Distributional Learning of Multiple Context-Free Grammars and Related Formalisms

Ryo Yoshinaka
(ERATO Minato Discrete Structure Manipulation System Project, Japan Science and Technology Agency)

Distributional Learning of Context-Free Grammars and Related Formalisms Including MCFGs

Ryo Yoshinaka
(ERATO Minato Discrete Structure Manipulation System Project, Japan Science and Technology Agency)

Chomsky Hierarchy \& Learning

Recursively Enumerable
Context-Sensitive

Context-Free
Few positive results

Regular

Many positive results

Chomsky Hierarchy \& Learning

Recursively Enumerable
Context-Sensitive

Context-Free

Distributional Learning

Regular \longleftarrow Many positive results

Distributional Learning

- Models and exploits the distribution of strings in contexts
- Syntactic category of a phrase $=$ Contexts where it occurs

		contexts			
		John \square Mary	\square loves kids	A cat hits \square	Everyone \square
strings	John		©	©	
	Mary		©	©	
	she		©		
	him			©	
	loves	©			
	loves it				©
	runs				©

John \equiv Mary, him \leqq Mary, loves it \equiv runs, ...

Distributional Learning of CFLs

- Context-deterministic CFGs by queries (Shirakawa \& Yokomori '93)
- (k,l-)Substitutable CFLs by positive data (Clark \& Eyraud '05, Yoshinaka’08)
- Congruential CFGs by queries (Clark'IO)
- (p-)Finite Kernel/Context-Property
(Clark et al.'08, Clark '09, Clark 'IO, Yoshinaka'II)
- Probabilistic learning of Unambiguous (k,l-)NTS Languages (Clark'06, Luque'I0)
- Inversion Transition Grammars (Clark'II)
- etc.

Distributional Learning of CFLs

- Context-deterministic CFGs by queries (Shirakawa \& Yokomori '93)
- (k,l-)Substitutable CFLs by positive data
(Clark \& Eyraud '05, Yoshinaka'08)
- Congruential CFGs by queries (Clark'IO)
- (p-)Finite Kernel/Context-Property
(Clark et al.'08, Clark '09, Clark 'IO, Yoshinaka'II)
- Probabilistic learning of Unambiguous
(k,l-)NTS Languages (Clark'06, Luque'I0)
- Inversion Transition Grammars (Clark'II)
- etc.

Outline

0. Introduction
I. Learning Substitutable Context-Free Languages (Clark and Eyraud '05, '07)
1. Learning Context-Free Grammars with the p-Finite Kernel Property (Yoshinaka' I I, Clark et al. '08,'09, Clark 'IO)
2. Extension to Multiple Context-Free Grammars
3. Extension to Related Formalisms
4. Conclusion

Learning of Substitutable

 Context-Free Languagesfrom Positive Data

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot v \in L\right\}:$ context set of v w.r.t. L

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot v \in L\right\}:$ context set of v w.r.t. L
- $(\varepsilon, \varepsilon) \in L / v$ iff $v \in L$

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot v \in L\right\}:$ context set of v w.r.t. L
- $(\varepsilon, \varepsilon) \in L / v$ iff $v \in L$
- u is substitutable for v in L
$\Leftrightarrow L / v \subseteq L / u$
$\Leftrightarrow w \odot v \in L$ implies $w \odot u \in L$ for every context w

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot v \in L\right\}:$ context set of v w.r.t. L
- $(\varepsilon, \varepsilon) \in L / v$ iff $v \in L$
- u is substitutable for v in L
$\Leftrightarrow L / v \subseteq L / u$
$\Leftrightarrow w \odot v \in L$ implies $w \odot u \in L$ for every context w
- u and v are congruent in L iff $L / v=L / u$

Terms

- Context: pair of strings $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $\left(w_{1}, w_{2}\right) \odot v=w_{1} v w_{2}$ for $v \in \Sigma^{*}$ and $\left(w_{1}, w_{2}\right) \in \Sigma^{*} \times \Sigma^{*}$
- $L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot v \in L\right\}:$ context set of v w.r.t. L
- $(\varepsilon, \varepsilon) \in L / v$ iff $v \in L$
- u is substitutable for v in L
$\Leftrightarrow L / v \subseteq L / u$
$\Leftrightarrow w \odot v \in L$ implies $w \odot u \in L$ for every context w
- u and v are congruent in L iff $L / v=L / u$
- ex. $L=\left\{a^{n} b c^{n} \mid n \geqq 0\right\}$. L/abc $=$ L/aabcc $=\left\{\left(a^{n}, c^{n}\right) \mid n \geqq 0\right\}$

Easy Lemmas

- If u is substitutable for v, then $w \odot u$ is substitutable for $w \odot v$ for any context w

Easy Lemmas

- If u is substitutable for v, then $w \odot u$ is substitutable for $w \odot v$ for any context w
- $L / v_{1} \subseteq L / u_{1} \& L / v_{2} \subseteq L / u_{2} \Rightarrow L /\left(v_{1} v_{2}\right) \subseteq L /\left(u_{1} u_{2}\right)$

Easy Lemmas

- If u is substitutable for v, then $w \odot u$ is substitutable for $w \odot v$ for any context w
- $L / v_{1} \subseteq L / u_{1} \& L / v_{2} \subseteq L / u_{2} \Rightarrow L /\left(v_{1} v_{2}\right) \subseteq L /\left(u_{1} u_{2}\right)$
$\because W_{1} v_{1} v_{2} w_{2} \in L \Rightarrow w_{1} u_{1} v_{2} w_{2} \in L \Rightarrow w_{1} u_{1} u_{2} w_{2} \in L$

Easy Lemmas

- If u is substitutable for v, then $w \odot u$ is substitutable for $w \odot v$ for any context w
- $L / v_{1} \subseteq L / u_{1} \& L / v_{2} \subseteq L / u_{2} \Rightarrow L /\left(v_{1} v_{2}\right) \subseteq L /\left(u_{1} u_{2}\right)$
$\because w_{1} v_{1} v_{2} w_{2} \in L \Rightarrow w_{1} u_{1} v_{2} w_{2} \in L \Rightarrow w_{1} u_{1} u_{2} w_{2} \in L$
- $L / v_{1}=L / u_{1} \& L / v_{2}=L / u_{2} \Rightarrow L /\left(v_{1} v_{2}\right)=L /\left(u_{1} u_{2}\right)$

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff
$\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff
$\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$
- Positive data:

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff

$$
\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing \text { implies } L / v_{1}=L / v_{2}
$$

- Positive data:
- A man gave John chocolate.
- A man gave a little girl chocolate.

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff

$$
\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing \text { implies } L / v_{1}=L / v_{2}
$$

- Positive data:
- A man gave John chocolate.
- A man gave a little girl chocolate.
- They like John.

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff

$$
\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing \text { implies } L / v_{1}=L / v_{2}
$$

- Positive data:
- A man gave John chocolate.
- A man gave a little girl chocolate.
- They like John.
- Generalization: They like a little girl.

Substitutable CFLs

- Clark and Eyraud ('05,'07)
- L is substitutable iff

$$
\forall v_{1}, v_{2} \in \Sigma^{+}, \quad L / v_{1} \cap L / v_{2} \neq \varnothing \text { implies } L / v_{1}=L / v_{2}
$$

- Positive data:
- A man gave John chocolate.
- A man gave a little girl chocolate.
- They like John.
- Generalization: They like a little girl.
- ex. $L=\left\{a^{n} b c^{n} \mid n \geqq 0\right\}$ is substitutable.

Identification in the Limit from Positive Data

- Gold (1967)

Identification in the Limit from Positive Data

- Gold (1967)

Identification in the Limit from Positive Data

- Gold (1967)
- Learner
- gets a positive example $W_{1} W_{2} W_{3} W_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}$

Identification in the Limit from Positive Data

- Gold (1967)
- Learner
- gets a positive example $W_{1} W_{2} W_{3} W_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, . ..\right\}$
- Identification in the Limit:
- convergence to a grammar for the target

$$
G_{n}=G_{n+1}=G_{n+2} \ldots \text { and } L\left(G_{n}\right)=L_{0}
$$

- Learner should uniformly learn a rich class of languages

Clark \& Eyraud's Algorithm

let G := vacuous grammar;
For $n=1,2,3, \ldots$
let $D:=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$;
If $D \nsubseteq L(G)$
then update G by D;
End if
output G
End for

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data
- G_{D} : conjecture

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data
- G_{D} : conjecture
- $N=\operatorname{Sub}(D)$: all non-empty substrings from D

$$
=\left\{\llbracket v \rrbracket \mid \exists w, w \odot v \in D, v \in \Sigma^{+}\right\}
$$

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data
- G_{D} : conjecture
- $N=\operatorname{Sub}(D)$: all non-empty substrings from D

$$
=\left\{\llbracket v \rrbracket \mid \exists w, w \odot v \in D, v \in \Sigma^{+}\right\}
$$

$$
\llbracket v \rrbracket \Rightarrow u \text { for } L_{0} / v=L_{0} / u
$$

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data
- GD: conjecture
- $N=\operatorname{Sub}(D)$: all non-empty substrings from D

$$
=\left\{\llbracket v \rrbracket \mid \exists w, w \odot v \in D, v \in \Sigma^{+}\right\}
$$

$$
\llbracket v \rrbracket \Rightarrow u \text { for } L_{0} / v=L_{0} / u
$$

- Initial Symbols: $\{\llbracket v \rrbracket \in N \mid v \in D\}$

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}:$ positive data
- G_{D} : conjecture
- $N=\operatorname{Sub}(D)$: all non-empty substrings from D

$$
=\left\{\llbracket v \rrbracket \mid \exists w, w \odot v \in D, v \in \Sigma^{+}\right\}
$$

$$
\llbracket v \rrbracket \Rightarrow u \text { for } L_{0} / v=L_{0} / u
$$

- Initial Symbols: $\{\llbracket v \rrbracket \in N \mid v \in D\}$
- Rules
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for all $\llbracket v_{1} v_{2} \rrbracket \in N$
- Type II: $\llbracket a \rrbracket \rightarrow a \quad$ for all $a \in \Sigma$

