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The MIX language

MIX = {w ∈ {a; b; c}∗||w |a = |w |b = |w |c}

The MIX language and computational linguists:

I Joshi 1985: [MIX ] represents the extreme case of the degree
of free word order permitted in a language. This extreme case
is linguistically not relevant. [. . . ] TAGs also cannot generate
this language although for TAGs the proof is not in hand yet.

I Joshi et al. 1990: Mildly Context Sensitive Grammars capture
only certain kinds of dependencies, e.g, nested dependencies
and certain limited kinds of crossing dependencies (e.g., in the
subordinate clause constructions in Dutch or some variations
of them but perhaps not in the so-called MIX (or Bach)
language) [. . . ] MCTAGS also belong to Mildly Context
Sensitive Grammars. . .
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The O2 language

O2 = {w ∈ {a; a; b; b}∗||w |a = |w |a ∧ |w |b = |w |b}

The O2 language is of interest in computational group theory:

I the monoid homomorphism z : {a; a; b; b}∗ → Z2 such that
z(a) = (1, 0), z(a) = (−1, 0), z(b) = (0, 1), z(b) = (0,−1)
has O2 as kernel.

I O2 is a group language that is not context free. An open
question is whether it is an indexed language.
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MIX and O2 are rationally equivalent

The following transductions are due to Kanazawa:

I There is a rational transduction from O2 to MIX :
let R = {a|b|ab}∗, then MIX = h(O2 ∩ R) if h(a) = a,
h(b) = b, h(a) = c and h(b) = ε.

I There is a rational transduction from MIX to O2:
let R = {abab|cc |cbcb|aa}∗, then O2, then
O2 = g−1(MIX ∩ R) with g(a) = abab, g(a) = cc ,
g(b) = cbcb g(b) = aa.



MIX and O2 are rationally equivalent

The following transductions are due to Kanazawa:

I There is a rational transduction from O2 to MIX :
let R = {a|b|ab}∗, then MIX = h(O2 ∩ R) if h(a) = a,
h(b) = b, h(a) = c and h(b) = ε.

I There is a rational transduction from MIX to O2:
let R = {abab|cc |cbcb|aa}∗, then O2, then
O2 = g−1(MIX ∩ R) with g(a) = abab, g(a) = cc ,
g(b) = cbcb g(b) = aa.



MIX and O2 are rationally equivalent

The following transductions are due to Kanazawa:

I There is a rational transduction from O2 to MIX :
let R = {a|b|ab}∗, then MIX = h(O2 ∩ R) if h(a) = a,
h(b) = b, h(a) = c and h(b) = ε.

I There is a rational transduction from MIX to O2:
let R = {abab|cc |cbcb|aa}∗, then O2, then
O2 = g−1(MIX ∩ R) with g(a) = abab, g(a) = cc ,
g(b) = cbcb g(b) = aa.

NB: w ∈ MIX ∩ R iff |w |abab + |w |aa = |w |cbcb +
|w |abab = |w |cc + |w |cbcb iff |w |abab = |w |cc and
|w |cbcb = |w |aa.



MIX and O2 are rationally equivalent

The following transductions are due to Kanazawa:

I There is a rational transduction from O2 to MIX :
let R = {a|b|ab}∗, then MIX = h(O2 ∩ R) if h(a) = a,
h(b) = b, h(a) = c and h(b) = ε.

I There is a rational transduction from MIX to O2:
let R = {abab|cc |cbcb|aa}∗, then O2, then
O2 = g−1(MIX ∩ R) with g(a) = abab, g(a) = cc ,
g(b) = cbcb g(b) = aa.

Thus MIX belongs to a rational cone iff O2 does.



Outline

The MIX and O2 languages

Multiple Context Free Grammars (MCFGs)

A grammar for O2

A Theorem on Jordan curves

Conclusion and conjectures



Multiple Context Free Grammars

MCFGs are context free grammars of tuples of strings. A MCFG,
G is a tuple (N,T ,S ,R) where:

I N is a ranked alphabet of non-terminals,

I T is the alphabet of terminals,

I S is an element of N of arity 1,

I R is the set of rules of the form:

A(s1, . . . , sn):-B1(x1
1 , . . . , x

1
k1

), . . . ,Bm(xm1 , . . . , x
m
km)

where the si are strings of T ∪ {x ij |i ∈ [1,m], j ∈ [1, ki ]} so

that x ij has at most one occurrence in s1 . . . sn.

