MIX is a $2-\mathrm{MCFL}$

Sylvain Salvati

INRIA Bordeaux Sud-Ouest, LaBRI, Université de Bordeaux
Workshop on Multiple Context-Free Grammars and Related Formalisms

Outline

The MIX and O_{2} languages

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

A Theorem on Jordan curves

Conclusion and conjectures

Outline

The MIX and O_{2} languages

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

A Theorem on Jordan curves

Conclusion and conjectures

The MIX language

$$
\text { MIX }=\left\{\left.w \in\{a ; b ; c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}
$$

The MIX language

MIX $=\left\{\left.w \in\{a ; b ; c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}$
The MIX language and computational linguists:

- Joshi 1985: [MIX] represents the extreme case of the degree of free word order permitted in a language. This extreme case is linguistically not relevant. [...] TAGs also cannot generate this language although for TAGs the proof is not in hand yet.

The MIX language

MIX $=\left\{\left.w \in\{a ; b ; c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}$
The MIX language and computational linguists:

- Joshi 1985: [MIX] represents the extreme case of the degree of free word order permitted in a language. This extreme case is linguistically not relevant. [...] TAGs also cannot generate this language although for TAGs the proof is not in hand yet.
- Joshi et al. 1990: Mildly Context Sensitive Grammars capture only certain kinds of dependencies, e.g, nested dependencies and certain limited kinds of crossing dependencies (e.g., in the subordinate clause constructions in Dutch or some variations of them but perhaps not in the so-called MIX (or Bach) language) [...] MCTAGS also belong to Mildly Context Sensitive Grammars. . .

The O_{2} language

$$
O_{2}=\left\{\left.w \in\{a ; \bar{a} ; b ; \bar{b}\}^{*}| | w\right|_{a}=|w|_{\bar{a}} \wedge|w|_{b}=|w|_{\bar{b}}\right\}
$$

The O_{2} language

$$
O_{2}=\left\{\left.w \in\{a ; \bar{a} ; b ; \bar{b}\}^{*}| | w\right|_{a}=|w|_{\bar{a}} \wedge|w|_{b}=|w|_{\bar{b}}\right\}
$$

The O_{2} language is of interest in computational group theory:

- the monoid homomorphism $z:\{a ; \bar{a} ; b ; \bar{b}\}^{*} \rightarrow \mathbb{Z}^{2}$ such that $z(a)=(1,0), z(\bar{a})=(-1,0), z(b)=(0,1), z(\bar{b})=(0,-1)$ has O_{2} as kernel.

The O_{2} language

$O_{2}=\left\{\left.w \in\{a ; \bar{a} ; b ; \bar{b}\}^{*}| | w\right|_{a}=|w|_{\bar{a}} \wedge|w|_{b}=|w|_{\bar{b}}\right\}$
The O_{2} language is of interest in computational group theory:

- the monoid homomorphism $z:\{a ; \bar{a} ; b ; \bar{b}\}^{*} \rightarrow \mathbb{Z}^{2}$ such that $z(a)=(1,0), z(\bar{a})=(-1,0), z(b)=(0,1), z(\bar{b})=(0,-1)$ has O_{2} as kernel.
- O_{2} is a group language that is not context free. An open question is whether it is an indexed language.

MIX and O_{2} are rationally equivalent

The following transductions are due to Kanazawa:

- There is a rational transduction from O_{2} to MIX: let $R=\{a|b| \bar{a} \bar{b}\}^{*}$, then $M I X=h\left(O_{2} \cap R\right)$ if $h(a)=a$, $h(b)=b, h(\bar{a})=c$ and $h(\bar{b})=\epsilon$.

MIX and O_{2} are rationally equivalent

The following transductions are due to Kanazawa:

- There is a rational transduction from O_{2} to MIX: let $R=\{a|b| \bar{a} \bar{b}\}^{*}$, then $M I X=h\left(O_{2} \cap R\right)$ if $h(a)=a$, $h(b)=b, h(\bar{a})=c$ and $h(\bar{b})=\epsilon$.
- There is a rational transduction from MIX to O_{2} : let $R=\{a b a b|c c| c b c b \mid a a\}^{*}$, then O_{2}, then $O_{2}=g^{-1}(M I X \cap R)$ with $g(a)=a b a b, g(\bar{a})=c c$, $g(b)=c b c b g(\bar{b})=a a$.

