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The Big Picture

The Question:
What happens when late adjunction is added to Minimalist
Grammars?

The (Short) Answer:
Not sure, but:

still semi-linear
describable by 3rd order ACGs
tree relation definable in MSO, with some extra information
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The idea behind ‘late’ operations

The problem:
Sometimes we have semantic ambiguity without any obvious
corresponding difference in the derivation tree.

The idea:
Enrich the derivation tree with information about order.
(not only did I apply this rule, but I applied this rule before that
one)
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Frameworks which have ‘late’ operations

Montague Grammar
(Montague)

‘Cosubstitution’ in TAGs
(Barker)

Minimalist Grammars
(Gärtner & Michaelis;Kobele)
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Syntax
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An Example - De Re vs De Dicto Readings

John seeks a unicorn.

De Re
There is a particular unicorn that John is looking for.
∃y [UNICORN(y) & TRY(FIND(y))(J)]

De Dicto
John will be satisfied with any unicorn.
TRY(∃y [UNICORN(y) & FIND(y)])(J)

Can be represented in terms of operator scope:

x seeks y
TRY(FIND(y))(x)
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Derivations for De Re vs De Dicto Readings
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Tree Adjoining Grammars

A TAG consists of
initial trees a finite set of trees with leaves labelled with

either terminals or with X↓, where X is a
non-terminal symbol

auxiliary trees as before, but with exactly one leaf node
labelled with X∗, where X is the label of the
root
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Tree Adjoining Grammars - Substitution

Substitute (1st Order Substitution)

the auxiliary tree projected by with, and then ad-
join the derived tree with no one at the VP node
dominating left. But we might just as well adjoin
the incomplete auxiliary tree first, resulting in the
(still incomplete) tree in (1b). The point of interest
is that this derivational constituent corresponds in a
natural way to the nuclear scope of no one: just ab-
stract over the substitution location to get the prop-
erty λx.John-left-with x.

Thus the reason that managing scope in TAG is a
challenge is that quantifiers and their scope domain
are not local in the usual TAG sense. That is, it is
not possible to factor out recursion in such a way
that the quantifier and its scope are safely included
within a single elementary tree. For instance, in (1),
the quantifier never shares an elementary tree with
the S node it take scope over.

Yet although quantifiers and their scope are not
elementary-tree local, quantifiers and their scope are
never discontinuous. At the end of a derivation, if
we shade in the portion of the tree that corresponds
to the material a quantifier takes scope over, it will
always be a contiguous portion of the tree, and in ad-
dition, it will also immediately dominate (in general,
surround) the quantifier.

Making sense out of the derivational approach
considered here requires rethinking the tree-merging
operation that combines the quantificational DP no
one with its nuclear scope. Instead of regarding the
quantifier DP as plugging a hole in the argument
structure of with, we would like to reverse the roles,
and think of the incomplete tree in (1b) as the se-
mantic argument of the quantifier. Call this desired
operation COSUBSTITUTION (details below).

If we allow cosubstitution as a basic TAG op-
eration, we recognize quantificational scope as
an example of a different kind of local depen-
dency, namely, the dependence of a functor on its
(co)substitution argument. The result is that we
need to recognize two kinds of locality: struc-
tural locality, i.e., sharing the same elementary tree,
and derivational locality, participating in the same
derivational step.

The late substitution contemplated in (1) would
not be innocent in a Multi-Component TAG. Allow-
ing one component of a tree set to substitute into the
lower DP position in (1) at the same time that an-
other element (think: the scope-taking part) adjoins

into the original initial tree is non-local, and allow-
ing such non-local operations in MC-TAG increases
its generative capacity. Therefore it’s important that
I’m considering ordinary TAG here, not MC-TAG.
In some sense, of course, all analyses of quantifier
scope are an attempt to simulate just this kind of
non-local operation, as discussed further below.