If B1(s1
1 , . . . , s

1
k1

), . . . and Bm(sm1 , . . . , s
m
km

) are derivable then

A(σ(s1), . . . , σ(sn)) where σ(x ij ) = s ij is derivable.

The language defined by G is {s|S(s) is derivable}.
If the maximal arity of N is lower than k , G is a k-MCFG.
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Other characterization of MCFLs.

The languages definable with MCFGs are Multiple Context Free
Languages (MCFLs). MCFLs form an Abstract Family of
Language (thus they are closed under rational transduction), and
are exactly captured by many kinds of formalisms:

I Linear Context Free Rewriting Systems,

I string languages definable with Hyperedge Replacement
Grammars,

I multi component Tree Adjoining Grammars,

I second order Abstract Categorial Grammars, or
non-duplicating higher-order extended IO/OI grammars
(third-order collapsible pushdown automata),

I yield of the output languages of finite copying transductions,

I etc. . .
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A 2-MCFG for O2

S(xy) :- Inv(x , y)

Inv(x1y1, y2x2) :- Inv(x1, x2), Inv(y1, y2)
Inv(x1x2y1, y2) :- Inv(x1, x2), Inv(y1, y2)
Inv(y1, x1x2y2) :- Inv(x1, x2), Inv(y1, y2)
Inv(y1x1x2, y2) :- Inv(x1, x2), Inv(y1, y2)
Inv(y1, y2x1x2) :- Inv(x1, x2), Inv(y1, y2)

Inv(x1y1x2, y2) :- Inv(x1, x2), Inv(y1, y2)
Inv(x1, y1x2y2) :- Inv(x1, x2), Inv(y1, y2)

Inv(ε, ε) :-
Inv(α, α) :-
Inv(α, α) :-

where α ∈ {a; b}

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is
derivable.
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A graphical interpretation of O2.
Graphical interpretation of the word
aaabaabaabbbbbaabbabbbbaaaabbbbbbbbaaa:

The words in O2 are precisely the words that are represented as
closed curves: babbababbabbabbababbaaabbbabbaaaabbabbbaba
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Parsing with the grammar

Rule Inv(x1y1x2, y2) :- Inv(x1, x2), Inv(y1, y2)
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The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is
derivable.

The proof is done by induction on the lexicographically ordered
pairs (|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 1: w1 or w2 equal ε:
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Case 3: the curves representing w1 and w2 have a non-trivial inter-
section point:
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Case 4: the curve representing w1 or w2 starts or ends with a loop:



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is
derivable.

The proof is done by induction on the lexicographically ordered
pairs (|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 4: the curve representing w1 or w2 starts or ends with a loop:

v1 v2

Inv(v1, ε) Inv(v2,w2)

Inv(v1v2 = w1,w2)



The proof of the Theorem

Theorem: Given w1 and w2 such that w1w2 ∈ O2, Inv(w1,w2) is
derivable.

The proof is done by induction on the lexicographically ordered
pairs (|w1w2|,max(|w1|, |w2|)) .
There are five cases:

Case 5: w1 and w2 do not start or end with compatible letters, the
curve representing then do not intersect and do not start or end with
a loop.



Solving case 5: towards geometry

I w.l.o.g. we may assume that w1 and w2 start and end with a
or b,

I if we consider subwords w ′1 and w ′2 of w1 and w2 obtained by
erasing factors of w1 and w2 that are in O2, we have:

I w ′1 and w ′2 start or end with a or b,
I the curve that represents w ′1w

′
2 is a Jordan curve,

I if w ′1 = v ′1v
′
2v
′
3 such that v ′1v

′
3 and v ′2w

′
2 are in O2 then

w1 = v1v2v3 so that v1v3 and v2w2 are in O2.
I if w ′2 = v ′1v

′
2v
′
3 such that v ′1v

′
3 and w ′1v

′
2 are in O2 then

w2 = v1v2v3 so that v1v3 and w1v2 are in O2.
I we will prove the existence of such v ′1, v ′2 and v ′3 for any such

w ′1 and w ′2.
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Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′1w
′
2:

