## MIX

## Sylvain Salvati

INRIA Bordeaux Sud-Ouest

MCFG+2

## Outline

$L_{\text {The MIX }}$ problem

## Outline

LThe MIX problem

## MIX

$$
\text { MIX }=\left\{\left.w \in\{a ; b ; c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}
$$

## The Bach language

- Bach (1981)



Wikipedia entry:
http://en.wikipedia.org/wiki/Bach_language

## The MIX language

- Marsh (1985)

Conjecture: MIX is not an indexed language.

> Proof. Consider the language MIX $=$ SCRAMBLE $\left((a b c)^{+}\right)$(the names 'mix' and 'MIX' - pronounced 'little mix' and 'big mix' were the happy invention of Bill Marsh; 'little mix' is the scramble of $\left.(a b)^{+}\right)$.

## MIX and Tree Adjoining Grammars

- Joshi (1985)

[MIX] represents the extreme case of the degree of free word order permitted in a language. This extreme case is linguistically not relevant. [...] TAGs also cannot generate this language although for TAGs the proof is not in hand yet.


## MIX and Tree Adjoining Grammars

- Vijay Shanker, Weir, Joshi (1991)

of strings of equal number of $a$ 's, $b$ 's, and $c$ 's in any order. MIX can be regarded as the extreme case of free word order. It is not known yet whether TAG, HG, CCG and LIG can generate MIX. This has turned out to be a very difficult problem. In fact, it is not even known whether an IG can generate MIX.


## MIX and mildly context sensitive languages

- Joshi, Vijay Shanker, Weir (1991)

in MCSL; 2) languages in MCSL can be parsed in polynomial time; 3) MCSGs capture only certain kinds of dependencies, e.g., nested dependencies and certain limited kinds of crossing dependencies (e.g., in the subordinate clause constructions in Dutch or some variations of them, but perhaps not in the so-called MIX (or Bach) language, which consists of equal numbers of a's, b's, and c's in any order 4) languages in MCSL have constant growth property, i.e., if the strings of a language
$\left\llcorner_{M I X}\right.$ as a group language


## Outline

## Group languages

Group finite presentation:

- a finite set of generators $\Sigma$
- a finite set of defining equations $E$

Word problem: given $w$ in $\Sigma^{*}$, is $w=E 1$ ?
Group language: $\left\{w \in \Sigma^{*} \mid w=E 1\right\}$
" the word problem is in general undecidable (Novikov 1955, Boone 1958)

- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages

Example: a group language is context free iff its underlying group is virtually free (Muller Schupp 1983)

## Group languages

Group finite presentation:

- a finite set of generators $\Sigma$
- a finite set of defining equations $E$

Word problem: given $w$ in $\Sigma^{*}$, is $w={ }_{E}$ ?
Group language: $\left\{w \in \Sigma^{*} \mid w={ }_{E} 1\right\}$

- the word problem is in general undecidable (Novikov 1955, Boone 1958)
- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages


## Group languages

Group finite presentation:

- a finite set of generators $\Sigma$
- a finite set of defining equations $E$

Word problem: given $w$ in $\Sigma^{*}$, is $w={ }_{E}$ ?
Group language: $\left\{w \in \Sigma^{*} \mid w={ }_{E} 1\right\}$

- the word problem is in general undecidable (Novikov 1955, Boone 1958)
- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages


## Group languages

Group finite presentation:

- a finite set of generators $\Sigma$
- a finite set of defining equations $E$

Word problem: given $w$ in $\Sigma^{*}$, is $w={ }_{E} 1$ ?
Group language: $\left\{w \in \Sigma^{*} \mid w={ }_{E} 1\right\}$

- the word problem is in general undecidable (Novikov 1955, Boone 1958)
- the languages of different representation of a group a rationally equivalent
- relate algebraic properties of groups to language-theoretic properties of their group languages

Example: a group language is context free iff its underlying group is virtually free (Muller Schupp 1983)

## MIX as a group language

- Generators: $\{a ; b ; c\}$
- Defining equations: $a^{-1}=b c=c b, b^{-1}=a c=c a$, $c^{-1}=a b=b a$
$\mathbb{Z}^{2}$ is the group that has this presentation.







