Two Subhierarchies Inside the MCFLs

Makoto Kanazawa
National Institute of Informatics

Three Infinite Hierarchies

MCFL $=\bigcup_{m \neq 1} m-M C F L$
$y \mathrm{CFT}_{\mathrm{sp}}=\bigcup_{m \geqslant 1} y \mathrm{CFT}_{\mathrm{sp}}(m-\mathrm{I})$
$\mathbf{C}=\bigcup_{k=1} \mathbf{C}_{k}$
$\mathrm{yCFT}_{\text {sp }}(1)$ and C_{2} coincide with TAL, the class of languages generated by Tree Adjoining Grammars.

Convergence of Mildly ContextSensitive Grammar Formalisms

The "convergence of mildly context-sensitive ..." originally referred to TAG, CCG, LIG, HG. CCG is rather ad hoc. TAG and HG are not very different.

MCFL Hierarchy

This is an infinite hierarchy.

Three Infinite Hierarchies

MCFL $=\bigcup_{m \geq 1} m-M C F L$
$y \mathrm{CFT}_{\mathrm{sp}}=\bigcup_{m \geq 1} y \operatorname{CFT}_{\mathrm{sp}}(m-\mathrm{I})$
$\mathbf{C}=\bigcup_{k=1} \mathbf{C}_{k}$

$\mathrm{TAG} \equiv \mathrm{CFT}_{\mathrm{sp}}(\mathrm{I})$

$$
\begin{gathered}
N=N^{(0)} \cup N^{(1)}=\{S\} \cup\{A\} \\
\Sigma=\Sigma^{(0)} \cup \Sigma^{(1)}=\{a, b, c, d, e\} \cup\{h\}
\end{gathered}
$$

A CFT grammar generates a ranked tree language. Nonterminals and terminals come with ranks.
This grammar is "monadic" because the maximal rank of a nonterminal is 1.
$S \Rightarrow A \Rightarrow \quad h \quad \Rightarrow \quad h \quad \Rightarrow \quad h$

$$
A \rightarrow \quad h \quad \mid x
$$

 I
 X
$\begin{array}{cc}a & A \\ & \\ & h\end{array}$
b x c

An example of a derivation.

This example grammar generates all trees of this form.

$\mathrm{CFT}_{\text {sp }}(2)$

$$
\begin{aligned}
& S \rightarrow \overbrace{e \mathrm{e}}^{B} \overbrace{x_{1} x_{2}}^{B} \rightarrow \\
& \frac{h}{a_{1} \quad B \quad a_{6}} \\
& \underbrace{g}_{x_{1} \quad x_{2}} \\
& \begin{array}{llllll}
h & & & & \\
a_{2} & x_{1} & a_{3} & a_{4} & x_{2} & a_{5} \\
\hline
\end{array} \\
& N=N^{(0)} \cup N^{(2)}=\{S\} \cup\{B\} \\
& \Sigma=\Sigma^{(0)} \cup \Sigma^{(2)} \cup \Sigma^{(3)}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, e\right\} \cup\{g\} \cup\{h\}
\end{aligned}
$$

This grammar has a rank 2 nonterminal.

The yield image of the language of this grammar is not a TAL.

$M C F L=\bigcup_{m=1} m-M C F L$

$y \mathrm{CFT}_{\mathrm{sp}}=\bigcup_{m \geq 1} y \mathrm{CFT}_{\mathrm{sp}}(m-\mathrm{I})$

Let's look at how corresponding levels of these two hierarchies compare with each other.

$y C F T_{s p}(m-I) \subseteq m-M C F L$

Seki and Kato 2008
de Groote and Pogodalla 2004, Salvati 2007

"Context-Free"

Grammar Formalisms

$S \rightarrow{ }^{B} \quad S$
top-down rewriting of sentential forms

bottom-up construction of derived objects

In order to convert a $\mathrm{CFT}_{\text {sp }}$ to an MCFG, we take a bottom-up view of the former, because the latter is a bottom-up formalism.

