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LThe MIX problem
:

MIX

MIX = {w € {a; b; c}*||wl|s = |w|p = |w|c}

A
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L The MIX problem

The Bach language

> Bach (1981)

b
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LThe MIX problem

The MIX language

» Marsh (1985)

Conjecture: MIX is not an indexed language.

M(me
names ‘mix’ an — pronounced ‘little mix" and ‘big mix" were the

happy invention of Bill Marsh; ‘little mix’ is the scramble of (ab)*).
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MIX and Tree Adjoining Grammars

> Joshi (1985)

[MIX] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [...] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.
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MIX and Tree Adjoining Grammars

» Vijay Shanker, Weir, Joshi (1991)

R 1 - - v e oz

case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX.
This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can

generate MIX.
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MIX and mildly context sensitive languages

» Joshi, Vijay Shanker, Weir (1991)

O SNPGRS s capture only certain
kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies
(e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not

in the so-called MIX (or Bach) language, which consists of equal numbers of a’s, b’s, and c¢’s in

5 w11 4 languages in MCSL have constant growth property, L., if the strings of  language
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Group languages

Group finite presentation:

> a finite set of generators

> a finite set of defining equations E
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|—IWX as a group language

Group languages

Group finite presentation:

> a finite set of generators

> a finite set of defining equations E
Word problem: given w in ¥*, is w =g 17
Group language: {w € X* | w =g 1}
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Group languages
Group finite presentation:
> a finite set of generators X
> a finite set of defining equations E
Word problem: given w in ¥, is w =g 17
Group language: {w € X* | w =g 1}
» the word problem is in general undecidable (Novikov 1955,
Boone 1958)

> the languages of different representation of a group a
rationally equivalent

> relate algebraic properties of groups to language-theoretic
properties of their group languages
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Group languages
Group finite presentation:
> a finite set of generators X
> a finite set of defining equations E
Word problem: given w in ¥, is w =g 17
Group language: {w € X* | w =g 1}
» the word problem is in general undecidable (Novikov 1955,
Boone 1958)

> the languages of different representation of a group a
rationally equivalent

> relate algebraic properties of groups to language-theoretic
properties of their group languages

Example: a group language is context free iff its underlying group
is virtually free (Muller Schupp 1983)
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MIX as a group language

» Generators: {a; b; c}
» Defining equations: a~! = bc = cb, b~! = ac = ca,
cl=ab=hba

72 is the group that has this presentation.
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Yet another presentation of Z?

» Generators: {a;3; b'E}
» Defining equations: a~

ab=0ba ab=ba

Ll
o

o

The associated group language is

{w e {23 b;b}||wla = [wlz A lwlp = |wlg}
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MIX and O,: group languages of 72

MIX and O are rationally equivalent
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MIX and computational group theory

» Gilman (2005)

It does
not even seem to be known whether or not the word problem of Z x Z is indexed.
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LA grammar for Op

A 2-MCFG for O,

where o € {a; b}

S(xy) < Inv(x,y)

Inv(x1y1, yaxe) <= Inv(x1, x2), Inv(y1, y2)
Inv(x1xoy1, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(y1, x1xay2) <= Inv(x1, x2), Inv(y1, y2)
Inv(y1x1x2, y2) ¢ Inv(x1, x2), Inv(y1, y2)
Inv(y1, yaxix2) < Inv(x1, x2), Inv(y1, y2)

Inv(axi, aix2) < Inv(xi, x2)
Inv(axi, xo@) < Inv(x1, x2)
Inv(xic, @ix2) < Inv(x1, x2)
Inv(x1a, xo@) < Inv(x1, x2)
Inv(x1, axo@) < Inv(xi, x2)

(
(
(
(
(
(
Inv(oxi@, xo) < Invgxl ,x2)
(
(
(
(
(
(

Inv(x1, y1xay2) <= Inv(x1, x2), Inv(y1, y2)

)

Inv(x1y1x2, y2) = Inv(x1, x2), Inv(y1, y2)
)
)<

Inv(e, e
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A 2-MCFG for O,

S(xy) < Inv(x,y)
Inv(x1y1, yaxe) <= Inv(x1, x2), Inv(y1, y2)
Inv(x1xoy1, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(y1, x1xay2) <= Inv(x1, x2), Inv(y1, y2)
)
)

