
Distributional Learning and
Context/Substructure Enumerability in

Nonlinear Tree Grammars

Makoto Kanazawa1 and Ryo Yoshinaka2

1 National Institute of Informatics and SOKENDAI
2 Graduate University of Informatics, Kyoto University

Abstract. We study tree-generating almost linear second-order ACGs
that admit bounded nonlinearity either on the context side or on the
substructure side, and give distributional learning algorithms for them.

1 Introduction

Originally developed for efficient learning of context-free languages [3, 13], the
method of distributional learning under the paradigm of identification in the
limit from positive data and membership queries has been successfully applied to
a number of more complex grammatical formalisms that derive objects (strings,
trees, λ-terms, etc.) through local sets of derivation trees [9, 12, 14]. In these
formalisms, a subtree s of a complete derivation tree t = c[s] contributes a
certain “substructure” S = φ(s) which is contained in the whole derived object
T = φ(t), and the remaining part c[] of the derivation tree contributes a function
C = φ(c[]) that maps S to T = C(S). We can think of C as a “context” that
surrounds S in T . Fixing a class G of grammars fixes the set S of possible
substructures and the set C of possible contexts that may be contributed by
parts of possible derivation trees. Each language L generated by a grammar in
G acts as an arbiter that decides which context C ∈ C should “accept” which
substructure S ∈ S (i.e., whether C(S) ∈ L).

Distributional learning algorithms come in two broad varieties. In the primal
approach, the learner first extracts all substructures and all contexts that are
contained in the input data, which is a finite set of elements of the target language
L∗. The learner then collects all subsets of the extracted substructures whose
cardinality does not exceed a certain fixed bound m. These subsets are used as
nonterminal symbols of the hypothesized grammar. Out of all possible grammar
rules that can be written using these nonterminals, the learner lists those that
use operations that may be involved in the generation of the objects in the
input data. In the final step of the algorithm, the learner tries to validate each
of these rules with the membership oracle, which answers a query “C(S) ∈ L∗?”
in constant time. If a rule has a set S of substructures on the left-hand side and
sets S1, . . . ,Sr on the right-hand side, and the grammatical operation associated
with the rule is f , then the learner determines whether the following implication

holds for all contexts C extracted from the input data:

C(S) ∈ L∗ for all S ∈ S implies

C(f(S1, . . . , Sn)) ∈ L∗ for all S1 ∈ S1, . . . , Sn ∈ Sn. (1)

The grammar conjectured by the learner includes only those rules that pass this
test.

The idea of the rule validation is the following: It is dictated that the elements
of the nonterminal S together characterize the set of all substructures that can
be derived from S by the hypothesized grammar in the sense that every context
C ∈ C that accepts all elements of S must accept all substructures derived from
S. Thus, only those rules that are consistent with this requirement are allowed
in the hypothesized grammar. A remarkable property of the algorithm is that it
successfully learns the language of every grammar in the given class G that has
the m-finite kernel property in the sense that each nonterminal is characterized
by a set of substructures of cardinality up to m.

In the dual approach to distributional learning, the role of contexts and sub-
structures is switched. The learner uses as nonterminals subsets of the contexts
extracted from the input data with cardinality ≤ m, and uses the extracted
substructures to validate candidate rules. The algorithm learns those languages
that have a grammar with the m-finite context property in the sense that each
nonterminal is characterized by a set of contexts of cardinality ≤ m.

Whether each of these algorithms runs in polynomial time in the size of the
input data D depends on several factors that are all determined by the grammar
class G. The foremost among them is the enumeration of the two sets

S|D = {S ∈ S | C(S) ∈ D for some C ∈ C },
C|D = {C ∈ C | C(S) ∈ D for some S ∈ S }.

There are two possible difficulties in enumerating each of these sets in polynomial
time. First, the sheer number of elements of the set may be super-polynomial,
in which case explicit enumeration of the set is not possible in polynomial time.
Second, recognizing which substructure/context belongs to the set may be com-
putationally costly. The second problem, even when it arises, can often be dealt
with by replacing the set in question by a more easily recognizable superset
without disrupting the working of the algorithm. The first problem is the more
pressing one.

With all linear grammar formalisms to which distributional learning has been
applied, neither of these two difficulties arise. When these formalisms are ex-
tended to allow nonlinearity in grammatical operations, however, the problem of
super-polynomial cardinality hits hard. Thus, with parallel multiple context-free
grammars, the nonlinear extension of multiple context-free grammars (success-
fully dealt with in [12]), the set C becomes a much larger set, even though S
stays exactly the same. As a result, the cardinality of C|D is no longer bounded
by a polynomial. The situation with IO context-free grammars, the nonlinear ex-
tension of the simple context-free tree grammars (treated in [9]), is even worse.
Both of the sets S|D and C|D become super-polynomial in cardinality.

When only one of the two sets S|D and C|D is of super-polynomial cardinality,
as is the case with PMCFGs, however, there is a way out of this plight [4]. The
solution is to restrict the offending set by a certain property, parametrized by
a natural number, so that its cardinality will be polynomial. The parametrized
restriction leads to an increasing chain of subsets inside S or C. In the case of
PMCFGs, we get C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C =

⋃
k Ck, where Ck is the set of

all possible contexts that satisfy the property with respect to the parameter k.
The actual property used by [4] was a measure of nonlinearity of the context
(“k-copying”), but this specific choice is not crucial for the correct working of
the algorithm, as long as Ck|D can be enumerated in polynomial time. The
learning algorithm now has two parameters, m and k: the former is a bound
on the cardinality of sets of contexts the learner uses as nonterminals as before,
and the latter is a restriction on the kind of context allowed in these sets. The
class of languages successfully learned by the algorithm includes the languages
of all grammars in the target class that have the (k,m)-finite context-property in
the sense that each nonterminal is characterized by a subset of Ck of cardinality
≤ m.

This algorithm does not learn the class of all grammars with the m-finite
context property, but a proper subset of it. Nevertheless, the parametrized re-
striction has a certain sense of naturalness, and the resulting learnable class
properly extends the corresponding linear class, so the weaker result is interest-
ing in its own right.