Top-down vs. bottom-up

Type 0
Type I = CSG

EFS

$$
\begin{array}{lc}
\text { I.b. EFS = CSG } & \text { Arikawa et al. } 1989 \\
\text { simple LMG = P } & \text { Groenink } 1997
\end{array}
$$

PMCFG Seki et al. 1991, Groenink 1997

MCFG Seki et al. I99I, Groenink I997
Type 2 = CFG
Type 3
simple EFS \equiv CFG Arikawa 1970

The bottom-up formalisms give you a richer picture. Note that almost all formalisms that were not defined by Chomsky do not fit within the Chomsky Hierarchy.
For example, an indexed grammar is *not* an instance of a Type 0 grammar.
An MCFG is an instance of an Elementary Formal System of Smullyan, which was rediscovered by Groenink.

Thue \longrightarrow Post \longrightarrow Chomsky \longrightarrow

Smullyan

|96|
Theory of Formal Systems

BY

RAYMOND M. SMULLYAN

It's too bad that Smullyan's work came a little too late for Chomsky to take notice. The world would have been a better place if Chomsky had based his theory of formal grammar on Smullyan's work, rather than the work of Thue and Post.

Top-down View

Standard, top-down view of CFT grammar rules.

Bottom-up View

$$
S\left(\begin{array}{cc}
X \\
e & e
\end{array}\right) \leftarrow B(X)
$$

$B\left(\begin{array}{lll}\lambda x_{1} x_{2} & \overbrace{x_{1}} & x_{2} \\ g\end{array}\right) \leftarrow$

There's a natural mapping form n-ary tree contexts to ($\mathrm{n}+1$)-tuples of strings.

What about the operation in a CFT $_{\text {sp }}$ rule? Does it naturally correspond to an operation on tuples of strings?

Yes, it does. This is a commutative diagram!

$A\left(u_{1} X_{1} u_{2} y_{1} u_{3}, u_{4} y_{2} u_{5} X_{2} u_{6}\right) \leftarrow B\left(x_{1}, x_{2}\right), C\left(y_{1}, y_{2}\right)$

This is how to translate a CFT $_{\text {sp }}(1)$ rule to a 2 -MCFG rule.

$y \mathrm{CFT}_{\mathrm{sp}}(m-\mathrm{I}) \subseteq m-\mathrm{MCFL}$

Seki and Kato 2008 de Groote and Pogodalla 2004, Salvati 2007

The translation establishes this inclusion.

Well-nested MCFGs

$$
\times S(\underbrace{\left(x_{1} y_{1} x_{2} y_{2}\right)}_{L} \leftarrow A\left(x_{1}, x_{2}\right), B\left(y_{1}, y_{2}\right)
$$

$$
\begin{gathered}
\left.\sqrt[S]{S\left(x_{1} y_{1} y_{2} x_{2}\right)}\right) \leftarrow A\left(x_{1}, x_{2}\right), B\left(y_{1}, y_{2}\right) \\
C\left(x_{1} y_{1}, y_{2} z_{1}, z_{2} x_{2} z_{3}\right) \leftarrow A\left(x_{1}, x_{2}\right), B\left(y_{1}, y_{2}\right), C\left(z_{1}, z_{2}, z_{3}\right) \\
C\left(z_{1} x_{1}, x_{2} z_{2}, y_{1} y_{2} z_{3}\right) \leftarrow A\left(x_{1}, x_{2}\right), B\left(y_{1}, y_{2}\right), C\left(z_{1}, z_{2}, z_{3}\right)
\end{gathered}
$$

$\underbrace{u_{1}}_{u_{1}}$

$A\left(u_{1} x_{1} u_{2} y_{1} u_{3}, u_{4} y_{2} u_{5} x_{2} u_{6}\right) \leftarrow B\left(\mathbf{x}_{1}, x_{2}\right), C\left(\mathbf{y}_{1}, y_{2}\right)$

$$
\begin{aligned}
& \mathrm{yCFT}_{\text {sp }}(m-\mathrm{I}) \subseteq m-\mathrm{MCFL}_{\mathrm{wn}} \\
& \mathrm{yCFT}_{\mathrm{sp}}(m-\mathrm{I}) \supseteq m-\mathrm{MCFL}_{\mathrm{wn}}
\end{aligned}
$$

The translation of a CFT ${ }_{\text {sp }}$ rule gives you a well-nested MCFG rule.
 do not separate them.

