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The MIX problem

MIX

MIX = {w ∈ {a; b; c}∗||w |a = |w |b = |w |c}
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The MIX problem

The Bach language

I Bach (1981)

Wikipedia entry:
http://en.wikipedia.org/wiki/Bach language
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The MIX problem

The MIX language

I Marsh (1985)

Conjecture: MIX is not an indexed language.
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The MIX problem

MIX and Tree Adjoining Grammars

I Joshi (1985)

[MIX ] represents the extreme case of the degree of free word order
permitted in a language. This extreme case is linguistically not
relevant. [. . . ] TAGs also cannot generate this language although
for TAGs the proof is not in hand yet.
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The MIX problem

MIX and Tree Adjoining Grammars

I Vijay Shanker, Weir, Joshi (1991)
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The MIX problem

MIX and mildly context sensitive languages

I Joshi, Vijay Shanker, Weir (1991)



MIX

MIX as a group language

Outline



MIX

MIX as a group language

Group languages
Group finite presentation:

I a finite set of generators Σ

I a finite set of defining equations E

Word problem: given w in Σ∗, is w =E 1?
Group language: {w ∈ Σ∗ | w =E 1}

I the word problem is in general undecidable (Novikov 1955,
Boone 1958)

I the languages of different representation of a group a
rationally equivalent

I relate algebraic properties of groups to language-theoretic
properties of their group languages

Example: a group language is context free iff its underlying group
is virtually free (Muller Schupp 1983)
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MIX as a group language

I Generators: {a; b; c}
I Defining equations: a−1 = bc = cb, b−1 = ac = ca,

c−1 = ab = ba

Z2 is the group that has this presentation.

a b
c c

b

ca
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MIX as a group language

Yet another presentation of Z2

I Generators: {a; a; b; b}
I Defining equations: a−1 = a, b−1 = b, ab = ba, ab = ba,

ab = ba, a b = b a

a

a

b b

The associated group language is

O2 = {w ∈ {a; a; b; b}∗||w |a = |w |a ∧ |w |b = |w |b}
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MIX as a group language

MIX and O2: group languages of Z2

MIX and O2 are rationally equivalent
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MIX as a group language

MIX and computational group theory

I Gilman (2005)
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A grammar for O2

A 2-MCFG for O2

S(xy)← Inv(x , y)
Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1, x1x2y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1x1x2, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(y1, y2x1x2)← Inv(x1, x2), Inv(y1, y2)
Inv(αx1α, x2)← Inv(x1, x2)
Inv(αx1, αx2)← Inv(x1, x2)
Inv(αx1, x2α)← Inv(x1, x2)
Inv(x1α, αx2)← Inv(x1, x2)
Inv(x1α, x2α)← Inv(x1, x2)
Inv(x1, αx2α)← Inv(x1, x2)

Inv(x1y1x2, y2)← Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1x2y2)← Inv(x1, x2), Inv(y1, y2)

Inv(ε, ε)←

where α ∈ {a; b}
Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.
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A grammar for O2

A graphical interpretation of O2.
Graphical interpretation of the word aaabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:

The words in O2 are precisely the words that are represented as closed curves:
babbababbabbabbababbaaabbbabbaaaabbabbbaba
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A graphical interpretation of O2.
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The words in O2 are precisely the words that are represented as closed curves:
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A grammar for O2

Parsing with the grammar
Rule Inv(ax1a, x2) ← Inv(x1, x2)

Inv(abaabaaababbbabaaabbbabbbbaaaba, babbbbaaaaaababbaab)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)
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A grammar for O2

Parsing with the grammar

Rule: Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)

Inv(baabaaababbbabaaabbbabbbbaaab, babbbbaaaaaababbaab)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(baabaaaba, bbaab)
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A grammar for O2

Parsing with the grammar

Rule Inv(x1, y1x2y2)← Inv(x1, x2), Inv(y1, y2)

Inv(bbbabaaabbbabbbbaaab, babbbbaaaaaaba)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(babb, ba)
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A grammar for O2

Parsing with the grammar

Rule: Inv(x1b, bx2)← Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaab, bbaaaaaa)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)
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A grammar for O2

Parsing with the grammar

Rule: Inv(bx1, bx2)← Inv(x1, x2)

Inv(bbbabaaabbbabbbbaaa, baaaaaa)

Inv(bbabaaabbbabbbbaaa, aaaaaa)
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A grammar for O2

Parsing with the grammar

Rule: Inv(x1y1, y2x2)← Inv(x1, x2), Inv(y1, y2)

