
Pumping

Makoto Kanazawa
National Institute of Informatics

40



Pumping
S

B

B

u0 u1 u2v1 v2

S

B

B

u0 u2v1 v2

u1v1 v2

B

  u0
v

1
nu

1
v

2
nu

2
!L(G ) for all n ≥ 0

41

The case of CFG.
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The case of 2-MCFGs.
Is this the general picture?



Difficulty with Pumping
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All but finitely many derivation 
trees contain a pump.
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All sufficiently large derivation trees contain a part that can be iterated.
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A derivation tree containing this pump yields a 4-pumpable string.



Difficulty with Pumping
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Rather complex pattern.
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The original string (n=1) cannot be pumped, but the string obtained by iterating the pump 
twice is 2-pumpable.
Cf. Vijay-Shanker 1987.



Myth.  L ∈ m-MCFL ⇒ L is 2m-iterative.

Theorem (Seki et al. 1991).  
L ∈ m-MCFL ⇒ L is weakly 2m-iterative.

Radzinski 1991, Groenink 1997, Kracht 2003
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L is weakly k-iterative if it contains an infite subset that is k-iterative.
Many people erroneously believed that Seki et al. proved a stronger result.



Three Infinite Hierarchies
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Pumping lemmas in the usual form hold for the two subhierarchies of the MCFLs.



Pumping Lemma for PDA

|Q|2
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• ¬(All but finitely many accepting computations 
reach stack height |Q|2)

• { w | w has an accepting computation that 
doesn’t reach stack height |Q|2 } is regular
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The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs 
using PDA, rather than CFG.



Pumping Lemma for Ck
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• No long spine ⇒ element of a regular set
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The set of trees without long spines are the Kleene star of a finite set.



Pumping Lemma for Ck
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When some spine is long enough to be pumpable, …



Pumping Lemma for Ck
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When a tree has a spine that is m-pumpable, the yield of the tree is 2m-pumpable.



Pumping Lemma for Ck
CT(L1, L2)    = L

1
! (L
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! )",c

L1 ∈ LOC and L2 is m-iterative 
⇒ yCT(L1, L2) is 2m-iterative

Theorem (Palis and Shende 1995).  
L ∈ Ck ⇒ L is 2k-iterative.
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Theorem (Kanazawa 2009).
L ∈ m-MCFLwn ⇒ L is 2m-iterative.

Pumping Lemma for m-MCFLwn
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The proof of the Pumping Lemma for m-MCFLwn is more complex.



• If G is a well-nested m-MCFG, 

{ T | T is a derivation tree of 
G without even m-pumps }

may not be finite.

• But there is a well-nested (m!1)-MCFG 
generating 

{ yield(T) | T is a derivation tree of G without 
even m-pumps }.

B

B

(x1,…,xm)

(v1x1v2,…,v2m!1xmv2m)

“even m-pump”
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If the derivation tree contains an even m-pump, the string is 2m-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-
pumpable (disregarding finitely many exceptions).
Proof by induction on m.



Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m!1)-MCFGwn
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The proof of this claim is by successive transformations on the grammar.



π1:  S(x1x2) ← B(x1, x2)
π2:  B(ax1b, cx2d) ← A(x1, x2)
π3:  A(ax1bx2c, d) ← A(x1, x2)
π4:  A(ε, ε) ← 

π1:  S(x1x2) ← B(x1, x2)
π2 ! π3:  B(aax1bx2cb, cdd) ← A(x1, x2)
π2 ! π4:  B(ab, cd) ←
π3:  A(ax1bx2c, d) ← A(x1, x2)
π4:  A(ε, ε) ← 

m-proper rule

unfolding
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A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on 
the right-hand side, each of whose arguments appear in the corresponding argument of the 
head nonterminal.
Unfold until there is no m-proper rule. This procedure terminates because the grammar does 
not allow an even m-pump.



π1:  S(x1x2) ← B(x1, x2)
π5:  B(aax1bx2cb, cdd) ← A(x1, x2)
π6:  B(ab, cd) ←
π3:  A(ax1bx2c, d) ← A(x1, x2)
π4:  A(ε, ε) ← 

π1:  S(x1x2) ← B(x1, x2)
π5.1:  B(aaxcb, cdd) ← C(x)
π5.2:  C(x1bx2) ← A(x1, x2)
π2:  B(ab, cd) ←
π3.1:  A(axc, d) ← D(x)
π3.2:  D(x1bx2) ← A(x1, x2)
π4:  A(ε, ε) ← 

unfolding–1

m-degree = 1

m-degree = 1

π5 = π5.1 ! π5.2

π3 = π3.1 ! π3.2
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The m-degree of a rule is 0 if the arity of the head nonterminal is < m; otherwise it’s the 
number of m-ary nonterminals on the right-hand side.
Do the converse of unfolding.



π1:  S(x1x2) ← B(x1, x2)
π5.1:  B(aaxcb, cdd) ← C(x)
π5.2:  C(x1bx2) ← A(x1, x2)
π2:  B(ab, cd) ←
π3.1:  A(axc, d) ← D(x)
π3.2:  D(x1bx2) ← A(x1, x2)
π4:  A(ε, ε) ← 

π1 ! π5.1:  S(aaxcbcdd) ← C(x)
π1 ! π2:  S(abcd) ←
π5.2 ! π3.1:  C(axcbd) ← D(x)
π5.2 ! π4:  C(b) ← 
π3.2 ! π3.1:  D(axcbd) ← D(x)
π3.2 ! π4:  D(b) ← 

unfolding
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Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding 
eliminates all m-ary nonterminals.



Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m!1)-MCFGwn

unfolding

unfolding–1

unfolding
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Reduction of m-degrees

B(x1y1z1, z2y2ay3b, cx2d) ←
          A(x1, x2), B(y1, y2, y3), C(z1, z2)

B(x1w1, w2b, cx2d) ← A(x1, x2), D(w1, w2)
D(y1z1, z2y2ay3) ← B(y1, y2, y3), C(z1, z2)

unfolding–1
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The well-nestedness assumption is necessary in the second step.
Here’s a case of a well-nested rule.



Reduction of m-degrees

B(x1y1x2, z1y2ay3b, cz2d) ←
          A(x1, x2), B(y1, y2, y3), C(z1, z2)

unfolding–1
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If a rule is non-well-nested, the procedure does not work.
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The proof shows that a 2-MCFL is 4-iterative.



H(x2) ← G(x1, x2, x3)
G(ax1, y1cx2c!dy2d !x3, y3b) ← G(x1, x2, x3), G(y1, y2, y3)
G(a, ε, b) ←

  v0 = ε
vn+1 = an+1c vn c! d vn d ! bn+1

an+1c … bm 
 c! d an … d ! bm+1
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Pumping fails for m-MCFLs for (m > 2).
Here’s an example of a 3-MCFL that is not k-iterative for any k.



MCFL vs. MCFLwn vs. C
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Since every language in C is k-iterative for some k, this language separates MCFL from C.