MIX and O_{2} are rationally equivalent

The following transductions are due to Kanazawa:

- There is a rational transduction from O_{2} to MIX: let $R=\{a|b| \bar{a} \bar{b}\}^{*}$, then $M I X=h\left(O_{2} \cap R\right)$ if $h(a)=a$, $h(b)=b, h(\bar{a})=c$ and $h(\bar{b})=\epsilon$.
- There is a rational transduction from MIX to O_{2} : let $R=\{a b a b|c c| c b c b \mid a a\}^{*}$, then O_{2}, then $O_{2}=g^{-1}(M I X \cap R)$ with $g(a)=a b a b, g(\bar{a})=c c$, $g(b)=c b c b g(\bar{b})=a a$.
NB: $w \in \operatorname{MIX} \cap R$ iff $|w|_{a b a b}+|w|_{a a}=|w|_{c b c b}+$ $|w|_{a b a b}=|w|_{c c}+|w|_{c b c b}$ iff $|w|_{a b a b}=|w|_{c c}$ and $|w|_{c b c b}=|w|_{a a}$.

MIX and O_{2} are rationally equivalent

The following transductions are due to Kanazawa:

- There is a rational transduction from O_{2} to MIX: let $R=\{a|b| \bar{a} \bar{b}\}^{*}$, then $M I X=h\left(O_{2} \cap R\right)$ if $h(a)=a$, $h(b)=b, h(\bar{a})=c$ and $h(\bar{b})=\epsilon$.
- There is a rational transduction from MIX to O_{2} : let $R=\{a b a b|c c| c b c b \mid a a\}^{*}$, then O_{2}, then $O_{2}=g^{-1}(M I X \cap R)$ with $g(a)=a b a b, g(\bar{a})=c c$, $g(b)=c b c b g(\bar{b})=a a$.
Thus MIX belongs to a rational cone iff O_{2} does.

Outline

The MIX and O_{2} languages

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

A Theorem on Jordan curves

Conclusion and conjectures

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,
- S is an element of N of arity 1 ,

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,
- S is an element of N of arity 1 ,
- R is the set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{n}\right):-B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{m}\left(x_{1}^{m}, \ldots, x_{k_{m}}^{m}\right)
$$

where the s_{i} are strings of $T \cup\left\{x_{j}^{i} \mid i \in[1, m], j \in\left[1, k_{i}\right]\right\}$ so that x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{n}$.

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,
- S is an element of N of arity 1 ,
- R is the set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{n}\right):-B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{m}\left(x_{1}^{m}, \ldots, x_{k_{m}}^{m}\right)
$$

where the s_{i} are strings of $T \cup\left\{x_{j}^{i} \mid i \in[1, m], j \in\left[1, k_{i}\right]\right\}$ so that x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{n}$. If $B_{1}\left(s_{1}^{1}, \ldots, s_{k_{1}}^{1}\right), \ldots$ and $B_{m}\left(s_{1}^{m}, \ldots, s_{k_{m}}^{m}\right)$ are derivable then $A\left(\sigma\left(s_{1}\right), \ldots, \sigma\left(s_{n}\right)\right)$ where $\sigma\left(x_{j}^{i}\right)=s_{j}^{i}$ is derivable.

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,
- S is an element of N of arity 1 ,
- R is the set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{n}\right):-B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{m}\left(x_{1}^{m}, \ldots, x_{k_{m}}^{m}\right)
$$

where the s_{i} are strings of $T \cup\left\{x_{j}^{i} \mid i \in[1, m], j \in\left[1, k_{i}\right]\right\}$ so that x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{n}$. If $B_{1}\left(s_{1}^{1}, \ldots, s_{k_{1}}^{1}\right), \ldots$ and $B_{m}\left(s_{1}^{m}, \ldots, s_{k_{m}}^{m}\right)$ are derivable then $A\left(\sigma\left(s_{1}\right), \ldots, \sigma\left(s_{n}\right)\right)$ where $\sigma\left(x_{j}^{i}\right)=s_{j}^{i}$ is derivable.
The language defined by G is $\{s \mid S(s)$ is derivable $\}$.

Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG, G is a tuple (N, T, S, R) where:

- N is a ranked alphabet of non-terminals,
- T is the alphabet of terminals,
- S is an element of N of arity 1 ,
- R is the set of rules of the form:

$$
A\left(s_{1}, \ldots, s_{n}\right):-B_{1}\left(x_{1}^{1}, \ldots, x_{k_{1}}^{1}\right), \ldots, B_{m}\left(x_{1}^{m}, \ldots, x_{k_{m}}^{m}\right)
$$

where the s_{i} are strings of $T \cup\left\{x_{j}^{i} \mid i \in[1, m], j \in\left[1, k_{i}\right]\right\}$ so that x_{j}^{i} has at most one occurrence in $s_{1} \ldots s_{n}$. If $B_{1}\left(s_{1}^{1}, \ldots, s_{k_{1}}^{1}\right), \ldots$ and $B_{m}\left(s_{1}^{m}, \ldots, s_{k_{m}}^{m}\right)$ are derivable then $A\left(\sigma\left(s_{1}\right), \ldots, \sigma\left(s_{n}\right)\right)$ where $\sigma\left(x_{j}^{i}\right)=s_{j}^{i}$ is derivable.
The language defined by G is $\{s \mid S(s)$ is derivable $\}$. If the maximal arity of N is lower than k, G is a k-MCFG.

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of
Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,
- string languages definable with Hyperedge Replacement Grammars,

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,
- string languages definable with Hyperedge Replacement Grammars,
- multi component Tree Adjoining Grammars,

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,
- string languages definable with Hyperedge Replacement Grammars,
- multi component Tree Adjoining Grammars,
- second order Abstract Categorial Grammars, or non-duplicating higher-order extended IO/OI grammars (third-order collapsible pushdown automata),

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,
- string languages definable with Hyperedge Replacement Grammars,
- multi component Tree Adjoining Grammars,
- second order Abstract Categorial Grammars, or non-duplicating higher-order extended IO/OI grammars (third-order collapsible pushdown automata),
- yield of the output languages of finite copying transductions,

Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free Languages (MCFLs). MCFLs form an Abstract Family of Language (thus they are closed under rational transduction), and are exactly captured by many kinds of formalisms:

- Linear Context Free Rewriting Systems,
- string languages definable with Hyperedge Replacement Grammars,
- multi component Tree Adjoining Grammars,
- second order Abstract Categorial Grammars, or non-duplicating higher-order extended IO/OI grammars (third-order collapsible pushdown automata),
- yield of the output languages of finite copying transductions,
- etc...

Outline

The MIX and O_{2} languages

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

A Theorem on Jordan curves

Conclusion and conjectures

A 2-MCFG for O_{2}

$S(x y):-\operatorname{Inv}(x, y)$
$\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1}, x_{1} x_{2} y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1}, y_{2} x_{1} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}(\epsilon, \epsilon):-$
$\operatorname{Inv}(\alpha, \bar{\alpha}):-$
$\operatorname{Inv}(\bar{\alpha}, \alpha):-$

where $\alpha \in\{a ; b\}$

A 2-MCFG for O_{2}

$S(x y):-\operatorname{Inv}(x, y)$
$\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1}, x_{1} x_{2} y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(y_{1}, y_{2} x_{1} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$
$\operatorname{Inv}(\epsilon, \epsilon):-$
$\operatorname{Inv}(\alpha, \bar{\alpha}):-$
$\operatorname{Inv}(\bar{\alpha}, \alpha):-$

where $\alpha \in\{a ; b\}$
Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

A graphical interpretation of O_{2}.

Graphical interpretation of the word $\bar{a} \bar{a} \bar{b} a a \bar{b} a a b b b b b \bar{a} \overline{b b} \bar{a} b b b b a a a a b b b b b b b b \bar{a} \overline{a a}:$

A graphical interpretation of O_{2}.