## Yet another presentation of $\mathbb{Z}^{2}$

- Generators: $\{a ; \bar{a} ; b ; \bar{b}\}$
- Defining equations: $a^{-1}=\bar{a}, b^{-1}=\bar{b}, a b=b a, a \bar{b}=\bar{b} a$, $\bar{a} b=b \bar{a}, \bar{a} \bar{b}=\bar{b} \bar{a}$



The associated group language is

$$
O_{2}=\left\{\left.w \in\{a ; \bar{a} ; b ; \bar{b}\}^{*}| | w\right|_{a}=|w|_{\bar{a}} \wedge|w|_{b}=|w|_{\bar{b}}\right\}
$$

## MIX and $\mathrm{O}_{2}$ : group languages of $\mathbb{Z}^{2}$

MIX and $\mathrm{O}_{2}$ are rationally equivalent

## MIX and computational group theory

- Gilman (2005)

is indexed but not context free seems to have been open for several years. It does not even seem to be known whether or not the word problem of $Z \times Z$ is indexed.
$\left\llcorner_{\text {A grammar for }} \mathrm{O}_{2}\right.$


## Outline

## A 2-MCFG for $\mathrm{O}_{2}$

$$
\begin{gathered}
S(x y) \leftarrow \operatorname{Inv}(x, y) \\
\hline \operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, x_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, y_{2} x_{1} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}\left(\alpha x_{1} \bar{\alpha}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\hline \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}(\epsilon, \epsilon) \leftarrow
\end{gathered}
$$

where $\alpha \in\{a ; b\}$

## A 2-MCFG for $\mathrm{O}_{2}$

$$
\begin{gathered}
S(x y) \leftarrow \operatorname{Inv}(x, y) \\
\hline \operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, x_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(y_{1}, y_{2} x_{1} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}\left(\alpha x_{1} \bar{\alpha}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(\alpha x_{1}, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, \bar{\alpha} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1} \alpha, x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\operatorname{Inv}\left(x_{1}, \alpha x_{2} \bar{\alpha}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right) \\
\hline \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\hline \operatorname{Inv}(\epsilon, \epsilon) \leftarrow
\end{gathered}
$$

where $\alpha \in\{a ; b\}$
Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

A graphical interpretation of $\mathrm{O}_{2}$.
Graphical interpretation of the word $\overline{a a a} \bar{b} a a \bar{b} a a b b b b b \overline{a \bar{b}} \overline{b b} \bar{a} b b b b a a a a \overline{b b b b b b b b} \overline{a a a}:$


## A graphical interpretation of $\mathrm{O}_{2}$.

Graphical interpretation of the word $\overline{a a a} \bar{b} a a \bar{b} a a b b b b b \overline{a a} \overline{b b} \bar{a} b b b b a a a a \overline{b b b b b b b b} \overline{a a a}:$


The words in $\mathrm{O}_{2}$ are precisely the words that are represented as closed curves: $\bar{b} \bar{a} \overline{b b} a b a \overline{b b} a b b a b b \bar{a} \bar{b} \bar{a} b b a a a b b b \bar{a} \overline{b b} \bar{a} a a a b b a \overline{b b b} \bar{a} \bar{b} a$


## Parsing with the grammar

Rule $\operatorname{Inv}\left(\bar{a} x_{1} a, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$


## Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$


## Parsing with the grammar

Rule $\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$


## Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} \bar{b}, b x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$


## Parsing with the grammar

Rule: $\operatorname{Inv}\left(\bar{b} x_{1}, b x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$


## Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$


## Parsing with the grammar

Rule: $\operatorname{Inv}\left(\bar{b} x_{1} b, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)$


## Outline

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: $w_{1}$ or $w_{2}$ equal $\epsilon$ :

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: $w_{1}$ or $w_{2}$ equal $\epsilon$ :
w.l.o.g., $w_{1} \neq \epsilon$, then by induction hypothesis, for any $v_{1}$ and $v_{2}$ different from $\epsilon$ such that $w_{1}=v_{1} v_{2}, \operatorname{Inv}\left(v_{1}, v_{2}\right)$ is derivable then:

$$
\frac{\operatorname{Inv}\left(v_{1}, v_{2}\right) \operatorname{Inv}(\epsilon, \epsilon)}{\operatorname{Inv}\left(v_{1} v_{2}=w_{1}, \epsilon\right)} \operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
$$

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j$, $\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}:$

