Pumping

Makoto Kanazawa
National Institute of Informatics

Pumping

The case of CFG.

The case of 2-MCFGs. Is this the general picture?

Difficulty with Pumping

All but finitely many derivation trees contain a pump.

All sufficiently large derivation trees contain a part that can be iterated.

Difficulty with Pumping

A derivation tree containing this pump yields a 4-pumpable string.

Difficulty with Pumping

$S \rightarrow U_{0} y_{1} u_{2} y_{2} u_{4}$

The original string ($n=1$) cannot be pumped, but the string obtained by iterating the pump twice is 2-pumpable.
Cf. Vijay-Shanker 1987.

Theorem (Seki et al. 1991).
 $L \in m$-MCFL $\Rightarrow L$ is weakly $2 m$-iterative.

Myth. $L \in m-M C F L \Rightarrow L$ is $2 m$-iterative.

Radzinski I99I, Groenink I997, Kracht 2003

L is weakly k -iterative if it contains an infite subset that is k -iterative. Many people erroneously believed that Seki et al. proved a stronger result.

Three Infinite Hierarchies

$\mathbf{C}=\bigcup_{k=1} \mathbf{C}_{k}$

Pumping lemmas in the usual form hold for the two subhierarchies of the MCFLs.

Pumping Lemma for PDA

stack
height

- $\neg($ All but finitely many accepting computations reach stack height $|Q|^{2}$)
- $\{w \mid w$ has an accepting computation that doesn't reach stack height $\left.|Q|^{2}\right\}$ is regular

The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs using PDA, rather than CFG.

Pumping Lemma for \mathbf{C}_{k}
 $$
\mathrm{CT}\left(L_{1}, L_{2}\right)=L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c}
$$

- No long spine \Rightarrow element of a regular set

The set of trees without long spines are the Kleene star of a finite set.

Pumping Lemma for \mathbf{C}_{k}
 $$
\mathrm{CT}\left(L_{1}, L_{2}\right)=L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c}
$$

When some spine is long enough to be pumpable, ...

Pumping Lemma for \mathbf{C}_{k}
 $$
\mathrm{CT}\left(L_{1}, L_{2}\right)=L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c}
$$

Pumping Lemma for \mathbf{C}_{k}
 $$
\operatorname{CT}\left(L_{1}, L_{2}\right)=L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c}
$$

$L_{1} \in L O C$ and L_{2} is m-iterative $\Rightarrow y \mathrm{CT}\left(L_{1}, L_{2}\right)$ is $2 m$-iterative

Theorem (Palis and Shende 1995). $L \in \mathbf{C}_{k} \Rightarrow L$ is 2^{k}-iterative.

Pumping Lemma for $m-\mathrm{MCFL}_{w n}$

Theorem (Kanazawa 2009). $L \in m-M C F L_{w n} \Rightarrow L$ is $2 m$-iterative.

- If G is a well-nested m-MCFG,
\{ $T \mid T$ is a derivation tree of G without even m-pumps \}

$$
\left(V_{1} X_{1} V_{2}, \ldots, V_{2 m-\mid} X_{m} V_{2 m}\right)
$$

"even m-pump" may not be finite.

$$
\left(x_{1}, \ldots, x_{m}\right)
$$

- But there is a well-nested $(m-I)$-MCFG generating
$\{$ yield $(T) \mid T$ is a derivation tree of G without even m-pumps \}.

If the derivation tree contains an even m-pump, the string is $2 m$-pumpable. Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is $2(m-1)-$ pumpable (disregarding finitely many exceptions). Proof by induction on m.

Program Transformation

The proof of this claim is by successive transformations on the grammar.

$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
 $\pi_{2}: B\left(a x_{1} b, \mathbf{c}_{2} d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \quad m$-proper rule $\Pi_{3}: A\left(a x_{1} b \mathbf{x}_{2} c, d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ $\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$

\downarrow unfolding

A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on the right-hand side, each of whose arguments appear in the corresponding argument of the head nonterminal.
Unfold until there is no m-proper rule. This procedure terminates because the grammar does not allow an even m-pump.

$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$

$\Pi_{5}: B\left(a a \mathbf{X}_{1} b \mathbf{X}_{2} c b, c d d\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right) \quad m$-degree $=1$
$\Pi_{6}: B(a b, c d) \leftarrow$
$\Pi_{3}: A\left(a \mathbf{x}_{1} b \mathbf{x}_{2} c, d\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{x}_{2}\right) \quad m$-degree $=1$ $\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$
\downarrow unfolding $^{-1}$

```
\mp@subsup{\pi}{1}{}:S(\mp@subsup{x}{1}{}\mp@subsup{x}{2}{})}\leftarrowB(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}
\pi5.1: B(aaxcb, cdd) \leftarrowC(x)
\Pi_.2: C(X)b\mp@subsup{x}{2}{})}\leftarrowA(\mp@subsup{\mathbf{x}}{1}{},\mp@subsup{\mathbf{x}}{2}{}
\pi
\Pi3.|: A(axc, d) \leftarrowD(x)
\Pi_.2: D(X)}\mp@subsup{\mathbf{x}}{1}{}b\mp@subsup{\mathbf{x}}{2}{})\leftarrowA(\mp@subsup{\mathbf{x}}{1}{},\mp@subsup{\mathbf{x}}{2}{}
\Pi4:A(\varepsilon, \varepsilon) \leftarrow
```