Treating scope-taking as cosubstitution is a ver-
sion of the continuation-based approaches to scope-
taking of Barker 2002, de Groote 2001, and Bernardi
and Moortgat 2010, among others. A continuation is
(a portion of) the computational future of an expres-
sion. In (1), the computational future of the quan-
tifier no one is that it will serve as the argument of
the preposition with, and the result of that computa-
tion will serve to modify the verb phrase left, and so
on. The central insight I’m aiming for in this paper
is that in TAG, the computational future of a DP can
be viewed as the same thing as its derivational past.

2 Preliminaries

2.1 Syntax

A Tree Adjoining Grammar is a finite set of elemen-
tary trees closed under two derivational operations:
substitution and adjunction.

Elementary trees are finite ordered labeled trees.
Nonterminals on the frontier of an elementary tree
are substitution targets, and are decorated with a
downarrow. Some elementary trees have a dis-
tinguished node on their frontiers called the FOOT

(marked with a star) that match the root node in syn-
tactic category. Such trees are auxiliary trees, and
participate in adjunction.
Substitution: Nodes with downarrows on their la-
bels can be replaced via substitution with any non-
auxiliary tree whose root node has a matching label.
The substitution operation amounts to replacing the
target node with the root of the substitution tree.

(2) DP

John

+ S

DP↓ VP

left

= S

DP

John

VP

left
Adjunction: Interior nodes whose labels match the
root label of an auxiliary tree can be adjunction tar-
gets. Adjunction is accomplished by replacing the
adjunction target node with the root of the auxiliary
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Tree Adjoining Grammars - Adjunction

Adjoin (2nd Order Substitution)
tree, at the same time that the foot of the adjunction
tree is replaced by the subtree rooted in the adjunc-
tion target node. In effect, the auxiliary tree is in-
serted into the tree at the adjunction target node.
(3)

S

DP

John

VP

left

+ VP

quietly VP*

= S

DP

John

VP

quietly VP

left
This is the familiar TAG story, simple and elegant.
Technical details are available in may places, e.g.,
Joshi and Schabes 1997.

2.2 Semantics

I will use a Synchronous TAG (Shieber and Schabes
1990) to specify semantic representations. Instead
of elementary trees, STAG uses pairs of elementary
trees connected by a linking relation. Any operation
targeting a node in the left element of a pair must be
matched by a parallel operation targeting the linked
node in the right element of the pair.

In general, then, STAG is a tree transduction sys-
tem. Here, as in Nesson and Shieber 2006, each pair
will be interpreted as the syntax and the correspond-
ing semantics for an expression. The syntactic com-
ponent will use syntactic categories for labels, and
the semantic component will use semantic types for
labels.

So for [syntax, semantics] pairs we might have:

(4)




DP

John
,
e

j







VP

quietly VP*
,

�e,t�

quietly �e,t�







S

DP↓ VP

left

,

t

�e,t�

left

e







S

DP

John

VP

quietly VP

left

,

t

�e,t�

quietly �e,t�

left

e

j




Not much happens in this transduction, except that
the compositional order of the VP and the sub-

ject are reversed to conform to the conventions
for function/argument order in the lambda calcu-
lus. Throughout the paper, I’ve left the linking re-
lation between syntactic nodes and semantic nodes
implicit, since the intended relation is particularly
simple and, I hope, obvious.

3 Cosubstitution

The basic idea of using cosubstitution to handle
scope is that we can build the nuclear scope of a
quantifier before the quantifier enters the derivation.

In the normal substitution case, we have a tree
t1 containing a substitution target, that is, a node x
whose label B is decorated with a downarrow. We
also have a separate tree t2 whose root r has a match-
ing label, B. We replace x with r, and the tree rooted
in r becomes a subtree of t1 (first column of (5)).