Learner's Conjecture

- $D=\left\{u_{1}, \ldots, u_{n}\right\}$: positive data
- G_{D} : conjecture
- $N=\operatorname{Sub}(D)$: all non-empty substrings from D

$$
=\left\{\llbracket \vee \rrbracket \mid \exists w, w \odot v \in D, v \in \Sigma^{+}\right\}
$$

$$
\llbracket \nu \rrbracket \Rightarrow u \text { for } L_{0} / v=L_{0} / u,
$$

- Initial Symbols: $\{\llbracket \downarrow \rrbracket \in N \mid v \in D\}$
- Rules
- Type $I: \llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for all $\llbracket v_{1} v_{2} \rrbracket \in N$
- Type II: $\llbracket a \rrbracket \rightarrow a$ for all $a \in \Sigma$
- Type III: $\llbracket \downarrow \rrbracket \rightarrow \llbracket u \rrbracket$ if $\exists w$ s.t. $w \odot v, w \odot u \in D\left(\subseteq L_{0}\right)$

the man who was hungry died ． the man ordered dinner ． the man died． the man was hungry ． was the man hungry？ the man was ordering dinner ．

Grammar

$\llbracket m a n \rrbracket \rightarrow$ man who was hungry】
$\llbracket h u n g r y \rrbracket \rightarrow$ 【ordering dinner】

【was the man hungry ？】 \Rightarrow 【was the man】【hungry ？】
was the man who was hungry ordering dinner ？

was the man who was hungry ordering dinner ？

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket \vee \rrbracket)=v$ for $v \in \Sigma^{+}$,

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket \vee \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket v \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for $\llbracket v_{1} v_{2} \rrbracket, \llbracket v_{1} \rrbracket, \llbracket v_{2} \rrbracket \in N$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket v \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for $\llbracket v_{1} v_{2} \rrbracket, \llbracket v_{1} \rrbracket, \llbracket v_{2} \rrbracket \in N$
- Type II: $\llbracket a \rrbracket \rightarrow a$ for all $a \in \Sigma$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket \vee \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for $\llbracket v_{1} v_{2} \rrbracket, \llbracket v_{1} \rrbracket, \llbracket v_{2} \rrbracket \in N$
- Type II: $\llbracket a \rrbracket \rightarrow a$ for all $a \in \Sigma$
- Type III: $\llbracket v \rrbracket \rightarrow \llbracket u \rrbracket$ if $\exists w$ s.t. $w \odot v, w \odot u \in D\left(\subseteq L_{0}\right)$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket \vee \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for $\llbracket v^{L / v}=\overline{L /} \bar{u} \quad$.
- Type II: $\llbracket a \rrbracket a$ for all $a \in \Sigma \quad \Rightarrow L /(x \odot v)=L /(x \odot u)$
- Type III: $\llbracket v \rrbracket \rightarrow \llbracket u \rrbracket$ if $\exists w$ s.t. $w \odot v, w \odot u \in D\left(\subseteq L_{0}\right)$

Soundness

- G_{D} : conjecture, L_{0} : target language
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- homomorphism $h: h(a)=a$ for $a \in \Sigma, h(\llbracket \vee \rrbracket)=v$ for $v \in \Sigma^{+}$,
- If $\alpha \Rightarrow \beta$ in G_{D}, then $L_{0} / h(\alpha)=L_{0} / h(\beta)$
- Type I: $\llbracket v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket$ for $\llbracket v^{L / v}=\overline{L / u}{ }^{\boldsymbol{n}}$
- Type II: $\llbracket a \rrbracket a$ for all $a \in \Sigma \quad \Rightarrow L /(x \odot v)=L /(x \odot u)$
- Type III: $\llbracket v \rrbracket \rightarrow \llbracket u \rrbracket$ if $\exists w$ s.t. $w \odot v, w \odot u \in D\left(\subseteq L_{0}\right)$
- For $\alpha=\llbracket v \rrbracket \in I$ and $\beta \in \Sigma^{+}, v$ and β are congruent

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$
- W_{A} : shortest context for a nonterminal A s.t. $S \Rightarrow W_{A} \odot A$

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$
- W_{A} : shortest context for a nonterminal A s.t. $S \Rightarrow w_{A} \odot A$
- If $\left\{w_{A} \odot v_{\alpha} \mid A \rightarrow \alpha\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$
- W_{A} : shortest context for a nonterminal A s.t. $S \Rightarrow w_{A} \odot A$
- If $\left\{w_{A} \odot v_{\alpha} \mid A \rightarrow \alpha\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- For $A \rightarrow B C$ in $G_{0}, w_{A} \odot v_{A}, w_{A} \odot v_{B} v_{c} \in D$. Thus

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$
- W_{A} : shortest context for a nonterminal A s.t. $S \Rightarrow w_{A} \odot A$
- If $\left\{w_{A} \odot v_{\alpha} \mid A \rightarrow \alpha\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- For $A \rightarrow B C$ in $G_{0}, w_{A} \odot v_{A}, w_{A} \odot v_{B} v_{c} \in D$. Thus
- $\llbracket v_{A} \rrbracket \Rightarrow \llbracket v_{B} v_{C} \rrbracket \Rightarrow \llbracket v_{B} \rrbracket \llbracket v_{C} \rrbracket$ in G_{D}

Completeness

- G_{D} : conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- v_{α} : shortest in $L\left(G_{0}, \alpha\right)=\left\{v \mid \alpha \Rightarrow v\right.$ in $\left.G_{0}\right\}$
- W_{A} : shortest context for a nonterminal A s.t. $S \Rightarrow w_{A} \odot A$
- If $\left\{w_{A} \odot v_{\alpha} \mid A \rightarrow \alpha\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- For $A \rightarrow B C$ in $G_{0}, w_{A} \odot v_{A}, w_{A} \odot v_{B} v_{c} \in D$. Thus
- $\llbracket v_{A} \rrbracket \Rightarrow \llbracket v_{B} v_{C} \rrbracket \Rightarrow \llbracket v_{B} \rrbracket \llbracket v_{C} \rrbracket$ in G_{D}
- 【vs】 is an initial symbol for $v_{s} \in D$

Theorem

- Clark and Eyraud's algorithm identifies every Substitutable CFL in the limit from positive data
- Polynomial-time update
- Polynomially many examples are enough for convergence w.r.t. the size of the grammar to be learnt

Substitutable Languages

- $\left\{a^{n} b c^{n} \mid n \geqq 0\right\}$ is substitutable
- $L=\left\{a^{n} c^{n} \mid n \geqq 0\right\}$ is not, because $(\varepsilon, c) \in$ L/a \cap L/aac but $(\varepsilon, a c c) \in L / a-$ L/aac .
- $a, a b \in L^{\prime}$ implies $a b^{*} \subseteq L^{\prime}$

Learning of CFGs with

the p-Finite Kernel Property from Positive Data \& Membership Queries

- For $L \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{*}$, the context set of V is $L / V=\bigcap_{v \in V} L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot V \subseteq L\right\}$
- $U \subseteq V$ implies $L / U \supseteq L / V$
- For $L \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{*}$, the context set of V is $L / V=\bigcap_{v \in V} L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot V \subseteq L\right\}$
- $U \subseteq V$ implies $L / U \supseteq L / V$

Example: $L=\left\{a^{i} b^{i} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$

L		contexts $\in \Sigma^{*} \times \Sigma^{*}$					
		($\varepsilon, \varepsilon)$	(a, ε)	(ε, c)	(a, c)	$(a, b c)$	$(a b, c)$
$\begin{aligned} & \text { W } \\ & \underset{\sim}{u} \\ & \text { e } \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	ε	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	a	\checkmark	\checkmark			\checkmark	
	b		\checkmark	\checkmark	\checkmark		
	c	\checkmark		\checkmark			\checkmark
	$a b$	\checkmark		\checkmark	\checkmark	\checkmark	
	bc	\checkmark	\checkmark		\checkmark		\checkmark
	$a b c$	\checkmark	\checkmark	\checkmark			
	$a \mathrm{abb}$	\checkmark		\checkmark		\checkmark	
	bbcc	\checkmark	\checkmark				\checkmark

- For $L \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{*}$, the context set of V is $L / V=\cap_{v \in V} L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot V \subseteq L\right\}$
- $U \subseteq V$ implies $L / U \supseteq L / V$

Example: $L=\left\{a^{i} b^{i} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$

L		contexts $\in \Sigma^{*} \times \Sigma^{*}$					
		(ε, ε	(,) (a, ε)	(E, c	$(a, c)(a, b c)$		(ab,c
$\begin{aligned} & \text { W } \\ & \text { W } \\ & \text { W } \\ & \text { EV } \end{aligned}$	ε		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	a	\checkmark	\checkmark			\checkmark	
	b		\checkmark	\checkmark	\checkmark		
	c	\checkmark		\checkmark			\checkmark
	$a b$	\checkmark		\checkmark	\checkmark	\checkmark	
	bc	\checkmark	\checkmark		\checkmark		\checkmark
	$a b c$	\checkmark	\checkmark	\checkmark			
	aabb	\checkmark		\checkmark		\checkmark	
	bbcc	\checkmark	\checkmark				\checkmark

- $V=\{b c, a b c\}$
- For $L \subseteq \Sigma^{*}$ and $V \subseteq \Sigma^{*}$, the context set of V is

$$
L / V=\cap_{v \in V} L / v=\left\{w \in \Sigma^{*} \times \Sigma^{*} \mid w \odot V \subseteq L\right\}
$$

- $U \subseteq V$ implies $L / U \supseteq L / V$

Example: $L=\left\{a^{i} b^{i} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$

L		contexts $\in \Sigma^{*} \times \Sigma^{*}$					
		(ε,	(a,)	(8,c)	(a,c)	(a,bc)	(ab,c)
$\begin{aligned} & \text { W } \\ & \text { u } \\ & \text { un } \\ & \text { en } \\ & \dot{訁} \end{aligned}$	ε		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	a	\checkmark	\checkmark			\checkmark	
	b		\checkmark	\checkmark	\checkmark		
	c	\checkmark		\checkmark			\checkmark
	ab	\checkmark		\checkmark	\checkmark	\checkmark	
	bc	\checkmark	\checkmark		\checkmark		\checkmark
	$a b c$	\checkmark	\checkmark	\checkmark			
	aabb	\checkmark		\checkmark		\checkmark	
	bbcc	\checkmark	\checkmark				\checkmark

