On Late Adjunction in Minimalist Grammars

Greg Kobele*

Computation Institute
and Department of Linguistics
University of Chicago

MCFG+ 2010

*Based on joint work with Jens Michaelis

The Big Picture

The Question:

What happens when late adjunction is added to Minimalist
Grammars?

The (Short) Answer:

Not sure, but:
@ still semi-linear

@ describable by 3rd order ACGs
@ tree relation definable in MSO, with some extra information

Outline

0 On Late Operations
@ Montague Grammar
@ TAGs

9 Minimalist Grammars
@ Basic Definitions and Properties
@ Late Adjunction

e Representing Late Adjunction in MGs
@ Via 3" Order ACGs
@ Via MSOTT With One Free Relation Variable

0 Conclusion

On Late Operations

The idea behind ‘late’ operations

The problem:

Sometimes we have semantic ambiguity without any obvious
corresponding difference in the derivation tree.

The idea:

Enrich the derivation tree with information about order.

(not only did | apply this rule, but | applied this rule before that
one)

| A\

On Late Operations

Frameworks which have ‘late’ operations

@ Montague Grammar
(Montague)

@ ‘Cosubstitution’ in TAGs
(Barker)

@ Minimalist Grammars
(Gartner & Michaelis;Kobele)

On Late Operations
@000

Outline

0 On Late Operations
@ Montague Grammar

On Late Operations
[o] lele}

Syntax

Rules of quantification

S14. If « € Py and ¢ € P, then Fig (e, §) € P, where either (i) o« does not
have the form he;, and Fig (%, ¢) comes from ¢ by replacing the first
occurrence of he, or him, by o and all other occurrences of he, or

he him
him, by { she } or { her respectively, according as the gender of the
it it
masc.
first Ben or By in o is ¢ fem. , or
neuter

(ii) o = hey, and Fyy, (%, ¢) comes from ¢ by replacing all occurrences of he,
or him,, by he; or himy, respectively.

S15. If o € Pt and C € Pcn, then Fl(),,,(a, {) € Pen.

S16. IfoeePrandd € Pyy, then Flo’,,(ol, 5) € Pry.

Ay

On Late Operations

[e]e] o]

An Example - De Re vs De Dicto Readings

@ John seeks a unicorn.

There is a particular unicorn that John is looking for.

<

John will be satisfied with any unicorn.

@ Can be represented in terms of operator scope:

TRY(FIND(Y))(X)

On Late Operations
[e]e] Te}

An Example - De Re vs De Dicto Readings

@ John seeks a unicorn.

There is a particular unicorn that John is looking for.
Jy[UNICORN(y) & TRY(FIND(y))(J)]

De Dicto

John will be satisfied with any unicorn.
TRY(3y[UNICORN(y) & FIND(¥)])(J)

| A\

@ Can be represented in terms of operator scope:

TRY(FIND(Y))(X)

On Late Operations
[e]e]e]]

Derivations for De Re vs De Dicto Readings

John seeks a unicorn, 4
John seek a unicorn, 5

seek a unicorn, 2

unicorn
John seeks a unicorn, 10, 0

a unicorn, 2 John seeks him,, 4
unicorn John seek him,, 5
seek he,

On Late Operations
@®00000

Outline

0 On Late Operations

@ TAGs

On Late Operations
[o] lelele]e]

Tree Adjoining Grammars

@ A TAG consists of
initial trees a finite set of trees with leaves labelled with
either terminals or with X|, where X is a
non-terminal symbol
auxiliary trees as before, but with exactly one leaf node
labelled with X*, where X is the label of the
root

On Late Operations
[o]e] lele]e]

Tree Adjoining Grammars - Substitution

Substitute (1st Order Substitution)

DP + S = S

| N PN
John DP| VP DP VP

| | |
left John left

On Late Operations
000e00

Tree Adjoining Grammars - Adjunction

Adjoin (2nd Order Substitution)

S + VP = S
DP VP quietly VP DP VP

| L~
John left John quietly VP

|
left

On Late Operations
0O000e0

Facts About Tree Adjoining Grammar

@ Strongly equivalent to monadic linear CFTGs
(Fujiyoshi & Kasai; Ménnich; Kepser & Rogers)
@ Weakly equivalent to 2-MCFL
(Kanazawa)
@ Derivation trees are terms over the set of lexical items

e for each lexical item ¢, enumerate its substitution and
adoinable nodes (for each ¢, there will be a finite number n,
of such)

e the rank of a lexical item £ is n,

e (This is just an inside-out derivation.)

