Equivalence to Minimalist Grammars:
All boils down to overt phrasal movement

Jens Michaelis

Bielefeld University, Bielefeld, Germany

MCFG+2, Nara, Japan, September 9-10, 2011

1/73

Outline

e Minimalist grammars

e The formalism
e Trees in terms of a reduced tuple representation

¢ Redefining the formalism (almost as MCFGs)

e Multiple context-free grammars

e Normal forms

o Representing normal forms as minimalist grammars

e Concluding remarks

2/73

Minimalist grammars

e Minimalist grammars (MGs) (Stabler 1997, 1999) provide an
attempt at a rigorous algebraic formalization (of some) of the
perspectives adopted in the minimalist branch of generative

grammar.

e MGs in the above format constitute a mildly context-sensitive

grammar formalism in the sense of Joshi 1985 (Michaelis 2001a,b)

Two crucial features of MGs helped achieving this result:

3/73

Minimalist grammars

e Minimalist grammars (MGs) (Stabler 1997, 1999) provide an
attempt at a rigorous algebraic formalization (of some) of the
perspectives adopted in the minimalist branch of generative

grammar.

e MGs in the above format constitute a mildly context-sensitive

grammar formalism in the sense of Joshi 1985 (Michaelis 2001a,b)

Two crucial features of MGs helped achieving this result:

e the resource sensitivity (encoded in the checking mechanism)

e the shortest move condition (as a locality constraint)

3/73

Minimalist grammars

o Work on MGs defined in this sense can, thus, be seen as having
led to a realignment of “grammars found ‘useful’ by linguists”

and formal complexity theory.

e In fact, MGs are capable of integrating (if needed) a variety of

(arguably) “odd” items from the syntactician’s toolbox, e.g.,

e head movement (Stabler 1997, 2001)

e (strict) remnant movement (Stabler 1997, 1999)

e affix hopping (Stabler 2001)

e adjunction and scrambling (Frey & Gartner 2002)

e late adjunction and extraposition (Gartner & Michaelis 2008)
e copy-movement (Kobele 2006)

e relativized minimality (Stabler 2011)

4/73

Minimalist expressions (labeled trees)

e The objects generated by an MG: minimalist expressions

Not: DP But: <
| PN
D’ the:D idea
S
D NP
| |
the N’
| < "points towards” the projecting daughter.
N
|
idea

5/73

Minimalist expressions (labeled trees)

. < "left daughter projects”

> “right daughter projects”

head

e non-leaf-labels [projection]

6/73

Minimalist expressions (labeled trees)

. < "left daughter projects”

> “right daughter projects”

maximal projection >

head

e non-leaf-labels [projection]

— maximal projections: each subtree whose root does not project —

6/73

Minimalist expressions (labeled trees)

>
\‘\\ < "left daughter projects”
specifier >
> “right daughter projects”
specifier >
specifier <

head

complement

e non-leaf-labels [projection]

— maximal projections: each subtree whose root does not project —

6/73

Minimalist expressions (labeled trees)

. terminal vocabulary

syntactic features

terminal_string : feature_list

e |eaf-labels

6/73

Minimalist expressions (syntactic features)

e There are different types of syntactic features.

selectees: X
selectors: =x
licensees: -x

licensors: +x

e Starting from a lexicon, a finite set of simple expressions,
minimalist expressions can be built up recursively by checking off

instances of syntactic features “from left to right.”

o Different types of syntactic features trigger different structure

building functions.

7/73

Minimalist expressions Displaying feature f

N terminal vocabulary

syntactic features

terminal_string : f ...

head-label is of the form | terminal string : f ...

8/73

Structure building functions

merge : Trees X Trees 22 Trees I

tree displays feature =f tree displays feature
=f .. f...

9/73

Structure building functions

merge : Trees X Trees 22 Trees I

tree displays feature =f tree displays feature

AN

f...

selecting tree a simple head

9/73

Structure building functions

merge : Trees X Trees 22 Trees I

tree displays feature =f

selecting tree a simple head

tree displays feature

selecting tree complex

9/73

Structure bU|Id|ng functions (overt phrasal movement)

move : Trees Barty pTrees I

tree displays feature +f

+f ...
=1 5oc

maximal projection displays feature —f

10/73

Structure bU|Id|ng functions (overt phrasal movement)

move : Trees Barty pTrees I

tree displays feature +f

+f ...
=1 5oc

maximal projection displays feature —f

10/73

Structure building functions

o A simple example of an embedded interrogative clause shows the
different types of features at work in order to serve as a

demonstration of the general cases.

e merge:
- right selection

- left selection

e MOVe:

— overt phrasal movement

11/73

Example of a lexicon (a set of single noded labeled trees)

that :: =1 C the :: =N D -k
[]:=I +wh C which :: =N D -k -wh
does i =v +k I

sleep 1 =D +k v

[]:=V=Dv cat N

bite :: =D +k V dog 1 N

12/73

merge =f ~> right selection

which :[=N|D -k -wh

13/73

merge =f ~> right selection

which :: D -k -wh dog ::

14/73

merge =f ~> right selection

<

which :[=N]D -k -wh dog :[N]

14/73

merge =f ~> right selection

<

which :[3|D -k -wh dog :[X]

14/73

merge f ~- tree, selectable via merge

<
P
which : 38 [D|-k -wh dog : X

15/73

f ~- tree, selectable via merge

P
which :[:}—k -wh dog

16/73

merge =f ~> right selection

bite ::@ +k V
which :[:}—k —wh’/\\ng

17/73

merge =f ~> right selection

<
bite :@ +k V/\
<

which :[:}—k —wh’/\\ng

17/73

merge =f ~> right selection

<
bite :@ +k V/\
<

which : -k -wh - dog

17/73

merge +f ~» tree, demanding movement

<
bite : 3D V/\
A
which : B -k -wh dog

18/73

tree, demanding movement

<
bite :III!I 6/\\\\\‘\\\\
A
which : -k -wh dog

19/73

move +f ~- overt phrasal movement

<
bite :IEI!I 6/\\\\\‘\\\\
<
which : -wh - dog

19/73

move +f ~» overt phrasal movement

<
A~
(which : -wh dog> <

bite :III!I \')

20/73

move +f ~» overt phrasal movement

<
-~
(Which : -wh dD\<

bite :III!I \')

20/73

move +f ~» overt phrasal movement

<
(Which : -wh - dD\<

bite : IHH!!I \')

20/73

move

+f ~- overt phrasal movement

>

</\
which : -wh dog
bite <[] V /\

20/73

f ~- tree, selectable via merge

~
which : —-wh dog <

bite : Iiii\\\\\\‘\~\\\
€

21/73

merge =f ~> right selection

[] ::IEIII =D v >

A~
which : —-wh dog <

bite : Iiii\\\\\\‘\~\\\
€

22/73

merge =f ~> right selection

[] :=D V/\>
A
which : —-wh dog <

bite : Iiii\\\\\\‘\~\\\
€

22/73

merge

=f ~- right selection

[] :=D V/\>

A~
which : —-wh dog <
bite :

FN

22/73

=f ~~ complex tree, demanding specifier selection

23/73

merge =f ~ left selection

23/73

merge =f ~ left selection

23/73

merge =f ~ left selection

23/73

f ~- tree, selectable via merge

24/73

merge

does ::

+kI

the :

=f ~- right selection

24/73

merge

does

the :

=f ~- right selection

24/73

merge

does : +k

the :

=f ~- right selection

24/73

tree, demanding movement

<
does :[EE] E/\\\\>

PO

the : -k cat <

25/73

move

<
does : @ I/\>

which :

+f ~- overt phrasal movement

25/73

move +f ~» overt phrasal movement

26/73

move +f ~» overt phrasal movement

26/73

move +f ~» overt phrasal movement

26/73

move

>
</\
the : cat <
does :@ I/\>

+f ~- overt phrasal movement

5/\

L]

which :