- $V=\{b c, a b c\}$
- $L / V=\{(\varepsilon, \varepsilon),(a, \varepsilon), \ldots\}$

p-Finite Kernel Property

- Clark, Eyraud \& Habrard ('08,'09), Yoshinaka ('II $)$
- $V \subseteq L(G, A)=L(A)$ is called a p-kernel of $L(A) \quad$ (or of $A \in N$) iff $L(G) / V=L(G) / L(A)$ and $|V| \leqq p$

p-Finite Kernel Property

- Clark, Eyraud \& Habrard ('08,'09), Yoshinaka ('I I)
- $V \subseteq L(G, A)=L(A)$ is called a p-kernel of $L(A) \quad$ (or of $A \in N$)

$$
\text { iff } L(G) / V=L(G) / L(A) \text { and }|V| \leqq p
$$

- CFG G has the p-Finite Kernel Property (p-FKP) iff every nonterminal admits a p-kernel

p-Finite Kernel Property

- Clark, Eyraud \& Habrard ('08,'09), Yoshinaka ('II $)$
- $V \subseteq L(G, A)=L(A)$ is called a p-kernel of $L(A) \quad$ (or of $A \in N$)

$$
\text { iff } L(G) / V=L(G) / L(A) \text { and }|V| \leqq p
$$

- CFG G has the p-Finite Kernel Property (p-FKP) iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the $p-F K P$

p-Finite Kernel Property

- Clark, Eyraud \& Habrard ('08,'09), Yoshinaka ('I I)
- $V \subseteq L(G, A)=L(A)$ is called a p-kernel of $L(A) \quad$ (or of $A \in N$)

$$
\text { iff } L(G) / V=L(G) / L(A) \text { and }|V| \leqq p
$$

- CFG G has the p-Finite Kernel Property (p-FKP) iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the p-FKP
- 1-FKP is preserved under Chomsky-Normalization

p-Finite Kernel Property

- Clark, Eyraud \& Habrard ('08,'09), Yoshinaka ('II $)$
- $V \subseteq L(G, A)=L(A)$ is called a p-kernel of $L(A) \quad$ (or of $A \in N$)

$$
\text { iff } L(G) / V=L(G) / L(A) \text { and }|V| \leqq p
$$

- CFG G has the p-Finite Kernel Property (p-FKP) iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the p-FKP
- 1-FKP is preserved under Chomsky-Normalization
- Every CFG with p-FKP has an equivalent one in CNF with q-FKP
- Every regular language has the 1-FKP
- $\left\{L / u \mid u \in \Sigma^{*}\right\}$ is finite iff L is regular
- Dyck language has the 1-FKP
- $\left\{a^{n} b^{n} \mid n \geqq 0\right\}$ has the 1-FKP
- $\left\{a^{n} b^{m} \mid n \geqq m\right\}$ has the 1-FKP
- $\left\{a^{n} b^{n} \mid n \geqq 0\right\} \cup\left\{a^{n} b^{2 n} \mid n \geqq 0\right\}$ has the 2-FKP
- Palindrome language has the 2-FKP
- $\left\{a_{1}{ }^{n 1} a_{2}{ }^{n 2} \ldots a_{p}{ }^{n p} \mid n_{i}=n_{j}\right.$ for some $\left.i \neq j\right\}$ separates the p-FKP from the ($p-1$)-FKP for $p \geqq 3$
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP $\star S \rightarrow a|b| \varepsilon\left|S_{A} A\right| S_{B} B, S_{A} \rightarrow A S, S_{B} \rightarrow B S, A \rightarrow a, B \rightarrow b$
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP
$\star S \rightarrow a|b| \varepsilon\left|S_{A} A\right| S_{B} B, S_{A} \rightarrow A S, S_{B} \rightarrow B S, A \rightarrow a, B \rightarrow b$
- $\{a\}$ is a 2-kernel of A by definition: $\mathrm{Pal} /\{a\}=\mathrm{Pal} / \mathrm{L}(A)$
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP
$\star S \rightarrow a|b| \varepsilon\left|S_{A} A\right| S_{B} B, S_{A} \rightarrow A S, S_{B} \rightarrow B S, A \rightarrow a, B \rightarrow b$
- $\{a\}$ is a 2-kernel of A by definition: $\mathrm{Pal} /\{a\}=\mathrm{Pal} / \mathrm{L}(A)$
- $\{a, b\}$ is a 2-kernel of S, by $\mathrm{Pal} /\{a, b\}=\left\{\left(w, w^{R}\right) \mid w \in \Sigma^{*}\right\}=\mathrm{Pal} / \mathrm{L}(S)$.
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP
$\star S \rightarrow a|b| \varepsilon\left|S_{A} A\right| S_{B} B, S_{A} \rightarrow A S, S_{B} \rightarrow B S, A \rightarrow a, B \rightarrow b$
- $\{a\}$ is a 2-kernel of A by definition: $\mathrm{Pal} /\{a\}=\mathrm{Pal} / \mathrm{L}(A)$
- $\{a, b\}$ is a 2-kernel of S, by $\mathrm{Pal} /\{a, b\}=\left\{\left(w, w^{R}\right) \mid w \in \Sigma^{*}\right\}=\mathrm{Pal} / \mathrm{L}(S)$.
- $\{a a, a b\}$ is a 2-kernel of S_{A}.
- Palindrome $=\left\{w \in \Sigma^{*} \mid w=w^{R}\right\}$ admits a CFG with 2-FKP but no CFG with 1-FKP
$\star S \rightarrow a|b| \varepsilon\left|S_{A} A\right| S_{B} B, S_{A} \rightarrow A S, S_{B} \rightarrow B S, A \rightarrow a, B \rightarrow b$
- $\{a\}$ is a 2 -kernel of A by definition: $\mathrm{Pal} /\{a\}=\mathrm{Pal} / \mathrm{L}(A)$
- $\{a, b\}$ is a 2-kernel of S, by $\mathrm{Pal} /\{a, b\}=\left\{\left(w, w^{R}\right) \mid w \in \Sigma^{*}\right\}=\mathrm{Pal} / L(S)$.
- $\{a a, a b\}$ is a 2-kernel of S_{A}.
$\star\left(\varepsilon, a w^{R}\right),\left(\varepsilon, b w^{R}\right) \in \mathrm{Pal} /\{w\}$.
Hence $\mathrm{Pal} /\{a\}=\mathrm{Pal} / V$ implies $V=\{w\}$.
- CFLs with the p-FKP are not identifiable in the limit from positive data only
- CFLs with the p-FKP are not identifiable in the limit from positive data only
- Any class that contains all finite languages and an infinite language is not identifiable in the limit from positive data
- CFLs with the p-FKP are not identifiable in the limit from positive data only
- Any class that contains all finite languages and an infinite language is not identifiable in the limit from positive data
- Why can one conjecture an infinite language from a finite subset of it, which may be the learning target itself?
- CFLs with the p-FKP are not identifiable in the limit from positive data only
- Any class that contains all finite languages and an infinite language is not identifiable in the limit from positive data
- Why can one conjecture an infinite language from a finite subset of it, which may be the learning target itself?
- Stronger learning scheme

Identification in the Limit from Positive Data and Membership Queries

- Learner
- gets a positive example $W_{1} W_{2} W_{3} W_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, . ..\right\}$

Identification in the Limit from Positive Data and Membership Queries

- Learner
- gets a positive example $W_{1} W_{2} W_{3} W_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}$
- calls the membership oracle

Identification in the Limit from Positive Data and Membership Queries

- Learner
- gets a positive example $w_{1} w_{2} W_{3} w_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, . ..\right\}$
- calls the membership oracle
- Identification in the Limit:
- convergence to a grammar for the target

$$
G_{n}=G_{n+1}=G_{n+2} \ldots \text { and } L\left(G_{n}\right)=L_{0}
$$

Identification in the Limit from Positive Data and Membership Queries

- Learner
- gets a positive example $W_{1} W_{2} W_{3} W_{4}$
- updates the conjecture $G_{1} G_{2} G_{3} G_{4}$
- $L_{0}=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}$
- calls the membership oracle
- Identification in the Limit:
- convergence to a grammar for the target

$$
G_{n}=G_{n+1}=G_{n+2} \ldots \text { and } L\left(G_{n}\right)=L_{0}
$$

- Learner should uniformly learn a rich class of languages

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{I}, \ldots, v_{n}\right\}$: positive data

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{1}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{l}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{1}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{1}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$, i.e.,

$$
\text { i.e., } L_{0} / V \odot u \subseteq L_{0} \text {, i.e., } L_{0} / V=L_{0} /(V u\{u\})
$$

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{1}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$, i.e.,

$$
\text { i.e., } L_{0} / V \odot u \subseteq L_{0} \text {, i.e., } L_{0} / V=L_{0} /(V u\{u\})
$$

- Initial Symbols: $\left\{\llbracket \bigvee \rrbracket \in N \mid V \subseteq L_{0}\right\}$

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{1}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$, i.e.,

$$
\text { i.e., } L_{0} / V \odot u \subseteq L_{0} \text {, i.e., } L_{0} / V=L_{0} /(V u\{u\})
$$

- Initial Symbols: $\left\{\llbracket \bigvee \rrbracket \in N \mid V \subseteq L_{0}\right\}$
- Rules

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{l}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, x}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$, i.e.,

$$
\text { i.e., } L_{0} / V \odot u \subseteq L_{0} \text {, i.e., } L_{0} / V=L_{0} /(V u\{u\})
$$

- Initial Symbols: $\left\{\llbracket \backslash \rrbracket \in N \mid V \subseteq L_{0}\right\}$
- Rules
- Type $I: \llbracket V \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$

Learner's Conjecture

- $K \subseteq \operatorname{Sub}(D)$ for $\left\{v_{l}, \ldots, v_{n}\right\}:$ positive data
- $X=\operatorname{Con}(D)=\{w \mid w \odot v \in D$ for some $v\}$
- $G_{k, X}$: conjecture
- $N=\{\llbracket \bigvee \rrbracket|V \subseteq K,|V| \leqq p\}$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$, i.e.,

$$
\text { i.e., } L_{0} / V \odot u \subseteq L_{0} \text {, i.e., } L_{0} / V=L_{0} /(V u\{u\})
$$