m-MCFL vs,$~ C C F T s p(m-1)$

$\operatorname{RESP}_{2}=\left\{a_{1}^{i} a_{2}^{i} b_{1}^{j} b_{2}^{j} a_{3}^{i} a_{4}^{i} b_{3}^{j} b_{4}^{j} \mid i, j \geq 0\right\}$
Weir 1989
$\mathrm{RESP}_{2} \in 2-\mathrm{MCFL}-y \mathrm{CFT}_{\text {sp }}(\mathrm{I}) \quad$ Seki et al. 1991
$\operatorname{RESP}_{m}=\left\{a_{1}^{i} a_{2}^{i} b_{1}^{j} b_{2}^{j} \ldots a_{2 m-1}^{i} a_{2 m}^{i} b_{2 m-1}^{j} b_{2 m}^{j} \mid i, j \geq 0\right\}$
$\operatorname{RESP}_{m} \in m-M C F L-y C F T_{s p}(m-I)$ for $m \geq 2$
Seki and Kato 2008
$\operatorname{RESP}_{m} \in y$ CFT $_{\text {sp }}(2 m-I)$
$\mathrm{m}-\mathrm{MCFL}$ and $\mathrm{m}-\mathrm{MCFL}_{w n}$ have many languages in common, but are of course different. Separation at each level is witnessed by RESP ${ }_{m}$. But RESP ${ }_{m}$ is inside the entire $\mathrm{yCFT}_{\text {sp }}$ hierarchy.

MCFL vs. y CFT $_{\text {sp }}$

$$
\begin{gathered}
\text { Staudacher } 1993 \\
\text { Michaelis } 2005 \\
\left\{w_{1} \ldots w_{n} z_{n} w_{n} z_{n-1} \ldots z_{1} w_{1} z_{0} w_{1}^{R} \ldots w_{n}^{R} \mid\right. \\
\left.n \in \mathbb{N}, w_{i} \in\{c, d\}^{+}, z_{n} \ldots z_{0} \in D_{1}^{*}\right\}
\end{gathered}
$$

With Kanazawa and Salvati's (2010) theorem, we can see $2-$ MCFL - MCFLwn $\neq \varnothing$. Improves known results.

Three Infinite Hierarchies

MCFL $=\bigcup_{m \geqslant 1} m-M C F L$
$y \mathrm{CFT}_{\mathrm{sp}}=\bigcup_{m \geq 1} y \mathrm{CFT}_{\mathrm{sp}}(m-\mathrm{I})$
$\mathbf{C}=\bigcup_{k=1} \mathbf{C}_{k}$

Let's look at the third hierarchy.

Controlled Tree Languages

$$
\begin{aligned}
C T\left(L_{1}, L_{2}\right)= & L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c} \\
& L_{1} \subseteq T_{\Delta} \\
& L_{2} \subseteq \Delta^{*} \\
& h: \Delta \rightarrow \mathbb{N} \\
& d \in \Delta^{(r)} \Rightarrow h(d) \in\{0, \ldots, r\}
\end{aligned}
$$

Let's define an operation CT, which takes a tree language L_{1} and a string language L_{2} and returns a subset of L_{1}. This operation is parametric on a function h.
Defined in terms of three operations: the hat operation, the tree analogue of the Kleene star operation, and intersection.

$L \mapsto L$

The hat operation turns a string into a tree.

Regular Tree Operations

Concatenation

L_{2}
ก

$$
L_{1} \cdot{ }_{c} L_{2}
$$

Kleene star

$$
L^{*, c}=\{c\} \cup L \cdot{ }_{c} L^{*, c}
$$

The Kleene star operation is a standard notion in tree automata theory.

$$
\mathrm{CT}\left(L_{1}, L_{2}\right)=L_{1} \cap\left(\widehat{L_{2}}\right)^{*, c}
$$

This depicts the CT operation. You can observe elements of L_{2} along some paths in a tree in $\mathrm{CT}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right)$. These paths are determined by the h function.