On Late Operations
0O0000e

Barker’s Innovation:

Unrestricted Derivation and Scope

Linear CFTGs derive the same tree languages under all (10,
Ol, unrestricted) derivation modes.

I scopes over A iff
@ T was substituted in after A was, or
© T was substituted in after a tree containing A was

Minimalist Grammars
0000000000000

Outline

9 Minimalist Grammars
@ Basic Definitions and Properties

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where
e Vs a finite set of vocabulary items

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where
e Vs a finite set of vocabulary items

e Cat is a finite set of features which have the following
forms:

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where

e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

@ x is a selectee (or categorial) feature

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where
e Vs a finite set of vocabulary items

e Cat is a finite set of features which have the following
forms:

@ x is a selectee (or categorial) feature
@ =x is a selector feature

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where
e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

@ x is a selectee (or categorial) feature
@ =xis a selector feature
@ -xis a licensee (or movement) feature

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)

where

e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

x is a selectee (or categorial) feature
=x is a selector feature

-x is a licensee (or movement) feature
+x is an movement triggering feature

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)

where

e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

x is a selectee (or categorial) feature
=x is a selector feature

-x is a licensee (or movement) feature
+x is an movement triggering feature

e Lex C V* x Cat* is afinite set of lexical items ¢ = (v,),
which are pairs of sequences of vocabulary items v, and
sequences of features ¢

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)

where

e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

x is a selectee (or categorial) feature
=x is a selector feature

-x is a licensee (or movement) feature
+x is an movement triggering feature

e Lex C V* x Cat* is afinite set of lexical items ¢ = (v,),
which are pairs of sequences of vocabulary items v, and
sequences of features ¢

o F=

{move, merge} is the set of generating functions

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)

where

e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:

x is a selectee (or categorial) feature
=x is a selector feature

-x is a licensee (or movement) feature
+x is an movement triggering feature

e Lex C V* x Cat* is afinite set of lexical items ¢ = (v,),
which are pairs of sequences of vocabulary items v, and
sequences of features ¢

o F=

{move, merge} is the set of generating functions

move is a unary operation, which takes a single expression
and rearranges its parts

Minimalist Grammars
0000000000000

Minimalist Grammars

@ A minimalist grammar is given by a 4-tuple (V, Cat, Lex, F)
where
e Vs a finite set of vocabulary items
e Cat is a finite set of features which have the following
forms:
@ x is a selectee (or categorial) feature
@ =xis a selector feature
@ -—x is a licensee (or movement) feature
@ +x is an movement triggering feature
e Lex C V* x Cat* is afinite set of lexical items ¢ = (v,),
which are pairs of sequences of vocabulary items v, and
sequences of features ¢
e 7 = {move, merge} is the set of generating functions
@ move is a unary operation, which takes a single expression
and rearranges its parts
@ merge is a binary operation, which takes two expressions —
and puts them together '

Minimalist Grammars
00e0000000000

@ The domains of our generating functions will be trees
where
e internal nodes are binary branching and labelled with either
< or >, and whose
e leaves are labelled with pairs (o, §) of vocabulary item
sequences o and feature sequences §

Minimalist Grammars
0000000000000

Notation and Definitions

@ The head of an expression t is

o titself, if itis a leaf
e the head of ty, if t = <(4, o)
e the head of t, if t = >(#, &)

Minimalist Grammars
0000@00000000

Feature Checking

@ The leaves of our trees contain sequences of features.
These features determine which operations can apply.

@ Once an operation applies, the features which allowed it
are deleted.