In cosubstitution, we reverse the roles: now t2
contains the (co)substitution target, (which can only
be) the root node r. In recognition that the root is
now a cosubstitution target, we annotate its label
with an uparrow. As long as t1 contains a frontier
node x with a matching label (matching except that
it is still decorated with a downarrow rather than an
uparrow), cosubstitution may occur. Conceptually,
we replace (only!) the target node r with x, and
the tree footed in x becomes a supertree of t2. (So
the operation probably should be called “superstitu-
tion”.)
(5)
Substitution: Cosubstitution:


A

B↓
,

A

B







A

B↓
,

A

B





 B

,
B







B↑
,

B↑






A

B ,

A

B







A

B ,

A

B↑ �B, A�

λ B

x

A

B

x



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Facts About Tree Adjoining Grammar

Strongly equivalent to monadic linear CFTGs
(Fujiyoshi & Kasai; Mönnich; Kepser & Rogers)

Weakly equivalent to 2-MCFLwn
(Kanazawa)

Derivation trees are terms over the set of lexical items
for each lexical item `, enumerate its substitution and
adoinable nodes (for each `, there will be a finite number n`
of such)
the rank of a lexical item ` is n`
(This is just an inside-out derivation.)
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Barker’s Innovation:
Unrestricted Derivation and Scope

Fact
Linear CFTGs derive the same tree languages under all (IO,
OI, unrestricted) derivation modes.

Barker:
Γ scopes over ∆ iff

1 Γ was substituted in after ∆ was, or
2 Γ was substituted in after a tree containing ∆ was
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Minimalist Grammars

A minimalist grammar is given by a 4-tuple 〈V ,Cat ,Lex ,F〉
where

V is a finite set of vocabulary items
Cat is a finite set of features which have the following
forms:

x is a selectee (or categorial) feature
=x is a selector feature
-x is a licensee (or movement) feature
+x is an movement triggering feature

Lex ⊂ V ∗ × Cat∗ is a finite set of lexical items ` = 〈v , δ〉,
which are pairs of sequences of vocabulary items v , and
sequences of features δ
F = {move,merge} is the set of generating functions

move is a unary operation, which takes a single expression
and rearranges its parts
merge is a binary operation, which takes two expressions
and puts them together
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Trees

The domains of our generating functions will be trees
where

internal nodes are binary branching and labelled with either
< or >, and whose
leaves are labelled with pairs 〈σ, δ〉 of vocabulary item
sequences σ and feature sequences δ
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Notation and Definitions

The head of an expression t is
t itself, if it is a leaf
the head of t1, if t = <(t1, t2)
the head of t2, if t = >(t1, t2)
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Feature Checking

The leaves of our trees contain sequences of features.
These features determine which operations can apply.
Once an operation applies, the features which allowed it
are deleted.
We can think of the grammatical operations as ‘trying’ to
remove features from trees – well-formed expressions of a
particular category x will be those without any remaining
features except that the head has the single feature x
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More Notation and Definitions

Given t , we write t f to denote the result of adding f as the
first feature on the head of t :

if the head of t is 〈σ, δ〉, then t f is the tree just like t except
that its head is 〈σ, f δ〉

t displays feature f , if the head of t is 〈σ, f δ〉
t f displays feature f

Deleting the first feature of t f gives us t
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Merge

〈t , t ′〉 ∈ dom(merge) iff
t = t=x1 and t ′ = tx2

merge(t=x1 , tx2 ) =

<

t1 t2
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Some More Notation and Definitions

A subtree t ′ of a tree t is a maximal projection iff t ′ does
not project over its sister (if it has one)
A particular occurrence of a subtree r in tree t is written
t = t ′[r ]

The result of replacing a particular occurrence of subtree r
with s in t [r ] is written t [s]

I write ε for the empty leaf 〈ε, ε〉
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Move

t+x ∈ dom(move) iff
there is an occurrence of t-x2 in t+x (t = t1[t-x2 ])
t-x2 is a maximal projection in t1[t-x2 ]

We require in addition that:
(SMC) there is exactly one occurrence of a maximal

projection displaying -x in t+x

move(t1[t-x2 ]+x) =

>

t2 t1[ε]
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move

move(t1[t-x2 ]+x) =

>

t2 t1[ε]