Graphical interpretation of the word
$\bar{a} \bar{a} \bar{b} a a \bar{b} a a b b b b b \bar{a} \overline{b b} \bar{a} b b b b a a a a b b b b b b b b \bar{a} \overline{a a}:$

The words in O_{2} are precisely the words that are represented as closed curves: $\bar{b} \bar{a} \bar{b} \bar{b} a b a b \bar{b} a b b a b b \bar{a} \bar{b} \bar{a} b b a a a b b b \bar{a} \overline{b b} \overline{a a a a} b b a b b b \bar{a} \bar{b} a$

Parsing with the grammar

Rule $\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule $\operatorname{Inv}\left(x_{1}, y_{1} x_{2} y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1}, y_{2} x_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

Parsing with the grammar

Rule: $\operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: w_{1} or w_{2} equal ϵ :

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 1: w_{1} or w_{2} equal ϵ :
w.l.o.g., $w_{1} \neq \epsilon$, then by induction hypothesis, for any v_{1} and v_{2} different from ϵ such that $w_{1}=v_{1} v_{2}, \operatorname{Inv}\left(v_{1}, v_{2}\right)$ is derivable then:

$$
\frac{\operatorname{In} v\left(v_{1}, v_{2}\right) \operatorname{In} v(\epsilon, \epsilon)}{\operatorname{In} v\left(v_{1} v_{2}=w_{1}, \epsilon\right)} \operatorname{Inv}\left(x_{1} x_{2} y_{1}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
$$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j,\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}$:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 2: $w_{1}=s_{1} w_{1}^{\prime} s_{2}$ and $w_{2}=s_{3} w_{2}^{\prime} s_{4}$ and for $i, j \in\{1 ; 2 ; 3 ; 4\}$, s.t. $i \neq j,\left\{s_{i} ; s_{j}\right\} \in\{\{a ; \bar{a}\} ;\{b ; \bar{b}\}\}$:
e.g., if $i=1, j=2, s_{1}=a$ and $s_{2}=\bar{a}$ then by induction hypothesis $\operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)$ is derivable and:

$$
\frac{\operatorname{Inv}(a, \bar{a}) \operatorname{Inv}\left(w_{1}^{\prime}, w_{2}\right)}{\operatorname{Inv}\left(a w_{1}^{\prime} \bar{a}, w_{2}\right)} \operatorname{Inv}\left(x_{1} y_{1} x_{2}, y_{2}\right):-\operatorname{Inv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)
$$

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing w_{1} and w_{2} have a non-trivial intersection point:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 3: the curves representing w_{1} and w_{2} have a non-trivial intersection point:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing w_{1} or w_{2} starts or ends with a loop:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 4: the curve representing w_{1} or w_{2} starts or ends with a loop:

The proof of the Theorem

Theorem: Given w_{1} and w_{2} such that $w_{1} w_{2} \in O_{2}, \operatorname{Inv}\left(w_{1}, w_{2}\right)$ is derivable.

The proof is done by induction on the lexicographically ordered pairs $\left(\left|w_{1} w_{2}\right|, \max \left(\left|w_{1}\right|,\left|w_{2}\right|\right)\right)$.
There are five cases:
Case 5: w_{1} and w_{2} do not start or end with compatible letters, the curve representing then do not intersect and do not start or end with a loop.

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,
- if we consider subwords w_{1}^{\prime} and w_{2}^{\prime} of w_{1} and w_{2} obtained by erasing factors of w_{1} and w_{2} that are in O_{2}, we have:

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,
- if we consider subwords w_{1}^{\prime} and w_{2}^{\prime} of w_{1} and w_{2} obtained by erasing factors of w_{1} and w_{2} that are in O_{2}, we have:
- w_{1}^{\prime} and w_{2}^{\prime} start or end with a or b,

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,
- if we consider subwords w_{1}^{\prime} and w_{2}^{\prime} of w_{1} and w_{2} obtained by erasing factors of w_{1} and w_{2} that are in O_{2}, we have:
- w_{1}^{\prime} and w_{2}^{\prime} start or end with a or b,
- the curve that represents $w_{1}^{\prime} w_{2}^{\prime}$ is a Jordan curve,

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,
- if we consider subwords w_{1}^{\prime} and w_{2}^{\prime} of w_{1} and w_{2} obtained by erasing factors of w_{1} and w_{2} that are in O_{2}, we have:
- w_{1}^{\prime} and w_{2}^{\prime} start or end with a or b,
- the curve that represents $w_{1}^{\prime} w_{2}^{\prime}$ is a Jordan curve,
- if $w_{1}^{\prime}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ such that $v_{1}^{\prime} v_{3}^{\prime}$ and $v_{2}^{\prime} w_{2}^{\prime}$ are in O_{2} then $w_{1}=v_{1} v_{2} v_{3}$ so that $v_{1} v_{3}$ and $v_{2} w_{2}$ are in O_{2}.
- if $w_{2}^{\prime}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ such that $v_{1}^{\prime} v_{3}^{\prime}$ and $w_{1}^{\prime} v_{2}^{\prime}$ are in O_{2} then $w_{2}=v_{1} v_{2} v_{3}$ so that $v_{1} v_{3}$ and $w_{1} v_{2}$ are in O_{2}.