) (

) (

) (

) (
Inv(yixixe, y2) < Inv(x1, x2), Inv(y1, y2
Inv(y1, yaxix2) < Inv(x1, x2), Inv(y1, y2
Inv(axi@, xo) < Inv(xi, x2)
Inv(axi, aix2) < Inv(xi, x2)
) (
) (
@) (
a) (
) (
) (
)+

Inv(axi, xo@) < Inv(x1, x2)

Inv(xic, @ix2) < Inv(x1, x2)

Inv(x1a, xo@) < Inv(x1, x2)

Inv(x1, axo@) < Inv(xi, x2)
Inv(xiy1x2, y2) < Inv(x1, x2), Inv(y1, y2)
Inv(x1, yixoy2) < Inv(x1, x2), Inv(y1, y2)

Inv(e, e

where o € {a; b}
Theorem: Given w; and ws such that wiw, € Oo, Inv(w17 W2) is derivable.
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A graphical interpretation of O;.

Graphical interpretation of the word @@abaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:
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La grammar for Op

A graphical interpretation of O;.

Graphical interpretation of the word @aabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa

NN

The words in O, are precisely the words that are represented as closed curves
babbababbabbabbababbaaabbbabbaaaabbabbbaba

-

T
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La grammar for Op

Parsing with the grammar

Rule Inv(axia, x2) < Inv(xi, x2)

Inv(abaabaaababbbabaaabbbabbbbaaaba, babbbbaaaaaababbaab)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

[m]

=]
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La grammar for Op

Parsing with the grammar

Rule: Inv(xiy1, yax2) < Inv(x1, x2), Inv(y1, y2)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(baabaaaba, bbaab)
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La grammar for Op

Parsing with the grammar

Rule Inv(x1, yixay2) < Inv(x1, x2), Inv(y1, y2)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

@

Inv(babb, ba)
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La grammar for Op

Parsing with the grammar

Rule: Inv(x1b, bxa) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)
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La grammar for Op

Parsing with the grammar

Rule: Inv(bxy, bxa) < Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)

Inv(bbabaaabbbabbbbaaa, aaaaaa)
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La grammar for Op

Parsing with the grammar

Rule: Inv(xiy1, yox2) < Inv(x1, x2), Inv(y1, y2)

Inv(bbabaaabbbabbbbaaa, aaaaaa)

P

Inv(bbabaaabbbabbbb, aaa)

Inv(aaa, aaa)
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La grammar for Op

Parsing with the grammar

Rule: Inv(bxib,x2) < Inv(x1,x2)

\ £
y

Inv(bbabaaabbbabbbb, aaa)

.
(3

P &

Inv(babaaabbbabbb, aaa)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, ws) is derivable
The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .

There are five cases:

Case 1: wy or ws equal e
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LProof of the Theorem

The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs

(Iwiwa|, max(|w, [wa])) .

There are five cases:

Case 1: wy or ws equal e

w.l.o.g., wy # €, then by induction hypothesis, for any v; and v, different from e such
that w1 = vivy, Inv(vi, v2) is derivable then:

Inv(vi,v2) Inv(e,€)

Inv(x1xayi, y2) < Inv(xi, x2), Inv(y1, y2)
Inv(vive = w,€)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .
There are five cases:

Case 2: w; = sywysy and wy = s3wjsy and for i,j € {1;2;3;4}, s.t. i # j,

{siisj} € {{a;a}; {b; b} }:

u]

)
I

il
it




MIX
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .
There are five cases:

Case 2: w; = sywysy and wy = s3wjsy and for i,j € {1;2;3;4}, s.t. i # j,
{siisj} € {{a;a}; {b; b}}:

eg., ifi=1,j=2, s =aand s; =3 then by induction hypothesis Inv(wj, wy) is
derivable and:

Inv(wi, wa)
Inv(ax13, x2) < Inv(x1, x2)
Inv(aw;a, wy)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .

There are five cases:

Case 3: the curves representing w; and w, have a non-trivial intersection point:
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .
There are five cases:

Case 3: the curves representing w; and w, have a non-trivial intersection point:

Inv(vi,va) Inv(va,v3)
\/ Inv(vive = wi, vava = wp)

Q)
()
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .

There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.
The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .

There are five cases:

Case 4: the curve representing wy or wy starts or ends with a loop:

U1 V2

Inv(vi,€) Inv(vo, wy)

Inv(viva = wi, wa)
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The proof of the Theorem

Theorem: Given wy and ws such that wiws € Oa, Inv(wi, we) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(Iwiwz], max(jwa|, [w2l)) .
There are five cases:

Case 5: wj and w, do not start or end with compatible letters, the curve representing
then do not intersect and do not start or end with a loop.

u]
)
I
il
it
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|_Proof of the Theorem

CaSe 5

No rule other than

Inv(xiyixz,y2) <+ Inv(xi, x2), Inv(y1,y2)
Inv(x1, y1xay2) 4

Inv(x1,x2), Inv(y1, y2)
can be used.
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|_Proof of the Theorem

CaSe 5

No rule other than

Inv(xiy1xa, y2) <+ Inv(xi, x2), Inv(y1, y2)
Inv(x1, y1xay2) <

Inv(x1,x2), Inv(y1, y2)
can be used.
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The relevance of case b

The word

abbaabaaabbbbaaaba

well-nested rules.

is not in the language of the grammar only containing the
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Solving case 5: towards geometry
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Solving case 5: towards geometry
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Solving case 5: towards geometry
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|—Proof of the Theorem

Solving case 5: towards geometry
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|—Proof of the Theorem
:

Solving case 5: a geometrical invariant

A
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|—Proof of the Theorem
:

Solving case 5: a geometrical invariant

A
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

RN

/I 11 ! 1!
wy = aw;’a and w; = aw,’a

! 11 ! ’
wy = aw;’a and w, = aw,’b

i

A 1! A 1!
w; = aw;’a and w; = bw,’a

o
b

A 1! A /
wy = aw;’a and wy = bwy'b
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

\{ AN

! 1 ! 1!
w; = aw;’b and w, = aw,'b

/I 11 /
w; = aw;'b and w,

'\T—»

A 1
w{ = aw;’a and

W2:a

=

! "
w; = aw;’a and

/I
Wy =

b

bwj a
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing wywj:

! 1! A
wy = aw;’b and w;, = a

! 11 /
wy = aw;’b and w; = b
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Outline

A
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On Jordan curves

Outside

Outside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
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LA Theorem on Jordan curves

On Jordan curves

OQutside

Outside
Figure 13.1 Two Jordan curves.

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is k € {—1; 1} such that the winding number of Jordan curve around

a point in its interior is k, its winding number around a point in its exterior is 0.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

o}




MIX

LA Theorem on Jordan curves

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C
pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and A

— BC.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C
pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and A

— BC.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two
points A’ and D’ inside J such that ﬁ = A’D’, then there are two points B and C

pairwise distinct from A and D such that A, B, C, and D appear in that order on one
of the arcs going from A to D and ﬁ = R

Applying this Theorem solves case 5.
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Simple curves, translations, intersections and the complex

exponential
Let's suppose that D — A =1
|et<p:{ Cc — C-{0}

z - eZi'rrz

o transforms arcs performing translation of k into arc that have k as winding
number around 0.

u]
)
I
il
it
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I—A Theorem on Jordan curves

Simple curves, translations, intersections and the complex

exponential

Let's suppose that D —A=1and that Ag=A' =0, Ay =D"=1,..., Ay =k

cC — C-Ao
Iet(P:{ z - eZi'rrz{}'

o sums up the winding number of a Jordan curve around the A;'s as the
winding number around p(Ag) = (0) = 1.

u]
)
I
il
it
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|—A Theorem on Jordan curves

Simple curves, translations, intersections and the complex

exponential

Let's suppose that D —A=1and that Ag=A' =0, Ay =D"=1,..., Ay =k

cC — C-Ao
Iet(P:{ z - eZi'rrz{}'
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Simple curves, translations, intersections and the complex

exponential

Let's suppose that D —A=1and that Ag=A' =0, Ay =D"=1,..., Ay =k

cC — C-Ao
Iet(P:{ z - eZi'rrz{}'

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B
and C as required in the Theorem iff p(J) is a Jordan curve of C — {0} that
belong to the homotopy class 1 (resp. —1).

