
Pumping

Makoto Kanazawa
National Institute of Informatics

40

Pumping
S

B

B

u0 u1 u2v1 v2

S

B

B

u0 u2v1 v2

u1v1 v2

B

 u0
v

1
nu

1
v

2
nu

2
!L(G) for all n ≥ 0

41

The case of CFG.

S

B

B

B

B
(u1, u3)

(x1, x2)

(v1x1v2, v3x2v4)
(y1, y2)

u0y1u2y2u4

 u0
v

1
nu

1
v

2
nu

2
v

3
nu

3
v

4
nu

4
!L(G)

S

B

B

42

The case of 2-MCFGs.
Is this the general picture?

Difficulty with Pumping
S

B

B

“pump”

All but finitely many derivation
trees contain a pump.

43

All sufficiently large derivation trees contain a part that can be iterated.

Difficulty with Pumping

B

B

(x1, x2)

B

 (v1
2x

1
v

2
2 ,v

3
2x

2
v

4
2)

B

B

(x1, x2)

(v1x1v2, v3x2v4)

44

A derivation tree containing this pump yields a 4-pumpable string.

Difficulty with Pumping

B

B

(x1, x2)

B

 (v1
2x

1
v

2
x

2
v

3
v

2
v

4
v

3
,v

4
)

B

B

(x1, x2)

(v1x1v2x2v3, v4)

“uneven pump”

45

Rather complex pattern.

S

B

B

B

B
(u1, u3)

(x1, x2)

(y1, y2)

u0y1u2y2u4

u
1
u

2
u

2
u

3
u

4
!L(G)

u
0
v

1
nu

1
v

2
u

3
v

3
(v

2
v

4
v

3
)n"1u

2
v

4
u

4
!L(G)

(n #1)

S

B

B

(v1x1v2x2v3, v4)

46

The original string (n=1) cannot be pumped, but the string obtained by iterating the pump
twice is 2-pumpable.
Cf. Vijay-Shanker 1987.

Myth. L ∈ m-MCFL ⇒ L is 2m-iterative.

Theorem (Seki et al. 1991).
L ∈ m-MCFL ⇒ L is weakly 2m-iterative.

Radzinski 1991, Groenink 1997, Kracht 2003

47

L is weakly k-iterative if it contains an infite subset that is k-iterative.
Many people erroneously believed that Seki et al. proved a stronger result.

Three Infinite Hierarchies

MCFL = m-MCFL

m!1
!

0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

1

2

3

k

CFL

TAL

C = C

k
k!1
!

MCFL

wn
= m-MCFL

wn
m!1
!

48

Pumping lemmas in the usual form hold for the two subhierarchies of the MCFLs.

Pumping Lemma for PDA

|Q|2
q1

q1

q2

q2

stack
height

timev2v1 u3u1u0

• ¬(All but finitely many accepting computations
reach stack height |Q|2)

• { w | w has an accepting computation that
doesn’t reach stack height |Q|2 } is regular

49

The proof in each case is somewhat similar to the proof of the pumping lemma for CFLs
using PDA, rather than CFG.

Pumping Lemma for Ck
CT(L1, L2) = L

1
! (L

2

!)",c

• No long spine ⇒ element of a regular set

50

The set of trees without long spines are the Kleene star of a finite set.

Pumping Lemma for Ck
CT(L1, L2) = L

1
! (L

2

!)",c

51

When some spine is long enough to be pumpable, …

Pumping Lemma for Ck
CT(L1, L2) = L

1
! (L

2

!)",c

52

When a tree has a spine that is m-pumpable, the yield of the tree is 2m-pumpable.

Pumping Lemma for Ck
CT(L1, L2) = L

1
! (L

2

!)",c

L1 ∈ LOC and L2 is m-iterative
⇒ yCT(L1, L2) is 2m-iterative

Theorem (Palis and Shende 1995).
L ∈ Ck ⇒ L is 2k-iterative.

53

Theorem (Kanazawa 2009).
L ∈ m-MCFLwn ⇒ L is 2m-iterative.

Pumping Lemma for m-MCFLwn

54

The proof of the Pumping Lemma for m-MCFLwn is more complex.

• If G is a well-nested m-MCFG,

{ T | T is a derivation tree of
G without even m-pumps }

may not be finite.

• But there is a well-nested (m!1)-MCFG
generating

{ yield(T) | T is a derivation tree of G without
even m-pumps }.

B

B

(x1,…,xm)

(v1x1v2,…,v2m!1xmv2m)

“even m-pump”

55

If the derivation tree contains an even m-pump, the string is 2m-pumpable.
Otherwise, the string is in the language of some w.n. (m-1)-MCFG, and therefore is 2(m-1)-
pumpable (disregarding finitely many exceptions).
Proof by induction on m.

Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m!1)-MCFGwn

56

The proof of this claim is by successive transformations on the grammar.

π1: S(x1x2) ← B(x1, x2)
π2: B(ax1b, cx2d) ← A(x1, x2)
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

π1: S(x1x2) ← B(x1, x2)
π2 ! π3: B(aax1bx2cb, cdd) ← A(x1, x2)
π2 ! π4: B(ab, cd) ←
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

m-proper rule

unfolding

57

A rule is m-proper if the head nonterminal is m-ary and there is an m-ary nonterminal on
the right-hand side, each of whose arguments appear in the corresponding argument of the
head nonterminal.
Unfold until there is no m-proper rule. This procedure terminates because the grammar does
not allow an even m-pump.

π1: S(x1x2) ← B(x1, x2)
π5: B(aax1bx2cb, cdd) ← A(x1, x2)
π6: B(ab, cd) ←
π3: A(ax1bx2c, d) ← A(x1, x2)
π4: A(ε, ε) ←

π1: S(x1x2) ← B(x1, x2)
π5.1: B(aaxcb, cdd) ← C(x)
π5.2: C(x1bx2) ← A(x1, x2)
π2: B(ab, cd) ←
π3.1: A(axc, d) ← D(x)
π3.2: D(x1bx2) ← A(x1, x2)
π4: A(ε, ε) ←

unfolding–1

m-degree = 1

m-degree = 1

π5 = π5.1 ! π5.2

π3 = π3.1 ! π3.2

58

The m-degree of a rule is 0 if the arity of the head nonterminal is < m; otherwise it’s the
number of m-ary nonterminals on the right-hand side.
Do the converse of unfolding.

π1: S(x1x2) ← B(x1, x2)
π5.1: B(aaxcb, cdd) ← C(x)
π5.2: C(x1bx2) ← A(x1, x2)
π2: B(ab, cd) ←
π3.1: A(axc, d) ← D(x)
π3.2: D(x1bx2) ← A(x1, x2)
π4: A(ε, ε) ←

π1 ! π5.1: S(aaxcbcdd) ← C(x)
π1 ! π2: S(abcd) ←
π5.2 ! π3.1: C(axcbd) ← D(x)
π5.2 ! π4: C(b) ←
π3.2 ! π3.1: D(axcbd) ← D(x)
π3.2 ! π4: D(b) ←

unfolding

59

Now each rule contains m-ary nonterminals only on one side of the rule, if any. Unfolding
eliminates all m-ary nonterminals.

Program Transformation

m-MCFGwn with no even m-pumps

no m-proper rules

total m-degree = 0

(m!1)-MCFGwn

unfolding

unfolding–1

unfolding

60

Reduction of m-degrees

B(x1y1z1, z2y2ay3b, cx2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

B(x1w1, w2b, cx2d) ← A(x1, x2), D(w1, w2)
D(y1z1, z2y2ay3) ← B(y1, y2, y3), C(z1, z2)

unfolding–1

61

The well-nestedness assumption is necessary in the second step.
Here’s a case of a well-nested rule.

Reduction of m-degrees

B(x1y1x2, z1y2ay3b, cz2d) ←
 A(x1, x2), B(y1, y2, y3), C(z1, z2)

unfolding–1

62

If a rule is non-well-nested, the procedure does not work.

MCFL = m-MCFL

m!1
!

0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

1

2

3

k

CFL

TAL

C = C

k
k!1
!

MCFL

wn
= m-MCFL

wn
m!1
!

2m-iterative 2k-iterative4-iterative

63

The proof shows that a 2-MCFL is 4-iterative.

H(x2) ← G(x1, x2, x3)
G(ax1, y1cx2c!dy2d !x3, y3b) ← G(x1, x2, x3), G(y1, y2, y3)
G(a, ε, b) ←

 v0 = ε
vn+1 = an+1c vn c! d vn d ! bn+1

an+1c … bm
 c! d an … d ! bm+1

64

Pumping fails for m-MCFLs for (m > 2).
Here’s an example of a 3-MCFL that is not k-iterative for any k.

MCFL vs. MCFLwn vs. C

 MIX?

{ w
1
…w

n
z

n
w

n
z

n!1…z
1
w

1
z

0
w

1
R …w

n
R∣

n "!,w
i
"{c,d}+ , z

n
…z

0
"D#

1
}

Staudacher 1993
Michaelis 2005

 { a
1
n…an

2m
∣n ! 0 }

{ wm+1 | w ∈ {a, b}* }

RESPm

 { w#w#w∣ w !D"
1
}

Engelfriet and Skyum 1976

 { w#w∣ w !D"
1
}

2-MCFL
Kanazawa and Salvati 2010

65

Since every language in C is k-iterative for some k, this language separates MCFL from C.