26/73

f ~- tree, selectable via merge

27/73

merge =f ~> right selection

the cat <
does :>
€
/\<
oS

which : -wh dog <

27/73

merge =f ~> right selection

the cat <
does :>
€
/\<
oS

which : -wh dog <

27/73

merge =f ~> right selection

the cat <
does :>
€
/\<
oS

which : -wh dog <

27/73

L]

which :

tree, demanding movement

28/73

move +f ~- overt phrasal movement

the cat <
does >
€
/\<
oS

28/73

move +f ~» overt phrasal movement

29/73

move +f ~» overt phrasal movement

29/73

move +f ~» overt phrasal movement

29/73

move +f ~- overt phrasal movement

the cat <
does >
s/\<
SRS
5/\<
bite /\

29/73

Complete tree

>
<
A~
which dog /<\
(1 : >

<,/"\\\\\\\\\\

~

the cat
does

"“accepted as category C”

<
>
EI/A\\\\\\\\\<
L] []/\>
E//A\\\\\\\\\<
bite/\

30/73

Complete tree “accepted as category C”

<
N

which dog <

[1 :>

PN

the cat <
does >
s/\<
SRS
5/\<
bite /\

e No unchecked syntactic features but one instance of C within the head-label.

30/73

Structure building functions

merge : Trees X Trees 22 Trees I

tree displays feature =f

selecting tree a simple head

tree displays feature

selecting tree complex

31/73

Structure bU|Id|ng functions (overt phrasal movement)

move : Trees Barty pTrees I

tree displays feature +f

+f ...
=1 5oc

maximal projection displays feature —f

32/73

Shortest movement condition (SMC) (Stabler 1997, 1999)

e The number of competing licensee features triggering a

movement is (finitely) bounded by some number n.

In the strictest version n = 1: move only applies, if there is at

most one maximal projection displaying a matching licensee feature.

<

+f ...

33/73

Specifier island condition (SPIC)

o Proper “extraction” from specifiers is blocked.

prohibited

specifier

(Stabler 1999)

34/73

Minimalist grammars

G = (Vocabulary, SynFeat, Lex, 2, c) an MG

e Vocabulary — a finite set — [terminal vocabulary]
e SynFeat — a finite set — [(syntactic) features]
Selectees U Selectors U Licensees U Licensors
X =x =% +x

35/73

Minimalist grammars

G = (Vocabulary, SynFeat, Lex, 2, c) an MG

e Vocabulary — a finite set — [terminal vocabulary]
e SynFeat — a finite set — [(syntactic) features]
Selectees U Selectors U Licensees U Licensors
X =X =5¢ +x
e Lex C Vocabulary”™ x {::} x SynFeat™ [lexicon]

— a finite set of single noded minimalist expressions —

35/73

Minimalist grammars

G = (Vocabulary, SynFeat, Lex, 2, c) an MG
e Vocabulary — a finite set — [terminal vocabulary]
e SynFeat — a finite set — [(syntactic) features]
Selectees U Selectors U Licensees U Licensors
X =X =5¢ +x
e Lex C Vocabulary”™ x {::} x SynFeat™ [lexicon]
— a finite set of single noded minimalist expressions —
e) = {merge, move } [structure building functions |
o c € Selectees [distinguished category]

35/73

Minimalist languages MG, G = (¥, SynFeat, Lex, 2, c)

The closure of G [Closure(G)] <=

closure of the lexicon under finite applications of the functions in €.

The tree language of G [Trees(G)] <=

trees in the closure with essentially no unchecked syntactic features

— only head-label contains exactly one unchecked instance of c.

The string language of G [L(G)] <=

(terminal) yields of the trees belonging to the tree language.

36/73

SMC and SPIC — restricting the move-operator domain

- SMC, - SPIC

+ SMC, - SPIC MG - SMC, + SPIC

+ SMC , + SPIC I

37/73

SMC and SPIC — restricting the move-operator domain

MELL-proof-search (Salvati 2011)

- SMC, - SPIC
MCFG type 0
+ SMC, - SPIC I MG - SMC, + SPIC I
(Michaelis 2001a,c; Harkema 2001) (Kobele & Michaelis 2009)

>§\<) + SMC , + SPIC I

monadic branching MCFG (Michaelis 2001b, 2004, 2009)
37/73

SMC and SPIC — restricting the move-operator domain

MELL-proof-search (Salvati 2011)

- SMC, - SPIC
MCFG type 0
+ SMC, - SPIC I MG - SMC, + SPIC I
(Michaelis 2001a,c; Harkema 2001) (Kobele & Michaelis 2009)

well-nested MCFG

Q)
(Kanazawa et al. 2011) X + SMC, + SPIC I

monadic branching MCFG (Michaelis 2001b, 2004, 2009)

37/73

Trees as tuples (towards a finite partition)

e The method

essentially developed to prove that the MG-string languages
provide a subclass of MCFLs in Michaelis 2001a, and

leading to the succinct, chain-based MG-reformulation presented
in Stabler & Keenan 2003, reducing “classical” MGs to their

“bare essentials:"”

o Defining a finite partition on the “relevant” MG-tree set,

e giving rise to a finite set of nonterminals in MCFG-terms,

e nevertheless deriving all possible “terminal yields.”

38/73

Trees as tuples (in summary)

o General idea:
compact tuple representation reducing minimalist trees to exactly

the information which is relevant within a (proceeding) derivation.

e Put differently:
every part of a maximal projection not related to some unchecked
feature, i.e. every part of a constituent being an “unextractable”
part of a higher constituent the latter providing some unchecked

feature, is compactly represented with this higher constituent.

Doing so, information about the tree structure and the relation

between “still active” constituents can be ignored to a large extend.

e Examples ...

39/73

Trees as tuples

the : cat /<\
(1 :[v] >
</\
which :|-wh dog <

40/73

Trees as tuples

the : cat /<\
(1 :[v] >
</\
which :|-wh dog <

40/73

Trees as tuples

the : cat (] : >

<
which :|-wh dog bite/\

40/73

Trees as tuples

40/73

Trees as tuples

the : cat [] : 4

<
< /\
which : dog bite .

< :, il —wh |, the cat : >

40/73

Trees as tuples

the : cat (] : >

<
< /\
which : dog iz c

< :, which™ dog :, the " cat : >

40/73

Trees as tuples

the : cat (] : >

<
< /\
which : dog iz c

< bite :, which™ dog :, the " cat : >

40/73

Trees as tuples

40/73

Trees as tuples

the : cat [] : 4

<
< /\
which : dog bite .