Solving case 5: towards geometry

- w.l.o.g. we may assume that w_{1} and w_{2} start and end with a or b,
- if we consider subwords w_{1}^{\prime} and w_{2}^{\prime} of w_{1} and w_{2} obtained by erasing factors of w_{1} and w_{2} that are in O_{2}, we have:
- w_{1}^{\prime} and w_{2}^{\prime} start or end with a or b,
- the curve that represents $w_{1}^{\prime} w_{2}^{\prime}$ is a Jordan curve,
- if $w_{1}^{\prime}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ such that $v_{1}^{\prime} v_{3}^{\prime}$ and $v_{2}^{\prime} w_{2}^{\prime}$ are in O_{2} then $w_{1}=v_{1} v_{2} v_{3}$ so that $v_{1} v_{3}$ and $v_{2} w_{2}$ are in O_{2}.
- if $w_{2}^{\prime}=v_{1}^{\prime} v_{2}^{\prime} v_{3}^{\prime}$ such that $v_{1}^{\prime} v_{3}^{\prime}$ and $w_{1}^{\prime} v_{2}^{\prime}$ are in O_{2} then $w_{2}=v_{1} v_{2} v_{3}$ so that $v_{1} v_{3}$ and $w_{1} v_{2}$ are in O_{2}.
- we will prove the existence of such $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} for any such w_{1}^{\prime} and w_{2}^{\prime}.

Solving case 5: a geometrical invariant

Solving case 5: a geometrical invariant

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing $w_{1}^{\prime} w_{2}^{\prime}$:

Outline

The MIX and O_{2} languages

Multiple Context Free Grammars (MCFGs)

A grammar for O_{2}

A Theorem on Jordan curves

Conclusion and conjectures

On Jordan curves

Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

On Jordan curves

Figure 13.1 Two Jordan curves.
illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).
Theorem: There is $k \in\{-1 ; 1\}$ such that the winding number of Jordan curve around a point in its interior is k, its winding number around a point in its exterior is 0 .

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such that there are two points A^{\prime} and D^{\prime} inside J such that $\overrightarrow{A D}=\overrightarrow{A^{\prime} D^{\prime}}$, then there are two points B and C pairwise distinct from A and D such that A, B, C, and D appear in that order on one of the arcs going from A to D and $\overrightarrow{A D}=\overrightarrow{B C}$.

Applying this Theorem solves case 5.

Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$
let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow & \mathbb{C}-\{0\} \\ z & \rightarrow & e^{2 i \pi z}\end{array}\right.$.

φ transforms arcs performing translation of k into arc that have k as winding number around 0 .

Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0$,
$A_{1}=D^{\prime}=1, \ldots, A_{k}=k$
let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\ z & \rightarrow e^{2 i \pi z}\end{array}\right.$.

φ sums up the winding number of a Jordan curve around the A_{i} as the winding number around $\varphi\left(A_{0}\right)=\varphi(0)=1$.

Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0$,
$A_{1}=D^{\prime}=1, \ldots, A_{k}=k$
let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\ z & \rightarrow e^{2 i \pi z}\end{array}\right.$.

Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0$,
$A_{1}=D^{\prime}=1, \ldots, A_{k}=k$
let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\ z & \rightarrow e^{2 i \pi z}\end{array}\right.$.

Lemma: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a simple curve of $\mathbb{C}-\{0\}$ that belong to the homotopy class 1 (resp. -1).

Simple curves, translations, intersections and the complex exponential

Let's suppose that $D-A=1$ and that $A_{0}=A^{\prime}=0$,
$A_{1}=D^{\prime}=1, \ldots, A_{k}=k$
let $\varphi:\left\{\begin{array}{rll}\mathbb{C} & \rightarrow \mathbb{C}-\{0\} \\ z & \rightarrow e^{2 i \pi z}\end{array}\right.$.

