Resource bounded derivation

Hiroyuki Seki
Nara Institute of Science and Technology

Workshop on MCFG \& Related Formalisms
National Institute of Informatics, Oct 5-6, 2010

Example

$$
\begin{array}{ll}
G_{1}: & S(x y):-A(x, y) . \\
& A(a x b, c y d):-A(x, y) . \\
& A(a b, c d) . \\
& A\left(a^{n} b^{n} b^{n}, c^{n} d^{n}\right) \\
& \vdots\left(G_{1}\right)=\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geqq 1\right\} \\
& \vdots \\
& A(a a b b, c c d d) \\
& A(a b, c d) \\
& \\
& \\
& \text { Proof tree }
\end{array}
$$

Example

$$
\begin{aligned}
& G_{2}: \quad S\left(x_{1} y_{1} x_{2} y_{2}\right):-A\left(x_{1}, x_{2}\right), B\left(y_{1}, y_{2}\right) . \\
& A\left(a_{1} x a_{2}, a_{3} y a_{4}\right):-A(x, y) . \\
& B\left(b_{1} x b_{2}, b_{3} y b_{4}\right):-B(x, y) . \\
& B(\varepsilon, \varepsilon) .
\end{aligned}
$$

$L\left(G_{2}\right)=\left\{a_{1}{ }^{m} a_{2}{ }^{m} b_{1}{ }^{n} b_{2}{ }^{n} a_{3}{ }^{m} a_{4}{ }^{m} b_{3}{ }^{n} b_{4}{ }^{n} \mid m, n \geqq 0\right\}$

Fixed vs. universal recognition

Recognition problem for fixed language L
Input: string w
Problem: $w \in L$?

Universal recognition problem (URP)
Input: grammar G, string w
Problem: $w \in L(G)$?

Example

Recognition problem for fixed language L :
For a string w, decide $w \in L$. $O\left(|w|^{3}\right)$ time when L is CFL.

Universal recognition problem (URP):
For a grammar $G \&$ string w, decide $w \in L(G)$. $O\left(|G||w|^{3}\right)$ time \& P-complete when G is CFG. DEXP time-hard when G is GPSG ${ }^{\dagger}$.
${ }^{\dagger}$ GPSG (Generalized Phrase Structure Grammar[GKPS85])
GPSG < CFG in generative power
\Rightarrow Generative power \neq Complexity of universal recognition

Why URP interesting?

Why URP interesting?

Application

E.g., profile-based structure prediction of biological sequence. (G: structure profile,
w : biological sequence,
algorithm: structure prediction tool)

URP of MCFG and tree size

For a (proof) tree t, let size $(t):=$ num. nodes in t.
\sim nondeterministic time complexity for URP.
$O\left(c_{G}|w|\right)$ in general $O\left(|G|^{2}|W|\right)$ if dimension of G is bounded \Rightarrow in NP
where c_{G} : exponential to $|G|$.
proof tree t of w

URP for MCFG and tree width

For a proof tree t, width (t)
:= max length of 'sentential form.'
~ space complexity needed for URP
$O(|G| \cdot|w|)$ for non-deleting MCFG
\Rightarrow in PSPACE.
proof tree t of w

URP for MCFG and tree depth

proof tree t of w

For a (proof) tree t, depth $(t):=$ max length of path from root to leaf in t.

Generally, depth (t) is exponential to $|G|$ and $|w|$.
For a proof tree t, what follows if depth(t) is polynomial in |G| and $|w| ?$

MCFG

$G=(N, T, V, P, S)$
N : predicates (nonterminals), T : terminals, V : variables,
P : rules, $S \in N$: start predicate

- A rule $\pi \in P$ is a definite Horn clause s.t.
- Variables are linear in both head \& body,
- Argument of predicate in body is variable,
- Argument of predicate in head is
string over T and variables in its body.
(Ex) $\quad A(a x b, c y d):-A(x, y)$.
$B\left(x_{1} y_{1}, x_{2} y_{2}\right):-C\left(x_{1}, x_{2}\right), D\left(y_{1}, y_{2}\right)$.
NG $A(x, a x)$:- $B(x)$.
NG $A(x, y)$:- $B(x, y), C(x)$.

MCFG Language

For an MCFG $G=(N, T, V, P, S)$,

$$
L(\mathrm{G}):=\left\{w \in T^{\star} \mid S(w) \text { is provable in } G\right\}
$$

is the multiple context-free language (mcfl) generated by G.