@ We can think of the grammatical operations as ‘trying’ to
remove features from trees — well-formed expressions of a
particular category x will be those without any remaining
features except that the head has the single feature x

Minimalist Grammars
00000e0000000

More Notation and Definitions

@ Given t, we write t' to denote the result of adding f as the
first feature on the head of ¢:

e if the head of tis (7, §), then t' is the tree just like t except
that its head is (o, f6)

@ t displays feature f, if the head of t is (o, f9)
o ' displays feature f

@ Deleting the first feature of t gives us t

Minimalist Grammars
0000008000000

@ (t,t') € dom(merge) iff
et=t*andt' =t

merge(t;*, ;) =

7N\

tq to

Minimalist Grammars
0000000800000

Some More Notation and Definitions

@ A subtree t’ of a tree t is a maximal projection iff t' does
not project over its sister (if it has one)

@ A particular occurrence of a subtree r in tree t is written
t="1t[r]
e The result of replacing a particular occurrence of subtree r
with sin {[r] is written {[s]

@ | write ¢ for the empty leaf (¢, ¢€)

Minimalist Grammars
0000000 0e0000

@ t™* € dom(move) iff
e there is an occurrence of &;* in t7 (t = t;[t;*])
e 1, * is a maximal projection in t;[t, *]
@ We require in addition that:
(SMC) there is exactly one occurrence of a maximal
projection displaying -x in t**

N
tl[E]

move(t[*]7*) = 12

Minimalist Grammars
0000000008000

/\tl

[¢]

move(t[t;*]"*) = 2

() (a=x+yz)
(if) (b, =w x)
(i) {c,w ~y)

Minimalist Grammars
0000000008000

move(t[;*]"™) = t1[e]
I (a2 @ merge(ii,iii)
(i) (b, =w x)
(iii) — {c,w-y)
N
<b7 X> <Ca _Y>

Minimalist Grammars
0000000008000

move(t [, *]"*) = 12 t1[e]

] a,=x +y z
8/)) <<b,=wi>> Q merge(i,1)

(i) (c,w -y)

W
»TY \
<b’€> <67_Y>

Minimalist Grammars
0000000008000

move(t [, *]"*) = 2 t1[e]
M @iy 2 Q merge(fi,iii)
(i) (b,=w x) Q merge(i,1)
(i) {c,w-y) © move(2)
(/>\<
| (a z>/ \<
’ /
(b, €) \e

B

Minimalist Grammars

0000000000800

@ Having the SMC puts an upper bound on the number of
moving pieces that an expression that could possibly
converge can have:

e if there are k licensee feature types, and you cannot have
two expressions displaying the same feature at once, then
at any given time you can have at most k moving pieces
(one displaying each feature type)

@ This allows us to represent a minimalist expression as a
(k+1)-tuple of trees.
e each of these trees only has features at its head
e we can describe move and merge in these terms:

AR ST
/ML moveA
>(tn, 1), b, ...

tr oty

- moveB
S(e) byt &

Minimalist Grammars
0000000000080

Factoring apart categories and strings

@ Our current data structure is a sequence ¢y, . . . , ¢ Of
length up to k + 1 of pairs (w, §) that has the following
property:

for i # j the first feature of §; is different from the
first feature of o;

@ Let’s factor out the syntactic information in such a
sequence, and call this a category:
(00, ---,0n)
@ There are only a finite number of relevant categories!
(Michaelis)
@ They are (a subset of) the k+1-tuples of suffixes of lexical
feature sequences:

suf(Cat) := {9 : (5,79) € Lex}

Minimalist Grammars
00000000000 0e

MGs as Algebras

@ We can recast MGs in an algebraic setting by:

@ Taking as sorts
S = {(50, Oyeen 5k> 1 0j € SUf(Cat) &di=¢cV —x,-5,’-}
© Taking as operators
@ moves, of type s — s¥
for all s = (+xdo, ..., —x0i,...)
@ merges s, oftype s — ' — s @8
forall s = (=xdo,...), ' = xdp,...)
@ (= (w,d)ofsort (d,e,...,c) foreach ¢ € Lex

@ Here:
(] <=X50, . .>/ = <X(50,. . .>‘/ = <(50,. . >
(] <+X(50,...,—X6/,...>/ = <(So,...,Uk,...,U,',...,(Sk>, where

@ uyy=diandu=¢cif § = —x,dand 6y = ¢
@ ux = 0k and u; = e otherwise
e sds =(sp,0,...,9), where

@ if sy =-x;0thens;=s/ =cand §; = s}
@ otherwise s; = € iff §; = 5 W

Minimalist Grammars
@®00000000

Outline

9 Minimalist Grammars

@ Late Adjunction

Minimalist Grammars

O®0000000

@ An adjunct is typically:

e an optional element
o iterable

Modifying PPs:
@ John hit the wall.
@ John hit the wall with a hammer.
@ John hit the wall in anger.
@ John hit the wall with a hammer in anger.
@ John hit the wall in anger with a hammer.