- Initial Symbols: $\left\{\llbracket \bigvee \rrbracket \in N \mid V \subseteq L_{0}\right\}$
- Rules
- Type $I: \llbracket V \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
- Type II: $\llbracket \backslash \rrbracket \rightarrow a$ if $L 0 / V \cap X \subseteq$ Lola $\cap X$
- Type $\mathrm{I}: \llbracket \llbracket \rrbracket \rightarrow \llbracket V_{\mathbb{1}} \rrbracket \mathbb{V} V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0}\left(V_{1} V_{2}\right) \cap X$ $\llbracket \backslash \rrbracket \Rightarrow u$ for $L_{0} / V \subseteq L_{0} / u$
- Type I: $\llbracket \backslash \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$ $\llbracket \bigvee \rrbracket \Rightarrow u$ for $L_{o} / V \subseteq L_{0} / u$
- $L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longrightarrow L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
- Type I: $\llbracket \ \rrbracket \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$ $\llbracket V \rrbracket \Rightarrow u$ for $L_{o} / V \subseteq L_{0} / u$
- $L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longleftrightarrow L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
- Type I: $\llbracket \backslash \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
$\llbracket V \rrbracket \Rightarrow u$ for $L_{o} / V \subseteq L_{0} / u$
- $L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longleftrightarrow L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
-【V】 $\rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ is incorrect iff $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ $\llbracket V \rrbracket \rightarrow a \quad$ is incorrect iff $L o / V \nsubseteq L_{0} / a$
- Type I: $\llbracket \rrbracket \rrbracket \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$ $\llbracket V \rrbracket \Rightarrow u$ for $L_{o} / V \subseteq L_{0} / u$
- $\operatorname{Lol} V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longleftrightarrow L_{0} / V \cap X \subseteq L_{0}\left(V_{1} V_{2}\right) \cap X$
-【V】 $\rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ is incorrect iff $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ $\llbracket V \rrbracket \rightarrow a \quad$ is incorrect iff $L_{0} / V \nsubseteq L_{0} / a$
- If X is rich enough w.r.t. $K, G_{k, X}$ has no incorrect rules
- Type I: $\llbracket \bigvee \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$ $\llbracket V \rrbracket \Rightarrow u$ for $L_{o} / V \subseteq L_{0} / u$
- $L_{0} I V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longleftrightarrow L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
-【V】 $\rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ is incorrect iff $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ $\llbracket V \rrbracket \rightarrow a \quad$ is incorrect iff $L_{0} / V \nsubseteq L_{0} / a$
- If X is rich enough w.r.t. $K, G_{k, X}$ has no incorrect rules
- X is fiducial on K, iff for any $V, V_{1}, V_{2} \in K$ with $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ there is $w \in\left(L_{0} / V-L_{0} /\left(V_{1} V_{2}\right)\right) \cap X$ and
$\forall V \in K, a \in \Sigma$ with LolV $\nsubseteq L o l a, \exists w \in(L o / V-L o l a) \cap X$
- Type I: $\llbracket \bigvee \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$

$$
\llbracket V \rrbracket \Rightarrow u \text { for } L o l V \subseteq L_{0} / u
$$

- $L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right) \longleftrightarrow L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
-【V】 $\rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ is incorrect iff $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ $\llbracket V \rrbracket \rightarrow a \quad$ is incorrect iff $L_{0} / V \nsubseteq L_{0} / a$
- If X is rich enough w.r.t. $K, G_{k, X}$ has no incorrect rules
- X is fiducial on K, iff for any $V, V_{1}, V_{2} \in K$ with $L_{0} / V \nsubseteq L_{0} /\left(V_{1} V_{2}\right)$ there is $w \in\left(L_{0} / V-L_{0} /\left(V_{1} V_{2}\right)\right) \cap X$ and
$\forall V \in K, a \in \Sigma$ with LolV \nsubseteq Lola, $\exists w \in(L o / V-L o / a) \cap X$
- X is fiducial on K iff the conjecture has no incorrect rule

Monotonicity

- $G_{K, X}$: conjecture
- $N=\{\llbracket V \rrbracket|V \subseteq K,|V| \leqq p\}$
- Initial Symbols: $\left\{\llbracket V \rrbracket \in N \mid V \subseteq L_{0}\right\}$
- Rules
- Type I: $\llbracket \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X$
- Type II: $\llbracket \downarrow \rightarrow a \quad$ if $L_{0} / V \cap X \subseteq L_{0} / a \cap X$

Expanding $K \Rightarrow$ More nonterminals \& rules
Expanding $X \Rightarrow$ Less incorrect rules

Algorithm

Let $D:=K:=X:=\varnothing ; \quad G:=$ vacuous grammar;
For $i=1,2,3, \ldots$
let $D:=\left\{w_{1}, w_{2}, \ldots, w_{i}\right\} ;$
If $D \nsubseteq L(G)$
then let $K:=\operatorname{Sub}(D)$;
End if
let $X:=\operatorname{Con}(D)$;
update G with K and X;
End for

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- $V_{A}:$ a kernel of $A: L_{0} / V_{A}=L_{0} / L\left(G_{0}, A\right)$

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- $V_{A}:$ a kernel of $A: L_{0} / V_{A}=L_{0} / L\left(G_{0}, A\right)$
- If $V_{A} \subseteq K$ for all nonterminal A of G_{0}, then $G_{0} \subseteq L\left(G_{K}, x\right)$.

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- $V_{A}:$ a kernel of $A: L_{0} / V_{A}=L_{0} / L\left(G_{0}, A\right)$
- If $V_{A} \subseteq K$ for all nonterminal A of G_{0}, then $G_{0} \subseteq L\left(G_{K}, x\right)$.
- For $A \rightarrow B C$ in G_{0},
$\llbracket V_{A} \rrbracket \rightarrow \llbracket V_{B} \rrbracket \llbracket V_{C} \rrbracket($ Type $I)$ in $G_{K, X}$ by $L_{0} / L(A)=L_{0} / V_{A} \subseteq L_{0} /\left(V_{B} V_{C}\right)=L_{0} / L(B C)$.

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- $V_{A}:$ a kernel of $A: L_{0} / V_{A}=L_{0} / L\left(G_{0}, A\right)$
- If $V_{A} \subseteq K$ for all nonterminal A of G_{0}, then $G_{0} \subseteq L\left(G_{K}, x\right)$.
- For $A \rightarrow B C$ in G_{0},
$\llbracket V_{A} \rrbracket \rightarrow \llbracket V_{B} \rrbracket \llbracket V_{C} \rrbracket($ Type $I)$ in $G_{K, X}$ by $L_{0} / L(A)=L_{0} / V_{A} \subseteq L_{0} /\left(V_{B} V_{C}\right)=L_{0} / L(B C)$.
- For $A \rightarrow a$ in G_{0}, $\llbracket V_{A} \rrbracket \rightarrow a\left(\right.$ Type II) in $G_{K, x}$.

Completeness

- $G_{K, X}$: conjecture, G_{0} : grammar in CNF s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- $V_{A}:$ a kernel of $A: L_{0} / V_{A}=L_{0} / L\left(G_{0}, A\right)$
- If $V_{A} \subseteq K$ for all nonterminal A of G_{0}, then $G_{0} \subseteq L\left(G_{K}, x\right)$.
- For $A \rightarrow B C$ in G_{0},
$\llbracket V_{A} \rrbracket \rightarrow \llbracket V_{B} \rrbracket \llbracket V_{C} \rrbracket($ Type $I)$ in $G_{K, X}$ by $L_{0} / L(A)=L_{0} / V_{A} \subseteq L_{0} /\left(V_{B} V_{C}\right)=L_{0} / L(B C)$.
- For $A \rightarrow a$ in G_{0}, $\llbracket V_{A} \rrbracket \rightarrow a\left(\right.$ Type II) in $G_{K, x}$.
- 【V $V_{s} \rrbracket$ is an initial symbol for $V_{s} \in L$

Soundness

- $G_{K, X}$: conjecture

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, X}\right) \subseteq L_{0}$ if X is fiducial on K.

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, X}\right) \subseteq L_{0}$ if X is fiducial on K.
- If $\llbracket V \rrbracket \Rightarrow u$ in $G_{K, X}$, then $L_{0} / V \subseteq L_{0} / u$

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, X}\right) \subseteq L_{0}$ if X is fiducial on K.
- If $\llbracket V \rrbracket \Rightarrow u$ in $G_{K, X}$, then $L_{0} / V \subseteq L_{0} / u$
- Suppose $\llbracket V \rrbracket \Rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket \Rightarrow u_{1} u_{2}$ in $G_{K, x}$. By i.h., $L_{0} / V_{i} \subseteq L_{0} / u_{i}$.

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, x}\right) \subseteq L_{0}$ if X is fiducial on K.
- If $\llbracket V \rrbracket \Rightarrow u$ in $G_{K, X}$, then $L_{0} / V \subseteq L_{0} / u$
- Suppose $\llbracket \bigvee \rrbracket \Rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket \Rightarrow u_{1} u_{2}$ in $G_{K, x}$. By i.h., $L_{0} / V_{i} \subseteq L_{0} / u_{i}$.
- Type $\mathrm{I}: \llbracket \mathbb{V} \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$

$$
\text { if } L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X \text {, i.e., } L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right)
$$

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, X}\right) \subseteq L_{0}$ if X is fiducial on K.
- If $\llbracket V \rrbracket \Rightarrow u$ in $G_{K, X}$, then $L_{0} / V \subseteq L_{0} / u$
- Suppose $\llbracket V \rrbracket \Rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket \Rightarrow u_{1} u_{2}$ in $G_{K, x}$. By i.h., $L_{0} / V_{i} \subseteq L_{0} / u_{i}$.
- Type I: $\llbracket V \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$

$$
\text { if } L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X \text {, i.e., } L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right)
$$

- For $w \in L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right)$,
$w \odot V_{1} V_{2} \subseteq L_{0} \rightarrow w \odot u_{1} V_{2} \subseteq L_{0} \rightarrow w \odot u_{1} u_{2} \subseteq L_{0}$, i.e., $w \in L_{0} / u_{1} u_{2}$.