In this paper, we explore the connection between distributional learning
and context/substructure enumerability in the general setting of almost linear
second-order abstract categorial grammars generating trees [5–7] (“almost lin-
ear ACGs” for short). This class of grammars properly extends IO context-free
tree grammars and is equivalent in tree generating power to tree-valued attribute
grammars [1]. In fact, the expressive power of typed lambda calculus makes it
possible to faithfully encode most known tree grammars within almost linear
ACGs.

Like IO context-free tree grammars and unlike PMCFGs, almost linear ACGs
in general do not allow polynomial-time enumerability either on the context side
or on the substructure side. Only very special grammars do, and an interesting
subclass of them consists of those grammars that allow only a bounded degree
of nonlinearity in the contexts (or in the substructures). It is easily decidable
whether a given ACG satisfies each of these properties. We show that both of
the resulting classes of grammars indeed allow a kind of efficient distributional
learning similar to that for PMCFGs.

2 Typed Lambda Terms and Almost Linear ACGs

2.1 Types and Typed Lambda Terms

We assume familiarity with the notion of a simply typed λ-term (à la Church)
over a higher-order signature Σ = (AΣ , CΣ , τΣ), where AΣ is the set of atomic

types, CΣ is the set of constants, and τΣ is a function from CΣ to types over AΣ .
We use standard abbreviations: α1→· · ·→αn→p means α1→(· · ·→(αn→p) . . .),
and λxα1

1 . . . xαnn .MN1 . . . Nm is short for λxα1
1λxαnn .((. . . (MN1) . . .)Nm).

The arity of α = α1 → · · · → αn → p with p ∈ AΣ is arity(α) = n. We write
βn→ p for the type β→ · · · → β→ p of arity n.

We take for granted such notions as β- and η-reduction, β-normal form, and
linear λ-terms. We write �β and �η for the relations of β- and η-reduction be-
tween λ-terms. Every typed λ-term has a β-normal form, unique up to renaming
of bound variables, which we write as |M |β .

The set LNFαX(Σ) of λ-terms of type α in η-long β-normal form (with free
variables from X) is defined inductively as follows:

– If xα1→···→αn→p ∈ X, M1 ∈ LNFα1

X (Σ), . . . ,Mn ∈ LNFαnX (Σ), and p ∈ AΣ ,
then xα1→···→αn→pM1 . . .Mn ∈ LNFpX(Σ).

– If c ∈ CΣ , τΣ(c) = α1→ · · · → αn→ p, p ∈ AΣ , and M1 ∈ LNFα1

X (Σ), . . . ,
Mn ∈ LNFαnX (Σ), then cM1 . . .Mn ∈ LNFpX(Σ).

– If M ∈ LNFβX∪{xα}(Σ), then λxα.M ∈ LNFα→βX (Σ).

We often suppress the superscript and/or subscript in LNFαX(Σ). Note that
LNFα∅(Σ) denotes the set of closed λ-terms of type α in η-long β-normal form.

We note that if M ∈ LNFα→β(Σ) and N ∈ LNFα(Σ), then |MN |β ∈ LNFα(Σ).
Henceforth, we often suppress the type superscript on variables. This is just

for brevity; each variable in a typed λ-term comes with a fixed type.
We use strings over {0, 1} to refer to positions inside a λ-term or a type. We

write ε for the empty string, and write u ≤ v to mean u is a prefix of v. When
u = u′0i, we refer to u′ as u0−i.

The shape of a type α, written [α], is defined by

[p] = {ε} if p is atomic, [α→ β] = {ε} ∪ { 1u | u ∈ [α] } ∪ { 0u | u ∈ [β] }.

The elements of [α] are the positions of α. A position u is positive if its parity
(i.e., the number of 1s in u modulo 2) is 0, and negative if its parity is 1. We write
[α]+ and [α]− for the set of positive and negative positions of α, respectively.
A position u of α is a subpremise if u = u′1 for some u′. Such an occurrence is
a positive (resp. negative) subpremise if it is positive (resp. negative). We write
[α]+sp (resp. [α]−sp) for the set of positive (resp. negative) subpremises of [α].

If u ∈ [α], the subtype of α occurring at u, written α/u, is defined by

α/ε = α, (α→ β)/0u = β/u, (α→ β)/1u = α/u.

If α/u = β, we say that β occurs at position u in α.
Given a λ-term M , the shape of M , written [M], is defined by

[M] = {ε} if M is a variable or a constant,

[MN] = {ε} ∪ { 0u | u ∈ [M] } ∪ { 1u | u ∈ [N] },
[λx.M] = {ε} ∪ { 0u | u ∈ [M] }.

The elements of [M] are the positions of M .
If u ∈ [M], the subterm of M occurring at u, written M/u, is defined by

M/ε = M, (MN)/0u = M/u, (MN)/1u = N/u, (λx.M)/0u = M/u.

When N = M/u, we sometimes call u an occurrence of N (in M).
When v ∈ [M] but v0 6∈ [M], M/v is a variable or a constant. For each

u ∈ [M], we refer to the unique occurrence of a variable or constant in [M]
of the form u0k as the head of u (in M); we also call the variable or constant
occurring at the head of u the head of M/u.

A position v ∈ [M] binds a position u ∈ [M] if M/u is a variable x and v is
the longest prefix of u such that M/v is a λ-abstract of the form λx.N . When v
binds u in M , we write v = bM (u). When every occurrence in M of a λ-abstract
is the binder of some position, M is called a λI-term.

Let M ∈ LNFα∅(Σ). Note that an occurrence v ∈ [M] of a variable or a
constant of type β with arity(β) = n is always accompanied by n arguments, so
that v0−i is defined for all i ≤ n. The set of replaceable occurrences [2] of bound
variables in M and the negative subpremise nspM (u) of α associated with such
an occurrence u, are defined as follows:3

(i) If bM (u) = 0j−1 for some j ≥ 1 (i.e., bM (u) is the jth of the leading λs of
M), then u is replaceable and nspM (u) = 0j−11.