Non-deleting MCFG

MCFG $G=(N, T, V, P, S)$
Non-deleting: $\forall \pi \in P, \operatorname{Var}_{\text {head }}(\pi)=\operatorname{Var}_{\text {body }}(\pi)$.
OK
$B\left(x_{1} y, x_{2}\right):-C\left(x_{1}, x_{2}\right), D(y)$.
NG $\quad B\left(y, x_{2}\right):-\quad C\left(x_{1}, x_{2}\right), D(y)$.

Lemma: \forall MCFG G,
\exists non-deleting MCFG G^{\prime} s.t. $L\left(G^{\prime}\right)=L(G)$.

Dimension \& rank

MCFG $G=(N, T, V, P, S)$

- rule π : $A_{0}(\ldots):-A_{1}(\ldots), A_{2}(\ldots), \ldots, A_{n}(\ldots)$.
$\operatorname{dim}(\pi):=\max \left\{\operatorname{arity}\left(A_{i}\right) \mid 0 \leqq i \leqq n\right\}, \operatorname{rank}(\pi):=n$.
(Ex)
$\pi_{1}: A(a x b, c y d)$:- $A(x, y)$.
$\operatorname{dim}\left(\pi_{1}\right)=2, \operatorname{rank}\left(\pi_{1}\right)=1$.
$\pi_{2}: B\left(x_{1} y_{1}, x_{2} y_{2}\right):-C\left(x_{1}, x_{2}\right), \mathrm{D}\left(y_{1}, y_{2}\right)$. $\operatorname{dim}\left(\pi_{2}\right)=2, \operatorname{rank}\left(\pi_{2}\right)=2$.

Dimension \& rank

For MCFG $G=(N, T, V, P, S)$, $\{d i m, \operatorname{rank}\}(G):=\max _{\pi \in P}\{\operatorname{dim}, \operatorname{rank}\}(\pi)$

- q-MCFG(r): MCFG with $\operatorname{dim}(\cdot) \leqq q$ and $\operatorname{rank}(\cdot) \leqq r$
- q-MCFG: MCFG with $\operatorname{dim}(\cdot) \leqq q$
- MCFG(r): MCFG with rank(•) $\leqq r$

URP for MCFG

- General case
- Non-deleting MCFG
- q-MCFG with fixed q
- q-MCFG (r) with fixed q, r P-complete
[KNSK94] Kaji, Nakanishi, Seki \& Kasami, Computational Intelligence, 10(4), 440-452, 1994.

Depth-bounded MCFG

- MCFG G is $f(m, n)$ depth-bounded if $\forall w \in L(G), \exists$ proof tree t of w such that depth $(t) \leqq f(m, n)$ where $m=|G|, n=|w|$.
- MCFG G is poly depth-bounded if
\exists polynomial p such that G is $p(m, n)$ depthbounded.

Main result

Theorem: URP for poly depth-bounded MCFG is PSPACE-complete.

Corollary: URP for poly depth-bounded MCFG(1) is NP-complete.

PSPACE solvability

Lemma 1: URP for poly depth-bounded MCFG is in PSPACE.

Proof outline: Give a non-deterministic algorithm of poly space complexity that decides $w \in L(G)$ for given poly depth-bounded MCFG G and $w \in T^{*}$.

A normal form

From given MCFG $G=(N, T, V, P, S)$, we can construct MCFG G^{\prime} satisfying $L\left(G^{\prime}\right)=L(G), G^{\prime}$ contains no useless symbols/rules and for $\forall A \in N$,
(1) Rule $A(\ldots):-\ldots$ is at most one, or
(2) Every rule $A(\ldots):-$... is rank 1.

Proof.

$$
\begin{array}{rlr}
A(\ldots) & :-B(\ldots), C(\ldots) . \\
A(\ldots) & :-D(\ldots), E(\ldots) . & \\
& \downarrow & \\
A(\ldots):-A^{\prime}(\ldots) . \quad A(\ldots):-A^{\prime \prime}(\ldots) . & \text { Type (2) } \\
A^{\prime}(\ldots) & :-B(\ldots), C(\ldots) . & \text { Type (1) } \\
A^{\prime \prime}(\ldots) & :-D(\ldots), E(\ldots) . & \prime \prime
\end{array}
$$

The construction preserves poly depth-boundedness.

