishnan [8] applied to the Datalog program representing a CFG essentially coincides
with the deduction system [69] or uninstantiated parsing system [70] for Earley pars-
ing [20]. By applying the same rewriting method to Datalog programs representing
almost linear CFLGs, we can obtain efficient parsing and generation algorithms for
various grammar formalisms with context-free derivations.

46There is the question of how a deterministic database representing the range of possible readings
of a sentence can be found, if one exists. In the case at hand, there is a way of constructing the
desired database from the shared parse forest of the sentence by duplicating certain nodes (namely,
the NP nodes and the Det nodes). However, it is easy to see that no such deterministic database
may exist in general. It is an open question when and how a desired database can be constructed
efficiently.
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We illustrate this approach with the program in (6), repeated below, following the
presentation of Ullman [77, 78]. We assume the query to take the form “?−S(0, x).”,
so that the input database can be processed incrementally.

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i2, i1, i2).

(6)

The program is first made safe by eliminating the rule with empty right-hand side:

S(i1, i3) :− A(i1, i3, i2, i2).
A(i1, i8, i4, i5) :− a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i8, i4, i5) :− a(i1, i2), b(i2, i4), c(i5, i6), d(i6, i8).

The subgoal rectification removes duplicate arguments from subgoals, creating new
predicates as needed:

S(i1, i3) :− B(i1, i3, i2).
A(i1, i8, i4, i5) :−, a(i1, i2), b(i3, i4), c(i5, i6), d(i7, i8), A(i2, i7, i3, i6).
A(i1, i8, i4, i5) :− a(i1, i2), b(i2, i4), c(i5, i6), d(i6, i8).
B(i1, i8, i4) :−, a(i1, i2), b(i3, i4), c(i4, i6), d(i7, i8), A(i2, i7, i3, i6).
B(i1, i8, i4) :− a(i1, i2), b(i2, i4), c(i4, i6), d(i6, i8).

We then attach to predicates adornments indicating the free/bound status of argu-
ments in top-down evaluation, reordering subgoals so that as many arguments as
possible are marked as bound:

Sbf(i1, i3) :− Bbff(i1, i3, i2).
Bbff(i1, i8, i4) :− a

bf(i1, i2), Abfff(i2, i7, i3, i6), b
bf(i3, i4), c

bb(i4, i6),
d

bf(i7, i8).
Bbff(i1, i8, i4) :− a

bf(i1, i2), b
bf(i2, i4), c

bf(i4, i6), d
bf(i6, i8).

Abfff(i1, i8, i4, i5) :− a
bf(i1, i2), Abfff(i2, i7, i3, i6), b

bf(i3, i4), c
bb(i5, i6),

d
bf(i7, i8).

Abfff(i1, i8, i4, i5) :− a
bf(i1, i2), b

bf(i2, i4), c
ff(i5, i6), d

bf(i6, i8).

The generalized supplementary magic-sets rewriting finally gives the following rule
set:

r1 : m_B(i1) :− m_S(i1).

r2 : S(i1, i3) :− m_B(i1), B(i1, i3, i2).

r3 : sup2.1(i1, i2) :− m_B(i1), a(i1, i2).
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r4 : sup2.2(i1, i7, i3, i6) :− sup2.1(i1, i2), A(i2, i7, i3, i6).

r5 : sup2.3(i1, i7, i6, i4) :− sup2.2(i1, i7, i3, i6), b(i3, i4).

r6 : sup2.4(i1, i7, i4) :− sup2.3(i1, i7, i6, i4), c(i4, i6).

r7 : B(i1, i8, i4) :− sup2.4(i1, i7, i4), d(i7, i8).

r8 : sup3.1(i1, i2) :− m_B(i1), a(i1, i2).

r9 : sup3.2(i1, i4) :− sup3.1(i1, i2), b(i2, i4).

r10 : sup3.3(i1, i4, i6) :− sup3.2(i1, i4), c(i4, i6).

r11 : B(i1, i8, i4) :− sup3.3(i1, i4, i6), d(i6, i8).

r12 : m_A(i2) :− sup2.1(i1, i2).

r13 : m_A(i2) :− sup4.1(i1, i2).