Soundness

- $G_{K, X}$: conjecture
- Proposition: $L\left(G_{K, X}\right) \subseteq L_{0}$ if X is fiducial on K.
- If $\llbracket V \rrbracket \Rightarrow u$ in $G_{K, X}$, then $L_{0} / V \subseteq L_{0} / u$
- Suppose $\llbracket V \rrbracket \Rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket \Rightarrow u_{1} u_{2}$ in $G_{K, x}$. By i.h., $L_{0} / V_{i} \subseteq L_{0} / u_{i}$.
- Type I: $\llbracket V \rrbracket \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$

$$
\text { if } L_{0} / V \cap X \subseteq L_{0} /\left(V_{1} V_{2}\right) \cap X \text {, i.e., } L_{0} / V \subseteq L_{0} /\left(V_{1} V_{2}\right)
$$

- For $w \in L_{0} I V \subseteq L_{0} /\left(V_{1} V_{2}\right)$,

$$
w \odot V_{1} V_{2} \subseteq L_{0} \rightarrow w \odot u_{1} V_{2} \subseteq L_{0} \rightarrow w \odot u_{1} u_{2} \subseteq L_{0}
$$ i.e., $w \in L_{0} / u_{1} u_{2}$.

- For a start symbol $\llbracket \ \rrbracket,(\varepsilon, \varepsilon) \in L_{0} / V$.

Convergence

- Conjecture is not updated infinitely many times
- K will contain a p-kernel for each nonterminal of G_{0}
- $\Rightarrow K$ will be converged
- X will be fiducial on K
- Infinite update of X does not update our conjecture

Theorem

- The algorithm identifies every CFL in CNF with the p-FKP in the limit from positive data \& membership queries
- Polynomial-time update (Polynomial number of MQs)
- Polynomially many examples are enough for convergence w.r.t. the size of the grammar to be learnt

Distributional Learning of

Multiple Context-Free Grammars

Multiple CFGs

- $B \rightarrow a C D \quad$ (context-free rule) a :terminal symbol

$$
\left.\left.\left.\right|_{a u v} ^{B} \quad\right|_{u} ^{C} \&\right|_{v} ^{D} \quad \begin{gathered}
B \rightarrow g(C, D) \\
g(x, y)=a x y
\end{gathered}
$$

- $B \rightarrow f(C, D) \quad$ (multiple of rule)

$f\left(\left\langle x_{1}, x_{2}, x_{3}\right\rangle,\langle y\rangle\right)=\left\langle x_{1}\right.$ aye $\left.x_{2}, x_{3}\right\rangle$
$B\left\langle x_{1} a y x_{2}, x_{3}\right\rangle:-C\left\langle x_{1}, x_{2}, x_{3}\right\rangle, D\langle y\rangle$
- CFG learning $w=u u_{1} v u_{2} \in D$

- $\operatorname{Sub}(D)=\left\{v \mid u_{1} v u_{2} \in D\right.$ for some $\left.u_{1}, u_{2}\right\}$
- $\operatorname{Con}(D)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} v u_{2} \in D\right.$ for some $\left.v\right\}$
- CFG learning $w=u_{1} v u_{2} \in D$

- $\operatorname{Sub}(D)=\left\{v \mid u_{1} v u_{2} \in D\right.$ for some $\left.u_{1}, u_{2}\right\}$
- Con $(D)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} v u_{2} \in D\right.$ for some $\left.v\right\}$
- MCFG learning $w=u_{1} v_{1} u_{2} v_{2} u_{3} \in D$

- Sub $_{1}(D)=\left\{v \mid u_{1} v u_{2} \in D\right.$ for some $\left.u_{1}, u_{2}\right\}$ $C_{1}(D)=\left\{\left(u_{1}, u_{2}\right) \mid u_{1} v u_{2} \in D\right.$ for some $\left.v\right\}$
- $\operatorname{Sub}_{2}(D)=\left\{\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} u_{2} v_{2} u_{3} \in D\right.$ for some $\left.u_{1}, u_{2}, u_{3}\right\}$ $C o n_{2}(D)=\left\{\left(u_{1}, u_{2}, u_{3}\right) \mid u_{1} v_{1} u_{2} v_{2} u_{3} \in D\right.$ for some $\left.v_{1}, v_{2}\right\}$,
- and so on

Non-Erasing \& Non-Permuting

- $f\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\left\langle t_{1}, \ldots, t_{\operatorname{dim}(A)}\right\rangle$
- Non-Erasing:

Each variable $z_{i, j}$ occurs just once in $t_{1}, \ldots, t_{\operatorname{dim}(A)}$

- Non-Permuting:

Variables $z_{i, 1}, \ldots, z_{i, \operatorname{dim}\left(B_{i}\right)}$ occur in this order in $t_{1}, \ldots, t_{\operatorname{dim}(A)}$

Notations

Notations

- m-MCFG(n):
- $\operatorname{dim}(A) \leqq m$ for all $A(A$ generates $\operatorname{dim}(A)$-tuples $)$
- each rule has at most n nonterminals on the rhs

Notations

- m-MCFG(n):
- $\operatorname{dim}(A) \leqq m$ for all A (A generates $\operatorname{dim}(A)$-tuples)
- each rule has at most n nonterminals on the rhs
- $w_{0} v_{1} w_{1} . . . v_{m} w_{m}=\left\langle w_{0} _w_{1} \ldots \ldots w_{m}\right\rangle \odot\left\langle v_{1}, \ldots, v_{m}\right\rangle=\boldsymbol{w} \odot \boldsymbol{v}$

Notations

- m-MCFG(n):
- $\operatorname{dim}(A) \leqq m$ for all A (A generates $\operatorname{dim}(A)$-tuples)
- each rule has at most n nonterminals on the rhs
- $w_{0} v_{1} w_{1} \ldots v_{m} w_{m}=\left\langle w_{0} _w_{1} \ldots \ldots w_{m}\right\rangle \odot\left\langle v_{1}, \ldots, v_{m}\right\rangle=\boldsymbol{w} \odot \boldsymbol{v}$
- Multi-context: tuple of strings $\mathbf{w}=\left\langle w_{0} _w_{1} \ldots . . w_{m}\right\rangle$

Notations

- $m-\operatorname{MCFG}(n)$:
- $\operatorname{dim}(A) \leqq m$ for all A (A generates $\operatorname{dim}(A)$-tuples)
- each rule has at most n nonterminals on the rhs
- $w_{0} v_{1} w_{1} \ldots v_{m} w_{m}=\left\langle w_{0} _w_{1} \ldots \ldots w_{m}\right\rangle \odot\left\langle v_{1}, \ldots, v_{m}\right\rangle=\boldsymbol{w} \odot \boldsymbol{v}$
- Multi-context: tuple of strings $\boldsymbol{w}=\left\langle w_{0} _w_{1} \ldots . . w_{m}\right\rangle$
- Multi-word: tuple of strings $\mathbf{v}=\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$

Notations

- $m-\operatorname{MCFG}(n)$:
- $\operatorname{dim}(A) \leqq m$ for all $A(A$ generates $\operatorname{dim}(A)$-tuples)
- each rule has at most n nonterminals on the rhs
- $w_{0} v_{1} w_{1} \ldots v_{m} w_{m}=\left\langle w_{0} _w_{1} \ldots w_{m}\right\rangle \odot\left\langle v_{1}, \ldots, v_{m}\right\rangle=\boldsymbol{w} \odot \boldsymbol{v}$
- Multi-context: tuple of strings $\mathbf{w}=\left\langle w_{0} _w_{1} \ldots \ldots w_{m}\right\rangle$
- Multi-word: tuple of strings $\mathbf{v}=\left\langle v_{1}, v_{2}, \ldots, v_{m}\right\rangle$
- $L_{0} / \mathbf{v}=\left\{\boldsymbol{w} \mid \boldsymbol{w} \odot \boldsymbol{v} \in L_{0}\right\}$
e.g. $a^{*} b^{*} c^{*} /\langle a b, c c\rangle=\left\langle a^{*} b^{*} c^{*} c^{*}\right\rangle$

Easy Lemma

- If $L / v_{i} \subseteq L / u_{i}$ for $i=1, \ldots, k$, then
$L / f\left(v_{1}, \ldots, v_{k}\right) \subseteq L / f\left(u_{1}, \ldots, u_{k}\right)$ for any non-erasing non-permuting f

Easy Lemma

- If $L / v_{i} \subseteq L / u_{i}$ for $i=1, \ldots, k$, then
$L / f\left(v_{1}, \ldots, v_{k}\right) \subseteq L / f\left(u_{1}, \ldots, u_{k}\right)$ for any non-erasing non-permuting f
\because Let $\boldsymbol{w} \in f\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$.
$\mathbf{w} \odot f\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right) \in L \Rightarrow \boldsymbol{w} \odot f\left(\mathbf{u}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right) \in L$
$\Rightarrow \boldsymbol{w} \odot f\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \mathbf{v}_{3}, \ldots, \boldsymbol{v}_{k}\right) \in L \Rightarrow \ldots \Rightarrow \boldsymbol{w} \odot f\left(\boldsymbol{u}_{1}, \ldots, \mathbf{u}_{k}\right) \in L$.