Inv(bbabaaabbbabbbbaaa, aaaaaa)

Inv(bbabaaabbbabbbb, aaa) Inv(aaa, aaa)
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A grammar for O2

Parsing with the grammar

Rule: Inv(bx1b, x2) ← Inv(x1, x2)

Inv(bbabaaabbbabbbb, aaa)

Inv(babaaabbbabbb, aaa)
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Proof of the Theorem

The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 1: w1 or w2 equal ε:
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 1: w1 or w2 equal ε:
w.l.o.g., w1 6= ε , then by induction hypothesis, for any v1 and v2 different from ε such
that w1 = v1v2, Inv(v1, v2) is derivable then:

Inv(v1, v2) Inv(ε, ε)
Inv(x1x2y1, y2)← Inv(x1, x2), Inv(y1, y2)

Inv(v1v2 = w1, ε)
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 2: w1 = s1w ′
1s2 and w2 = s3w ′

2s4 and for i , j ∈ {1; 2; 3; 4}, s.t. i 6= j ,

{si ; sj} ∈ {{a; a}; {b; b}}:
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 2: w1 = s1w ′
1s2 and w2 = s3w ′

2s4 and for i , j ∈ {1; 2; 3; 4}, s.t. i 6= j ,

{si ; sj} ∈ {{a; a}; {b; b}}:
e.g., if i = 1, j = 2, s1 = a and s2 = a then by induction hypothesis Inv(w ′

1,w2) is
derivable and:

Inv(w ′
1,w2)

Inv(ax1a, x2)← Inv(x1, x2)
Inv(aw ′

1a,w2)
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 3: the curves representing w1 and w2 have a non-trivial intersection point:
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Proof of the Theorem

The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 3: the curves representing w1 and w2 have a non-trivial intersection point:

v1

v2

v3

v4

A B
w1 w2 Inv(v1, v4) Inv(v2, v3)

Inv(v1v2 = w1, v3v4 = w2)
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 4: the curve representing w1 or w2 starts or ends with a loop:
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 4: the curve representing w1 or w2 starts or ends with a loop:

v1 v2

Inv(v1, ε) Inv(v2,w2)

Inv(v1v2 = w1,w2)
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Proof of the Theorem

The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is derivable.

The proof is done by induction on the lexicographically ordered pairs
(|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 5: w1 and w2 do not start or end with compatible letters, the curve representing
then do not intersect and do not start or end with a loop.
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Proof of the Theorem

Case 5
No rule other than

Inv(x1y1x2, y2) ← Inv(x1, x2), Inv(y1, y2)

Inv(x1, y1x2y2) ← Inv(x1, x2), Inv(y1, y2)

can be used.
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Proof of the Theorem

Case 5
No rule other than

Inv(x1y1x2, y2) ← Inv(x1, x2), Inv(y1, y2)

Inv(x1, y1x2y2) ← Inv(x1, x2), Inv(y1, y2)

can be used.
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Proof of the Theorem

The relevance of case 5

The word
abbaabaaabbbbaaaba

is not in the language of the grammar only containing the
well-nested rules.
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Solving case 5: towards geometry
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Proof of the Theorem

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 a and w ′
2 = aw ′′

2 a w ′
1 = aw ′′

1 a and w ′
2 = aw ′′

2 b

w ′
1 = aw ′′

1 a and w ′
2 = bw ′′

2 a w ′
1 = aw ′′

1 a and w ′
2 = bw ′′

2 b
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Proof of the Theorem

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 b and w ′
2 = aw ′′

2 b w ′
1 = aw ′′

1 b and w ′
2 = bw ′′

2 a

w ′
1 = aw ′′

1 a and w ′
2 = a w ′

1 = aw ′′
1 a and w ′

2 = b
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Proof of the Theorem

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′
1w

′
2:

w ′
1 = aw ′′

1 b and w ′
2 = a w ′

1 = aw ′′
1 b and w ′

2 = b
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A Theorem on Jordan curves

On Jordan curves

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

Theorem: There is k ∈ {−1; 1} such that the winding number of Jordan curve around

a point in its interior is k, its winding number around a point in its exterior is 0.
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On Jordan curves

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

Theorem: There is k ∈ {−1; 1} such that the winding number of Jordan curve around

a point in its interior is k, its winding number around a point in its exterior is 0.
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A theorem on Jordan curves
Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
AD =

−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

A′ D′
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Theorem: If A and D are two points on a Jordan curve J such that there are two

points A′ and D′ inside J such that
−→
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−−→
A′D′, then there are two points B and C

pairwise distinct from A and D such that A, B, C , and D appear in that order on one

of the arcs going from A to D and
−→
AD =

−→
BC .