r14 : sup4.1(i1, i2) :− m_A(i1), a(i1, i2).

r15 : sup4.2(i1, i7, i3, i6) :− sup4.1(i1, i2), A(i2, i7, i3, i6).

r16 : sup4.3(i1, i7, i6, i4) :− sup4.2(i1, i7, i3, i6), b(i3, i4).

r17 : sup4.4(i1, i7, i4, i5) :− sup4.3(i1, i7, i6, i4), c(i5, i6).

r18 : A(i1, i8, i4, i5) :− sup4.4(i1, i7, i4, i5), d(i7, i8).

r19 : sup5.1(i1, i2) :− m_A(i1), a(i1, i2).

r20 : sup5.2(i1, i4) :− sup5.1(i1, i2), b(i2, i4).

r21 : sup5.3(i1, i4, i5, i6) :− sup5.2(i1, i4), c(i5, i6).

r22 : A(i1, i8, i4, i5) :− sup5.3(i1, i4, i5, i6), d(i6, i8).

The following is a version of the seminaive bottom-up evaluation algorithm ex-
pressed in the form of chart parsing:

1. (init) Initialize the chart to the empty set, the agenda to the singleton
{m_S(0)}, and n to 0.

2. Repeat the following steps:

(a) Repeat the following steps until the agenda is exhausted:

i. Remove a fact from the agenda, called the trigger.

ii. Add the trigger to the chart.

iii. Generate all facts that are immediate consequences of the trigger
together with all facts in the chart, and add to the agenda those gen-
erated facts that are neither already in the chart nor in the agenda.
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(b) (scan) Remove the next fact from the input database and add it to the
agenda, incrementing n. If there is no more fact in the input database,
go to step 3.

3. If S(0, n) is in the chart, accept; otherwise reject.

The following is the trace of the algorithm on input string aabbccdd; the derived
facts are recorded in the order they enter the agenda:

1. m_S(0) init

2. m_B(0) r1, 1
3. a(0, 1) scan

4. sup2.1(0, 1) r3, 2, 3
5. sup3.1(0, 1) r8, 2, 3
6. m_A(1) r12, 4
7. a(1, 2) scan

8. sup4.1(1, 2) r14, 6, 7
9. sup5.1(1, 2) r19, 6, 7

10. m_A(2) r13, 8
11. b(2, 3) scan

12. sup5.2(1, 3) r20, 9, 11
13. b(3, 4) scan

14. c(4, 5) scan

15. sup5.3(1, 3, 4, 5) r21, 12, 14
16. c(5, 6) scan

17. sup5.3(1, 3, 5, 6) r21, 12, 16
18. d(6, 7) scan

19. A(1, 7, 3, 5) r22, 17, 18
20. sup2.2(0, 7, 3, 5) r4, 4, 19
21. sup2.3(0, 7, 5, 4) r5, 20, 13
22. sup2.4(0, 7, 4) r6, 21, 14
23. d(7, 8) scan

24. B(0, 8, 4) r7, 22, 23
25. S(0, 8) r2, 2, 24

Note that unlike previous Earley-style parsing algorithms for TAGs, the present
algorithm is an instantiation of a general schema that applies to parsing with more
powerful grammar formalisms as well as to generation with Montague semantics.47

5 Conclusion

This paper has shown that recognition and parsing for a wide range of grammars
with “context-free” derivations, as well as surface realization (tactical generation)
for those grammars coupled with a certain restricted kind of Montague semantics, all
reduce to Datalog query evaluation and hence allow highly efficient algorithms. The
method of reduction is uniform for both recognition/parsing and surface realization,
and the complexity upper bound that has been established, namely, LOGCFL, is

47The above Earley-style recognition algorithm for tree-adjoining languages does not have the
correct prefix property, a desirable feature for Earley-style algorithms for string grammars. See [43]
for how to supplement magic-sets rewriting with another simple rewriting to achieve the correct
prefix property.
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tight. By regarding the problem of surface realization as the problem of recogni-
tion/parsing of languages of λ-terms, this paper has demonstrated that it is possible
to study surface realization abstractly in the style of formal language theory, just like
parsing. I hope that the methods employed here help pave the way for eliminating
much of the ad hoc methodology that is so common in computational linguistics.
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