(- & Ea. =)

40/73

Trees as tuples

the : cat (] : >

<
< /\
which : dog bite i

(:.[v]. [x]) (bite , which™dog , the™cat)

40/73

Trees as tuples

< /\
/\(

CEEE ()

40/73

Trees as tuples

does :|+k I/\>
<'/'\\\\\\\\\\
the : cat <
[] []/\>
<//ﬂ\\\\\\\\\\
which :|-wh dog <

41/73

Trees as tuples

does :|+k I/\>
<’/~\\\\\\\\\\
the : cat <
[] []/\>
<//~\\\\\\\\\
which :|-wh dog <

41/73

Trees as tuples

41/73

Trees as tuples

< kI, i -wh |, :>

41/73

Trees as tuples

< :|+k I |, which™ dog :, the " cat : >

41/73

Trees as tuples

< does " bite :|+k I |, which™ dog :, the " cat : >

41/73

Trees as tuples

< kI, i -wh |, :>

41/73

Trees as tuples

(- [T .=)

41/73

Trees as tuples

< 2 . , , > (does” " bite , which™ dog , the™ cat)

41/73

Trees as tuples

< /\
1| -wh

(EDEEN ()

41/73

Trees as tuples

the cat <
does : >
5/\
<
[] []/\>
</\
which :|-wh dog <

42/73

Trees as tuples

the cat <
does :>
5/\
<
[] []/\>
</\
which :|-wh dog <

42/73

Trees as tuples

the cat <
does : >
8,/’\\\\\\\\\\\
<
[] []/\>
/\<
< /\
which :|-wh dog bite

42/73

Trees as tuples

the cat <
does : >
5/\
<
[] []/\>

<
which :|-wh dog bite/\

42/73

Trees as tuples

the cat <
does : >
5/\
<
[] []/\>

<
< /\
which - dog bite _

< :, which™ dog : >

42/73

Trees as tuples

>
</\
PN
the cat <
does : >
5/\
<
[] []/\>

<
< /\
which :[~wh| dog bite)

< the " cat™ does™ bite : , which™ dog : >

42/73

Trees as tuples

the cat <
does : >
5/\
<
[] []/\>

<
which :|-wh dog bite/\

42/73

Trees as tuples

the cat <
does : >
5/\
<
[] []/\>

<
which :|-wh dog bite/\

(.G

42/73

Trees as tuples

>
</\
A~
the cat <
does :>
8/\
<
[] []/\>
/\<
< /\
which :|-wh dog bite

< 3 4 . > (the " cat™ does™ bite , which™ dog)

42/73

Trees as tuples

(.))

42/73

Trees as tuples

43/73

Trees as tuples

A~
which dog <
[1: Iiii\\\\\\\\\>
<
~
the cat <
d N
oes >
e/\
<
[] []/\>

43/73

Trees as tuples

A~
which dog <
(1] :>
<
~
the cat <
d N
oes >
e/\
<
[] []/\>

€
< which™ dog™ the™ cat™ does " bite : >

43/73

Trees as tuples

A~
which dog <
[1: Iiii\\\\\\\\\>
<
~
the cat <
d N
oes >
e/\
<
[] []/\>

43/73

Trees as tuples

<
does >
e/\
<
(] []/\>

43/73

Trees as tuples

>
<
PN
which dog <
(1 6]
<
~
the cat <
does >
6/\
<
[] []/\>
6/\

bite /\
< HE. > (which™ dog™ " the " cat™ does " bite) c

43/73

Trees as tuples

A
: IIII >
/K/\<
/\)
/\

43/73

Trees as tuples (general form)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG.

tuple representation of some 7 € Closure(G)

<0,")’0,’}/1,...,’7k>(X0,Xl,...,Xk)
ec{:,u} 7 € SynFeat™ x; € Vocabulary®
e==u Iiff 7 € Lex

44/73

Trees as tuples (general form)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG.

tuple representation of some 7 € Closure(G)

<.,")’0,’}/1,...,’Yk>(XO,Xl,...,Xk)
ec{:,u} ~; € SynFeat® x; € Vocabulary®
e==u Iiff 7 € Lex

general form defines a partition on Closure(G)

44/73

Trees as tuples (general form)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG.

tuple representation of some 7 € Closure(G)

(o Y0, 710)
ec {:,u} NS SynFeat*
e==u Iiff 7 € Lex

general form defines a partition on Closure(G)

44/73

Trees as tuples (general form)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG.

tuple representation of some 7 € Closure(G)

(o7, 71, %)
ec {:,u} NS SynFeat*
e == iff 7 € Lex

general form defines a partition on Closure(G)
o There are only finitely many possibilities for ~; .

“structure building by feature checking” and 7 € Closure(G) implies:

~i is the suffix of the syntactic feature part of the label of a lexical item

XAy € Lex

44/73

Trees as tuples

e The tuple representation is compatible with the structure
building operators, that is to say “merge” and “move,” can be

canonically reformulated.

e The tuple representation is exactly what can be employed to

define an equivalent MCFG. The only things missing are

o the replacement of the terminal strings by variables as far as

“merge” and “move” are concerned,

e the introduction of terminating rules simulating “lexical

insertion,” and

e a reduction to a finite number of nonterminals and rules.

45/73

merge (reformulated)

merge 1:

(o =tv]m vy (o)) ([ot6].60.0) ([voivasoo)

46/73

merge (reformulated)

merge 1: d # ¢

(o =tv]m vy (o)) ([ot6].60.0) ([voivasoo)

46/73

merge (reformulated)

merge 1: d # ¢

(o=tr]m vy (o)) ([0 t6].600) ([volivasoo)
<,’yl,...,’yk, >(,X1,...,Xk, 5)

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)
<,’yl,... ,7k,,51,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)
<,’yl,... ,7k,,51,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)
<,’yl,... ,7k,,51,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)
<,’yl,... ,7k,,51,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

<
[1 :[=D v/\>
</\
S
which : —-wh dog <
I
£

46/73

merge (reformulated)

merge 1: d # ¢

<,")’1,... ,’)’k>(,X1,... ,Xk) <,61,... ,6|>(,y1,... ,y|)
<,’yl,... ,7k,,61,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

<
‘the‘:‘D—k{ ‘cat‘ <
- I
</\
S
which : -wh dog <
I
=

46/73

merge (reformulated)

merge 1: d # ¢

<,")’1,... ,’)’k>(,X1,... ,Xk) <,61,... ,6|>(,y1,... ,y|)
<,’yl,... ,7k,,61,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

>
<
‘the‘:‘D—k{ ‘cat‘ <
- I
</\
S
which : -wh dog <
I
=

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)
<,’yl,... ,7k,,51,... ,5|>(,X1,... ,Xk,,y1,... ,y|)

46/73

merge (reformulated)

merge 1: d # ¢

(o=t r]m vy (o)) ([o£0].60,.0) ([yo)ivasoo)

46/73

merge (reformulated)

merge 2:

<,71,...,7k>(,x1,...,xk) <,51,...,6|>(,y1,...,y|)

47/73

merge (reformulated)

merge 2:

(et o) (oo ox) ([o.t 61,00 ([yo]ovi,ooow)

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o.t 61,00 ([yo]ovi,ooow)
(R P PR 1(E%) P

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o.t 61,00 ([yo]ovi,ooow)
<,’y1,...,’yk,51....,6|>(DXLy Xk YL o Y1)

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o.t 61,00 ([yo]ovi, oo om)
(.’71,...,’7k,51....,6|>(,><1....,Xk,y1,... 1)

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o.t 61,00 ([yo]ovi, oo om)
(.’71,...,’7k,51....,6|>(,><1....,Xk,y1,... 1)

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o. o1,) ([yo]ovi,ooom)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

’does‘::’=v+kl

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o. o1,) ([yo]ovi,ooom)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

’does‘::’=v+kl‘ >
</\
P
the : -k cat <
[1 : [?\>
</\
P
which -W

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o. o1,) ([yo]ovi,ooom)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

<

’does‘ g ’=v +kI/‘\>

</\
P

the : -k cat <

[1 : [?\>
</\
P
which -W

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o. o1,) ([yo]ovi,ooom)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

’does‘ 3 ’=)&+kI

>
</\
P
the : -k cat <
[1 : [?\>
</\
P
which -W

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o. o1,) ([yo]ovi,ooom)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

’does‘ 3 ’=)&+kI

>
</\
P
the : -k cat <
[1 : [?\>
</\
P
which -W

47/73

merge (reformulated)

merge 2:

(et]om) (o] ox) ([o.t 61,00 ([yo]ovi,ooow)

48/73

merge (reformulated)

merge 3:

<,71,...,7k>(,x1,...,xk) <,51,...,6|>(,y1,...,y|)

48/73

merge (reformulated)

merge 3:

<,71,...,7k>(,x1,...,xk) <,51,...,6|>(,y1,...,y|)
<,")’1,... ,’)’k,(51,... ,6|>(,X1,... Xk Y14--- ,y|)