(ii) If bM (u) = v0−i10j−1 for some replaceable v and i, j ≥ 1 (i.e., bM (u) is the
jth of the leading λs of the ith argument of v), then u is replaceable and
nspM (u) = nspM (v)0i−110j−11.

It is easy to see that the following conditions always hold:

– If u is a replaceable occurrence of a bound variable xβ , then β = α/nspM (u).
– If M is a λI-term (in addition to belonging to LNFα∅(Σ)), then for every
v ∈ [α]−sp, there exists a u ∈ [M] such that nspM (u) = v.

Example 1. Let

M = λyo1y
o→(o→(o→o)→o)→o
2 .y2(fy1a)(λyo3y

o→o
4 .f(y4(fy3y1))(y4(fy3y1))).

Then M ∈ LNFα∅(∆), where ∆ contains constants f, a of type o→ o→ o and o,
respectively, and

α =
1
o→ (o→ (

01011
o → (o→ o︸ ︷︷ ︸

010101

)→ o︸ ︷︷ ︸
0101

)→ o

︸ ︷︷ ︸
01

)→ o.

3 A definition equivalent to nspM (u) for untyped λ-terms is in [2] (access path). The
correspondence between these paths and negative subpremises for typed linear λ-
terms is in [10].

– The bound variable yo1 occurs in M at three positions, 000101, 001000111,
00100111, whose binder is ε. These positions are associated with the negative
subpremise 1 in α.

– The bound variable y
o→(o→(o→o)→o)→o
2 occurs in M at one position, 0000,

whose binder is 0. This position is associated with the subpremise 01 in α.
– The bound variable yo3 occurs in M at two positions, 0010001101 and

001001101, whose binder is 001. These positions are associated with the
negative subpremise 0101.

– The bound variable yo→o4 occurs in M at two positions, 00100010 and
0010010, whose binder is 0010. These positions are associated with the neg-
ative subpremise 010101.

2.2 Almost Linear Lambda Terms over a Tree Signature

Now we are going to assume that ∆ is a tree signature; i.e., every constant of
∆ is of type or→ o for some r ≥ 0, where o is the only atomic type of ∆. For a
closed M ∈ LNFα∅(∆), every occurrence of a bound variable in M is replaceable.

A tree is an element of LNFo∅(∆). A closed λ-term M ∈ LNFo
r→o

∅ (∆) is
called a tree context. We say that a tree context M = λx1 . . . xr.N matches a
tree T if there are trees T1, . . . , Tr such that (λx1 . . . xr.N)T1 . . . Tr �β T . We
say that M is contained in T if it matches a subtree of T .

The notion of an almost linear λ-term was introduced by Kanazawa [5, 7].
Briefly, a closed typed λ-term is almost linear if every occurrence of a λ-abstract
λxα.N in it binds a unique occurrence of xα, unless α is atomic, in which case
it may bind more than one occurrence of xα. Almost linear λ-terms share many
of the properties of linear λ-terms; see [5–8] for details.

Almost linear λ-terms are typically not β-normal. For instance,
λyo→o.(λxo.fxx)(yc), where f and c are constants of type o→ o→ o and o,
respectively, is almost linear, but its β-normal form, λyo→o.f(yc)(yc), is not. In
this paper, we choose to deal with the η-long β-normal forms of almost linear
λ-terms directly, rather than through their almost linear β-expanded forms.

We write ALα(∆) for the set of closed λ-terms in LNFα∅(∆) that β-expand
to an almost linear λ-term. (The superscript is often omitted.) The following
lemma, which we do not prove here, may be taken as the definition of ALα(∆)
(see [7, 8] for relevant properties of almost linear λ-terms):

Lemma 1. Let M be a closed λI-term in LNFα∅(∆). Then M ∈ ALα(∆) if and
only if the following conditions hold for all bound variable occurrences u, v ∈ [M]
such that nspM (u) = nspM (v), where n = arity(α/nspM (u)):

(i) {w | u0−nw ∈ [M] } = {w | v0−nw ∈ [M] }.
(ii) If M/u0−nw is a constant, then M/u0−nw = M/v0−nw.

(iii) If M/u0−nw is a variable, then M/v0−nw is also a variable and
nspM (u0−nw) = nspM (v0−nw).

We call M ∈ ALα(∆) a canonical writing if for all bound variable occurrences
u, v of M , nspM (u) = nspM (v) implies M/u = M/v and vice versa. For example,

λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo1 .z1))(y1(λzo1 .z1))(y2(λzo2 .z2)) is a canonical writing,

whereas neither λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo1 .z1))(y1(λzo2 .z2))(y2(λzo3 .z3)) nor

λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo1 .z1))(y1(λzo1 .z1))(y2(λzo1 .z1)) is.

Lemma 2. For every M ∈ ALα(∆), there exists a canonical writing M ′ ∈
ALα(∆) such that M ′ ≡α M .

A pure λ-term is a λ-term that contains no constant. We write ALα for the
subset of ALα(∆) consisting of pure λ-terms. An important property of ALα(∆)
that we heavily rely on in what follows is that every M ∈ ALα(∆) can be
expressed in a unique way as an application M◦M•1 . . .M

•
l of a pure λ-term M◦

to a list of tree contexts M•1 , . . . ,M
•
l . We call the former the container of M and

the latter its stored tree contexts. These λ-terms satisfy the following conditions:

1. l ≤ |[α]+sp|+ 1,

2. M•i ∈ ALo
ri→o(∆) for some ri ≤ |[α]−sp| for each i = 1, . . . , l,

3. M◦ ∈ AL(or1→o)→···→(orl→o)→α,

4. M◦M•1 . . .M
•
l �β M .

The formal definition of this separation of M ∈ ALα(∆) into its container and
stored tree contexts is rather complex, but the intuitive idea is quite simple. The
stored tree contexts of M are the maximal tree contexts that can be discerned
in the input λ-term.

Example 2. Consider the λ-term M of type α = o→(o→(o→(o→o)→o)→o)→o
in Example 1. This λ-term belongs to ALα(∆). Its container and stored tree
contexts are:

M◦ = λzo→o1 zo→o2 zo→o→o3 yo1y
o→(o→(o→o)→o)→o
2 .y2(z1y1)(λyo3y

o→o
4 .z2(y4(z3y3y1)),

M•1 = λx1.fx1a, M•2 = λx1.fx1x1, M•3 = λx1x2.fx1x2.