1

Minimalist Grammars
[e]e] leleleleele)

Analyzing Adjuncts (Frey & Gartner)

@ introduce a new feature type: ~x
adjoin(ty, t5*) = h t2

@ algebraically, we add a new family of operators
adjoing ¢

of type s — s’ — s@® ', where sy = xdp, and s}, = ~xd

Minimalist Grammars
[e]e]e] lelelelele)

Motivating Late Adjunction

A pronoun cannot c-command its antecedent.
@ John; thinks that Mary likes him;.
@ "He; thinks that Mary likes John,;.

v

Condition C must hold at every level of representation

@ *He; denied the rumor that John; had cheated.
@ *Which rumor that John; had cheated did he; deny?

@ *He; denied the rumor that John; started.

@ Which rumor that John; started did he; deny?

Minimalist Grammars
[e]e]e]e] Telelele)

A Solution: Late Adjunction

@ *Which rumor that John; had cheated did he; deny?
@ Which rumor that John; started did he; deny?

A difference
@ rumor [that John had cheated] ~~ that John had cheated is
the content of the rumor (an essential property)

(An argument of the noun)
@ rumor [that John started] ~ that John started is an

accidental property of the rumor
(An adjunct to the noun)

V.

Lebeaux’s proposal
Adjuncts can be inserted at any time.

Minimalist Grammars
[e]e]e]e]e] lelele)

Two derivations for which rumor that John started

Adjoin early; violate Condition C
@ [which rumor] + [that John started] (adjoin)
© deny + [which rumor [that John started]]
© [he] + [did deny which rumor [that John started]]

Adjoin late; no violation

@ deny + [which rumor]

© [he] + [did deny which rumor]

© [[which rumor] did he deny]

© [[which rumor [that John started]] did he deny] (adjoin)

v

Minimalist Grammars
000000800

Late Adjunction, Formally

@ We want to generalize the adjoin operation such that, if it
could have applied to a term ¢, then it can (now) apply to
any term t' = C[f] containing t as a part.

@ Note that, if it could have applied to t and to s, and
t' = D[t, s], then the result of adjoining to t’ is
nondeterministic.

@ To indicate that adjunction could have applied to a phrase
(and thus that it still can, retroactively), we extend the label
set of internal nodes to include <., and >,, for each
category feature x.

Minimalist Grammars
000000080

Defining Late Adjunction

@ We redefine merge so as to allow us to keep track of what
category features were used.

<z

7\

merge(t;™,) = t1 t2

@ Then adjoin inserts the adjunct inside a structure at an
appropriate maximal projection.

o’ N
tl/ \t2

adjoin(C[<.(t,)], £57*) —

Minimalist Grammars
0O0000000e

The Late Adjunction Algebra

@ We take as sorts S := {({dp, 01, ...,dk), C) : §; € suf(Cat) &
0i=¢€V —x,~6,’- & C C Cat}
@ Taking as operators
e moveg, of type s — s
e merges s, of type s — s — sV @, s’
e adjoins ¢ of type s — 8’ — s 8
e (= (w,d) of sort ((J,¢,...,e),0) foreach ¢ € Lex

@ where (s,C) &, (s,C') = (s s, CUC U{x})

Note that this is semi-linear; these operators have the same
interpretation in the Parikh domain as the previous ones. J

Representing Late Adjunction in MGs
00000000

Outline

e Representing Late Adjunction in MGs
@ Via 3" Order ACGs

Representing Late Adjunction in MGs
0e000000

Abstract Categorial Grammars — Vocabulary

@ A Vocabulary is a triple ¥ = (A, C,), where
e Ais a finite set of types
e Cis a finite set of constants
e 7: C — T(A) maps each constant to its type (built up over
Ain the standard way)

Example

Let X1 = (A¢, Cy, 1), Where Ay = {z}, Cy = {a, b, f}, such that
71(f) =2z — z — z,and 7y(a) = 71(b) = z. Then all linear
lambda terms of type z are trees over {f(®), a(®) p(0)}.