(i) 〈a,=x +y z〉
(ii) 〈b,=w x〉
(iii) 〈c,w -y〉

1 merge(ii,iii)
2 merge(i,1)
3 move(2)
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move

move(t1[t-x2 ]+x) =

>

t2 t1[ε]

(i) 〈a,=x +y z〉
(ii) 〈b,=w x〉
(iii) 〈c,w -y〉

1 merge(ii,iii)
2 merge(i,1)
3 move(2)

<

〈b, x〉 〈c, -y〉
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move

move(t1[t-x2 ]+x) =

>

t2 t1[ε]

(i) 〈a,=x +y z〉
(ii) 〈b,=w x〉
(iii) 〈c,w -y〉

1 merge(ii,iii)
2 merge(i,1)
3 move(2)

<

〈a, +y z〉 <

〈b, ε〉 〈c, -y〉
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move

move(t1[t-x2 ]+x) =

>

t2 t1[ε]
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(ii) 〈b,=w x〉
(iii) 〈c,w -y〉

1 merge(ii,iii)
2 merge(i,1)
3 move(2)

>

〈c, ε〉 <

〈a, z〉 <

〈b, ε〉 ε
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The SMC

Having the SMC puts an upper bound on the number of
moving pieces that an expression that could possibly
converge can have:

if there are k licensee feature types, and you cannot have
two expressions displaying the same feature at once, then
at any given time you can have at most k moving pieces
(one displaying each feature type)

This allows us to represent a minimalist expression as a
(k+1)-tuple of trees.

each of these trees only has features at its head
we can describe move and merge in these terms:

t+x, t1, . . . , t-xn , . . .

>(tn, t), t1, . . .
moveA

t+x, t1, . . . , t-xf
n , . . .

>(ε, t), t1, . . . , t f
n, . . .

moveB
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Factoring apart categories and strings

Our current data structure is a sequence φ0, . . . , φn of
length up to k + 1 of pairs 〈w , δ〉 that has the following
property:

for i 6= j the first feature of δi is different from the
first feature of δj

Let’s factor out the syntactic information in such a
sequence, and call this a category:

〈δ0, . . . , δn〉
There are only a finite number of relevant categories!

(Michaelis)
They are (a subset of) the k+1-tuples of suffixes of lexical
feature sequences:

suf(Cat) := {δ : 〈σ, γδ〉 ∈ Lex}
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MGs as Algebras

We can recast MGs in an algebraic setting by:
1 Taking as sorts
S := {〈δ0, δ1, . . . , δk 〉 : δi ∈ suf(Cat) & δi = ε ∨ -xiδ

′
i }

2 Taking as operators
moves, of type s → sX

for all s = 〈+xδ0, . . . ,-xδi , . . .〉
merges,s′ , of type s → s′ → sX ⊕ s′X

for all s = 〈=xδ0, . . .〉, s′ = xδ′
0, . . .〉

` = 〈w , δ〉 of sort 〈δ, ε, . . . , ε〉 for each ` ∈ Lex

Here:
〈=xδ0, . . .〉X = 〈xδ0, . . .〉X = 〈δ0, . . .〉
〈+xδ0, . . . ,-xδi , . . .〉X := 〈δ0, . . . ,uk , . . . ,ui , . . . , δk 〉, where

uk = δi and ui = ε if δi = -xkδ and δk = ε
uk = δk and ui = ε otherwise

s ⊕ s′ = 〈s0, δ1, . . . , δk 〉, where
if s′

0 = -xiδ then si = s′
i = ε and δi = s′

0
otherwise sj = ε iff δj = s′

j
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Adjuncts

An adjunct is typically:
an optional element
iterable

Example
Modifying PPs:

John hit the wall.
John hit the wall with a hammer.
John hit the wall in anger.
John hit the wall with a hammer in anger.
John hit the wall in anger with a hammer.