Here is the formal definition. Let M ∈ ALα(∆). We assume that M is canon-
ical. Then |[α]−sp| is exactly the number of distinct bound variables in M . Let
s1, . . . , sk list the elements of [α]−sp in lexicographic order. Let y1, . . . , yk be the
corresponding list of bound variables in M , and let ni = arity(α/si) for each
i = 1, . . . , k. Note that

k∑
i=1

ni ≤ |[α]+sp|.

The canonicity of M implies that every occurrence of yi in M is accompanied by
the exact same list of arguments Ni,1, . . . , Ni,ni . The type of Ni,j is α/si0

j−11.

Let x1, . . . , xk be fresh variables of type o. For each subterm N of M of type
o, define NN by

(cT1 . . . Tn)N = cTN
1 . . . T

N
n , (yiNi,1 . . . Ni,ni)

N = xi.

Let M ′ be the maximal subterm of M of atomic type; in other words, M ′

is the result of stripping M of its leading λs. Likewise, let N ′i,j be the maximal
subterm of Ni,j of atomic type. Let (M1, . . . ,Ml) be the sublist of

(M ′, N ′1,1, . . . , N
′
1,n1

, . . . , N ′k,1, . . . , N
′
k,nk

)

consisting of the λ-terms whose head is a constant. (This list will contain dupli-
cates if there exist i1, j1, i2, j2 such that (i1, j1) 6= (i2, j2), N ′i1,j1 = N ′i2,j2 , and
the head of this λ-term is a constant.) For each i = 1, . . . , l, let xmi,1 , . . . , xmi,ri
list the variables in MN

i , in the order of their first appearances in MN
i . Define

M•i = λxmi,1 . . . xmi,ri .M
N
i ,
−→
M• = (M•1 , . . . ,M

•
l).

These are the stored tree contexts of M .
In order to define the container M◦, we first define NM by induction for each

subterm N of M that is either (i) some Mi, (ii) a λ-term of atomic type whose
head is a variable, or (iii) a λ-abstract. Let z1, . . . , zl be fresh variables of type
or1 → o, . . . , orl → o, respectively.4

MM
i = zi(ymi,1Nmi,1,1 . . . Nmi,1,nmi,1)M . . . (ymi,riNmi,ri ,1 . . . Nmi,ri ,nmi,ri

)M,

(yiNi,1 . . . Ni,ni)
M = yiN

M
i,1 . . . N

M
i,ni ,

(λyi.N)M = λyi.N
M.

Finally, define
M◦ = λz1 . . . zl.M

M.

Lemma 3. M◦,
−→
M• satisfy the required conditions.

Lemma 4. Let N ∈ ALα1→···→αn→β(∆),Mi ∈ ALαi(∆) (i = 1, . . . , n), and
P = |NM1 . . .Mn|β ∈ ALβ(∆). Suppose

−→
M•i = ((Mi)

•
1, . . . , (Mi)

•
li

), (Mi)
•
j ∈ ALo

ri,j→o(∆),
−→
P • = (P •1 , . . . , P

•
m).

For i = 1, . . . , n and j = 1, . . . , li, let ci,j be a fresh constant of type ori,j → o.
Let ∆′ be the tree signature that extends ∆ with the ci,j, and let

Q = |N((M1)
◦
c1,1 . . . c1,l1) . . . ((Mn)

◦
cn,1 . . . cn,ln)|β .

We can compute the container and stored tree contexts of Q ∈ ALβ(∆′) with
respect to ∆′. Then we have

P ◦ = Q◦, P •i = |(Q•i)[ci,j := (Mi)
•
j]|β ,

where [ci,j := (Mi)
•
j] denotes the substitution of (Mi)

•
j for each ci,j.

4 When Mi = Mj for some distinct i, j, the definition of MM
i in fact depends on the

subscript i.

Definition 1. Let M ∈ ALα(∆).

(i) The unlimited profile of M is prof∞(M) = (M◦, w1, . . . , wl), where l is the

length of
−→
M• = (M•1 , . . . ,M

•
l) and for each i, wi is the ri-tuple of positive

integers whose jth component is the number of occurrences of the jth bound
variable in M•i .

(ii) For k ≥ 1, the k-threshold profile of M , written profk(M), is just like its
unlimited profile except that any number greater than k is replaced by ∞.

The type of the (unlimited or k-threshold) profile of M is α.

Example 3. The unlimited profile of the λ-term M from Example 1 is prof(M) =
(M◦, (1), (2), (1, 1)). Its 1-threshold profile is prof1(M) = (M◦, (1), (∞), (1, 1)),
and its k-threshold profile for k ≥ 2 is the same as its unlimited profile.

Lemma 5. For each k ≥ 1 and type α, there are only finitely many k-threshold
profiles of type α.

We say that a k-threshold profile (M◦, w1, . . . , wl) is k-bounded if wi ∈
{1, . . . , k}ri for i = 1, . . . , l. A λ-term M ∈ AL(∆) that has a k-bounded profile
is called k-bounded. We write ALαk (∆) for the set of all k-bounded λ-terms in
ALα(∆).

Note that M ∈ AL(∆) is linear if and only if it is 1-bounded and has a linear
container.

Lemma 6. Let N ∈ ALα1→···→αn→β(∆), and Mi,M
′
i ∈ ALαi(∆) for each i =

1, . . . , n. Suppose that for each i = 1, . . . , n, profk(Mi) = profk(M ′i). Then
profk(|NM1 . . .Mn|β) = profk(|NM ′1 . . .M ′n|β).

The above lemma justifies the notation Nπ1 . . . πn for profk(|NM1 . . .Mn|β)
with profk(Mi) = πi, when k is understood from context. When N =
λx1 . . . xn.Q, we may also write Q[x1 := π1, . . . , xn := πn] for Nπ1 . . . πn. In
this way, we can freely write profiles in expressions that look like λ-terms, like
λx.π1(Mxπ2).