Easy Lemma

- If $L / v_{i} \subseteq L / u_{i}$ for $i=1, \ldots, k$, then
$L / f\left(v_{1}, \ldots, v_{k}\right) \subseteq L / f\left(u_{1}, \ldots, u_{k}\right)$ for any non-erasing non-permuting f
\because Let $\boldsymbol{w} \in f\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right)$.
$\boldsymbol{w} \odot f\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right) \in L \Rightarrow \boldsymbol{w} \odot f\left(\mathbf{u}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right) \in L$
$\Rightarrow \boldsymbol{w} \odot f\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \mathbf{v}_{3}, \ldots, \boldsymbol{v}_{k}\right) \in L \Rightarrow \ldots \Rightarrow \boldsymbol{w} \odot f\left(\boldsymbol{u}_{1}, \ldots, \mathbf{u}_{k}\right) \in L$.
- If $L / v_{i}=L / u_{i}$ for $i=1, \ldots, k$, then
$L / f\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)=L / f\left(\mathbf{u}_{\mid}, \ldots, \mathbf{u}_{k}\right)$ for any non-erasing non-permuting f

m-dimensionally substitutable

- L is $m D$-substitutable iff $L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$ for any $\boldsymbol{v}_{1}, \mathbf{v}_{2}$ with $\left|\boldsymbol{v}_{\mathbf{1}}\right|=\left|\mathbf{v}_{2}\right| \leqq m$

m-dimensionally substitutable

- L is $m D$-substitutable iff $L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$ for any $\mathbf{v}_{1}, \mathbf{v}_{2}$ with $\left|\mathbf{v}_{1}\right|=\left|\mathbf{v}_{2}\right| \leqq m$
- Substitutability of a CFL = 1D-substitutability

m-dimensionally substitutable

- L is $m D$-substitutable iff $L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$ for any $\boldsymbol{V}_{1}, \mathbf{v}_{2}$ with $\left|\boldsymbol{v}_{1}\right|=\left|\mathbf{v}_{2}\right| \leqq m$
- Substitutability of a CFL = 1D-substitutability
- ex. $L=\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable. ($a b c, e$) and ($a a b c c, e e$) share multi-context (ε _d_ ε).
$\left(\varepsilon _d _\varepsilon\right) \odot(a b c, e)=a b c d e$
$\left(\varepsilon _d _\varepsilon\right) \odot(a a b c c, e e)=a a b c c d e e$

m-dimensionally substitutable

- L is $m D$-substitutable iff $L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$ for any $\boldsymbol{V}_{1}, \mathbf{v}_{2}$ with $\left|\boldsymbol{v}_{1}\right|=\left|\mathbf{v}_{2}\right| \leqq m$
- Substitutability of a CFL = 1D-substitutability
- ex. $L=\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable. ($a b c, e$) and ($a a b c c$, ee) share multi-context (ε _d_ ε).
$\left(\varepsilon _d _\varepsilon\right) \odot(a b c, e)=a b c d e$
$\left(\varepsilon _d _\varepsilon\right) \odot(a a b c c, e e)=a a b c c d e e$
- Learning Target: mD-substitutable m-MCFL(n)

m-dimensionally substitutable

- L is $m D$-substitutable iff $L / v_{1} \cap L / v_{2} \neq \varnothing$ implies $L / v_{1}=L / v_{2}$ for any $\mathbf{V}_{1}, \mathbf{v}_{2}$ with $\left|\mathbf{V}_{\mathbf{1}}\right|=\left|\mathbf{v}_{2}\right| \leqq m$
- Substitutability of a CFL = 1D-substitutability
- ex. $L=\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable. ($a b c, e$) and ($a a b c c, e e$) share multi-context (ε _d_ ε).
$\left(\varepsilon _d _\varepsilon\right) \odot(a b c, e)=a b c d e$
$\left(\varepsilon _d _\varepsilon\right) \odot(a a b c c, e e)=a a b c c d e e$
- Learning Target: mD-substitutable m-MCFL(n)
- Identification in the limit from positive data

Learning mD-substitutable MCFLs

let G := vacuous grammar;
For $n=1,2,3, \ldots$
let $D:=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$;
If $D \nsubseteq L(G)$
then update G by D;
End if
output G
End for

Learner＇s Conjecture

－$N=\operatorname{Sub}_{1}(\mathrm{D})$

$$
\llbracket \vee \rrbracket \Rightarrow u \text { for } L / v=L / u,
$$

－CFG
Learning－Initial Symbols：$\{\llbracket v \rrbracket \in N \mid v \in D\}$

- Rules •【 $v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket, \llbracket a \rrbracket \rightarrow a$
- 【v】 $\rightarrow \llbracket u \rrbracket$ if $\exists w$ s．t．$w \odot v, w \odot u \in D$

Learner's Conjecture

- $N=\operatorname{Sub}_{1}(D)$

$$
\llbracket v \rrbracket \Rightarrow u \text { for } L / v=L / u
$$

- CFG

Learning

- Initial Symbols: $\{\llbracket v \rrbracket \in N \mid v \in D\}$
- Rules •【 $v_{1} v_{2} \rrbracket \rightarrow \llbracket v_{1} \rrbracket \llbracket v_{2} \rrbracket, \llbracket a \rrbracket \rightarrow a$
- $\llbracket \rrbracket \rightarrow \llbracket u \rrbracket$ if $\exists w$ s.t. $w \odot v, w \odot u \in D$
- $N=N_{1} \cup \ldots \cup N_{m}$, where $N_{k}=\operatorname{Sub}_{k}(D)$ for $k \leqq m$
- MCFG

$$
\llbracket v \rrbracket \Rightarrow u \text { for } L / v=L / u
$$

- Initial Symbols: $\left\{\llbracket v \rrbracket \in N_{1} \mid v \in D\right\}$
- $\llbracket v_{0} \rrbracket \rightarrow f\left(\llbracket v_{l} \rrbracket, \ldots, \llbracket v_{k} \rrbracket\right)$ for $v_{0}=f\left(v_{l}, \ldots, v_{k}\right)$ with $k \leqq n$
$\bullet \llbracket v \rrbracket \rightarrow \llbracket u \rrbracket \quad$ if $\exists \mathbf{w}$ s.t. $\mathbf{w} \odot \mathbf{v}, \mathbf{w} \odot \mathbf{u} \in D$

Soundness

- G_{D} : conjecture

Soundness

- G_{D} : conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$

Soundness

- GD: conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- If $\llbracket v \rrbracket \Rightarrow \boldsymbol{u}$ in G_{D}, then $L_{0} / v=L_{0} / \mathbf{u}$

Soundness

- G_{D} : conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- If $\llbracket v \rrbracket \Rightarrow \boldsymbol{u}$ in G_{D}, then $L_{0} / v=L_{0} / \mathbf{u}$
- $\llbracket v_{0} \rrbracket \rightarrow f\left(\llbracket v_{1} \rrbracket, \ldots, \llbracket v_{k} \rrbracket\right)$ for $f\left(v_{1}, \ldots, v_{k}\right)=v_{0}$

Soundness

- G_{D} : conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- If $\llbracket v \rrbracket \Rightarrow \boldsymbol{u}$ in G_{D}, then $L_{0} / v=L_{0} / \mathbf{u}$
- $\llbracket v_{0} \rrbracket \rightarrow f\left(\llbracket v_{1} \rrbracket, \ldots, \llbracket v_{k} \rrbracket\right)$ for $f\left(v_{1}, \ldots, v_{k}\right)=v_{0}$
- 【v】 $\boldsymbol{v} \llbracket u \rrbracket$ if $\exists \mathbf{w}$ s.t. $\mathbf{w} \odot \mathbf{v}, \mathbf{w} \odot \mathbf{u} \in D$

Soundness

- G_{D} : conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- If $\llbracket v \rrbracket \Rightarrow \boldsymbol{u}$ in G_{D}, then $L_{0} / v=L_{0} / u$
- $\llbracket v_{0} \rrbracket \rightarrow f\left(\llbracket v_{1} \rrbracket, \ldots, \llbracket v_{k} \rrbracket\right)$ for $f\left(v_{1}, \ldots, v_{k}\right)=v_{0}$
- 【v】 $\boldsymbol{v} \llbracket u \rrbracket$ if $\exists \mathbf{w}$ s.t. $\mathbf{w} \odot \mathbf{v}, \mathbf{w} \odot \mathbf{u} \in D$
$L / v_{i}=L / u_{i}$ for $i=1, \ldots, k$
$\Rightarrow L / f\left(v_{l}, \ldots, v_{k}\right)=L / f\left(u_{\mid}, \ldots, u_{k}\right)$ for any non-erasing non-permuting f

Soundness

- G_{D} : conjecture
- Proposition: $L\left(G_{D}\right) \subseteq L_{0}$
- If $\llbracket v \rrbracket \Rightarrow \boldsymbol{u}$ in G_{D}, then $L_{0} / v=L_{0} / \mathbf{u}$
- $\llbracket v_{0} \rrbracket \rightarrow f\left(\llbracket v_{1} \rrbracket, \ldots, \llbracket v_{k} \rrbracket\right)$ for $f\left(v_{1}, \ldots, v_{k}\right)=v_{0}$
- 【v】 $\boldsymbol{v} \llbracket u \rrbracket$ if $\boldsymbol{\exists} \mathbf{w}$ s.t. $\mathbf{w} \odot \mathbf{v}, \mathbf{w} \odot \mathbf{u} \in D$

$$
\begin{aligned}
& L / v_{i}=L / u_{i} \text { for } i=1, \ldots, k \\
& \Rightarrow L / f\left(v_{1}, \ldots, v_{k}\right)=L / f\left(u_{1}, \ldots, u_{k}\right) \text { for any non-erasing non-permuting } f
\end{aligned}
$$

- For $\llbracket v \rrbracket \in I$ and $u \in L\left(G_{D}\right)$, v and u are congruent in L_{0}

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$
- W_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$
- \mathbf{W}_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential
- If $\left\{\boldsymbol{w}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right) \mid A \rightarrow f(B, C, E)\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$
- \mathbf{W}_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential
- If $\left\{\boldsymbol{w}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right) \mid A \rightarrow f(B, C, E)\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- $A \rightarrow f(B, C, E)$ in G_{0}

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$
- W_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential
- If $\left\{\boldsymbol{w}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right) \mid A \rightarrow f(B, C, E)\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- $A \rightarrow f(B, C, E)$ in G_{0}
- $\mathbf{W}_{A} \odot f\left(\boldsymbol{V}_{B}, \boldsymbol{V}_{C}, \mathbf{V}_{E}\right), \mathbf{W}_{\mathrm{A}} \odot \boldsymbol{V}_{\mathrm{A}} \in \mathrm{D}$

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- \boldsymbol{V}_{A} : shortest in $L\left(G_{0}, A\right)$
- W_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential
- If $\left\{\boldsymbol{w}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right) \mid A \rightarrow f(B, C, E)\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- $A \rightarrow f(B, C, E)$ in G_{0}
- $\boldsymbol{W}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{V}_{C}, \mathbf{V}_{E}\right), \boldsymbol{W}_{A} \odot \boldsymbol{v}_{A} \in D$
- $\llbracket v_{A} \rrbracket \rightarrow \llbracket f\left(\mathbf{v}_{B}, \mathbf{v}_{C}, \boldsymbol{v}_{E}\right) \rrbracket, \llbracket f\left(\mathbf{v}_{B}, \mathbf{v}_{C}, \mathbf{v}_{E}\right) \rrbracket \rightarrow f\left(\llbracket \mathbf{v}_{B} \rrbracket, \llbracket \mathbf{v}_{C} \rrbracket, \llbracket \mathbf{v}_{E} \rrbracket\right)$ in G_{D}