48/73

merge (reformulated)

merge 3:

<,71,...,7k>(,x1,...,xk) <,51,...,6|>(,y1,...,y|)
(.’71,...,’7k,51....,6|>(,><1....,Xk,y1,... 1)

48/73

move (reformulated)

move 1:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1: 0 # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1: d # ¢

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘71,...,")’j,1, ,"‘,’j+1,...,’yk>(,X1,...,Xj,1, ,Xj+1,...,Xk)

49/73

move (reformulated)

move 1: 0 # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,’Ylv--- ,7j71,,7j+1,... ,"}’k>(,X1,... ,X‘jfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1: d # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘71,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,X‘jfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 1: d # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘71,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl, Xj ,Xj+1,... ,Xk)

49/73

move (reformulated)

move 1: 0 # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,X‘jfl,,XjJrl,... ,Xk)
<,’Ylv--- ,’ijl,,ijJrl,... ,’yk>(,X1,... ,X‘jf]_,,XjJrl,... ,Xk)

<
bite :[FET]
<
which : dog

49/73

move (reformulated)

move 1: 0 # ¢

<,’71,--- -1 £ 8| v, .‘7k>(,X1v--- :Xj—1.,Xj+1,--- Xk)
<,’)’1,... ,’yj,l,,"ijrl,... ,’yk>(,x1,... ,Xjfl,,XjJrl,... ,Xk)

>
<
which :[CK—wB] dog) e
bite :|+k V

C_

49/73

move (reformulated)

move 1: 0 # ¢

<,’71,--- -1 £ 8| v, .‘7k>(,X1v--- :Xj—1.,Xj+1,--- Xk)
<,’)’1,... ,’yj,l,,"ijrl,... ,’yk>(,x1,... ,Xjfl,,XjJrl,... ,Xk)

< which m\ j\

CO

49/73

move (reformulated)

move 1: 0 # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,’Ylv--- ,’ijl,,ijJrl,... ,’yk>(,X1,... ,X‘jf]_,,XjJrl,... ,Xk)

<

ofife
bite :[K¥]
€

49/73

move (reformulated)

move 1: 0 # ¢

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

49/73

move (reformulated)

move 2:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)

50/73

move (reformulated)

move 2:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘)’1,...,"yj,1 , "‘,’j+1,...,’yk>(,X1,...,XJ',1 , Xj+1,...,Xk)

50/73

move (reformulated)

move 2:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘)’1,...,"yj,1 , "‘,’j+1,...,’yk>(,X1,...,XJ',1 , Xj+1,...,Xk)

50/73

move (reformulated)

move 2:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘)’1,...,"yj,1 , "‘,’j+1,...,’yk>(,X1,...,XJ',1 , Xj+1,...,Xk)

50/73

move (reformulated)

move 2:

<,‘Yl,... ,’)’jfl,,"‘/jJrl,... ,"}’k>(,X1,... ,Xjfl,,XjJrl,... ,Xk)
<,‘)’1,...,"yj,1 , "‘,’j+1,...,’yk>(,X1,...,Xj,1 , Xj+1,...,Xk)

<
does : >
</\
the : II!!I”A\\

cat <
[]
which : -wh dog <

50/73

move (reformulated)

move 2:

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,X‘jfl,,XjJrl,... ,Xk)
<,")’1,...,")’j,1 , "‘,’j+1,...,’yk>(,X1,...,Xj,1 , Xj+1,...,Xk)

50/73

move (reformulated)

move 2:

<,‘)/1,... ,7j71,,7j+1,... ,"}’k>(,X1,... ,X‘jfl,,XjJrl,... ,Xk)
<,")’1,...,")’j,1 , "‘,’j+1,...,’yk>(,X1,...,Xj,1 , Xj+1,...,Xk)

50/73

move

move 2:

,’ijlv,"/jﬂ,...

,7k>(,x1,...

(reformulated)

 Xic)

the :

Vi1 il

(1]

which :

.’}’k>(,X1,---

y Xj—1 5 XJ'+1,...,Xk)
<
/\
[] >
</\
-~
-wh dog <
bite/\
e

50/73

move

move 2:

(reformulated)

,’ijlvv’YjH,--- -’7k>(,><1v---

 Xic)

A ’Yj+1,---.’7k>(,le---,xjfl COXiHL %)
>
</\
the cat <
does +XI/\>
s/\
<
00 S
</\
A~
which : -wh dog <
bite/\
€

50/73

Trees as tuples (towards a finite partition)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG

A minimal expression T € Closure(G) is relevant :<=> I

for each -x € Licensees,

there is at most one maximal projection in 7 that displays -x.

51/73

Trees as tuples (towards a finite partition)

G = (Vocabulary, SynFeat, Lex, 2, c) an MG

A minimal expression T € Closure(G) is relevant :<=> I

for each -x € Licensees,

there is at most one maximal projection in 7 that displays -x.

e In fact — due to the SMC — this kind of structure is
characteristic of each expression in Closure(G) involved in

creating a complete expression.

51/73

Trees as tuples (towards a finite partition)

For relevant 7 € Closure(G) consider its tuple representation

<®v’701’71v---1’yk>()(0 v X1 v-'-vxk)

52/73

Trees as tuples (towards a finite partition)

For relevant 7 € Closure(G) consider its tuple representation

<®V70171V"'1’Yk>(xo v X1 1-'-1Xk)

e Recall: there are only finitely many possibilities for v;. x: Ay € Lex

52/73

Trees as tuples (towards a finite partition)

For relevant 7 € Closure(G) consider its tuple representation

<®v’701’71v---1’7k>(x0 v X1 v-'-vxk)

e Recall: there are only finitely many possibilities for v;. x: Ay € Lex

e The relevance of 7 additionally implies k < | Licensees |.

52/73

Trees as tuples (towards a finite partition)

For relevant 7 € Closure(G) consider its tuple representation

<®v’701’71vn'1’yk>(x0 v X1 v-'-vxk)

e Recall: there are only finitely many possibilities for v;. x:= A7; € Lex

e The relevance of 7 additionally implies k < | Licensees |. Thus, for

(@, % 7%)

there are only finitely many possibilities since 7 is relevant

52/73

Trees as tuples (towards a finite partition)
For relevant 7 € Closure(G) consider its tuple representation
<®v'70:'71v---,’Yk>(Xo » X1 y---,Xk)

e Recall: there are only finitely many possibilities for v;. x: Ay € Lex

e The relevance of 7 additionally implies k < | Licensees |. Thus, for

(@, % 7%)

there are only finitely many possibilities since 7 is relevant

o Each such k+2-tuple constitutes a nonterminal of the equivalent MCFG.