w ′1 = aw ′′1 a and w ′2 = aw ′′2 a w ′1 = aw ′′1 a and w ′2 = aw ′′2 b

w ′1 = aw ′′1 a and w ′2 = bw ′′2 a w ′1 = aw ′′1 a and w ′2 = bw ′′2 b



Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′1w
′
2:

w ′1 = aw ′′1 b and w ′2 = aw ′′2 b w ′1 = aw ′′1 b and w ′2 = bw ′′2 a

w ′1 = aw ′′1 a and w ′2 = a w ′1 = aw ′′1 a and w ′2 = b



Solving case 5: a geometrical invariant

An invariant on the Jordan curve representing w ′1w
′
2:

w ′1 = aw ′′1 b and w ′2 = a w ′1 = aw ′′1 b and w ′2 = b
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On Jordan curves

illustration from: A combinatorial introduction to topology by Michael Henle (Dover Publications).

Theorem: There is k ∈ {−1; 1} such that the winding number of
Jordan curve around a point in its interior is k, its winding number
around a point in its exterior is 0.
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Theorem: There is k ∈ {−1; 1} such that the winding number of
Jordan curve around a point in its interior is k, its winding number
around a point in its exterior is 0.



A theorem on Jordan curves

Theorem: If A and D are two points on a Jordan curve J such

that there are two points A′ and D ′ inside J such that
−→
AD =

−−→
A′D ′,

then there are two points B and C pairwise distinct from A and D
such that A, B, C , and D appear in that order on one of the arcs

going from A to D and
−→
AD =

−→
BC .
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Simple curves, translations, intersections and the complex
exponential

Let’s suppose that D − A = 1

and that A0 = A′ = 0,
A1 = D ′ = 1,. . . , Ak = k

let ϕ :

{
C → C− {0}
z → e2iπz .

A D

B C

EF

IJ

G H

O

A,D

E,F

B,C

I, J G,H

ϕ transforms arcs performing translation of k into arc that
have k as winding number around 0.
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A0, A1

ϕ sums up the winding number of a Jordan curve around the
Ai as the winding number around ϕ(A0) = ϕ(0) = 1.
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Lemma: a simple path J from A to D (resp. D to A) does
not contain B and C as required in the Theorem iff ϕ(J) is
a simple curve of C−{0} that belong to the homotopy class
1 (resp. −1).
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Let’s suppose that D − A = 1 and that A0 = A′ = 0,
A1 = D ′ = 1,. . . , Ak = k

let ϕ :

{
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z → e2iπz .
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Lemma: a simple path J from A to D (resp. D to A) does
not contain B and C as required in the Theorem iff ϕ(J) is
a simple curve of C−{1} that belong to the homotopy class
0 or 1 (resp. or −1).



Proving the Theorem

Let wn(J, z) be the winding number of a closed curve around z .

Corollary: if J is a simple closed curve of C composed with two
curves J1 and J2 respectively going from A to D and D to A which
do not contain points B and C as required in the Theorem then
wn(ϕ(J), 1) = wn(ϕ(J1), 1) + wn(ϕ(J2), 1) is in {−1; 0; 1}.

Lemma: if J is a simple closed curve of C composed with two
curves J1 and J2 respectively going from A to D and D to A such
that 0 and 1 are in the interior of J, then either wn(ϕ(J), 1) < −1
or wn(ϕ(J), 1) > 1 .

The Theorem follows by contradiction.
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Conclusion

I we have showed that O2 is a 2-MCFL exhibiting the first
non-virtually free group language that is proved to belong to
an interesting class of language,

I this implies that contrary to the usual conjecture we have
showed that MIX is a 2-MCFLs.



Conjectures
Well-nestedness:

Well-nested
Inv(y1x1x2, y2):-Inv(x1, x2), Inv(y1, y2)

Not well-nested
Inv(y1x1y2, x2):-Inv(x1, x2), Inv(y1, y2)

MCFGwn are MCFGs with well-nested rules.

I MCFLwn coincide with non-duplicating IO/OI,
I MCFL is incomparable with IO or OI.

Thus the following conjectures:

I mildly context sensitive languages may well be, as advocated
by Kanazawa, MCFLwn

I O2 and MIX should not be a MCFLwn

I semilinear rational cones included in OI should be included in
MCFLwn

I O2 and MIX should not be in OI.

Open question:

I Is O3 an MCFL?
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