Lemma 7. Given a λ-term N ∈ ALα1→···→αn→β(∆) and k-threshold profiles
π1, . . . , πn of type α1, . . . , αn, respectively, the k-threshold profile Nπ1 . . . πn can
be computed in polynomial time.

In what follows, we often speak of “profiles” to mean k-threshold profiles,
letting the context determine the value of k.

2.3 Almost Linear Second-Order ACGs on Trees

A (tree-generating) almost linear second-order ACG G = (Σ,∆,H,I) con-
sists of a second-order signature Σ (abstract vocabulary), a tree signature
∆ (object vocabulary), a set I ⊆ AΣ of distinguished types, and a higher-
order homomorphism H that maps each atomic type p ∈ AΣ to a type
H(p) over A∆ and each constant c ∈ CΣ to its object realization H(c) ∈

ALH(τ∆(c))(∆). It is required that the image of I under H is {o}. That
Σ is second-order means that for every c ∈ CΣ , its type τΣ(c) is of the
form p1 → · · · → pn → q; thus, any λ-term in LNFp∅(Σ) for p ∈ AΣ has
the form of a tree. A closed abstract term P ∈ LNFα∅(Σ) is homomor-

phically mapped by H to its object realization |H(P)|β ∈ ALH(α)(∆). For
p ∈ AΣ , we write S(G , p) for { |H(P)|β | P ∈ LNFp∅(Σ) } and C(G , p) for
{ |H(Q)|β | Q is a closed linear λ-term in LNFp→s∅ (Σ) for some s ∈ I }. The el-
ements of these sets are substructures and contexts of G , respectively. The tree
language generated by G is O(G) =

⋃
s∈I S(G , s).

An abstract constant c ∈ CΣ together with its type τ(c) and its object
realization H(c) corresponds to a rule in more traditional grammar formalisms.
An abstract atomic type p ∈ AΣ corresponds to a nonterminal. We say that G
is rule-k-bounded if H(c) is k-bounded for every abstract constant c ∈ CΣ .

Definition 2. Let G = (Σ,∆,H,I) be a tree-generating almost linear second-
order ACG.

(i) We say that G is substructure-k-bounded if S(G , p) ⊆ AL
H(p)
k (∆) for all

atomic types p ∈ AΣ .

(ii) We say that G is context-k-bounded if C(G , p) ⊆ AL
H(p)→o
k (∆) for all atomic

types p ∈ AΣ .

The set of possible k-threshold profiles of elements of S(G , p) or C(G , p) can
easily be computed thanks to Lemmas 5 and 6, so substructure-k-boundedness
and context-k-boundedness are both decidable properties of almost linear
second-order ACGs. Conversely, one can design a substructure-k-bounded al-
most linear ACG by first assigning to each p ∈ AΣ a possible profile set Πp

consisting of profiles of type H(p); then, as the realization H(c) of a constant

c of type p1 → · · · → pn → q, we admit only λ-terms in AL
H(p1→···→pn→q)
k (∆)

that satisfy

H(c)Πp1 . . . Πpn ⊆ Πq , (2)

where MΠ1 . . . Πn = {Mπ1 . . . πn | πi ∈ Πi (i = 1, . . . , n) }. To construct a
context-k-bounded almost linear ACG, we need to assign a possible context
profile set Ξp in addition to Πp to each p ∈ AΣ . The realization H(c) must
satisfy

λx.Ξq(H(c)Πp1 . . . Πpi−1xΠpi+1 . . . Πpn) ⊆ Ξpi (3)

for all i = 1, . . . , n, in addition to (2). Note that (2) and (3) are “local” properties
of rules of ACGs. Instead of Definition 2, one may take this local constraint as
a definition of substrucure/context-k-bounded almost linear ACGs.

Example 4. Let G = (Σ,∆,H,I), where AΣ = {p1, p2, s}, CΣ = {a, b, c1, c2, d1,
d2}, τΣ(a) = p1→ s, τΣ(b) = p2 → p1, τΣ(ci) = pi→ pi, τΣ(di) = pi, A∆ = {o},
C∆ = {e, f}, τ∆(f) = o→ o→ o, τ∆(e) = o, I = {s}, H(pi) = (o→ o)→ o→ o,

H(s) = o and

H(a) = λx(o→o)→o→o.x(λzo.z)e,

H(b) = λx(o→o)→o→oyo→ozo.x(λwo.y(fww))z,

H(ci) = λx(o→o)→o→oyo→ozo.x(λwo.yw)(fzz),

H(di) = λyo→ozo.y(fzz) .

This grammar is rule-2-bounded and generates the set of perfect binary
trees of height ≥ 1. We have, for example, H(b(c2d2)) ∈ S(G , p1) and
H(λxp2 .a(c1(b(c2x)))) ∈ C(G , p2), and

|H(b(c2d2))|β = λyo→ozo.y(f(f(fzz)(fzz))(f(fzz)(fzz))),

|H(λxp2 .a(c1(b(c2x))))|β = λx(o→o)→o→o.x(λz.fzz)(f(fee)(fee)).

One can see

prof∞(S(G , p1)) = prof∞(S(G , p2)) = { (λz1
o→oyo→owo.y(z1w), (2n)) | n ≥ 1 } ,

and

prof∞(C(G , p1)) = {(λz1ox(o→o)→o→o.x(λwo.w)z1, ())} ,
prof∞(C(G , p2)) = {(λz1ox(o→o)→o→o.x(λwo.w)z1, ()),

(λz1
o→oz2

ox(o→o)→o→o.x(λwo.z1w)z2, (2), ())} .

The grammar is context-2-bounded, but not substructure-k-bounded for any k. If
a new constant a′ of type p1→s withH(a′) = λx(o→o)→o→o.x(λzo.fzz)e is added
to G , the grammar is not context-2-bounded any more, since |H(λxp2 .a′(bx))|β =
λx(o→o)→o→o.x(λzo.f(fzz)(fzz))e ∈ C(G , p2).

3 Extraction of Tree Contexts from Trees

We say that M ∈ ALα(∆) is contained in a tree T if there is an N ∈ ALα→o(∆)
such that NM �β T . The problem of extracting λ-terms in ALα(∆) contained
in a given tree reduces to the problem of extracting tree contexts from trees.