Completeness

- G_{D} : conjecture, G_{0} : target grammar s.t. $L_{0}=L\left(G_{0}\right)$
- A: nonterminal of G_{0}
- V_{A} : shortest in $L\left(G_{0}, A\right)$
- \boldsymbol{W}_{A} : shortest context for A, i.e., $W_{A} \odot A$ is sentential
- If $\left\{\boldsymbol{w}_{A} \odot f\left(\boldsymbol{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right) \mid A \rightarrow f(B, C, E)\right.$ in $\left.G_{0}\right\} \subseteq D$, then $L_{0} \subseteq L\left(G_{D}\right)$.
- $A \rightarrow f(B, C, E)$ in G_{0}
- $\boldsymbol{w}_{A} \odot f\left(\mathbf{v}_{B}, \boldsymbol{v}_{C}, \boldsymbol{v}_{E}\right), \mathbf{w}_{A} \odot \mathbf{v}_{A} \in D$
- 【$v_{A} \rrbracket \rightarrow \llbracket f\left(v_{B}, v_{c}, v_{E}\right) \rrbracket, \llbracket f\left(v_{B}, v_{C}, v_{E}\right) \rrbracket \rightarrow f\left(\llbracket v_{B} \rrbracket, \llbracket v_{C} \rrbracket, \llbracket v_{E} \rrbracket\right)$ in G_{D}- 【vs is an initial symbol for $v_{s} \in D$
- $(m+1)$ D-substitutability is stronger than m D-substitutability
- $(m+\mathrm{I})$ D-substitutability is stronger than m-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $(m+\mathrm{I})$ D-substitutability is stronger than m-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $\left\{a^{n} c^{n} e^{n} \mid n \geqq 0\right\}$ is not 2D-substitutable
- $(m+\mathrm{I}) \mathrm{D}$-substitutability is stronger than $m \mathrm{D}$-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $\left\{a^{n} c^{n} e^{n} \mid n \geqq 0\right\}$ is not 2D-substitutable
- $\left\{a^{n} c^{n} \mid n \geqq 0\right\}$ is not (1D-)substitutable
- $(m+l)$ D-substitutability is stronger than $m D$-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $\left\{a^{n} c^{n} e^{n} \mid n \geqq 0\right\}$ is not 2D-substitutable
- $\left\{a^{n} c^{n} \mid n \geqq 0\right\}$ is not (1D-)substitutable
- $L=\{$ aaabaaa $\}$ is not 2D-substitutable
- $(m+l)$ D-substitutability is stronger than $m D$-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $\left\{a^{n} c^{n} e^{n} \mid n \geqq 0\right\}$ is not 2D-substitutable
- $\left\{a^{n} c^{n} \mid n \geqq 0\right\}$ is not (1D-)substitutable
- $L=\{$ aaabaaa $\}$ is not 2D-substitutable
- $\left(a _a _a\right) \in L /(a a b, a) \cap L /(a, b a a)$
- $(m+l)$ D-substitutability is stronger than $m D$-substitutability
- $\left\{a^{n} b c^{n} d e^{n} \mid n \geqq 0\right\}$ is 2D-substitutable
- $\left\{a^{n} c^{n} e^{n} \mid n \geqq 0\right\}$ is not 2D-substitutable
- $\left\{a^{n} c^{n} \mid n \geqq 0\right\}$ is not (1D-)substitutable
- $L=\{$ aaabaaa $\}$ is not 2D-substitutable
- $\left(a _a _a\right) \in L /(a a b, a) \cap L /(a, b a a)$
- (a_aa_ع) $\in L /(a a b, a)-L /(a, b a a)$

p-Finite Kernel Property

- A set of multiwords V_{A} is a p-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / V_{A}=L(G) / L(A)$
(i.e., $\boldsymbol{w} \odot \boldsymbol{V}_{A} \in L(G) \Rightarrow \boldsymbol{w} \odot L(A) \subseteq L(G)$ for any multi-context \mathbf{w})
- MCFG G has the p-Finite Kernel Property iff every nonterminal admits a p-kernel

p-Finite Kernel Property

- A set of multiwords V_{A} is a $p=$-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / V_{A}=L(G) / L(A)$
(i.e., $\boldsymbol{w} \odot \boldsymbol{V}_{A} \in L(G) \Rightarrow \boldsymbol{w} \odot L(A) \subseteq L(G)$ for any multi-context \mathbf{w})
- MCFG G has the p-Finite Kernel Property iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the p-FKP

p-Finite Kernel Property

- A set of multiwords V_{A} is a $p=$-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / V_{A}=L(G) / L(A)$
(i.e., $\boldsymbol{w} \odot \boldsymbol{V}_{A} \in L(G) \Rightarrow \boldsymbol{w} \odot L(A) \subseteq L(G)$ for any multi-context \mathbf{w})
- MCFG G has the p-Finite Kernel Property iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the p-FKP
- m-MCFL(n) with the p-FKP covers CFLs with the p-FKP

p-Finite Kernel Property

- A set of multiwords V_{A} is a $p=$-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / V_{A}=L(G) / L(A)$
(i.e., $\boldsymbol{w} \odot \boldsymbol{V}_{A} \in L(G) \Rightarrow \boldsymbol{w} \odot L(A) \subseteq L(G)$ for any multi-context \mathbf{w})
- MCFG G has the p-Finite Kernel Property iff every nonterminal admits a p-kernel
- L has the p-FKP if it is generated by a grammar with the p-FKP
- m-MCFL(n) with the p-FKP covers CFLs with the p-FKP
- Identification in the limit from positive data and membership queries

Learner's Conjecture

- $K_{i} \subseteq \operatorname{Sub}_{i}(D)$ for $i=I, \ldots, n$ for D positive data
- $X_{i}=\operatorname{Con}_{i}(D)=\left\{\boldsymbol{w} \mid \boldsymbol{w} \odot \boldsymbol{v} \in D\right.$ for some $\left.\boldsymbol{v} \in K_{i}\right\}$
- $G_{k, x}$: conjecture
- $N_{i}=\left\{\llbracket V \rrbracket\left|V \subseteq K_{i},|V| \leqq p\right\}\right.$
$\llbracket V \rrbracket \Rightarrow \mathbf{u}$ for $L_{0} / \mathbf{V} \subseteq L_{0} / \mathbf{u}$
- Initial Symbols: $\left\{\llbracket \bigvee \rrbracket \in N_{1} \mid V \subseteq L_{0}\right\}$
- Rules
- $\llbracket \mathbb{V} \rrbracket \rightarrow f\left(\left[V_{1} \rrbracket, \ldots, \llbracket V_{k}\right]\right)$ if $L_{0} / \mathbf{V} \cap X \subseteq \operatorname{Lol}_{0} f\left(\mathbf{V}_{1}, \ldots, \boldsymbol{V}_{\mathrm{k}}\right) \cap X$ and every substring in \boldsymbol{t}_{i} is from an element of K_{1}

Learner's Conjecture

- CFG
- $K \subseteq\left\{V \mid V \subseteq \operatorname{Sub}_{1}(D)\right.$ and $\left.|V| \leqq p\right\}$,

$$
X=\operatorname{Con}_{1}(D),
$$

$$
N=\{\llbracket V \rrbracket \mid V \in K\}
$$

Learning - Initial Symbols: $\{\llbracket \bigvee \rrbracket \in N \mid V \subseteq D\}$

- Rules $\llbracket V \rrbracket \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L / V \cap X \subseteq L / V_{1} V_{2} \cap X$

$$
\llbracket V \rrbracket \rightarrow a
$$

$$
\text { if } L / V \cap X \subseteq L / a \cap X
$$

Learner's Conjecture

- CFG

Learning

- $K \subseteq\left\{V \mid V \subseteq \operatorname{Sub}_{1}(D)\right.$ and $\left.|V| \leqq p\right\}$, $X=$ Con $_{1}(D)$,
$N=\{\llbracket V \rrbracket \mid V \in K\}$
- Initial Symbols: $\{\llbracket \vee \rrbracket \in N \mid V \subseteq D\}$
- Rules $\llbracket V \rightarrow \llbracket V_{1} \rrbracket \llbracket V_{2} \rrbracket$ if $L / V \cap X \subseteq L / V_{1} V_{2} \cap X$ $\llbracket V \rrbracket \rightarrow a \quad$ if $L / V \cap X \subseteq L / a \cap X$
- $N_{k}=\left\{\llbracket V \rrbracket \mid V \in K_{k}\right\}$ for $k \leqq m$, where
$K_{k}=\left\{\boldsymbol{V} \mid \mathbf{V} \subseteq \operatorname{Sub}_{k}(D)\right.$ and $\left.|\mathbf{V}| \leqq p\right\}$ for $k \leqq m$, $X=\operatorname{Con}(D)$,
- MCFG

Learning

- Initial Symbols: $\left\{\llbracket \bigvee \rrbracket \in N_{1} \mid V \subseteq D\right\}$
- Rules: $\llbracket V_{0} \rrbracket \rightarrow f\left(\llbracket V_{1} \rrbracket, \ldots, \llbracket V_{k} \rrbracket\right)$
if $L / V_{0} \cap X \subseteq L / f\left(\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\mathrm{k}}\right) \cap X$ with $k \leqq n$, $f\left(\boldsymbol{V}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathrm{k}}\right) \in K$ for some $\boldsymbol{V}_{1}, \ldots, \mathbf{v}_{\mathrm{k}} \in K$

Learning m-MCFG (n) with p-FKP

Let $D:=K:=X:=\varnothing ; \quad G:=$ vacuous grammar;
For $i=1,2,3, \ldots$
let $D:=\left\{w_{1}, w_{2}, \ldots, w_{i}\right\} ;$
If $D \nsubseteq L(G)$
then let $K_{i}:=\operatorname{Sub}_{i}(D)$ for $i=1, \ldots, m$;
End if
let $X_{i}:=\operatorname{Con}_{i}(\mathrm{D})$ for $i=1, \ldots, m$;
update G with $K=\bigcup_{i} K_{i}$ and $X=\bigcup_{i} X_{i}$
End for

