
Two Subhierarchies
Inside the MCFLs

Makoto Kanazawa
National Institute of Informatics

1

Three Infinite Hierarchies

MCFL = m-MCFL

m!1
!

0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

1

2

3

k

CFL

TAL

C = C

k
k!1
!

2

yCFTsp(1) and C2 coincide with TAL, the class of languages generated by Tree Adjoining
Grammars.

Convergence of Mildly Context-
Sensitive Grammar Formalisms

MCFG ! MCTAG ! HR

! OUT(DTWT)

! yDT
fc
(REGT) ! LUSCG

! MG ! ACG
2

LOGCFL

CFL

 TAG ! CCG ! LIG ! HG

Joshi, Vijay-Shanker, and Weir 1991

3

The “convergence of mildly context-sensitive ...” originally referred to TAG, CCG, LIG, HG.
CCG is rather ad hoc. TAG and HG are not very different.

MCFL Hierarchy

CFL

1

2
3

m

MCFL = m-MCFL

m!1
!

TAL = LIL

m+1

{ wm+1 | w ∈ {a, b}* }

 { a
1
n…an

2(m+1)
∣n ! 0 }

4

This is an infinite hierarchy.

Three Infinite Hierarchies

MCFL = m-MCFL

m!1
!

0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

1

2

3

k

CFL

TAL

C = C

k
k!1
!

5

TAG ≡ CFTsp(1)

S → A →A

e

h

x

| x

a d

 N = N(0) !N(1) = {S}! {A}

 ! = !(0) "!(1) = {a,b,c,d,e}" {h}

A

h

b cx

6

A CFT grammar generates a ranked tree language. Nonterminals and terminals come with
ranks.
This grammar is “monadic” because the maximal rank of a nonterminal is 1.

S ⇒ ⇒A

e

h

a dA

h

b ce

⇒ h

a d

h

b ce

h

a dA

h

b c

⇒ h

a d

h

b ce

h

a dh

b c

A → h

x

| x

a dA

h

b cx
7

An example of a derivation.

h

a d

h

b ce

h

a dh

b c

⋮

⋮

h

h

n

n n

n

yield

 anbnecndn

8

This example grammar generates all trees of this form.

CFTsp(2)

S → B →B

e

h | g

 N = N(0) !N(2) = {S}! {B}

 ! = !(0) "!(2) "!(3) = {a
1
,a

2
,a

3
,a

4
,a

5
,a

6
,e}" {g}" {h}

B

x1 x2

e x1 x2

h h

x1 x2a1 a6

a2 a3 a4 a5

9

This grammar has a rank 2 nonterminal.

h

h h

h h

a1 a6

a2 a3 a4 a5

h

h

a1 a6g

⋮

e ea2 a3 a4 a5

hh
⋮ ⋮

n

n

n

n

yield

 a1
na

2
nea

3
na

4
nea

5
na

6
n

10

The yield image of the language of this grammar is not a TAL.

1

2
3

m

MCFL = m-MCFL

m!1
!

CFL

0

1

2

m–1

CFL

TALTAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

11

Let’s look at how corresponding levels of these two hierarchies compare with each other.

 yCFT
sp

(m !1) " m-MCFL

Seki and Kato 2008
de Groote and Pogodalla 2004, Salvati 2007

12

S
!
"#

$
%&
' B(X),B(Y),S(Z) X

 Y
 Z S ! B

 B
 S

top-down rewriting of
sentential forms

bottom-up construction of
derived objects

“Context-Free”
Grammar Formalisms

13

In order to convert a CFTsp to an MCFG, we take a bottom-up view of the former, because the
latter is a bottom-up formalism.

Top-down vs. bottom-up
Type 0

Type 1 = CSG

Type 2 = CFG

Type 3

EFS

l.b. EFS ≡ CSG

simple LMG ≡ P

PMCFG

MCFG

simple EFS ≡ CFG

Smullyan 1961

Arikawa et al. 1989

Arikawa 1970

Groenink 1997

Seki et al. 1991, Groenink 1997

Seki et al. 1991, Groenink 1997

rewriting systems logic programs on strings

14

The bottom-up formalisms give you a richer picture. Note that almost all formalisms that
were not defined by Chomsky do not fit within the Chomsky Hierarchy.
For example, an indexed grammar is *not* an instance of a Type 0 grammar.
An MCFG is an instance of an Elementary Formal System of Smullyan, which was rediscovered
by Groenink.

Thue Post Chomsky

Smullyan

1956

1961

11/09/09 1:38Amazon.com: Theory of Formal Systems. (AM-47) (Annals of Mathematics Studies) (9780691080475): Raymond M. Smullyan

1/1 ページhttp://www.amazon.com/gp/product/images/069108047X/ref=dp_image_0?ie=UTF8&n=283155&s=books

Theory of Formal Systems. (AM-47) (Annals of Mathematics Studies)

Close Window

15

It’s too bad that Smullyan’s work came a little too late for Chomsky to take notice.
The world would have been a better place if Chomsky had based his theory of formal
grammar on Smullyan’s work, rather than the work of Thue and Post.