A D

B C

EF

A′ D′

G H
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points A′ and D′ inside J such that
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AD =

−−→
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A Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let’s suppose that D − A = 1

and that A0 = A′ = 0, A1 = D′ = 1,. . . , Ak = k

let ϕ :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

G H

O

A,D

E,F

B,C

I, J G,H

ϕ transforms arcs performing translation of k into arc that have k as winding
number around 0.
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A Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let’s suppose that D − A = 1 and that A0 = A′ = 0, A1 = D′ = 1,. . . , Ak = k

let ϕ :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

G H

A0 A1 A2 A3A−1A−2 O

A,D

E,F

B,C

I, J G,H
A0, A1

ϕ sums up the winding number of a Jordan curve around the Ai ’s as the
winding number around ϕ(A0) = ϕ(0) = 1.
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A Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let’s suppose that D − A = 1 and that A0 = A′ = 0, A1 = D′ = 1,. . . , Ak = k

let ϕ :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

O

A,D

E,F

B,C

I, J
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A Theorem on Jordan curves

Simple curves, translations, intersections and the complex
exponential

Let’s suppose that D − A = 1 and that A0 = A′ = 0, A1 = D′ = 1,. . . , Ak = k

let ϕ :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

O

A,D

E,F

B,C

I, J

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B
and C as required in the Theorem iff ϕ(J) is a Jordan curve of C− {0} that
belong to the homotopy class 1 (resp. −1).



MIX

A Theorem on Jordan curves

Proof of the main Lemma

Main Lemma: a simple arc J from A to D (resp. D to A) does not contain B and C
as required in the Theorem iff ϕ(J) is a Jordan curve of C− {0} that belong to the
homotopy class 1 (resp. −1).

Proof.
Let wn(J, z) be the winding number of a closed curve around z.

I If ϕ(J) contains a closed subarc J′ with wn(J, 0) = k, then it corresponds to a
subarc of J going from a point E to E + k,

I we cannot have k = 0 since J is simple,

I if k = 1 we are done,

I if k > 1 then J′ contains a subarc J′′ such that wn(J′′, 0) = 1,

I if k < 0 then by suppressing J′ from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff ϕ(J) is a Jordan curve of C− {1} that belong to the
homotopy class 0 or 1 (resp. or −1).
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subarc of J going from a point E to E + k,

I we cannot have k = 0 since J is simple,

I if k = 1 we are done,

I if k > 1 then J′ contains a subarc J′′ such that wn(J′′, 0) = 1,

I if k < 0 then by suppressing J′ from J, it winding number becomes strictly
greater than 1 and we conclude as in the preceding case.

Corollary: a simple path J from A to D (resp. D to A) does not contain B and C as
required in the Theorem iff ϕ(J) is a Jordan curve of C− {1} that belong to the
homotopy class 0 or 1 (resp. or −1).
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A Theorem on Jordan curves

Proving the Theorem

Corollary: if J is a simple closed curve of C composed with two curves J1 and J2

respectively going from A to D and D to A which do not contain points B and C as
required in the Theorem then |wn(ϕ(J), 1)| = |wn(ϕ(J1), 1) + wn(ϕ(J2), 1)| ≤ 1.

Lemma: if J is a simple closed curve of C composed with two curves J1 and J2

respectively going from A to D and D to A such that 0 and 1 are in the interior of J,
then either |wn(ϕ(J), 1)| ≥ 2.

The Theorem follows by contradiction.
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Conclusion

I we have showed that O2 is a 2-MCFL exhibiting the first non-virtually free
group language that is proved to belong to an interesting class of language,

I this implies that contrary to the usual conjecture we have showed that MIX is a
2-MCFLs.
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Conjectures
Well-nestedness:

Well-nested
Inv(y1x1x2, y2)← Inv(x1, x2), Inv(y1, y2)

Not well-nested
Inv(y1x1y2, x2)← Inv(x1, x2), Inv(y1, y2)

MCFGwn are MCFGs with well-nested rules.

I MCFLwn coincide with non-duplicating IO/OI,

I MCFL is incomparable with IO or OI.

Thus the following conjectures:

I mildly context sensitive languages may well be, as advocated by Kanazawa,
MCFLwn

I O2 and MIX should not be a MCFLwn

I semilinear rational cones included in OI should be included in MCFLwn

I O2 and MIX should not be in OI.

Open question:

I Is O3 an MCFL?
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