Theorem

- m-MCFL(n) with the p-FKP is identifiable in the limit from positive data \& membership queries
- Polynomial-time update (when m, n, p are fixed)
- Polynomially many examples are enough for convergence w.r.t. the size of the grammar to be learnt

Other Related Formalisms

Trees and Stubs

Tree (0-stub):

m-Stub (= m tree context): tree with m "open leaves"

$\operatorname{rank}(a)=\operatorname{rank}(b)=\operatorname{rank}(c)=0, \operatorname{rank}(g)=\operatorname{rank}(h)=I, \operatorname{rank}(f)=3$

r-Simple Context-Free Tree Grammars

- $G=(N, \Sigma, P, I)$
- N, Σ : ranked nonterminal/terminal symbols
$\operatorname{rank}(A)=2$
- Rank is at most r
- $P \subseteq \bigcup_{k} N_{k} \times(k$-Stubs) : production rules
- $I \subseteq N_{0}$: initial symbols of rank 0

- If $A \rightarrow s[0,0,0]$ is in P, then $t\left[A\left[t_{1}, t_{2}, t_{3}\right]\right] \Rightarrow t\left[s\left[t_{1}, t_{2}, t_{3}\right]\right]$
- $\mathrm{L}(G)=\{t \mid \mathrm{S} \Rightarrow t$ for some $\mathrm{S} \in I$ and t is a tree over $\Sigma\}$
- every 1-SCFTG can be identified with a CFG

Simple Context-Free Tree Grammars

a, f, g : terminal symbol
$\operatorname{rank}(B)=1$
$\operatorname{rank}(C)=2$
$\operatorname{rank}(D)=0$

Simple Context-Free Tree Grammars

a, f, g : terminal symbol
$\operatorname{rank}(B)=1$
$\operatorname{rank}(C)=2$
$\operatorname{rank}(D)=0$

Simple Context-Free Tree Grammars

a, f, g : terminal symbol
$\operatorname{rank}(B)=1$
$\operatorname{rank}(C)=2$
$\operatorname{rank}(D)=0$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$
$\left.S \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h}$,

$$
S \Rightarrow
$$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$
$\left.s \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h}$,

$S \Rightarrow$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$
$\left.S \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h}$,

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$
$\left.S \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h}$,

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$

$$
\left.s \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h},
$$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$
$\left.s \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h}$,

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$

$$
\left.S \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h},
$$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$

$S \Rightarrow$

Example

- $N_{0}=\{S\}, N_{1}=\{A\}$
- $\Sigma_{0}=\{a, b, c, d, e\}, \Sigma_{1}=\{h\}, \Sigma_{3}=\{f, g\}$

$$
\left.S \rightarrow\right|_{C} ^{A},\left.A \rightarrow\right|_{0} ^{h},
$$

Substructure/Context Decomposition

Simple Context-Free Tree Grammars

- $u_{1} v u_{2} \in L(G)$
(u_{1}, u_{2}): context
v :substring

Substructure/Context Decomposition

Substructure/Context Decomposition

Substructure/Context Decomposition

- $u_{1} v u_{2} \in L(G)$
(u_{1}, u_{2}): context
v :substring

Simple Context-Free Tree Grammars

Substructure/Context Decomposition

Composition/Decomposition

- m-environment e ... tree with a special symbol (B) of rank m
- m-stub s ... tree with m open leaves \bigcirc
- e \odot s substitute s for (\square) in e

Composition/Decomposition

- m-environment e ... tree with a special symbol (B) of rank m
- m-stub s ... tree with m open leaves \bigcirc
- e \odot s substitute s for (\square) in e
- $L_{0} / S=\left\{\right.$ ene $\left.\odot S \subseteq L_{0}\right\}$: the set of tree-contexts for s

\odot

Finite Kernel Property

- A set of stubs S_{A} is a p-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / S_{A}=L(G) / L(A)$
(i.e., $E \odot S_{A} \in L(G) \Rightarrow E \odot L(A) \subseteq L(G)$ for any environment E)

Finite Kernel Property

- A set of stubs S_{A} is a p-kernel of $L(G, A)$ (or of $A \in N$) iff iff $L(G) / S_{A}=L(G) / L(A)$
(i.e., $E \odot S_{A} \in L(G) \Rightarrow E \odot L(A) \subseteq L(G)$ for any environment E)
- r-SCFTG G has the p-Finite Kernel Property iff every nonterminal admits a p-kernel

Chomsky Normal Form

- Every rule has one of the forms:
- $A \rightarrow f\langle 0, \ldots, \circ\rangle$ for $f \in \Sigma_{k}$ with $k=\operatorname{rnk}(f)$

- $A \rightarrow B\langle ○, \ldots, \circ, C\langle\bigcirc, \ldots, \circ\rangle, \circ, \ldots, \circ\rangle$

Learning r-SCFTGs with p-FKP

- $K_{i} \subseteq \operatorname{Stub}_{i}(D)$ for $i=0, \ldots, r$ for D positive data
- $X_{i}=\operatorname{Env}_{i}(D)=\left\{\mathbf{w} \mid \mathbf{w} \odot \boldsymbol{v} \in D\right.$ for some $\left.\boldsymbol{v} \in K_{i}\right\}$
- $G_{K, X}$: conjecture
- $N_{i}=\left\{\llbracket S \rrbracket\left|S \subseteq K_{i},|S| \leqq p\right\}\right.$
$\llbracket S \rrbracket \Rightarrow s$ for $L_{0} / S \subseteq L_{0} / s$
- Initial Symbols: $\left\{\llbracket T \rrbracket \in N_{0} \mid T \subseteq L_{0}\right\}$
- Rules
- $\llbracket S_{0} \rrbracket(0, \ldots, 0) \rightarrow \llbracket S_{1} \rrbracket\left(0, \ldots, 0, \llbracket S_{2} \rrbracket(0, \ldots, 0), \mathrm{o}, \ldots, \mathrm{o}\right)$ if $L_{0} / S_{0}[\mathrm{o}, \ldots, \mathrm{o}] \cap X \subseteq L_{0} / S_{1}\left[\mathrm{o}, \ldots, \mathrm{o}, \mathrm{S}_{2}[\mathrm{o}, \ldots, \mathrm{o}], \mathrm{o}, \ldots, \mathrm{o}\right] \cap X$
- $\llbracket S_{0} \rrbracket(0, \ldots, 0) \rightarrow a(0, \ldots, o)$ if $L_{0} / S_{0} \cap X \subseteq L_{0} / a \cap X$

Context-Free Formalisms

- Context-Free Grammars
- Multiple Context-Free Grammars
- (Multiple) Simple Context-Free Tree Grammars
- Simple Macro Grammars
- Hyper-Edge Replacement Grammars
- Linear Context-Free Lambda Grammars
(2nd order ACG)
- etc.
- CF-derivation tree

- CF-derivation tree

- CF-derivation tree

- $\operatorname{Sub}_{i}(D)=\left\{s \mid c \bigodot_{i} s \in D\right.$ for some $\left.c\right\}$
- $\operatorname{Con}_{i}(D)=\left\{c \mid c \odot_{i} s \in D\right.$ for some $\left.s\right\}$
- CF-derivation tree

- $\operatorname{Sub}_{i}(D)=\left\{s \mid c \bigodot_{i} s \in D\right.$ for some $\left.c\right\}$
- $\operatorname{Con}_{i}(D)=\left\{c \mid c \bigodot_{i} s \in D\right.$ for some $\left.s\right\}$
- CF-derivation rule When $A \rightarrow \varphi(B, C)$ is used to derive Q, φ must be observable in Q
- CF-derivation tree

- $\operatorname{Sub}_{i}(D)=\left\{s \mid c \bigodot_{i} s \in D\right.$ for some $\left.c\right\}$
- $\operatorname{Con}_{i}(D)=\left\{c \mid c \odot_{i} s \in D\right.$ for some $\left.s\right\}$
- CF-derivation rule

When $A \rightarrow \varphi(B, C)$ is used to derive Q, φ must be observable in Q

- Construct all possible rules from those components
- All correct rules should be obtained
- All incorrect rules should be rejected

CFG with Montague Semantics

- $S\left(w_{1} w_{2}, Z_{1} Z_{2}\right):-N P\left(w_{1}, Z_{1}\right) \mathrm{VP}\left(w_{2}, Z_{2}\right)$,
$\mathrm{VP}\left(w_{1} w_{2}, \lambda x . Z_{2}\left(\lambda y . Z_{1} y x\right)\right):-\mathrm{V}\left(w_{1}, Z_{1}\right) \mathrm{NP}\left(w_{2}, Z_{2}\right)$,
$N P\left(w_{1} w_{2}, Z_{1} Z_{2}\right):-\operatorname{Det}\left(w_{1}, X_{1}\right) N\left(w_{2}, Z_{2}\right)$,
NP(John , $\lambda u . u$ John) :- ,
V(found , $\lambda y z$. find $y z$) :-,
$\operatorname{Det}(\mathrm{a}, \lambda u v . I n t e r s e c t u v):-$
N (unicorn , λy. unicorn y) :-

- (John found a unicorn, Intersect (λy. unicorn y) (λy.find y John))
- Semantics-driven learning

Copying : Non-linear $\boldsymbol{\lambda}$-CFG?

- Copying : Non-simple CFTG, Non-linear λ-CFG
- Syntax: Yoruba
- Semantics:
- $\operatorname{Det}(a, \lambda u v . I n t e r s e c t ~ u v)$:-
- $\lambda u v . I n t e r s e c t ~ u v=\lambda u v . \exists(\lambda y . \wedge(u y)(v y))$
- and, himself, etc.

Copying : Non-linear $\boldsymbol{\lambda}$-CFG ?

- Copying : Non-simple CFTG, Non-linear λ-CFG
- Syntax: Yoruba
- Semantics:
- Det(a , $\lambda u v . I n t e r s e c t ~ u v) ~:-~$
- $\lambda u v$. Intersect $u v=\lambda u v \cdot \exists(\lambda y . \wedge(u y)(v y))$
- and, himself, etc.
- Higher-order ACGs ?