Top-down View
S →

B →

B

e

h

g

B

x1 x2

e

x1 x2

h h

x1 x2

a1 a6

a2 a3 a4 a5

B →
x1 x2

16

Standard, top-down view of CFT grammar rules.

Bottom-up View

S

B

X

e

h

X

e

h h

a1 a6

a2 a3 a4 a5

← B(X)

B

← B(X)

g

x1 x2

λx1x2.

x1 x2

λx1x2. ←

17

An alternative bottom-up view.

n-ary tree context

v1 v2 v3

(v1, v2, v3)

(n+1)-tuple of strings

x1 x2

λx1x2.

18

There’s a natural mapping form n-ary tree contexts to (n+1)-tuples of strings.

X

Y

A ← B(X), C(Y)

19

What about the operation in a CFTsp rule? Does it naturally correspond to an operation on
tuples of strings?

v1 v2 w1 w2

v1 v2
w1 w2

(v1, v2) (w1, w2)

u1

u2
u3 u4

u5

u6
(u1v1u2w1u3, u4w2u5v2u6)

20

Yes, it does. This is a commutative diagram!

X

Y

A ← B(X), C(Y)
u1

u2

u3 u4

u5

u6

A(u1 x1 u2 y1 u3, u4 y2 u5 x2 u6) ← B(x1, x2), C(y1, y2)

21

This is how to translate a CFTsp(1) rule to a 2-MCFG rule.

 yCFT
sp

(m !1) " m-MCFL

Seki and Kato 2008
de Groote and Pogodalla 2004, Salvati 2007

22

The translation establishes this inclusion.

Well-nested MCFGs

 S(x
1
y

1
y

2
x

2
) ! A(x

1
, x

2
),B(y

1
, y

2
)

 C(x
1
y

1
, y

2
z

1
, z

2
x

2
z

3
) ! A(x

1
, x

2
),B(y

1
, y

2
),C(z

1
, z

2
, z

3
)

 C(z
1
x

1
, x

2
z

2
, y

1
y

2
z

3
) ! A(x

1
, x

2
),B(y

1
, y

2
),C(z

1
, z

2
, z

3
)

 S(x
1
y

1
x

2
y

2
) ! A(x

1
, x

2
),B(y

1
, y

2
)

✓

✓

!

!

Cf. Kuhlmann 2007
23

Assume all rules are “non-permuting” (xi appears before xj if i < j).

X

Y

A ← B(X), C(Y)
u1

u2

u3 u4

u5

u6

 yCFT
sp

(m !1) " m-MCFL
wn

 yCFT
sp

(m !1) " m-MCFL
wn

A(u1 x1 u2 y1 u3, u4 y2 u5 x2 u6) ← B(x1, x2), C(y1, y2)

24

The translation of a CFTsp rule gives you a well-nested MCFG rule.

1

2
3

m

MCFL = m-MCFL

m!1
!

CFL

0

1

2

m–1

CFL

TALTAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

 { a
1
n…an

2(m+1)
∣n ! 0 }

m+1
m

{ wm+1 | w ∈ {a, b}* }

25

What about separation of the corresponding levels of the two hierarchies? These languages
do not separate them.

m-MCFL vs. yCFTsp(m–1)

 RESP
2
!2-MCFL " yCFT

sp
(1) Seki et al. 1991

 RESP
2
= { a

1
ia

2
i b

1
jb

2
ja

3
i a

4
i b

3
jb

4
j∣i, j ! 0 } Weir 1989

 RESP
m
!m-MCFL " yCFT

sp
(m "1) for m # 2

Seki and Kato 2008

 RESP
m
= { a

1
ia

2
i b

1
jb

2
j …a

2m!1
i a

2m
i b

2m!1
j b

2m
j ∣i, j " 0 }

 RESP
m
!yCFT

sp
(2m "1)

26

m-MCFL and m-MCFLwn have many languages in common, but are of course different.
Separation at each level is witnessed by RESPm.
But RESPm is inside the entire yCFTsp hierarchy.

MCFL vs. yCFTsp

 MIX?

{ w
1
…w

n
z

n
w

n
z

n!1…z
1
w

1
z

0
w

1
R …w

n
R∣

n "!,w
i
"{c,d}+ , z

n
…z

0
"D#

1
}

Staudacher 1993
Michaelis 2005

 { a
1
n…an

2m
∣n ! 0 }

{ wm+1 | w ∈ {a, b}* }

RESPm

 { w#w#w∣ w !D"
1
}

Engelfriet and Skyum 1976

 { w#w∣ w !D"
1
}

2-MCFL
Kanazawa and Salvati 2010

27

With Kanazawa and Salvati’s (2010) theorem, we can see 2-MCFL - MCFLwn ≠ ∅.
Improves known results.