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j$, $\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}:$
e.g., if $i=1, j=2, s_{1}=a$ and $s_{2}=\bar{a}$ then by induction hypothesis $\operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)$ is derivable and:

$$
\frac{\operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)}{\operatorname{Inv}\left(a w_{1}^{\prime} \bar{a}, w_{2}\right)} \operatorname{Inv}\left(a x_{1} \bar{a}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right)
$$

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing $w_{1}$ and $w_{2}$ have a non-trivial intersection point:

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing $w_{1}$ and $w_{2}$ have a non-trivial intersection point:


## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing $w_{1}$ or $w_{2}$ starts or ends with a loop:

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing $w_{1}$ or $w_{2}$ starts or ends with a loop:


$$
\frac{\operatorname{Inv}\left(v_{1}, \epsilon\right) \operatorname{Inv}\left(v_{2}, w_{2}\right)}{\operatorname{Inv}\left(v_{1} v_{2}=w_{1}, w_{2}\right)}
$$

## The proof of the Theorem

Theorem: Given $w_{1}$ and $w_{2}$ such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.
The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 5: $w_{1}$ and $w_{2}$ do not start or end with compatible letters, the curve representing then do not intersect and do not start or end with a loop.

## Case 5

No rule other than

$$
\begin{aligned}
\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) & \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) & \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

can be used.


## Case 5

No rule other than

$$
\begin{array}{r}
\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right) \\
\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{array}
$$

can be used.


## The relevance of case 5

The word

$$
a b b \bar{a} b a a a \overline{b b b b} \bar{a} \bar{a} b a
$$


is not in the language of the grammar only containing the well-nested rules.



## Solving case 5: towards geometry



## Solving case 5: towards geometry



## Solving case 5：towards geometry



## Solving case 5：towards geometry



## Solving case 5: a geometrical invariant



## Solving case 5：a geometrical invariant



## Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$ :


## Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$ :


## Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$ :

$\left\llcorner_{A}\right.$ Theorem on Jordan curves

## Outline

## On Jordan curves



Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is $k \in\{-1 ; 1\}$ such that the winding number of Jordan curve around
a point in its interior is $k$, its winding number around a point in its exterior is 0 .

## On Jordan curves



Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is $k \in\{-1 ; 1\}$ such that the winding number of Jordan curve around a point in its interior is $k$, its winding number around a point in its exterior is 0 .

## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.


## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.


## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.


## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.


## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.


## A theorem on Jordan curves

Theorem: If $A$ and $D$ are two points on a Jordan curve $J$ such that there are two points $A^{\prime}$ and $D^{\prime}$ inside $J$ such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points $B$ and $C$ pairwise distinct from $A$ and $D$ such that $A, B, C$, and $D$ appear in that order on one of the arcs going from $A$ to $D$ and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.


## Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$
let $\varphi:\left\{\begin{array}{lll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$

$\varphi$ transforms arcs performing translation of $k$ into arc that have $k$ as winding number around 0 .

## Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0, A_{1}=D^{\prime}=1, \ldots, A_{k}=k$ let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$

$\varphi$ sums up the winding number of a Jordan curve around the $A_{i}$ 's as the winding number around $\varphi\left(A_{0}\right)=\varphi(0)=1$.

## Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0, A_{1}=D^{\prime}=1, \ldots, A_{k}=k$ let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$


## Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0, A_{1}=D^{\prime}=1, \ldots, A_{k}=k$ let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$


Main Lemma: a simple arc $J$ from $A$ to $D(r e s p . D$ to $A)$ does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
$\Rightarrow$ we cannot have $k=0$ since $J$ is simple,
- if $k=1$ we are done,
$\Rightarrow$ if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
$>$ if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.

Corollary: a simple path $J$ from $A$ to $D$ (resp. $D$ to $A)$ does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1 ).

## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
- we cannot have $k=0$ since $J$ is simple,
$\Rightarrow$ if $k=1$ we are done,
$>$ if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
$\rightarrow$ if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.

Corollary: a simple path $J$ from $A$ to $D$ (resp. $D$ to $A)$ does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1 ).

## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
- we cannot have $k=0$ since $J$ is simple,
- if $k=1$ we are done,
$>$ if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
$\checkmark$ if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.

Corollary: a simple path $J$ from $A$ to $D$ (resp. $D$ to $A)$ does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1 ).

## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
- we cannot have $k=0$ since $J$ is simple,
- if $k=1$ we are done,
- if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
$>$ if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.


## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
- we cannot have $k=0$ since $J$ is simple,
- if $k=1$ we are done,
- if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
- if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.

Corollary: a simple path $J$ from $A$ to $D$ (resp. $D$ to $A)$ does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1 ).

## Proof of the main Lemma

Main Lemma: a simple arc $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1 ).

## Proof.

Let $w n(J, z)$ be the winding number of a closed curve around $z$.

- If $\varphi(J)$ contains a closed subarc $J^{\prime}$ with $w n(J, 0)=k$, then it corresponds to a subarc of $J$ going from a point $E$ to $E+k$,
- we cannot have $k=0$ since $J$ is simple,
- if $k=1$ we are done,
- if $k>1$ then $J^{\prime}$ contains a subarc $J^{\prime \prime}$ such that $w n\left(J^{\prime \prime}, 0\right)=1$,
- if $k<0$ then by suppressing $J^{\prime}$ from $J$, it winding number becomes strictly greater than 1 and we conclude as in the preceding case.

Corollary: a simple path $J$ from $A$ to $D$ (resp. $D$ to $A$ ) does not contain $B$ and $C$ as required in the Theorem iff $\varphi(J)$ is a Jordan curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1 ).

## Proving the Theorem

Corollary: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ which do not contain points $B$ and $C$ as required in the Theorem then $|w n(\varphi(J), 1)|=\left|w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Lemma: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ such that 0 and 1 are in the interior of $J$, then either $|w n(\varphi(J), 1)| \geq 2$.

The Theorem follows by contradiction.

## Proving the Theorem

Corollary: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ which do not contain points $B$ and $C$ as required in the Theorem then $|w n(\varphi(J), 1)|=\left|w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Lemma: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ such that 0 and 1 are in the interior of $J$, then either $|w n(\varphi(J), 1)| \geq 2$.

The Theorem follows by contradiction.

## Proving the Theorem

Corollary: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ which do not contain points $B$ and $C$ as required in the Theorem then $|w n(\varphi(J), 1)|=\left|w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)\right| \leq 1$.

Lemma: if $J$ is a simple closed curve of $\mathbb{C}$ composed with two curves $J_{1}$ and $J_{2}$ respectively going from $A$ to $D$ and $D$ to $A$ such that 0 and 1 are in the interior of $J$, then either $|w n(\varphi(J), 1)| \geq 2$.

The Theorem follows by contradiction.

## Outline

## Conclusion

- we have showed that $O_{2}$ is a 2-MCFL exhibiting the first non-virtually free group language that is proved to belong to an interesting class of language,
- this implies that contrary to the usual conjecture we have showed that MIX is a 2-MCFLs.


## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.


## Thus the following conjectures:

## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $M C F L_{w n}$
- $\mathrm{O}_{2}$ and MIX should not be a MCFL wn
$\rightarrow$ semilinear rational cones included in Ol should be included in MCFL wn
- $\mathrm{O}_{2}$ and MIX should not be in OI


## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $M C F L_{w n}$
- $\mathrm{O}_{2}$ and MIX should not be a $\mathrm{MCFL}_{w n}$
$\rightarrow$ semilinear rational cones included in Ol should be included in MCFL wn
- $\mathrm{O}_{2}$ and MIX should not be in OI.


## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{\text {wn }}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $M C F L_{w n}$
- $\mathrm{O}_{2}$ and MIX should not be a $\mathrm{MCFL}_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$
$\rightarrow \mathrm{O}_{2}$ and MIX should not be in OI.


## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $M C F L_{w n}$
- $\mathrm{O}_{2}$ and MIX should not be a $\mathrm{MCFL}_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$
- $\mathrm{O}_{2}$ and MIX should not be in OI.


## Open question

## Conjectures

Well-nestedness:

$$
\begin{gathered}
\text { Well-nested } \\
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }} \\
\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right) \leftarrow \operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
\end{gathered}
$$

$M_{C F G}^{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $M C F L_{w n}$
- $\mathrm{O}_{2}$ and MIX should not be a $\mathrm{MCFL}_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$
- $\mathrm{O}_{2}$ and MIX should not be in OI.

Open question:

- Is $O_{3}$ an MCFL?