...
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Analyzing Adjuncts (Frey & Gärtner)

introduce a new feature type: ≈x

adjoin(tx1 , t
≈x
2 ) =

<

tx1 t2

algebraically, we add a new family of operators

adjoins,s′

of type s → s′ → s ⊕ s′X, where s0 = xδ0, and s′0 = ≈xδ′0
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Motivating Late Adjunction

Condition C
A pronoun cannot c-command its antecedent.

Johni thinks that Mary likes himi .
*Hei thinks that Mary likes Johni .

Condition C must hold at every level of representation
*Hei denied the rumor that Johni had cheated.
*Which rumor that Johni had cheated did hei deny?

A puzzle
*Hei denied the rumor that Johni started.
Which rumor that Johni started did hei deny?
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A Solution: Late Adjunction

Example
*Which rumor that Johni had cheated did hei deny?
Which rumor that Johni started did hei deny?

A difference
rumor [that John had cheated] that John had cheated is
the content of the rumor (an essential property)

(An argument of the noun)
rumor [that John started] that John started is an
accidental property of the rumor

(An adjunct to the noun)

Lebeaux’s proposal
Adjuncts can be inserted at any time.
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Two derivations for which rumor that John started

Adjoin early; violate Condition C
1 [which rumor] + [that John started] (adjoin)
2 deny + [which rumor [that John started]]
3 [he] + [did deny which rumor [that John started]]

Adjoin late; no violation
1 deny + [which rumor]
2 [he] + [did deny which rumor]
3 [[which rumor] did he deny]
4 [[which rumor [that John started]] did he deny] (adjoin)
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Late Adjunction, Formally

We want to generalize the adjoin operation such that, if it
could have applied to a term t , then it can (now) apply to
any term t ′ = C[t ] containing t as a part.
Note that, if it could have applied to t and to s, and
t ′ = D[t , s], then the result of adjoining to t ′ is
nondeterministic.
To indicate that adjunction could have applied to a phrase
(and thus that it still can, retroactively), we extend the label
set of internal nodes to include <x, and >x, for each
category feature x.
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Defining Late Adjunction

We redefine merge so as to allow us to keep track of what
category features were used.

merge(t=x1 , tx2 ) =

<x

t1 t2

Then adjoin inserts the adjunct inside a structure at an
appropriate maximal projection.

adjoin(C[<x(t , t1)], t≈x2 )→

C[

<x

t <

t1 t2

]
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The Late Adjunction Algebra

We take as sorts S := {〈〈δ0, δ1, . . . , δk 〉,C〉 : δi ∈ suf(Cat) &
δi = ε ∨ -xiδ

′
i & C ⊆ Cat}

Taking as operators
moves, of type s → sX

merges,s′ , of type s → s′ → sX ⊕x s′X

adjoins,s′ of type s → s′ → s ⊕ s′X

` = 〈w , δ〉 of sort 〈〈δ, ε, . . . , ε〉, ∅〉 for each ` ∈ Lex

where 〈s,C〉 ⊕x 〈s′,C′〉 = 〈s ⊕ s′,C ∪ C′ ∪ {x}〉

Note that this is semi-linear; these operators have the same
interpretation in the Parikh domain as the previous ones.
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Abstract Categorial Grammars – Vocabulary

A Vocabulary is a triple Σ = 〈A,C, τ〉, where
A is a finite set of types
C is a finite set of constants
τ : C → T (A) maps each constant to its type (built up over
A in the standard way)

Example

Let Σ1 = 〈A1,C1, τ1〉, where A1 = {z}, C1 = {a,b, f}, such that
τ1(f ) = z → z → z, and τ1(a) = τ1(b) = z. Then all linear
lambda terms of type z are trees over {f (2),a(0),b(0)}.