Algorithm REC solving URP

Input: $p(m, n)$ depth-bounded MCFG $G=(N, T, V, P$, S) in normal form and $w \in T^{*}$.
For $A \in N, 1 \leqq i_{j} \leqq|w|, \operatorname{REC}\left(A, i_{1}, \ldots, i_{2^{*} a r i t y}(A)\right)=$ true iff $A\left(w\left[i_{1}, i_{2}\right], \ldots, w\left[i_{2^{*}}\right.\right.$ arity $(A)-1, i_{2^{*}}$ arity $\left.\left.(A)\right]\right)$ is provable.

Rank $\geqq 2$ rule

For $A\left(y_{1} z_{2}, z_{1} y_{2}\right):-B\left(y_{1}, y_{2}\right), C\left(z_{1}, z_{2}\right)$,
$\operatorname{REC}(A, i, j, k, l)$
choose $u, v(i \leqq u<j, k \leqq v<l)$; return $\operatorname{REC}(B, i, u, v+1, l) \wedge \operatorname{REC}(C, u+1, j, k, v)$

Rank 1 rule

For $\quad A\left(y_{1}, a y_{2}\right):-B\left(y_{1}, y_{2}\right) . \quad A\left(\varepsilon, y_{2}\right):-C\left(y_{1}, y_{2}\right)$., $\operatorname{REC}(A, i, j, k, l)$
choose
return $(\operatorname{REC}(B, i, j, k+1, l) \wedge w[k]=a)$ or return $\operatorname{REC}\left(C,{ }^{*},{ }^{*}, k, I\right)$;

PSPACE solvability revisited

Lemma 1: URP for poly depth-bounded MCFG is in PSPACE.

Proof outline: By assumption, G is $p(m, n)$ depthbounded where $m=|G|$ and $n=|w|$.

- Space needed for one instance for REC is $O\left(m^{2} \log n\right)$.
- Recursion depth of REC can be $p(m, n)$.
\Rightarrow REC is $O\left(p(m, n) m^{2} \log n\right)$ space bounded.

PSPACE solvability revisited

Lemma 1: URP for poly depth-bounded MCFG is in PSPACE.

The algorithm REC can be expressed by poly time bounded alternating Turing machine.

Alternating Turing machine

ATM is $M=\left(Q, \Sigma, \Gamma, B, \delta, q_{s}, Q_{F}, Q_{U}, Q_{E}\right)$
$Q=Q_{U} \cup Q_{E} \cup Q_{F} \cup\left\{q_{s}\right\}$: state set
$\Sigma(\subseteq \Gamma-\{B\})$ input symbols
Γ : tape symbols B: blank symbol
$\delta \subseteq(Q \times \Gamma) \times(Q \times \Gamma \times\{\rightarrow, \leftarrow\})$: transition relation q_{s} : initial state $\quad Q_{F}$: final (accepting) states
Q_{U} : set of universal states
Q_{E} : set of existential states

Alternating Turing machine

ATM $M=\left(Q, \Sigma, \Gamma, B, \delta, q_{S}, Q_{F}, Q_{U}, Q_{E}\right)$
ID (instantaneous description) is $\alpha q \beta$ where $q \in Q$ $\& \alpha, \beta \in \Gamma^{*}$.
Move relation $\alpha q \beta \rightarrow_{M} \alpha^{\prime} q^{\prime} \beta^{\prime}$ over IDs is defined in a usual way.
For an input w, ID $q_{s} w$ is the initial ID for w.
ID $\alpha q \beta$ is accepting if $q \in Q_{F}$.

Nondeterministic Turing machine

Input w is accepted if there is a run that reaches an accepting ID from the initial ID for w.

Alternating Turing machine

For $q \in Q_{F}$, ID $\alpha q \beta$ (trivially) is accepting.
For $q \in Q_{E}$, ID $\alpha q \beta$ is accepting if there is ID' such that ID \rightarrow ID' \& ID' is accepting.
For $q \in Q_{u}$, ID $\alpha q \beta$ is accepting if every ID' satisfying ID \rightarrow ID' is accepting.

Accepting language

$$
L(M)=\left\{w \mid \text { Initial ID } q_{s} w \text { is accepting }\right\}
$$

TM and ATM

Propositon[CS80]: PSPACE=APTIME, DEXPTIME=APSPACE

APTIME := class of problems solvable by poly time-bounded ATM
APSPACE := class of problems solvable by poly space-bounded ATM

Recognition by APTIME

PSPACE-hardness

Lemma 2: URP for poly depth-bounded MCFG is PSPACE-hard.

Proposition: Q3SAT (Quantified 3CNF satisfiability) is PSPACE-complete.

Proof outline. Give a poly time reduction from Q3SAT to URP.