52/73

Equivalent MCFG (in terms of its rules)

merge 1:

<®,=f’)’,’)’1,...,’)’k> (Xo,X1,...,Xk) <.,f(5,51,...,5|> (yo,yl,...,y|)
< YoV 0 Yk 5 51,... 5|> (Xo,Xl,...,Xk,yo,yl,... y\)

merge 2

< =fv,v,... 7k> (xo X1,... xk) <o £f ,01,... 5|> (yo,yl,... y|)
Covvamiee a0, 8) (XoYo, /X1, Xk Y1aeee Y1)

merge 3:

<:,=f"/,’71,...,’7k> (Xo,x1,...,xk) <O,f ,51,...,5|> (yo,yl,...,y|)

<:,7,71,...,~yk,61,...,6‘> (poo,,X1,...,Xk,y1,...,y\)

53/73

Equivalent MCFG (in terms of its rules)

merge 1:

’<®,=f"y,’)’1,...,’Yk>‘(Xo,X1,...,Xk) ‘<o,f6,61,...,6|>‘(yo,y1,...,y|)
‘<:,7,'71,...,7k,5,51,...,5|>‘(xo,x1,...,xk,yo,yl,...,y\)

merge 2:

’<::,=f*7,‘71,... Vi) ‘(xo,xl,... VX) ‘< o . f b1,...,0) ‘(yo,yl,...)
‘(:,'7,71,...,7k,51,....5|>‘(XOyo,,X1,....Xk,y1,...,y|)

merge 3:

’(:,=f’y,71,...,'yk> (0. x1,- .. %) ‘(o,f ,51,...,5.>\(y0,y1,...,y.)
‘<:,’)’,"/1,...,"‘/k,51,...,5\>‘(po0,,X1,...,Xk,y1,...,y\)

53/73

Equivalent MCFG (in terms of its rules)

merge 1:
B (%o, %1,...,%) C (Yo.yi,---ov)
A (xo,xl,...,xk,yo,yl,...,y\)
merge 2:
B (Xo,Xl,...,Xk) C (yo,yl,...,y|)
A (xoyo,,x1,...,xk,y1,...,y|)
merge 3:
B (xo,xl,...,xk) C (yo,yl,...,y|)
A (yoxo,,Xl,... Xk o Y1r--- y\)

53/73

Equivalent MCFG (in terms of its rules)

move 1:
<:,+f"y,"yl,...,’ijl,—f(s,’Yj+1,...,‘Yk> (Xo,Xl,...,Xjfl,Xj,XjJFl,...,Xk)
<:,’7,’71,...,’7j_1,5,’7j+1,...,’7k> (Xo,X1,...,Xj_l,XJ',XH_l,...,Xk)
move 2:
<:,+f’7,’71,...,’7j_1,—f ,’7j+1,...,’7k> (Xo,X1,...,Xj_1,XJ,XH_1,...,Xk)
<:,’7,‘)/1,...,'7j_1,')’j+1,...,‘yk> (XJXO,Xl,...,Xj_1,Xj+1,...,Xk)

54/73

Equivalent MCFG (in terms of its rules)

move 1:
‘<:,+f’y,’yl,...,’ijl,-f(s,’Yj+1,...,7k> (Xo,Xl,...,Xjfl,Xj,XjJFl,...,Xk)
‘<:,"‘/,’)’1,...,7j_1,5,’7j+1,...,’7k>‘(X0,X1,...,Xj_l,XJ',XH_l,...,Xk)
move 2:
‘<:,+f’7,’71,...,’7j_1,—f ,’7j+1,...,’)’k>‘(Xo,X1,...,Xj_1,XJ,XH_1,...,Xk)
‘<:.7,‘71,---,’Yj—l,'}’j+1y---,’)’k> (XJXO,Xl,...,Xj_1,Xj+1,...,Xk)

54/73

Equivalent MCFG (in terms of its rules)

move 1:
B (Xo,Xln--,Nfl.M,N4¢.n-,Xk)
A (Xo,le---,Xj—lyxjij+1,---,Xk)
move 2:
B (Xo,XL---,Xj—1,><Jij+1,---,Xk)
A (XX0 X1y e oo Xjm1 XL - oo o Xk)

54/73

Equivalent MCFG (in terms of its rules)

lexical insertion:

55/73

Equivalent MCFG (in terms of its rules)

lexical insertion:

55/73

Equivalent MCFG (in terms of its rules)

lexical insertion:

55/73

Remarks: MG -> MCFG

o Feature consumption plus SMC are the crucial ingredients.

o Proof is more than a proof of just an embedding of string
language classes.

o Adaption is possible, when head movement, left complement
selection, rightward movement/extraposition and/or covert
movement/agree is incorporated into the MG-formalism.

e Adaption is also possible, when late adjunction together with
adjunct island condition is incorporated into the MG-formalism.
This, in fact, is “more strictly” about string language
equivalence.

¢ Adding SPIC, yields monadic branching MCFGs as output. Note

that the set of relevant trees can be reduced in this case.

56/73

Multiple Context-Free Grammars (Seki et al. 1991)

G =(N,X,P,S)an MCFG
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

A <~ B; R =

Multiple Context-Free Grammars (Seki et al. 1991)

G =(N,X,P,S)an MCFG
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

A(tl,...,tk) — Bl(xl,lv"'7X1,k1>7~--7Bm(Xm,17--~7Xm,km)

Multiple Context-Free Grammars (Seki et al. 1991)

G =(N,X,P,S)an MCFG
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

A(tl, ,tk) — Bl(X1,17 ,X1'k1>, oo g Bm(Xm,17 7Xm,km)
e rank(A) = k , rank(B;) = k;

® X1,1,--- 5 Xmk, Variables

e tje (BU{x11, - s Xmk, })*

Xj j occurs at most once inty--- ty

Multiple Context-Free Grammars

(Seki et al. 1991)

G =(N,X,P,S)an MCFG
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

e rank(A) = k , rank(B;) = k;
® X1,1,---»Xmk, Variables

e tje (BU{xy1, - s Xmk, })*

Xj j occurs at most once inty--- ty

Aty ..., tk) « terminating rule if m=0

Multiple Context-Free Grammars (Seki et al. 1991)

G =(N,X,P,S)an MCFG
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

Example: S(x2y2X1Y1 B(x1,x2), Cly1,y2)

Non-permuting MCFGs

G = (N, X, P,S) an MCFGnon-perm
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

A(tl,...,tk) — Bl(xl,lv"'7X1,k1>7~--7Bm(Xm,17--~7Xm,km)

Non-permuting MCFGs

G = (N, X, P,S) an MCFGnon-perm
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

A(tl,...,tk) — Bl(xl,lv"'7X1,k1>7~--7Bm(Xm,17--~7Xm,km)

+ do not permute variables from one nonterminal within tq--- t:

the order of variables from one nonterminal component is preserved.

Non-permuting MCFGs

G = (N, X, P,S) an MCFGnon-perm
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

Non-example: S(xayox1y1) < B(xi,x2), Cly1,y2)

Non-permuting MCFGs

G = (N, X, P,S) an MCFGnon-perm
e N a finite set of nonterminals , a ranked alphabet
e S the start symbol , nonterminal of rank 1
e X a finite set of terminals

e P afinite set of rules:

Example: S(x1y1yax2) < B(xi,x2), Cly1,y2)

Dimension and rank of MCFGs

G = (N,X,P,S)an MCFG

e rank of G: maximal number of nonterminal instances

on the righthand side of some rule

e G hasrank f ~» Gisan MCFG(f)

e The language derived by G is an MCFL, resp., an MCFL(f)

59/73

MCFG-normal form

e MCFG(2) constitutes a normal form for MCFG, since we have

Proposition: MCFL = MCFL(2)

60/73

MCFG-normal form

e MCFG(2) constitutes a normal form for MCFG, since we have

Proposition: MCFL = MCFL(2)

o A restricted MCFG-normal form is, thus, the following:

An MCFG, G, is an MCFG,,,, or, monadic branching if
e G is of rank 2, and

e each binary rule is of the form:
A(ty, ..., tk) < B(x),Cly1, -+ ¥n)

60/73

MCFG—normaI form further constraints on rule format

A(tl,...,tk) < Bl(xl,lv"'7X1,k1)7"-7Bm(Xm,17-"7Xm,km)

ot € (XU {xt1,) Xmk,)"

® X;j occurs at most once inty-.-ty

In addition

MCFG-normaI form further constraints on rule format

A(tl,...,tk> < Bl(Xl,lv"'7X1,k1)7"-7Bm(Xm,17-"7Xm,km)

ot € (XU {xt1,) Xmk,)"

® X;j occurs at most once inty-.-ty

In addition

® non-deleting: x;; does occurin ty--- ty

MCFG-normaI form further constraints on rule format

A(tl,...,tk) < Bl(lel,...,lekl),...,Bm(mel,...,Xm’km)

ot € (XU {xt1,) Xmk,)"