Example

Let X5 = (As, Co, m2), Where Ay = {x}, and C, = {a, b}, where
12(€) = x — * for all ¢ € C. Then the set of linear terms over ¥,
are ‘strings’ of the form

| A\

AX.W(X)

Representing Late Adjunction in MGs
[e]e] lelelele]e)

Abstract Categorial Grammars — Lexicon

@ Given two vocabularies X 4,5, alexicon £ : X1 — Yo
interprets ¥ ¢ inside of ¥ in the following manner:
e each atomic type of ¥4 is interpreted as a linear implicative
type in X,
e each constant in ¥4 is interpreted as a linear A-term in X,
whose type is gotten from the type of the constant in £ by
replacing atomic types by their interpretations in ¥,

Example

Interpreting the type z as the type 2, the constant f as the
lambda term Au, v, x.u(v(x)) of type x> — x> — 2, and the
constants a and b as Ax.a(x) and Ax.b(x) of type +?, a lambda
term in ¥4 is interpreted as a term in X,

f(a, f(b, b)) ~ Ax.a(b(b(x)))

Representing Late Adjunction in MGs
[e]e]e] lelelele)

MGs in ACGs

@ We take as atomic types Ag := S
@ the constants are as before

@ The linear lambda terms of atomic type are just the
derivation trees of expressions of that type.

We want to take as our object vocabulary something with tuples
(of trees or strings).

@ (c€):
Aw.w(Ax.x)(Ax.X)

° (x,y) — (ay,bx):
MAw.f(Axy.w(Az.ayz)(A\z.bxz))

| will ignore this here.

Representing Late Adjunction in MGs
[e]e]e]e] Telele)

Adding Late Adjunction

@ We could represent an adjunction site as a variable of type
a—a

merge(Y(merge(kiss)(Mary)))(John))

@ A simple adjunct, whose syntactic category is (=x,e,...,¢€)
(like ‘yesterday’), can’t be given directly to the function
below (because this -reduces to the ‘normal’ adjunction
order)

AY.merge(Y(merge(kiss)(Mary)))(John))

@ Instead we need to ‘type raise’ the adjunct: it takes
functions of type (a — a) — ainto objects of type a

Representing Late Adjunction in MGs
00000800

Adding Late Adjunction

@ This doesn’t work for adjuncts with moving pieces; the
moving pieces must be added to the type of the resulting
expression. A general solution assigns a fourth order type
to adjuncts (here s = (~xdp, d1, ..., k) is the syntactic
category of the adjunct)

(a—a)—a)—ads’
@ then we would have terms like
yesterday(\Y.merge(Y (merge(kiss)(Mary)))(John))

@ We could interpret an adjunct « as the following string

operation of type ((x2 — %2) — %2) — *2:

APy P(AY,2.y ™ /a/)

Representing Late Adjunction in MGs
00000080

From 4! order to 3" order

@ the type ((aa)a)d is of order 4
What we are doing is allowing the ‘adjunct’ to be a context

But the adjunct only ever is pronounced on one side of its
argument

Thus we should be able to treat ‘adjuncts’ as terms

we take a new set of types (va)aca (for ‘variables’ of type a)
and the new family of constants adj: v — a— a

Then we have terms like:

Ax.merge(adj(x)((merge(kiss)(Mary)))(John)))

oftype v — b
@ an adjunct can then have the third-order type
(va — b) — b@® s¥, and the interpretation:

)\P*z*z.P(/Oé/)

Representing Late Adjunction in MGs
0000000

Problem

@ Knowing that MGs with Late Adjunction can be
represented in ACG(3) doesn’t help us much:
o ACG(3) contains NP-complete as well as non-semilinear
string languages
(Yoshinaka & Kanazawa)

Representing Late Adjunction in MGs
9000000000000

Outline

e Representing Late Adjunction in MGs

@ Via MSOTT With One Free Relation Variable

Representing Late Adjunction in MGs
0000000000000

MSO Logic

@ Quantification over nodes (x) and sets of nodes (X)
@ atomic statements:
e X=y
xeX
lab,(x) (the label of node x is «)
edge;(x, y) (v is the i daughter of x)

Representing Late Adjunction in MGs
00e0000000000

MSO-definable Transduction

The idea:

You make k copies of the original nodes, decide which ones

you will keep (by giving them labels), and which edges to draw
between the nodes you kept.