Quantified Boolean formula (QBF)

- $\exists x[E]=E_{0} \vee E_{1}$
- $\forall x[E]=E_{0} \wedge E_{1}$
where E_{0} / E_{1} are formulae obtained by replacing (free) x with 0/1.

$$
\text { - } \begin{aligned}
& \forall x \exists y[x \vee y] \\
&= \exists y[0 \vee y] \wedge \exists y[1 \vee y] \\
&=((0 \vee 0) \vee(0 \vee 1)) \wedge((1 \vee 0) \vee(1 \vee 1)) \\
&= 1 \wedge 1 \\
&=1
\end{aligned}
$$

Q3CNF: $\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} F$ where $\mathrm{Q}_{k}=\exists$ or $\forall(1 \leqq k \leqq i), F$ is 3CNF (3conjunctive normal form, \wedge 's of V 's of 3 literals $)_{5}$

Q3SAT

Problem Q3SAT (Q3CNF satisfiability)
Decide whether a given quantified 3CNF

$$
\mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} F
$$ is true or not.

Proposition: Q3SAT is PSPACE-compete.

Q3SAT \leqq_{P} URP

$F \equiv \mathrm{Q}_{1} x_{1} \mathrm{Q}_{2} x_{2} \ldots \mathrm{Q}_{n} x_{n} F_{1} \wedge F_{2} \wedge \ldots \wedge F_{q}:$ Q3CNF. Construct poly depth-bounded MCFG $G=(N, T, V$, P, S such that $F=1$ if and only if $\varepsilon \in L(G)$.

ع encodes 1(true) and \# encodes 0(false).

Example

$$
\begin{aligned}
& \forall x_{1} \exists x_{2}\left(x_{1} \vee \neg x_{2}\right) \\
& =\exists x_{2}\left(0 \vee \neg x_{2}\right) \wedge \exists x_{2}\left(1 \vee \neg x_{2}\right) \\
& =\exists x_{2}\left(\neg x_{2}\right) \wedge 1 \\
& =1 \vee 0 \\
& =1
\end{aligned}
$$

Example

Q3SAT \leqq_{P} URP

$F \equiv \mathrm{Q}_{1} \mathrm{x}_{1} \mathrm{Q}_{2} \mathrm{x}_{2} \ldots \mathrm{Q}_{n} x_{n} F_{1} \wedge F_{2} \wedge \ldots \wedge F_{q}: Q 3 C N F$ Construct poly depth-bounded MCFG $G=(N,\{\#\}, T$, $V, P, S)$ such that $F=1$ if and only if $\varepsilon \in L(G)$ as follows. Invariant:
$A_{k}(\ldots, \varepsilon, \ldots)$ iff F_{j} can be made 1 for some $\boldsymbol{x}_{\boldsymbol{k}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$.
$N=\left\{S, A_{1}, A_{2}, \ldots, A_{n+1}\right\}$ with $\operatorname{dim}\left(A_{j}\right)=q$
P consists of:

- $S\left(y_{1} \cdot \ldots \cdot y_{q}\right):-A_{1}\left(y_{1}, \ldots, y_{q}\right)$.

Q3SAT \leqq_{P} URP

- For $1 \leqq k \leqq n$,

$$
\begin{aligned}
& \text { if } \mathrm{Q}_{k}=\exists, \quad \swarrow \quad \boldsymbol{x}_{k}:=0 \\
& \quad A_{k}\left(\alpha_{1}, \ldots, \alpha_{q}\right):-A_{k+1}\left(y_{1}, \ldots, y_{q}\right) . \\
& A_{k}\left(\beta_{1}, \ldots, \beta_{q}\right):-A_{k+1}\left(z_{1}, \ldots, z_{q}\right) . \\
& \text { if } \mathrm{Q}_{k}=\forall, \quad \nwarrow x_{k}:=1
\end{aligned}
$$

$x_{k}:=0 \quad A_{k}\left(\alpha_{1} \beta_{1}, \ldots, \alpha_{q} \beta_{q}\right):-A_{k+1}\left(y_{1}, \ldots, y_{q}\right), A_{k+1}\left(z_{1}, \ldots, z_{q}\right)$. \geqslant where $\alpha_{j}=\varepsilon$ if F_{j} contains $\neg x_{k}$ and $\alpha_{j}=y_{j}$ otherwise $\boldsymbol{x}_{\boldsymbol{k}}:=1 \boldsymbol{\lambda}$ and $\beta_{j}=\varepsilon$ if F_{j} contains $\boldsymbol{x}_{\boldsymbol{k}}$ and $\beta_{j}=\mathrm{z}_{j}$ otherwise.