® X;j occurs at most once inty-.-ty

In addition

® non-deleting: x;; does occurin ty--- ty

® non-permuting: x;; precedes x;; in ty---t for j < i

i.e., order of variables from one nonterminal component is preserved

MCFG-normaI form further constraints on rule format

A(tl,...,tk) < Bl(lel,...,lekl),...,Bm(mel,...,Xm’km)

ot € (XU {xt1,) Xmk,)"

® X;j occurs at most once inty--- tyg

In addition

® non-deleting: x;; does occurin ty--- ty

® non-permuting: x;; precedes x;; in ty---t for j < i

i.e., order of variables from one nonterminal component is preserved

e strictly non-terminating: m > 1 ~ t; € {x11, s Xmk, 1

MCFG-normaI form further constraints on rule format

A(tl,...,tk) < Bl(lel,...,lekl),...,Bm(mel,...,Xm’km)

ot € (XU {xt1,) Xmk,)"

® X;j occurs at most once inty--- tyg

In addition

® non-deleting: x;; does occurin ty--- ty

® non-permuting: x;; precedes x;; in ty---t for j < i

i.e., order of variables from one nonterminal component is preserved

e strictly non-terminating: m > 1 ~ t; € {x11, s Xmk, 1

or simple terminating: m = 0 ~> rank(A)=1andt; € YU {e}

MCFG-normaI form further constraints on rule format

A(tl,...,tk) < Bl(lel,...,lekl),...,Bm(mel,...,Xm’km)

ot € (XU {xt1,) Xmk,)"
® X;j occurs at most once inty--- tyg
In addition
® non-deleting: x;; does occurin ty--- ty

® non-permuting: x;; precedes x;; in ty---t for j < i

i.e., order of variables from one nonterminal component is preserved

e strictly non-terminating: m > 1 ~ t; € {x11, s Xmk, 1

or simple terminating: m = 0 ~> rank(A)=1andt; € YU {e}

doublet-free: A, By, ..., Bm are pairwise distinct

MCFG(2)-normal form => MG-normal form

e cf. Harkema 2001, Michaelis 2001c, Michaelis 2004

62/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

A
A

Selectees = { A;|A € N, 1 < i < rank(A)+1} U {c}

Licensees = {-A;|A € N, 1 < i < rank(A)}

o o
N

Vocabulary = ¥

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

e Selectees = { AjJA e N,1 < i <rank(A)+1} U {c}
o Licensees = {-A;|A € N, 1 < i < rank(A) }
e Vocabulary = ¥ c € Selectees is the distinguished category

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

Selectees = { Aj|[A € N, 1 rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon:

63/73

Equivalent MG construction

G = (N,

E/

3, P,'S) an MCFG(2) in corresponding normal form

Selectees = { Aj|A € N, 1 rank(A)+1} U {c}
Licensees = {-A;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon: Consider

(A(t1, ot t) < BOxa, o, x1), Cyns oo Yim)|

63/73

Equivalent MG construction

G = (N,

E/

3, P,'S) an MCFG(2) in corresponding normal form

Selectees = { Aj|A € N, 1 rank(A)+1} U {c}
Licensees = {-A;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon: Consider

(A(t1, ot t) < BOxa, o, x1), Cyns oo Yim)|

5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

IN

rank(A)+1} U {c}
i < rank(A)}

Selectees = { A;|A € N, 1

IN

.
N

Licensees = {-A;|A € N, 1

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(t1, ot t) < BOxa, o, x1), Cyns oo Yim)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
‘s ::=C1=B1 A1 ‘ start calculating A , select B and C

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

i < rank(A)+1} U {c}

IA

e Selectees = { Aj|A e N, 1
o Licensees = {-A;|A € N, 1 < i < rank(A) }

IN

N

e Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider

(A(t1, oty ti) < BOa, o x0), €Y1, oo s Y)|

5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=C1=B1 Ay41 start calculating A , select B and C
€:=hy A; -A; | i-th component of A | i =k,...,1

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

i < rank(A)+1} U {c}

IA

e Selectees = { Aj|A e N, 1
o Licensees = {-A;|A € N, 1 < i < rank(A) }

IN

N

e Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider

(A(t1, oty ti) < BOa, o x0), €Y1, oo s Y)|

5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=C1=B1 Ay41 start calculating A , select B and C
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

i < rank(A)+1} U {c}

IA

e Selectees = { Aj|A e N, 1
o Licensees = {-A;|A € N, 1 < i < rank(A) }

IN

N

e Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider

(A(t1, oty ti) < BOa, o x0), €Y1, oo s Y)|

t = with Zi,jG{Xla-"axlayla"'aym}
€::=C1=B1 Ay41 start calculating A , select B and C
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

i < rank(A)+1} U {c}

IA

e Selectees = { Aj|A e N, 1
o Licensees = {-A;|A € N, 1 < i < rank(A) }

IN

N

e Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider

(A(t1, oty ti) < BOa, o x0), €Y1, oo s Y)|

5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=C1=B1 Ay41 start calculating A , select B and C
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

i < rank(A)+1} U {c}

IA

e Selectees = { Aj|A e N, 1
o Licensees = {-A;|A € N, 1 < i < rank(A) }

IN

N

e Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider

(A(t1, oty ti) < BOa, o x0), €Y1, oo s Y)|

5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=C1=B1 Ay41 start calculating A , select B and C
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1
+Li,j = +Bp iff Zjj = Xp +Li,j = +Cp iff Zij =Yp

63/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

Selectees = { Aj|[A € N, 1 rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon:

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

o Selectees = { Aj|A € N, 1 <i<rank(A)+1} U {c}
o Licensees = {-A;|A € N, 1 <i < rank(A) }
e Vocabulary = ¥ c € Selectees is the distinguished category
e Defining the MG-lexicon: Consider
(A(t1, ot) < Blxa, oo, %)
t =2z1,%1 " Zin@ Wwith z; € {X1, - sy X1y Y1y oo s Ym)

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=B1 Ay start calculating A , select B
€:=hy A; —A; | i-th component of A , i =k

.....

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=B1 Ay start calculating A , select B
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=B1 Ay start calculating A , select B
€:=hy A; —A; | i-th component of A , i =k

.....

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
t = with Zi,jG{Xla-"axlayla"'aym}
€::=B1 Ay start calculating A , select B
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k

.....

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=B1 Ay start calculating A , select B
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k,...,1

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form
Selectees = { Aj|A € N, 1 < i < rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

°
IN
IN

.
N

Vocabulary = ¥ c € Selectees is the distinguished category

e Defining the MG-lexicon: Consider
(A(tr, o ti, o t) < B0, ..o,)|
5 =21,2Z1 " Zin@ With zj € {x1,...,x,y1,-.-, ¥Ym}
€::=B1 Ay start calculating A , select B
€:=hy +Li,n(i) ... *Lio +L;i1 Aj —A;| i-th component of A , i =k

+Li,j = +Bp iff Zjj = Xp

.....