Explicitly enumerating all tree contexts of type or→ o is clearly intractable.
A perfect binary tree with n leaves (labeled by the same constant) contains more
than 2n tree contexts of type o→ o.

It is easy to explicitly enumerate all tree contexts of type or → o that are
k-copying in the sense that each bound variable occurs at most k times. (Just
pick at most rk+ 1 nodes to determine such a tree context.) Hence it is easy to
explicitly enumerate all M ∈ ALαk (∆) whose stored tree contexts (which are all
k-copying) are contained in a given tree. (Recall that there is a fixed finite set of
candidate containers for each α.) Not all these λ-terms are themselves contained
in T , but it is harmless and simpler to list them all than to enumerate exactly

those λ-terms M ∈ ALαk (∆) for which there is an N ∈ ALα→o(∆) (which may
not be k-bounded) such that MN �β T .

We consider distributional learners for tree-generating almost linear second-
order ACGs who are capable of extracting k-copying tree contexts from trees.
Such a learner conjectures rule-k-bounded almost linear ACGs, and use only
k-bounded substructures and k-bounded contexts in order to form hypotheses.

4 Distributional Learning of One-Side k-bounded ACGs

We present two distributional learning algorithms, a primal one for the context-
k-bounded almost linear ACGs, and a dual one for the substructure-k-bounded
almost linear ACGs.

In distributional learning, we often have to fix certain parameters that restrict
the class G of grammars available to the learner as possible hypotheses, in order
to make the universal membership problem solvable in polynomial time. This
is necessary since the learner needs to check whether the previous conjecture
generates all the positive examples received so far, including the current one.
In the case of almost linear ACGs, the parameters are the maximal arity n
of the type of abstract constants and the finite set Ω of the possible object
images of abstract atomic types. When these parameters are fixed, the universal
membership problem “T ∈ O(G)?” is in P [7].

In addition to these two parameters, we also fix a positive integer k so that
any hypothesized grammar is rule-k-bounded, for the reason explained in the
previous section. The hypothesis space for our learners is thus determined by
three parameters, Ω,n, k. We write G(Ω,n, k) for the class of grammars deter-
mined by these parameters.

In what follows, we often use sets of profiles or λ-terms inside expressions
that look like λ-terms, as we did in (2) and (3) in Section 2.3.

4.1 Learning Context-k-bounded ACGs with the Finite Kernel
Property

For T ⊆ LNFo∅(∆) and R ⊆ ALα(∆), we define the k-bounded context set of R
with respect to T by

Conk(T|R) = {Q ∈ ALα→ok (∆) | |QR|β ∈ T for all R ∈ R } .

Definition 3. A context-k-bounded ACG G = (Σ,∆,H,I) is said to have the
profile-insensitive (k,m)-finite kernel property if for every abstract atomic type

p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p) ∩AL
H(p)
k (∆) such that |Sp| ≤ m

and
Conk(O(G)|Sp) = Conk(O(G)|S(G , p)).

This may be thought of as a primal analogue of the notion of (k,m)-FCP
in [4] for the present case. It turns out, however, designing a distributional learn-
ing algorithm targeting grammars satisfying this definition is neither elegant nor

quite as straightforward as existing distributional algorithms. One reason is that
simply validating hypothesized rules against k-bounded contexts (see (1) in Sec-
tion 1) does not produce a context-k-bounded grammar. Recall that to construct
a context-k-bounded grammar, we must fix an assignment of an admissible sub-
structure profile set Πp and an admissible context profile set Ξp to each atomic
type p which restricts the object realizations of abstract constants of each type.
We let our learning algorithm use such an assignment together with finite sets of
k-bounded substructures in constructing grammar rules, and make the valida-
tion of rules sensitive to the context profile set assigned to the “left-hand side”
nonterminal. This naturally leads to the following definition:

Definition 4. A context-k-bounded ACG G = (Σ,∆,H,I) is said to have
the profile-sensitive (k,m)-finite kernel property ((k,m)-FKPprof) if for every

abstract atomic type p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p)∩AL
H(p)
k (∆)

such that |Sp| ≤ m and

Conk(O(G)|Sp) ∩ prof−1k (Ξ) = Conk(O(G)|S(G , p)) ∩ prof−1k (Ξ) , (4)

where Ξ = profk(C(G , p)). Such a set Sp is called a characterizing substructure
set of p.

Clearly, if a context-k-bounded grammar satisfies Definition 3, then it satis-
fies the (k,m)-FKPprof , so the class of grammars with (k,m)-FKPprof is broader
than the class given by Definition 3. The notion of (k,m)-FKPprof is also mono-
tone in k in the sense that (4) implies

Conk+1(O(G)|Sp) ∩ prof−1k+1(Ξ ′) = Conk+1(O(G)|S(G , p)) ∩ prof−1k+1(Ξ ′) ,

where Ξ ′ = profk+1(C(G , p)) = profk(C(G , p)), as long as G is context-k-
bounded. This means that as we increase the parameter k, the class of grammars
satisfying (k,m)-FKPprof monotonically increases. This is another advantage of
Definition 4 over Definition 3.

The polynomial enumerability of the k-bounded λ-terms makes an efficient
primal distributional learner possible for the class of context-k-bounded gram-
mars in G(Ω,n, k) with the (k,m)-FKPprof .

Algorithm Hereafter we fix a learning target T∗ ⊆ LNFo∅(∆) which is gen-
erated by G∗ = (Σ,∆,H,I) ∈ G(Ω,n, k) with the (k,m)-FKPprof . We write
S[Ξ] = Conk(T∗|S) ∩ prof−1k (Ξ) for a k-bounded profile set Ξ.

For a tree T ∈ LNFo∅(∆), let Extαk (T) = {M ∈ ALαk (∆) |
−→
M• are contained

in T }. Define

SubΩk (D) =
⋃
{Extαk (T) | T ∈ D, α ∈ Ω },

GlueΩ,nk (D) =
⋃
{Ext

α1→···→αj→α0

k (T) | T ∈ D, αi ∈ Ω for i = 1, . . . , j

and j ≤ n },

ConΩk (D) =
⋃
{Extα→ok (T) | T ∈ D, α ∈ Ω }.