- $A_{n+1}(\#, \ldots, \#)$.

Example

$$
\begin{aligned}
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1} \vee \neg x_{2} \vee x_{4}\right)\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) \\
&= \exists x_{2} \forall x_{3} \exists x_{4}\left(\neg x_{2} \vee x_{4}\right)\left(x_{3} \vee \neg x_{4}\right) \wedge 1 \\
&= \forall x_{3} \exists x_{4}\left(x_{3} \vee \neg x_{4}\right) \vee \forall x_{3} \exists x_{4}\left(x_{4}\right)\left(x_{3} \vee \neg x_{4}\right) \\
&=\left(\exists x_{4}\left(\neg x_{4}\right) \wedge 1\right) \vee\left(\exists x_{4}\left(x_{4}\right)\left(\neg x_{4}\right) \wedge \exists x_{4}\left(x_{4}\right)\right) \\
&= 1 \vee 0 \\
&=1
\end{aligned}
$$

Reduction to Q3CNF

Goal:
$A_{k}(\ldots, \varepsilon, \ldots)$ eff F_{j} can be made 1 for some $\boldsymbol{x}_{\boldsymbol{k}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$.
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1} \vee \neg x_{2} \vee x_{4}\right)\left(x_{1} \vee x_{3} \vee \neg x_{4}\right)$
$S\left(y_{1} y_{2}\right):-A_{1}\left(y_{1}, y_{2}\right)$.
$A_{1}\left(y_{1} \varepsilon, y_{2} \varepsilon\right):-A_{2}\left(y_{1}, y_{2}\right), A_{2}\left(z_{1}, z_{2}\right)$.
$A_{2}\left(\varepsilon, y_{2}\right):-A_{3}\left(y_{1}, y_{2}\right)$.
$A_{2}\left(z_{1}, z_{2}\right):-A_{3}\left(z_{1}, z_{2}\right)$.
$A_{3}\left(y_{1} z_{1}, y_{2} \varepsilon\right):-A_{4}\left(y_{1}, y_{2}\right), A_{4}\left(z_{1}, z_{2}\right)$.
$A_{4}\left(y_{1}, \varepsilon\right):-A_{5}\left(y_{1}, y_{2}\right)$.
$A_{4}\left(\varepsilon, z_{2}\right):-A_{5}\left(z_{1}, z_{2}\right)$.
$A_{5}(\#, \#) . \quad(\varepsilon$ encodes 1 and \# encodes 0 .)

Reduction to Q3CNF

$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1} \vee \neg x_{2} \vee x_{4}\right)\left(x_{1} \vee x_{3} \vee \neg x_{4}\right)$

$A_{3}(\#, \varepsilon)$	
$x_{3} / 0$	1
$A_{4}(\#, \varepsilon)$	$A_{4}(\varepsilon, \#)$
$x_{4} \mid 0$	$1 \mid$
$A_{5}(\#, \#)$	$A_{5}(\#, \#)$

Summary

non- deletion	dimension	depth	Universal recognition
-	-	-	DEXP-complete
required	-	-	PSPACE-complete*

*Proof is more complicated since non-deletion is assumed.

Polynomial hierarchy

Let C^{x} denote complexity class C with oracle X.

- $\Sigma_{0}=\Pi_{0}=\Delta_{0}=P$
- For $k \geqq 0$,

$$
\begin{aligned}
& -\Delta_{k+1}=P^{\Sigma k} \\
& -\Sigma_{k+1}=N P^{\Sigma k} \\
& -\Pi_{k+1}=\operatorname{co}-\Sigma_{k+1}
\end{aligned}
$$

By definition, $\Delta_{1}=P, \Sigma_{1}=N P$,

$$
\Pi_{1}=\operatorname{co}-N P .
$$

Complete problem for Σ_{k}

Problem $\Sigma_{k} 3 S A T$
Decide whether a given Q3CNF with $k-1$ alternations

$$
\exists x_{1} \forall x_{2} \ldots \mathrm{Q} x_{k} F
$$

is true or not.
($\mathrm{Q}=\exists$ if k is odd and $\mathrm{Q}=\forall$ if k is even, and F is
3CNF.)

Property: $\Sigma_{k} 3$ SAT is Σ_{k}-complete.

Conclusion

URP for poly depth-bounded MCFG was shown to be PSPACE-complete.

Future work:

- Find a syntactical (or decidable) characterization of being poly depth-bounded.
- Complexity of URP for well-nested MCFG.