64/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

Selectees = { Aj|[A € N, 1 rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon:

65/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

Selectees = { Aj|[A € N, 1 rank(A)+1} U {c}
Licensees = {-A;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon: Consider

‘A(W)(— forsomeweEU{a}‘

65/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

o Selectees = { Aj|A € N, 1 <i<rank(A)+1} U {c}

o Licensees = {-A;|A € N, 1 <i < rank(A) }

e Vocabulary = ¥ c € Selectees is the distinguished category
e Defining the MG-lexicon: Consider

‘A(W)(— forsomeweEU{a}‘

w A A “lexical insertion”

65/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

o Selectees = { Aj|A € N, 1 <i<rank(A)+1} U {c}

o Licensees = {-A;|A € N, 1 <i < rank(A) }

e Vocabulary = ¥ c € Selectees is the distinguished category
e Defining the MG-lexicon: Consider

‘A(W)(— forsomeweEU{a}‘

w A A “lexical insertion”

o Defining the MG-lexicon: Additionally

65/73

Equivalent MG construction

G = (N, X, P,S) an MCFG(2) in corresponding normal form

Selectees = { Aj|[A € N, 1 rank(A)+1} U {c}
Licensees = {-4;|A € N, 1 < i < rank(A)}

IN
IN

o o
N

Vocabulary = ¥ c € Selectees is the distinguished category

Defining the MG-lexicon: Consider

‘A(W)(— forsomeweEU{a}‘

w A A “lexical insertion”

e Defining the MG-lexicon: Additionally

“completor”, MCFG-rule independent

65/73

.,tk) — B(Xl,...

.Xl)) C(YL- o

,)/nﬂ)

66/73

Ste) — B(xq,-.ox), Clya,- - 0Ym)

B1 -Bl/\

66/73

Ste) — B(xq,-.ox), Clya,- - 0Ym)

B: -Bl/\

66/73

Ste) — B(xq,-.ox), Clya,- - 0Ym)

B1 -Bl/\

66/73

A(tr, . tk) < B(xa,..x), Cyn,. - Ym)

B: —B1/\

66/73

A(tr, . tk) < B(xa,..x), Cyn,. - Ym)

B: -B1/\

66/73

A(ty,...

)« B(xy,....xi), Clyi,. - .ym)

B: -Bl/\

66/73

A(tr, . tk) < B(xa,..x), Cyn,. - Ym)

B: -B1/\

66/73

..,tk) — B(Xl,...

.Xl)) C(Yl:- o VYm)

B1 —Bl/\

y1 <

C1 -C1
y2 <
/\\
-Cp

Ym <

_Cm
66/73

A(ty,...

)« B(xg,....xi), Clyi,. - ,Ym)

B: -B1/\

Y1 <

C;1 -Ci

Y2 <

-Cz

Ym <

—Cm
66/73

A(ty,...

)« B(xg,....xi), Clyi,. - ,Ym)

B: -B1/\

>
Y1 <
Cy —C1/\
>
Y2 <
-C>
>
Ym <
—Crm

66/73

A(ty,...

)« B(xy,....xi), Clyi,. - ,ym)

B: -B1/\

Y1 <

C;1 -Ci

Y2 <

-Co

Ym <

—Cm
66/73

A(tlp..,tk) — B(le--,xoy C(Ylw--vym)

=C1 =B1 Axq1 2
= A
& 'Bl/\ i <
>

g C;1 -Ci

-By “. Y2 ;\
> =@ 1
A ;
X <
=5 Ym <
=@

66/73

A(tlp..,tk) — B(le--,xoy C(Ylw--vym)

=C1 =B1 Axq1 2
= A
& 'Bl/\ i <
>

g C;1 -Ci

-By “. Y2 ;\
> =@ 1
A ;
X <
=5 Ym <
=@

66/73

A(ty,. .. t) « B(xw,....x), Clys,. .- Ym)

> <
/\
é =C1 =B:1 Ax41
X1 <

& —B1/\ y1 <
>§ C;1 -Ci

-By “. Y2 ;\
> =@ 1
A .
X <
=5 Ym <
=@

66/73

A(ty,. .. t) « B(xw,....x), Clys,. .- Ym)

-By “. Y2 /<\
> =@ 1
A A
X <
-B Ym <
=@

66/73

A(ty,. .. t) « B(xw,....x), Clys,. .- Ym)

-By “. Y2 /<\
> =@ 1
A A
X <
-B Ym <
=@

66/73

A(ty,. .. t) « B(xw,....x), Clys,. .- Ym)

-By “. Y2 /<\
> =@ 1
A A
X <
-B Ym <
=@

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - .Ym)

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - .Ym)

/\
S /<\
é =B =K Axp1 .

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - .Ym)

/\
S /<\
é =B =K Ak .

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - .Ym)

=Akt1 *tLgngk) - - - tLer Ak —Ax —
S <
/\
L >
/é\ =B =B Aci1

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <
—Cm

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - .Ym)

=Akt1 *tLgngk) - - - tLer Ak —Ax —
S <
/\
L >
/é\ =B =B Aci1

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <
—Cm

66/73

A(ty,. ... t) < B(xz,....x), C(y1, - Ym)

=Akt1 *Lgngk) - - - Lo Ak —Ax —
S <
/\
L >
/é\ =B =B Aci1

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <
—Cm

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - Ym)

=Akt1 *tLgngk) - - - tLer Ak —Ax —
S <
/\
L >
/é\ =B =B Aci1

X2 <
/“ V2 <
-By v
> -C> ‘\A
A A
X <
-B Ym <
—Cm

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - Ym)

66/73

A(ty,. ... t) < B(xg,....x), C(y1, - Ym)

66/73

A(ty,. ... t) < B(xz,....x), C(y1, - Ym)

66/73

A(ty,. ... t) < B(xz,....x), C(y1, - Ym)

66/73

Ste) — B(xq,....x), Cly1,- - 0Ym)

>

é
tk /<\
=KX1 +Lgn@) ---+Le1 Ak Ak ‘______—ji-__§§
> ________ji________~
A w2
X1 <

X2 <
A\ y2 <
B2 v
> -G N
A >
X <
-B Ym <
—Crm

66/73

Ste) — B(xq,....x), Cly1,- - 0Ym)

>

——
tk <
/\
=KX, POREXXHAKK A -Ax />\
> =
é =% =B KX -
X1 <

X2 <
A\ y2 <
B2 v
> -G N
A >
X <
-B Ym <
—Crm

66/73

Ste) — B(xq,....x), Cly1,- - 0Ym)

>

———
tk S
/\
=KX, POREXXHAKK A -Ax />\
> ________ji_________
é =% =K KX >
X1 <

X2 <
A\ y2 <
_B2 ‘.
> @ ‘\A
é .
X <
-B Ym <
—Crm

66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

A Hicingen - *lian M Aa 2
tk /<\
=KX PORPOOK A ~Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

tk /<\
=KX PORPOOK A ~Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

tk /<\
=KX PORPOOK A ~Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

tk /<\
=KX PORPOOK A ~Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

<

/\
A Licrngen) - *lenn M cha S
tk /<\
=KX OQRPQORN A A2

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

<

/\
=X« +Licin(kl) --- Lkl Ak —Aka é>
tk /<\
KX Q0K K A >

> /<\
é =% =K KX 2
X1 <

X2 <
A\ y2 <
B2 v
> -G N
A >
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

<

/\
K Hicangen) o Lean M b2
tk /<\
=KX, PORYXXAKK K —Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

<

/\
K Hicangen) o Lean M b2
tk /<\
=KX, PORYXXAKK K -Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-By v
> -Cs ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

<

/\
K Hicangen) o Lean M b2
tk /<\
=KX, PORYXXAKK K -Ax />\

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-Bs v
> -C> ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

< non-permuting
/\
=Xk +Lk'1'n(k'1) "'+Lk_1’1 Akil _Akilé MCFG
<

t
/\
KXa MOQRPOONKN K A >

5 <
é =% =K KX 2
X1 <

X2 <
/“ Va2 <
-Bs v
> -C> ‘\A
A A
X <
-B Ym <

—Cm
66/73

A(tr, . tk) < B(xa,..x), Cyi,. - Ym)

< non-permuting
/\
=Xk +Lk'1’n(k'1) "'+Lk_1’1 Akil _Akilé MCFG
<

t
/\
KXa MOQRPOONKN K A >

5 <
é =% =K KX 2
X1 <

X2 <
/\\
-B, \ y2 /<\
yielding a > b I
SPIC-violation >
X <
)
—Crm

A(tl e ,tk) <— B(Xl) , C(Yly- . ,Ym)