[m] = =
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Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.

» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
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LA Theorem on Jordan curves

Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.

» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,

> we cannot have k = 0 since J is simple,
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LA Theorem on Jordan curves

Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
> we cannot have k = 0 since J is simple,

» if k =1 we are done,
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LA Theorem on Jordan curves

Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.

» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,

> we cannot have k = 0 since J is simple,

v

if k =1 we are done,
» if k > 1 then J’ contains a subarc J” such that wn(J",0) =1,
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LA Theorem on Jordan curves

Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
we cannot have k = 0 since J is simple,
if k =1 we are done,
if k > 1 then J' contains a subarc J” such that wn(J”,0) =1,

if k < 0 then by suppressing J' from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

vVvyyvyy
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Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ¢(J) is a Jordan curve of C — {0} that belong to the
homotopy class 1 (resp. —1).

Proof.

Let wn(J, z) be the winding number of a closed curve around z.
» If ¢(J) contains a closed subarc J with wn(J,0) = k, then it corresponds to a
subarc of J going from a point E to E + k,
we cannot have k = 0 since J is simple,
if k =1 we are done,
if k > 1 then J' contains a subarc J” such that wn(J”,0) =1,

if k < 0 then by suppressing J' from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

vyvyYyvyy

O

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff p(J) is a Jordan curve of C — {1} that belong to the
homotopy class 0 or 1 (resp. or —1).
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Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J; and J»

respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(p(J), 1) = |wn(e(J1),1) + wn(p(h),1)| < 1.
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Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J; and J»
respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(p(J), 1) = |wn(e(J1),1) + wn(p(h),1)| < 1.

Lemma: if J is a simple closed curve of C composed with two curves J; and J,
respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then either |wn(p(J),1)| > 2.
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Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J; and J»
respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(p(J), 1) = |wn(e(J1),1) + wn(p(h),1)| < 1.

Lemma: if J is a simple closed curve of C composed with two curves J; and J,
respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then either |wn(p(J),1)| > 2.

The Theorem follows by contradiction.
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Conclusion

» we have showed that O, is a 2-MCFL exhibiting the first non-virtually free
group language that is proved to belong to an interesting class of language,

» this implies that contrary to the usual conjecture we have showed that MIX is a
2-MCFLs.
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Conjectures

Well-nestedness:

Well-nested
Inv(y1x1x2, y2) = Inv(x1, x2), Inv(y1, y2)
Not well-nested

Inv(yi1x1y2, x2) <= Inv(x1, x2), Inv(y1, y2)
MCFG,,, are MCFGs with well-nested rules.

» MCFLwn coincide with non-duplicating 10/0l,
» MCFL is incomparable with 10 or Ol.
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Conjectures

Well-nestedness:

Well-nested

Inv(y1x1x2, y2) = Inv(x1, x2), Inv(y1, y2)
Not well-nested

Inv(yixiy2, x2) < Inv(x1, x2), Inv(y1, y2)

MCFG,,, are MCFGs with well-nested rules.

» MCFLwn coincide with non-duplicating 10/0l,
» MCFL is incomparable with 10 or Ol.

Thus the following conjectures:

P> mildly context sensitive languages may well be, as advocated by Kanazawa,
MCFLwn

» O, and MIX should not be a MCFL,,
semilinear rational cones included in Ol should be included in MCFL,,
» O, and MIX should not be in OI.
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Conjectures

Well-nestedness:

Well-nested

Inv(y1x1x2, y2) = Inv(x1, x2), Inv(y1, y2)
Not well-nested

Inv(yixiy2, x2) < Inv(x1, x2), Inv(y1, y2)

MCFG,,, are MCFGs with well-nested rules.

» MCFLwn coincide with non-duplicating 10/0l,
» MCFL is incomparable with 10 or Ol.

Thus the following conjectures:

P> mildly context sensitive languages may well be, as advocated by Kanazawa,
MCFLwn

» O, and MIX should not be a MCFL,,
» semilinear rational cones included in Ol should be included in MCFL,,
» O, and MIX should not be in OI.
Open question:
» Is O3 an MCFL?
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