Algorithm 1 Learning ACGs in G(Ω,n, k) with the (k,m)-FKPprof .

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of ACGs G1,G2, . . . ;
let D := K := B := F := ∅; Ĝ := G(K,B,F);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; F := ConΩk (D);
if D * O(Ĝ) then

let B := GlueΩ,nk (D);
let K := SubΩk (D);

end if
output Ĝ = G(K,B,F) as Gi;

end for

It is easy to see that H(c) ∈ GlueΩ,nk (T∗) for all c ∈ CΣ .

Our learner (Algorithm 1) constructs a context-k-bounded ACG Ĝ =

G(K,B,F) = (Γ,∆,J ,J) from three sets K ⊆ SubΩk (D), B ⊆ GlueΩ,nk (D)

and F ⊆ ConΩk (D), where D is a finite set of positive examples given to the
learner. As with previous primal learning algorithms, whenever we get a positive
example that is not generated by our current conjecture, we expand K and B,
while in order to suppress incorrect rules, we keep expanding F.

Each abstract atomic type of our grammar is a triple of a subset of K, a
k-threshold profile set, and a k-bounded profile set:

AΓ = { [[S, Π,Ξ]] | S ⊆ K ∩ prof−1k (Π) with 1 ≤ |S| ≤ m, where for some α ∈ Ω,

Π is a set of k-threshold profiles of type α and

Ξ is a set of k-bounded profiles of type α→ o } .

We have |AΓ | ≤ 22`|K|m, where ` is the total number of profiles of relevant
types, which is a constant.

The set of distinguished types is defined as

J = { [[S, {(λzo.z)}, {(λyo.y)}]] ∈ AΓ | S ⊆ T∗ } ,

which is determined by membership queries. Define J ([[S, Π,Ξ]]) to be the type
of the profiles in Π.

We have an abstract constant d ∈ CΓ such that

τΓ (d) = [[S1, Π1, Ξ1]]→ · · · → [[Sj , Πj , Ξj]]→ [[S0, Π0, Ξ0]] with j ≤ n ,
J (d) = R ∈ B ,

if

– RΠ1 . . . Πj ⊆ Π0,
– λx.Ξ0(RΠ1 . . . Πi−1xΠi+1 . . . Πj) ⊆ Ξi for i = 1, . . . , j,

– |Q(RS1 . . . Sj)|β ∈ T∗ for all Q ∈ S
[Ξ0]
0 ∩ F and Si ∈ Si for i = 1, . . . , j.

The last condition is checked with the aid of the membership oracle.

Lemma 8. We have profk(N) ∈ Π for all N ∈ S(G , [[S, Π,Ξ]]), and
profk(M) ∈ Ξ for all M ∈ C(G , [[S, Π,Ξ]]). The grammar G(K,B,F) is context-
k-bounded.

Lemma 9.
If K ⊆ K′, then O(G(K,B,F)) ⊆ O(G(K′,B,F)).
If B ⊆ B′, then O(G(K,B,F)) ⊆ O(G(K,B′,F)).
If F ⊆ F′, then O(G(K,B,F)) ⊇ O(G(K,B,F′)).

Lemma 10. Let Sp be a characterizing set of each atomic type p ∈ AΣ of the

target grammar G∗. Then Sp ⊆ SubΩk (T∗). Moreover, if Sp ⊆ K for all p ∈ AΣ
and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(K,B,F)) for any F.

We say that an abstract constant d of type [[S1, Π1, Ξ1]] → · · · →
[[Sj , Πj , Ξj]] → [[S0, Π0, Ξ0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some

Q ∈ S
[Ξ0]
0 and Si ∈ Si.

Lemma 11. For every K and B, there is a finite set F ⊆ ConΩk (T∗) of cardi-
nality |B||AΓ |n+1 such that G(K,B,F) has no invalid constant.

Lemma 12. If G(K,B,F) has no invalid constant, then O(G(K,B,F)) ⊆ T∗.

Theorem 1. Algorithm 1 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FKPprof .

We remark on the efficiency of our algorithm. It is easy to see that the
description sizes of K and B are polynomially bounded by that of D, and so
is that of Γ . We need at most a polynomial number of membership queries to
construct a grammar. Thus Algorithm 1 updates its conjecture in polynomial
time in ‖D‖. Moreover, we do not need too much data. To make K and B satisfy
the condition of Lemma 10,m|AΣ |+|CΣ | examples are enough. To remove invalid
constants, polynomially many contexts are enough by Lemma 11.

4.2 Learning Substructure-k-bounded ACGs with the Finite
Context Property

For sets T ⊆ LNFo∅(∆) and Q ⊆ ALα→ok (∆), we define the k-bounded substruc-
ture set of Q with respect to T by

Subk(T|Q) = {R ∈ ALαk (∆) | |QR|β ∈ T for all Q ∈ Q } .

Again, we target grammars that satisfy a property sensitive to profile sets as-
signed to nonterminals:

Definition 5. A substructure-k-bounded ACG G = (Σ,∆,H,I) is said to
have the profile-sensitive (k,m)-finite context property ((k,m)-FCPprof) if for
every abstract atomic type p ∈ AΣ , there is a nonempty set Qp ⊆ C(G , p) ∩
AL
H(p)→o
k (∆) of k-bounded λ-terms such that |Qp| ≤ m and

Subk(O(G)|Qp) ∩ prof−1k (Π) = S(G , p) ,

where Π = prof(S(G , p)). We call Qp a characterizing context set of p.

Algorithm Our dual learner turns out to be considerably simpler than its
primal cousin. While the primal learner uses two profile sets, the dual learner
assigns just a single profile to each nonterminal. This corresponds to the fact that
the context-profiles play no role in constructing a structure-k-bounded grammar
and that the (k,m)-FCPprof is preserved under the normalization which converts
a grammar into an equivalent one G ′ where profk(S(G ′, p)) is a singleton for
all abstract atomic types p of G ′, where it is not necessarily the case for the
(k,m)-FKPprof .