The m-degree of a rule is 0 if the arity of the head nonterminal is $<\mathrm{m}$; otherwise it's the number of m-ary nonterminals on the right-hand side. Do the converse of unfolding.
$\pi_{1}: S\left(\mathbf{x}_{1} \mathbf{x}_{2}\right) \leftarrow B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$
$\Pi_{5.1}: B(a a x c b, c d d) \leftarrow C(\mathbf{x})$
$\Pi_{5.2}: C\left(\mathbf{X}_{1} b \mathbf{X}_{2}\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$
$\pi_{2}: B(a b, c d) \leftarrow$
$\Pi_{3.1}: A(a x c, d) \leftarrow D(\mathbf{x})$
$\Pi_{3.2}: D\left(\mathbf{x}_{1} b \mathbf{X}_{2}\right) \leftarrow A\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$
$\Pi_{4}: A(\varepsilon, \varepsilon) \leftarrow$
\downarrow unfolding
$\Pi_{1} \circ \Pi_{5.1}: S(a a x c b c d d) \leftarrow C(\mathbf{x})$
$\pi_{1} \circ \pi_{2}: S(a b c d) \leftarrow$
$\Pi_{5.2} \circ \Pi_{3.1}: C(a \mathbf{x c b d}) \leftarrow D(\mathbf{x})$
$\Pi_{5.2} \circ \Pi_{4}: C(b) \leftarrow$
$\Pi_{3.2} \circ \Pi_{3.1}: D(a \mathbf{X c b d}) \leftarrow D(\mathbf{x})$
$\Pi_{3.2} \circ \Pi_{4}: D(b) \leftarrow$

Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding eliminates all m -ary nonterminals.

Program Transformation

$m-\mathrm{MCFG}_{w n}$ with no even m-pumps
\downarrow unfolding
no m-proper rules

\qquad unfolding ${ }^{-1}$
total m-degree $=0$
$(m-l)$ unfolding $M C F G_{w n}$

Reduction of m-degrees

$$
\begin{aligned}
& B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{z}_{1}, \mathbf{z}_{2} \mathbf{y}_{2} a \mathbf{y}_{3} b, \mathbf{c}_{2} \mathrm{~d}\right) \\
& A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathrm{B}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \\
& \downarrow \text { unfolding }^{-1}
\end{aligned}
$$

$B\left(\mathbf{x}_{1} \mathbf{w}_{1}, \mathbf{w}_{2} b, c \mathbf{x}_{2} d\right) \leftarrow A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), D\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$
$D\left(\mathbf{y}_{1} \mathbf{z}_{1}, \mathbf{z}_{2} \mathbf{y}_{2} a \mathbf{y}_{3}\right) \leftarrow B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)$

The well-nestedness assumption is necessary in the second step. Here's a case of a well-nested rule.

Reduction of m-degrees

$$
\begin{aligned}
& B\left(\mathbf{x}_{1} \mathbf{y}_{1} \mathbf{x}_{2}, \mathbf{z}_{1} \mathbf{y}_{2} a \mathbf{y}_{3} b, C \mathbf{z}_{2} \delta\right) \leftarrow \\
& A\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), B\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right), C\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \\
& \\
& \downarrow \text { unfolding }^{-1}
\end{aligned}
$$

The proof shows that a 2 -MCFL is 4 -iterative.

$H\left(\mathbf{x}_{2}\right) \leftarrow G\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right)$
 $G\left(a \mathbf{x}_{1}, \mathbf{y}_{1} \subset \mathbf{x}_{2} c d \mathbf{y}_{2} \bar{d} \mathbf{x}_{3}, \mathbf{y}_{3} b\right) \leftarrow G\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right), G\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right)$
 $G(a, \varepsilon, b) \leftarrow$

$$
\begin{aligned}
& a^{n+1} c \ldots b^{m} \bar{c} d a^{n} \ldots \bar{d} b^{m+1} \\
& v_{0}=\varepsilon \\
& v_{n+1}=a^{n+1} c v_{n} \bar{c} d v_{n} \bar{d} b^{n+1}
\end{aligned}
$$

MCFL vs. MCFL ${ }_{w n}$ vs. \mathbf{C}

Since every language in C is k-iterative for some k, this language separates MCFL from C.