Lemma: a simple path J from A to D (resp. D to A) does not contain B and C as required in the Theorem iff $\varphi(J)$ is a simple curve of $\mathbb{C}-\{1\}$ that belong to the homotopy class 0 or 1 (resp. or -1).

Proving the Theorem

Let $w n(J, z)$ be the winding number of a closed curve around z.

Proving the Theorem

Let $w n(J, z)$ be the winding number of a closed curve around z.
Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $w n(\varphi(J), 1)=w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)$ is in $\{-1 ; 0 ; 1\}$.

Proving the Theorem

Let $w n(J, z)$ be the winding number of a closed curve around z.
Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $w n(\varphi(J), 1)=w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)$ is in $\{-1 ; 0 ; 1\}$.
Lemma: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A such that 0 and 1 are in the interior of J, then either $w n(\varphi(J), 1)<-1$ or $w n(\varphi(J), 1)>1$.

Proving the Theorem

Let $w n(J, z)$ be the winding number of a closed curve around z.
Corollary: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A which do not contain points B and C as required in the Theorem then $w n(\varphi(J), 1)=w n\left(\varphi\left(J_{1}\right), 1\right)+w n\left(\varphi\left(J_{2}\right), 1\right)$ is in $\{-1 ; 0 ; 1\}$.
Lemma: if J is a simple closed curve of \mathbb{C} composed with two curves J_{1} and J_{2} respectively going from A to D and D to A such that 0 and 1 are in the interior of J, then either $w n(\varphi(J), 1)<-1$ or $w n(\varphi(J), 1)>1$.

The Theorem follows by contradiction.

Outline

> The MIX and O_{2} languages

> Multiple Context Free Grammars (MCFGs)

> A grammar for O_{2}

> A Theorem on Jordan curves

Conclusion and conjectures

Conclusion

- we have showed that O_{2} is a $2-M C F L$ exhibiting the first non-virtually free group language that is proved to belong to an interesting class of language,
- this implies that contrary to the usual conjecture we have showed that MIX is a $2-\mathrm{MCFLs}$.

Conjectures

Well-nestedness:

Well-nested

$$
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{lnv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}
$$

$M C F G_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Conjectures

Well-nestedness:

Well-nested

$$
\frac{\operatorname{lnv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{lnv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}
$$

$M C F G_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $\mathrm{MCFL}_{\text {wn }}$

Conjectures

Well-nestedness:

Well-nested

$$
\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{lnv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}
$$

$M C F G_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating $\mathrm{IO} / \mathrm{OI}$,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be a MCFL ${ }_{w n}$

Conjectures

Well-nestedness:

$$
\frac{\text { Well-nested }}{\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\ln v\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}} \frac{\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right):-\ln v\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{}
$$

$M C F G_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be a MCFL ${ }_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$

Conjectures

Well-nestedness:

$$
\frac{\text { Well-nested }}{\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\ln v\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}} \frac{\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right):-\ln v\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{}
$$

$M C F G_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be a MCFL ${ }_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be in OI.

Conjectures

Well-nestedness:

$$
\frac{\text { Well-nested }}{\frac{\operatorname{Inv}\left(y_{1} x_{1} x_{2}, y_{2}\right):-\operatorname{lnv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{\text { Not well-nested }}} \frac{\operatorname{Inv}\left(y_{1} x_{1} y_{2}, x_{2}\right):-\operatorname{lnv}\left(x_{1}, x_{2}\right), \operatorname{Inv}\left(y_{1}, y_{2}\right)}{}
$$

MCFG $_{w n}$ are MCFGs with well-nested rules.

- $\mathrm{MCFL}_{w n}$ coincide with non-duplicating IO/OI,
- MCFL is incomparable with IO or OI.

Thus the following conjectures:

- mildly context sensitive languages may well be, as advocated by Kanazawa, $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be a MCFL ${ }_{w n}$
- semilinear rational cones included in OI should be included in $\mathrm{MCFL}_{\text {wn }}$
- O_{2} and MIX should not be in OI.

Open question:

- Is O_{3} an MCFL?