Hereafter we fix a learning target T∗ ⊆ LNFo∅(∆) which is generated by

G∗ = (Σ,∆,H,I) ∈ G(Ω,n, k) with the (k,m)-FCPprof . We write Q[π] =
Subk(T∗|Q) ∩ prof−1k (π) for a k-bounded profile π.

Our learner (Algorithm 2) constructs a context-k-bounded ACG Ĝ =

G(F,B,K) = (Γ,∆,J ,J) from three sets F ⊆ ConΩk (D), B ⊆ GlueΩ,nk (D),

and K ⊆ SubΩk (D), where D is a finite set of positive examples.

Algorithm 2 Learning ACGs in G(Ω,n, k) with (k,m)-FCPprof

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of acgs G1,G2, . . . ;
let D := F := B := K := ∅; Ĝ := G(F,B,K);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; K := SubΩk (D);
if D * O(Ĝ) then

let B := GlueΩ,nk (D);
let F := ConΩk (D);

end if
output Ĝ = G(F,B,K) as Gi;

end for

Each abstract atomic type of our grammar is a pair of a finite subset of
F ∩ALαk (∆) of cardinality at most m and a profile π whose type is α:

AΓ = { [[Q, π]] | π is a k-bounded profile of type α ∈ Ω,
Q ⊆ F ∩ALα→ok (∆) and 1 ≤ |Q| ≤ m } .

We have |AΓ | ≤ |F|m` for ` the number of possible profiles. We have only one
distinguished type:

J = { [[{λy.y}, (λzo.z)]] } .

We define J ([[Q, π]]) to be the type of π.
We have an abstract constant c ∈ CΓ such that

τΓ (c) = [[Q1, π1]]→ · · · → [[Qj , πj]]→ [[Q0, π0]] with j ≤ n , J (c) = P ∈ B ,

if

– π0 = Pπ1 . . . πj ,

– |Q(PS1 . . . Sj)|β ∈ T∗ for all Q ∈ Q0 and Si ∈ Q
[πi]
i ∩K.

The second clause is checked with the aid of the membership oracle. By the con-

struction, prof(|J (M)|β) ∈ π for every M ∈ LNF
[[Q,π]]
∅ (Γ). Thus the grammar

Ĝ is substructure-k-bounded.

Lemma 13.
If F ⊆ F′, then O(G(F,B,K)) ⊆ O(G(F′,B,K)).
If B ⊆ B′, then O(G(F,B,K)) ⊆ O(G(F,B′,K)).
If K ⊆ K′, then O(G(F,B,K)) ⊇ O(G(F,B,K′)).

Lemma 14. Let Qp be a characterizing set of each atomic type p ∈ AΣ of the

target grammar G∗. Then Qp ⊆ ConΩk (T∗). Moreover, if Qp ⊆ F for all p ∈ AΣ
and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(F,B,K)) for any K.

We say that an abstract constant c of type [[Q1, π1]] → · · · → [[Qj , πj]] →
[[Q0, π0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some Si ∈ Q

[πi]
i and Q ∈ Q0.

Lemma 15. For every F and B, there is a finite set K ⊆ SubΩk (T∗) of cardi-
nality n|B||AΓ |n+1 such that G(F,B,K) has no invalid constant.

Lemma 16. If G(F,B,K) has no invalid constant, then O(G(F,B,K)) ⊆ T∗.

Theorem 2. Algorithm 2 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FCPprof .

A remark similar to the one on the efficiency of Algorithm 1 applies to Algo-
rithm 2.

Acknowledgement

This work was supported in part by MEXT/JSPS Kakenhi (24106010,
26330013) and NII joint research project “Algorithmic Learning of Nonlinear
Formalisms Based on Distributional Learning”.

References

1. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. Journal of Computer and System
Sciences 61, 1–50 (2000)

2. Böhm, C., Coppo, M., Dezani-Ciancaglini, M.: Termination tests inside λ-calculus.
In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and Programming, Lec-
ture Notes in Computer Science, vol. 52, pp. 95–110. Springer Berlin Heidelberg
(1977)

3. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere and Garćıa [11], pp. 38–51

4. Clark, A., Yoshinaka, R.: Distributional learning of parallel multiple context-free
grammars. Machine Learning 96(1-2), 5–31 (2014),
http://dx.doi.org/10.1007/s10994-013-5403-2

5. Kanazawa, M.: Parsing and generation as Datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics. pp. 176–
183. Prague, Czech Republic (2007)

6. Kanazawa, M.: A lambda calculus characterization of MSO definable tree trans-
ductions (abstract). Bulletin of Symbolic Logic 15(2), 250–251 (2009)

7. Kanazawa, M.: Parsing and generation as Datalog query evaluation. To ap-
pear in IfColog Journal of Logics and Their Applications. Available at
http://research.nii.ac.jp/%7Ekanazawa/publications/pagadqe.pdf

8. Kanazawa, M.: Almost affine lambda terms. In: Indrzejczak, A., Kaczmarek, J.,
Zawidzki, M. (eds.) Trends in Logic XIII. pp. 131–148. Lódź University Press, Lódź
(2014)

9. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) Al-
gorithmic Learning Theory. Lecture Notes in Computer Science, vol. 6925, pp.
398–412. Springer (2011)

10. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th conference
on Formal Grammar. pp. 143–156. FG Online Proceedings, CSLI Publications,
Stanford, CA (2007)

11. Sempere, J.M., Garćıa, P. (eds.): Grammatical Inference: Theoretical Results and
Applications, 10th International Colloquium, ICGI 2010, Valencia, Spain, Septem-
ber 13-16, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6339.
Springer (2010)

12. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: Sempere and Garćıa [11], pp. 230–
244

13. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) Developments in
Language Theory. Lecture Notes in Computer Science, vol. 6795, pp. 429–440.
Springer (2011)

14. Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial gram-
mars. In: Pogodalla, S., Prost, J.P. (eds.) LACL. Lecture Notes in Computer Sci-
ence, vol. 6736, pp. 251–266. Springer (2011)