Example

Let Σ2 = 〈A2,C2, τ2〉, where A2 = {?}, and C2 = {a,b}, where
τ2(c) = ?→ ? for all c ∈ C. Then the set of linear terms over Σ2
are ‘strings’ of the form

λx .w(x)
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Abstract Categorial Grammars – Lexicon

Given two vocabularies Σ1,Σ2, a lexicon L : Σ1 → Σ2
interprets Σ1 inside of Σ2 in the following manner:

each atomic type of Σ1 is interpreted as a linear implicative
type in Σ2
each constant in Σ1 is interpreted as a linear λ-term in Σ2
whose type is gotten from the type of the constant in Σ1 by
replacing atomic types by their interpretations in Σ2

Example

Interpreting the type z as the type ?2, the constant f as the
lambda term λu, v , x .u(v(x)) of type ?2 → ?2 → ?2, and the
constants a and b as λx .a(x) and λx .b(x) of type ?2, a lambda
term in Σ1 is interpreted as a term in Σ2

f (a, f (b,b)) λx .a(b(b(x)))
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MGs in ACGs

We take as atomic types AG := S
the constants are as before
The linear lambda terms of atomic type are just the
derivation trees of expressions of that type.

Note:
We want to take as our object vocabulary something with tuples
(of trees or strings).

〈ε, ε〉 :
λw .w(λx .x)(λx .x)

〈x , y〉 7→ 〈ay ,bx〉 :

λf .λw .f (λxy .w(λz.ayz)(λz.bxz))

I will ignore this here.
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Adding Late Adjunction

We could represent an adjunction site as a variable of type
a→ a

merge(Y (merge(kiss)(Mary)))(John))

A simple adjunct, whose syntactic category is 〈≈x, ε, . . . , ε〉
(like ‘yesterday’), can’t be given directly to the function
below (because this β-reduces to the ‘normal’ adjunction
order)

λY .merge(Y (merge(kiss)(Mary)))(John))

Instead we need to ‘type raise’ the adjunct: it takes
functions of type (a→ a)→ a into objects of type a
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Adding Late Adjunction

This doesn’t work for adjuncts with moving pieces; the
moving pieces must be added to the type of the resulting
expression. A general solution assigns a fourth order type
to adjuncts (here s = 〈≈xδ0, δ1, . . . , δk 〉 is the syntactic
category of the adjunct)

((a→ a)→ a)→ a⊕ sX

then we would have terms like

yesterday(λY .merge(Y (merge(kiss)(Mary)))(John))

We could interpret an adjunct α as the following string
operation of type ((?2 → ?2)→ ?2)→ ?2:

λP(?2?2)?2 .P(λy?2 .y_/α/)
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From 4th order to 3rd order

the type ((aa)a)a′ is of order 4
What we are doing is allowing the ‘adjunct’ to be a context
But the adjunct only ever is pronounced on one side of its
argument
Thus we should be able to treat ‘adjuncts’ as terms
we take a new set of types (va)a∈A (for ‘variables’ of type a)
and the new family of constants adj : va → a→ a
Then we have terms like:

λx .merge(adj(x)((merge(kiss)(Mary)))(John)))

of type va → b
an adjunct can then have the third-order type
(va → b)→ b ⊕ sX, and the interpretation:

λP?2?2 .P(/α/)
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Problem

Knowing that MGs with Late Adjunction can be
represented in ACG(3) doesn’t help us much:

ACG(3) contains NP-complete as well as non-semilinear
string languages

(Yoshinaka & Kanazawa)
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MSO Logic

Quantification over nodes (x) and sets of nodes (X )
atomic statements:

x = y
x ∈ X
labα(x) (the label of node x is α)
edgei (x , y) (y is the i th daughter of x)
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MSO-definable Transduction

The idea:
You make k copies of the original nodes, decide which ones
you will keep (by giving them labels), and which edges to draw
between the nodes you kept.