$C T_{1}=$ LOC
 $\mathbf{C T}_{k+1}=\mathbf{C T}\left(\mathrm{LOC}, y \mathbf{C T}_{k}\right)$

$$
\mathbf{C}_{k}=y \mathbf{C T} \mathbf{T}_{k}
$$

$C_{1}=C F L$
 $\mathrm{CT}_{2} \subseteq \mathrm{CFT}_{\mathrm{sp}}(\mathrm{I}) \quad \mathrm{C}_{2}=y \mathrm{CFT}_{\mathrm{sp}}(\mathrm{I})$

Define the Control Tree Language Hierarchy in terms of CT, starting from the class of local tree languages.
Weir's Control Language Hierarchy is the yield image of this hierarchy. Let's show CT_{2} is included in $\mathrm{CFT}_{\text {sp }}(1)$.

$L \mapsto \hat{L}$

a_{1}

a_{2}
$a_{1} a_{2} a_{3} a_{4}$
$a \mid$

a_{3}

linear non-deleting homomorphism

Going from strings to monadic trees, substrings are mapped to unary tree contexts, so a CFG is mapped to a $\mathrm{CFT}_{\mathrm{sp}}(1)$. Addition of nodes labeled by c is a simple case of a linear nondeleting homomorphism.

$\mathbf{C T}_{2}=\left\{L_{1} \cap\left(\widehat{L_{2}}\right) * \cdot c \mid L_{1} \in L O C, L_{2} \in \mathrm{CFL}\right\}$ \subseteq CFT $_{\text {sp }}(\mathrm{I})$

$\mathbf{C}_{2} \subseteq y \mathrm{CFT}_{\text {sp }}(\mathrm{I})$
 $\subseteq 2-\mathrm{MCFL}$

$\mathrm{CFT}_{\mathrm{sp}}(1)$ is closed under linear non-deleting homomorphism, Kleene star, and intersection with regular sets. This shows that CT_{2} is included in $\mathrm{CFT}_{\text {sp }}(1)$.

$\mathbf{C}_{\mathrm{k}} \subseteq 2^{\mathrm{k}-\mathrm{I}}-\mathrm{MCFL}$

Kanazawa and Salvati 2007

$C T_{k} \subseteq 2^{k-2}-$ MCFT $_{\text {sp }}(I) \quad(k \geq 2)$

\approx MCTAG (Weir 1988)

The induction step is similar. Going form strings to monadic trees, substrings are mapped to unary tree contexts, and an MCFG is mapped to a "multiple monadic simple context-free tree grammar". The latter is basically the same as a multicomponent TAG.

2-MCFT ${ }_{\text {sp }}(I)$

$S\left(\begin{array}{c}\overbrace{X_{1}}^{g} \\ 1 \\ e\end{array}\right) \leftarrow A\left(X_{1}, X_{2}\right)$

Here's an example of a $2-\mathrm{MCFT}_{\text {sp }}(1)$.

$$
\begin{aligned}
& \mathbf{C T}_{k+1}=\left\{L_{1} \cap\left(\widehat{L_{2}}\right)^{* c} \mid L_{1} \in L O C, L_{2} \in \mathbf{C}_{k}\right\} \\
& \subseteq\left\{L_{1} \cap\left(\widehat{L_{2}}\right)^{s, c} \mid L_{1} \in \operatorname{LOC}, L_{2} \in y\left(2^{k-2}-\text { MCFT }_{\text {sp }}(1)\right)\right\} \\
& \subseteq\left\{L_{1} \cap\left(\widehat{L_{2}}\right)^{* c c} \mid L_{1} \in L O C, L_{2} \in 2^{k-1} \text {-MCFL }\right\} \\
& \subseteq\left\{L_{1} \cap L_{2}^{*, c} \mid L_{1} \in \operatorname{LOC}, L_{2} \in 2^{k-1}-\text { MCFT }_{\mathrm{sp}}(\mathrm{I})\right\} \\
& \subseteq 2^{k-1}-\text { MCFT }_{\text {sp }}(\mathrm{I}) \\
& \mathbf{C}_{k}=y \mathbf{C T}_{k} \\
& \subseteq y\left(2^{k-2}-\mathrm{MCFT}_{\mathrm{sp}}(\mathrm{I})\right) \\
& \subseteq 2^{k-1} \text {-MCFL }
\end{aligned}
$$

The induction step goes like this.
The yield image of the tree language of an $\mathrm{m}-\mathrm{MCFT}_{\mathrm{sp}}(1)$ is the language of a $2 \mathrm{~m}-\mathrm{MCFL}$.

MCFL vs. C

C is closed under copying.
It's harder to separate MCFL and C.