< non-permuting
/\ . .
X +Licin(en) - - *Lictn Akr Akt > monadic branching MCFG
<

t
/\
KXa MOQRPOONKN K A >

> <
N S
é =B =K KX 2
X1 <
o) 2
& -C
Y2 <
-G N
>
Ym <
—Crm

A(tl e ,tk) <— B(Xl) , C(YL- . ,Ym)

g non-permuting
/\ . .
=X« +Licin(en) - - +Lint A At > monadic branching MCFG
' ' —_—
<

t
/\
KXa MOQRPOONKN K A >

> /<\
é =% =K KX 2
X1 <

X —B1/>\ 5

% -of \

y2 ’;
not yielding a - 1
SPIC-violation >
Ym <
_Cm

67/73

Concluding remarks: MCFG -> MG

e non-deletion condition on transformed MCFG cannot be dropped

e every other condition imposed on transformed MCFG could be
generally dropped taking into account a necessary adaption of

the transformation procedure

e non-permuting condition in the general case yields an MG

obeying SPICove

e non-permuting condition necessary to show an MCFGmb results
in an MG(+SMC,+SPIC)

e if there is no doublet-freeness, implementation of an additional

“move-cycle” is necessary to arrive in an equivalent MG

68/73

Concluding remarks: MCFG -> MG

e if syncategorematic material appears in non-terminating rules,
additional selectors in the defined lexical items are necessary, as
well as additional “non-movable” lexical items representing the

syncategorematic material

e terminating rules in general MCFG-form need both: “licensees
and selectors,” that is to say, those rules need more than one

laxical MG-entry.

e it is also possible to construct the resulting MG such that there
is only one specifier per head, and such that specifiers are
additionally non-movable in the MCFG,,,,-case, the latter leading
to a strict MG in the sense of Stabler 1999.

69/73

Concluding remarks: MG -> MCFG (repeated)

o Feature consumption plus SMC are the crucial ingredients.

o Proof is more than a proof of just an embedding of string
language classes.

o Adaption is possible, when head movement, left complement
selection, rightward movement/extraposition and/or covert
movement/agree is incorporated into the MG-formalism.

o Adaption is also possible, when late adjunction together with
adjunct island condition is incorporated into the MG-formalism.
This, in fact, is “more strictly” about string language
equivalence.

o Adding SPIC yields monadic branching MCFGs as output. Note

that the set of relevant trees can be reduced in this case.

70/73

References |

de Groote, Philippe, Glyn Morrill, and Christian Retoré, eds. 2001. Logical Aspects of Computational Linguistics (LACL
2001), Lecture Notes in Artificial Intelligence Vol. 2099. Berlin, Heidelberg: Springer.

Frey, Werner and Hans-Martin Gartner. 2002. On the treatment of scrambling and adjunction in minimalist grammars.
In Proceedings of the Conference on Formal Grammar (FGTrento), Trento, pages 41-52.

Gartner, Hans-Martin and Jens Michaelis. 2008. A note on countercyclicity and minimalist grammars. In G. Penn, ed.,
Proceedings of FGVienna: The 8th Conference on Formal Grammar, pages 95-109. Stanford, CA: CSLI
Publications. http://cslipublications.stanford.edu/FG/2003/index.html.

Harkema, Henk. 2001. A characterization of minimalist languages. In de Groote et al. (2001), pages 193-211.

Joshi, Aravind K. 1985. Tree adjoining grammars: How much context-sensitivity is required to provide reasonable
structural descriptions? In D. R. Dowty, L. Karttunen, and A. M. Zwicky, eds., Natural Language Parsing.
Psychological, Computational, and Theoretical Perspectives, pages 206—250. New York, NY: Cambridge

University Press.
Kanazawa, Makoto, Jens Michaelis, Sylvain Salvati, and Ryo Yoshinaka. 2011. Well-nestedness properly subsumes strict
derivational minimalism. In S. Pogodalla and J.-P. Prost, eds., Logical Aspects of Computational Linguistics

(LACL 2011), Lecture Notes in Artificial Intelligence Vol. 6736, pages 112-128. Berlin, Heidelberg: Springer.

Kanazawa, Makoto and Sylvain Salvati. 2010. The copying power of well-nested multiple context-free grammars. In
A.-H. Dediu, H. Fernau, and C. Martin-Vide, eds., Language and Automata Theory and Applications (LATA
2010), Lecture Notes in Computer Science Vol. 6031, pages 344-355. Berlin, Heidelberg: Springer.

Kobele, Gregory M. 2006. Generating Copies. An investigation into structural identity in language and grammar. Ph.D.
thesis, University of California, Los Angeles, CA.

71/73

http://cslipublications.stanford.edu/FG/2003/index.html

References I

Kobele, Gregory M. and Jens Michaelis. 2009. Two type-0 variants of minimalist grammars. In Rogers (2009), pages
81-91. http://cslipublications.stanford.edu/FG/2005/index.html.

Michaelis, Jens. 2001a. Derivational minimalism is mildly context-sensitive. In M. Moortgat, ed., Logical Aspects of
Computational Linguistics (LACL '98), Lecture Notes in Artificial Intelligence Vol. 2014, pages 179-198. Berlin,
Heidelberg: Springer.

Michaelis, Jens. 2001b. On Formal Properties of Minimalist Grammars. Linguistics in Potsdam 13. Potsdam:
Universitatsbibliothek, Publikationsstelle. Ph.D. thesis.

Michaelis, Jens. 2001c. Transforming linear context-free rewriting systems into minimalist grammars. In de Groote et al.
(2001), pages 228-244.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Electronic Notes in Theoretical Computer
Science 53:192-209. Available at http://www.sciencedirect.com/science/journal/15710661.

Michaelis, Jens. 2009. An additional observation on strict derivational minimalism. In Rogers (2009), pages 101-111.
http://cslipublications.stanford.edu/FG/2005/index.html.

Rogers, James, ed. 2009. Proceedings of FG-MoL 2005: The 10th Conference on Formal Grammar and The 9th
Meeting on Mathematics of Language. Stanford, CA: CSLI Publications.

Salvati, Sylvain. 2011. Minimalist grammars in the light of logic. In S. Pogodalla, M. Quatrini, and C. Retoré, eds.,
Logic and Grammar. Essays Dedicated to Alain Lecomte on the Occasion of His 60th Birthday, Lecture Notes in
Artificial Intelligence Vol. 6700, pages 81-117. Berlin, Heidelberg: Springer.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On multiple context-free grammars.

Theoretical Computer Science 88:191-229.

72/73

http://cslipublications.stanford.edu/FG/2005/index.html
http://www.sciencedirect.com/science/journal/15710661
http://cslipublications.stanford.edu/FG/2005/index.html

References |1l

Stabler, Edward P. 1997. Derivational minimalism. In C. Retoré, ed., Logical Aspects of Computational Linguistics
(LACL '96), Lecture Notes in Artificial Intelligence Vol. 1328, pages 68-95. Berlin, Heidelberg: Springer.

Stabler, Edward P. 1999. Remnant movement and complexity. In G. Bouma, G.-J. M. Kruijff, E. Hinrichs, and R. T.
Oehrle, eds., Constraints and Resources in Natural Language Syntax and Semantics, pages 299-326. Stanford,
CA: CSLI Publications.

Stabler, Edward P. 2001. Recognizing head movement. In de Groote et al. (2001), pages 245-260.

Stabler, Edward P. 2011. Computational perspectives on minimalism. In C. Boeckx, ed., Oxford Handbook of Linguistic
Minimalism, pages 616—641. New York, NY: Oxford University Press.

Stabler, Edward P. and Edward L. Keenan. 2003. Structural similarity within and among languages. Theoretical
Computer Science 293:345-363.

73/73