Definition:
A MSO graph transducer is a triple (k, ¥, X), where
@ k € N is the number of copies of each node,

| \

Representing Late Adjunction in MGs

MSO-definable Transduction

0O0@0000000000

The idea:

You make k copies of the original nodes, decide which ones

you will keep (by giving them labels), and which edges to draw
between the nodes you kept.

Definition:
A MSO graph transducer is a triple (k, ¥, X), where
@ k € N is the number of copies of each node,

°oV= {yl(x): o € X,i <k} is the set of node formulae
Yl (x) iff the i copy of x exists and has label &

Representing Late Adjunction in MGs

MSO-definable Transduction

0O0@0000000000

The idea:

You make k copies of the original nodes, decide which ones

you will keep (by giving them labels), and which edges to draw
between the nodes you kept.

Definition:
A MSO graph transducer is a triple (k, ¥, X), where
@ k € N is the number of copies of each node,
@ V= {yl(x):0¢€X, i<k} isthe set of node formulae
Yl (x) iff the i copy of x exists and has label &

@ X ={xj(x,y): n< max({rank(c) : 0 € £}),i,j < k} is
the set of edge formulae
xi(x, y) iff the j copy of y is the n' daughter of the
copy of x

Representing Late Adjunction in MGs

MSO-definable Transduction

The function induced by a MSO transducer (k, W, X)

Given input g; = (V4, Eq,laby), the output is the graph
(V, E,lab) such that:

o V:={u:ue Vy3Ia gy,ul= P (x)}

@ lab(u;) is the unique a such that g, u = v/ (x)

° E = {(uiana Vj> V/A/ES V’/\ g, u,v IZ X’r;j(xv.y)}
@ (uj, n,v;) is the edge from u; to v; labelled n

Representing Late Adjunction in MGs
0000800000000

A simple example — the yield of a tree

@ We only need one copy of each node (i.e. we can interpret
the yield of a tree inside the tree itself)

@ We interpret the root as the leaf:
¥§(X) = root(x)
@ Leaves keep their labels:
Pl (x) = leaf(x) A lab,(x)

@ Edges are drawn from one leaf to the next, and from the
last leaf to the root:

X}J (x,y) =(rightmost-leaf(y, x) A root(y))
V adjacent-leaves(X, ¥)

Representing Late Adjunction in MGs
0000080000000

MSOTT and Minimalist Grammars

e MSOTT(REGT) = Tr(HR)
® MSOTTy,(REGT) c MSOTT(REGT)
o T(REGT) = MSOTT,,(REGT)

e MG C Ti(REGT)

@ Therefore, we have that for every MG G, there is a
(direction preserving) MSO transducer Tg such that on
every term t over G, valg(t) = Tg(t)

Representing Late Adjunction in MGs
0000008000000

Transducing Late Adjunction

@ Two main problems:

@ choosing one of the possible adjunction sites
@ putting the late adjoined material there

@ Clearly:

if no phonological material is ever adjoined, the mapping from
MG derivation trees with late adjunction to the derived string is
MSOTTyj,.

This can happen if, for every derivable expression of the form
t%x’

@ eithert=s7"?

e ort=C[t",...,t, 7], and yield(Cle,...,€]) = e

In this case we can simply avoid solving these problems!

@ For the general case, let’s look at each of these separately,
beginning with the second one.

Representing Late Adjunction in MGs
0000000800000

Moving subtrees ‘down’

@ Consider trees over the signature {e(® o) &) a0}
such that
e each tree has exactly one node with label &
e each tree has exactly one node with label o
e the node labelled @ is contained within the first daughter of
the node labelled o
@ Given atree Clo(D[®(t,)], t')], we want to transduce it
into the tree C[D[e(t;, (1o, t'))]]
@ This is like putting a late adjunct into its chosen position.
@ Clearly, this is not realizable by a direction preserving MSO
transduction.

