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yCFTsp(1) and C2 coincide with TAL, the class of languages generated by Tree Adjoining 
Grammars.



Convergence of Mildly Context-
Sensitive Grammar Formalisms
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Joshi, Vijay-Shanker, and Weir 1991
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The “convergence of mildly context-sensitive ...” originally referred to TAG, CCG, LIG, HG.
CCG is rather ad hoc.  TAG and HG are not very different.
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This is an infinite hierarchy.
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TAG ≡ CFTsp(1)
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A CFT grammar generates a ranked tree language.  Nonterminals and terminals come with 
ranks.
This grammar is “monadic” because the maximal rank of a nonterminal is 1.
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An example of a derivation.
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This example grammar generates all trees of this form.



CFTsp(2)
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This grammar has a rank 2 nonterminal.
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The yield image of the language of this grammar is not a TAL.
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Let’s look at how corresponding levels of these two hierarchies compare with each other.
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In order to convert a CFTsp to an MCFG, we take a bottom-up view of the former, because the 
latter is a bottom-up formalism.



Top-down vs. bottom-up
Type 0
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Type 2 = CFG
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Arikawa et al.  1989

Arikawa 1970

Groenink 1997

Seki et al. 1991, Groenink 1997

Seki et al. 1991, Groenink 1997

rewriting systems logic programs on strings
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The bottom-up formalisms give you a richer picture. Note that almost all formalisms that 
were not defined by Chomsky do not fit within the Chomsky Hierarchy.
For example, an indexed grammar is *not* an instance of a Type 0 grammar.
An MCFG is an instance of an Elementary Formal System of Smullyan, which was rediscovered 
by Groenink.



Thue Post Chomsky

Smullyan

1956

1961

11/09/09 1:38Amazon.com: Theory of Formal Systems. (AM-47) (Annals of Mathematics Studies) (9780691080475): Raymond M. Smullyan

1/1 ページhttp://www.amazon.com/gp/product/images/069108047X/ref=dp_image_0?ie=UTF8&n=283155&s=books

Theory of Formal Systems. (AM-47) (Annals of Mathematics Studies)

Close Window
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It’s too bad that Smullyan’s work came a little too late for Chomsky to take notice.
The world would have been a better place if Chomsky had based his theory of formal 
grammar on Smullyan’s work, rather than the work of Thue and Post.
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Standard, top-down view of CFT grammar rules.



Bottom-up View
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An alternative bottom-up view.



n-ary tree context
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There’s a natural mapping form n-ary tree contexts to (n+1)-tuples of strings.



X

Y

A ← B(X), C(Y)
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What about the operation in a CFTsp rule? Does it naturally correspond to an operation on 
tuples of strings?
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Yes, it does. This is a commutative diagram!
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This is how to translate a CFTsp(1) rule to a 2-MCFG rule.
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The translation establishes this inclusion.



Well-nested MCFGs
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Assume all rules are “non-permuting” (xi appears before xj if i < j).
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The translation of a CFTsp rule gives you a well-nested MCFG rule.
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What about separation of the corresponding levels of the two hierarchies?  These languages 
do not separate them.
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m-MCFL and m-MCFLwn have many languages in common, but are of course different.
Separation at each level is witnessed by RESPm.
But RESPm is inside the entire yCFTsp hierarchy.
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With Kanazawa and Salvati’s (2010) theorem, we can see 2-MCFL - MCFLwn ≠ ∅.
Improves known results.
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Let’s look at the third hierarchy.



Controlled Tree Languages
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Let’s define an operation CT, which takes a tree language L1 and a string language L2 and 
returns a subset of L1. This operation is parametric on a function h.
Defined in terms of three operations: the hat operation, the tree analogue of the Kleene star 
operation, and intersection.
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The hat operation turns a string into a tree.
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The Kleene star operation is a standard notion in tree automata theory.
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This depicts the CT operation. You can observe elements of L2 along some paths in a tree in 
CT(L1,L2). These paths are determined by the h function.



CT1 = LOC

CTk+1 = CT(LOC, yCTk)

Ck = yCTk
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Define the Control Tree Language Hierarchy in terms of CT, starting from the class of local 
tree languages.
Weir’s Control Language Hierarchy is the yield image of this hierarchy.
Let’s show CT2 is included in CFTsp(1).
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Going from strings to monadic trees, substrings are mapped to unary tree contexts, so a CFG 
is mapped to a CFTsp(1).  Addition of nodes labeled by c is a simple case of a linear non-
deleting homomorphism.
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CFTsp(1) is closed under linear non-deleting homomorphism, Kleene star, and intersection 
with regular sets. This shows that CT2 is included in CFTsp(1).



CTk ⊆ 2k–2-MCFTsp(1)     (k≥2)
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Kanazawa and Salvati 2007

≈ MCTAG (Weir 1988)
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The induction step is similar. Going form strings to monadic trees, substrings are mapped to 
unary tree contexts, and an MCFG is mapped to a “multiple monadic simple context-free tree 
grammar”. The latter is basically the same as a multicomponent TAG.
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Here’s an example of a 2-MCFTsp(1).
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The induction step goes like this.
The yield image of the tree language of an m-MCFTsp(1) is the language of a 2m-MCFL.
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C is closed under copying.
It’s harder to separate MCFL and C.