Three Infinite Hierarchies

MCFL = m-MCFL

m!1
!

0

1

2

m–1

CFL

TAL1

2
3

m

CFL

TAL

yCFT

sp
= yCFT

sp
(m !1)

m"1
!

1

2

3

k

CFL

TAL

C = C

k
k!1
!

28

Let’s look at the third hierarchy.

Controlled Tree Languages

CT(L1, L2)

 L1
! T"

 L2
! "#

h : !" !
d #!(r) $ h(d) #{0,…, r }

 = L
1
! (L

2

!)",c

29

Let’s define an operation CT, which takes a tree language L1 and a string language L2 and
returns a subset of L1. This operation is parametric on a function h.
Defined in terms of three operations: the hat operation, the tree analogue of the Kleene star
operation, and intersection.

 L! L"

a1

a2

a3

a4

a1a2a3a4

a1

a2

a3

a4

c c

cc

c c

 a1
!"(3) ,h(a

1
) =1

 a2
!"(1) ,h(a

2
) =1

 a3
!"(3) ,h(a

3
) = 2

 a4
!"(2) ,h(a

4
) = 0

30

The hat operation turns a string into a tree.

Regular Tree Operations

Concatenation

Kleene star

c c

L1 L2

L1·c L2

! ! !

!

 L
!,c = {c}" L #

c
L!,c

31

The Kleene star operation is a standard notion in tree automata theory.

CT(L1, L2) = L
1
! (L

2

!)",c

32

This depicts the CT operation. You can observe elements of L2 along some paths in a tree in
CT(L1,L2). These paths are determined by the h function.

CT1 = LOC

CTk+1 = CT(LOC, yCTk)

Ck = yCTk

C1 = CFL

C2 = yCFTsp(1)CT2 ⊆ CFTsp(1)

33

Define the Control Tree Language Hierarchy in terms of CT, starting from the class of local
tree languages.
Weir’s Control Language Hierarchy is the yield image of this hierarchy.
Let’s show CT2 is included in CFTsp(1).

 L! L"

a1

a2

a3

a4

a1a2a3a4

a1

a2

a3

a4

c c

cc

c c

substring unary tree context linear non-deleting
homomorphism

34

Going from strings to monadic trees, substrings are mapped to unary tree contexts, so a CFG
is mapped to a CFTsp(1). Addition of nodes labeled by c is a simple case of a linear non-
deleting homomorphism.

CT2 = { L
1
! (L

2

!)",c | L
1
#LOC, L

2
#CFL }

⊆ CFTsp(1)

C2 ⊆ yCFTsp(1)
 ⊆ 2-MCFL

35

CFTsp(1) is closed under linear non-deleting homomorphism, Kleene star, and intersection
with regular sets. This shows that CT2 is included in CFTsp(1).

CTk ⊆ 2k–2-MCFTsp(1) (k≥2)

Ck ⊆ 2k–1-MCFL

Kanazawa and Salvati 2007

≈ MCTAG (Weir 1988)

36

The induction step is similar. Going form strings to monadic trees, substrings are mapped to
unary tree contexts, and an MCFG is mapped to a “multiple monadic simple context-free tree
grammar”. The latter is basically the same as a multicomponent TAG.

S

A

X1

e

h

a dA

h

b cx

X2

e

g

 ← A(X1, X2)

h

a dA

h

b cx,

 ← A(X1, X2)

λx. λx.

A(λx.x, λx.x) ←

2-MCFTsp(1)

37

Here’s an example of a 2-MCFTsp(1).

CTk+1 =

 { L
1
! (L

2

!)",c | L
1
#LOC, L

2
#y(2k$2 -MCFT

sp
(1)) }

 { L
1
! (L

2

!)",c | L
1
#LOC, L

2
#2k$1-MCFL }

 { L
1
! L

2
",c | L

1
#LOC, L

2
#2k$1-MCFT

sp
(1) }

 2
k!1-MCFT

sp
(1)

⊆

⊆

⊆

 y(2k!2 -MCFT
sp

(1))

 { L
1
! (L

2

!)",c | L
1
#LOC, L

2
#C

k
}

⊆

Ck = yCTk

⊆

 2k!1-MCFL⊆

38

The induction step goes like this.
The yield image of the tree language of an m-MCFTsp(1) is the language of a 2m-MCFL.

MCFL vs. C

 MIX?

{ w
1
…w

n
z

n
w

n
z

n!1…z
1
w

1
z

0
w

1
R …w

n
R∣

n "!,w
i
"{c,d}+ , z

n
…z

0
"D#

1
}

Staudacher 1993
Michaelis 2005

 { a
1
n…an

2m
∣n ! 0 }

{ wm+1 | w ∈ {a, b}* }

RESPm

 { w#w#w∣ w !D"
1
}

Engelfriet and Skyum 1976

 { w#w∣ w !D"
1
}

2-MCFL
Kanazawa and Salvati 2010

39

C is closed under copying.
It’s harder to separate MCFL and C.