Representing Late Adjunction in MGs
0000000 0e0000

A MSO transduction for moving subtrees down

Keep the original nodes
@ 9(x) = —leaf(x)
Internal nodes are labelled with ‘e’
@ 9(x) = leaf(x)

Leaves are labelled ‘a’

Representing Late Adjunction in MGs
0000000008000

A MSO transduction for moving subtrees down

Clo1(D[®2(g, r)]; 8)] ~ C[D[e2(q, #1(r.)]l

@ The parent of o should instead be connected to its left
daughter.

@ The node o should be the second daughter of the node
labelled &

@ The node o should have as its first daughter the second
daughter of the node labelled &

@ All other edges are the same

Representing Late Adjunction in MGs
0000000008000

A MSO transduction for moving subtrees down

Cle1(D[®2(g; r)], 8)] ~» C[Dle2(q; #1(r, 5))]]

@ The parent of o should instead be connected to its left
daughter.

@ The node o should be the second daughter of the node
labelled &

@ The node o should have as its first daughter the second
daughter of the node labelled &

@ All other edges are the same

® x5°(x,y) =y, x # o A edgeq(x,)
Vv edge(x, o) A edgey(o, y)
V X = o A edge,(d, y)

Representing Late Adjunction in MGs
0000000008000

A MSO transduction for moving subtrees down

Cle1(D[®2(g; r)], 8)] ~» C[Dle2(q; #1(r, 5))]]

@ The parent of o should instead be connected to its left
daughter.

@ The node o should be the second daughter of the node
labelled &

@ The node o should have as its first daughter the second
daughter of the node labelled &

@ All other edges are the same

® x70(x,y) = X,y # o, & A edge;(x,y)
VX=@ANYy=o
v edge(X7 O) N edgeO(oa y)

Representing Late Adjunction in MGs
0000000000800

Generalizing to arbitrarily many subtrees

@ Assume that we know which subtree should be adjoined
where (R)
e This relation should respect dominance (if xRy then x
should dominate y)
e This relation should be defined only on nodes labelled o
e This relation should be an injective function!
(multiple adjunction to the same XP is treated instead as
adjunction to the unique adjunct (to the unique adjunct .. .)
adjoining to XP)
@ Then we can simply replace talk of o and @ with talk of x
and y such that xRy

@ Adding R to our trees essentially gives us a DAG where
nodes have at most two parents.

Representing Late Adjunction in MGs
0000000000080

Representing R in a tree

@ We can code R into our trees, preserving regularity:

e introduce a new symbol @

@ ® can be a child of ® or of adjoin

e at an adjoin node, the length of the ® string it dominates
indicates which of the possible adjunction sites it adjoins to
(if there aren’t enough adjunction sites, take the last one).

@ However, MSO cannot ‘walk’ simultaneously along two
branches (otherwise it could define isomorphic(-, -))

@ We could do this in FOL-DTC(2)...
@ ...but we don’t have a characterization of the FOL-DTC(2)
definable tree transductions
e On the automaton side, FOL-DTC(/) corresponds to pebble
automata with i heads
e single headed pebble tree to tree transducers with k _
pebbles correspond to k + 1 MTTs (Engelfriet & Maneth)

Representing Late Adjunction in MGs
000000000000 e

Taking Stock

@ The substitution required by late adjunction is easy to do. ..
@ jfwe know where to do it!

@ Naively encoding this information into the tree is not
MSO-usable,. ..

@ and one logic that can deal with it seems like it would be
beyond the |O-hierarchy!

Conclusion

Conclusion

@ Late operations are formally natural
@ ...and linguists like them

@ Adding late adjunction to MGs, we see that the relation
between parse trees and derived tree is not an MSOTT.

@ But if we include information about where each late
adjoined element is supposed to appear, we have an MSO
definable graph to tree transduction.

@ Courcelle has shown that every MSO transduction on a
graph of bounded treewidth results in a language of some
hyperedge replacement grammar. Do the graphs we are
using here have bounded treewidth? If yes, then

@ as our transduction gives trees,
e and the sets of yields of CFHG definable sets of trees are

always MCFLs 3y
e MGs with late adjunction would be MCFL

Conclusion

Thank you!

	On Late Operations
	Montague Grammar
	TAGs

	Minimalist Grammars
	Basic Definitions and Properties
	Late Adjunction

	Representing Late Adjunction in MGs
	Via 3rd Order ACGs
	Via MSOTT With One Free Relation Variable

	Conclusion