Definition:
A MSO graph transducer is a triple 〈k ,Ψ,X 〉, where

k ∈ N is the number of copies of each node,
Ψ = {ψi

σ(x) : σ ∈ Σ, i ≤ k} is the set of node formulae
ψi
σ(x) iff the i th copy of x exists and has label σ

X = {χi,j
n (x , y) : n ≤ max({rank(σ) : σ ∈ Σ}), i , j ≤ k} is

the set of edge formulae
χi,j

n (x , y) iff the j th copy of y is the nth daughter of the i th

copy of x
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MSO-definable Transduction

The function induced by a MSO transducer 〈k ,Ψ,X 〉
Given input g1 = 〈V1,E1, lab1〉, the output is the graph
〈V ,E , lab〉 such that:

V := {ui : u ∈ V1,∃!α. g1,u |= ψi
α(x)}

lab(ui) is the unique α such that g,u |= ψi
α(x)

E := {〈ui ,n, vj〉 : ui , vj ∈ V ,∧ g1,u, v |= χi,j
n (x , y)}

〈ui ,n, vj〉 is the edge from ui to vj labelled n
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A simple example – the yield of a tree

We only need one copy of each node (i.e. we can interpret
the yield of a tree inside the tree itself)
We interpret the root as the leaf:

ψ1
e(x) = root(x)

Leaves keep their labels:

ψ1
α(x) = leaf(x) ∧ labα(x)

Edges are drawn from one leaf to the next, and from the
last leaf to the root:

χ1,1
1 (x , y) =(rightmost-leaf(y , x) ∧ root(y))

∨ adjacent-leaves(x , y)
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MSOTT and Minimalist Grammars

MSOTT (REGT ) = Tr(HR)

MSOTTdir (REGT ) ⊂ MSOTT (REGT )

Tfc(REGT ) = MSOTTdir (REGT )

MG ⊂ Tfc(REGT )

Therefore, we have that for every MG G, there is a
(direction preserving) MSO transducer TG such that on
every term t over G, valG(t) = TG(t)
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Transducing Late Adjunction

Two main problems:
1 choosing one of the possible adjunction sites
2 putting the late adjoined material there

Clearly:

if no phonological material is ever adjoined, the mapping from
MG derivation trees with late adjunction to the derived string is
MSOTTdir .
This can happen if, for every derivable expression of the form
t≈x,

either t = s-y

or t = C[t-y11 , . . . , t-ykk ], and yield(C[e, . . . ,e]) = e

In this case we can simply avoid solving these problems!
For the general case, let’s look at each of these separately,
beginning with the second one.
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Moving subtrees ‘down’

Consider trees over the signature {•(2), ◦(2),⊕(2),a(0)}
such that

each tree has exactly one node with label ⊕
each tree has exactly one node with label ◦
the node labelled ⊕ is contained within the first daughter of
the node labelled ◦

Given a tree C[◦(D[⊕(t1, t2)], t ′)], we want to transduce it
into the tree C[D[•(t1, •(t2, t ′))]]

This is like putting a late adjunct into its chosen position.
Clearly, this is not realizable by a direction preserving MSO
transduction.
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A MSO transduction for moving subtrees down

Keep the original nodes

ψ0
•(x) = ¬leaf(x)

Internal nodes are labelled with ‘•’

ψ0
a(x) = leaf(x)

Leaves are labelled ‘a’
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A MSO transduction for moving subtrees down

C[◦1(D[⊕2(q, r)], s)] C[D[•2(q, •1(r , s))]]

Positioning ◦
The parent of ◦ should instead be connected to its left
daughter.
The node ◦ should be the second daughter of the node
labelled ⊕
The node ◦ should have as its first daughter the second
daughter of the node labelled ⊕
All other edges are the same
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A MSO transduction for moving subtrees down

C[◦1(D[⊕2(q, r)], s)] C[D[•2(q, •1(r , s))]]

Positioning ◦
The parent of ◦ should instead be connected to its left
daughter.
The node ◦ should be the second daughter of the node
labelled ⊕
The node ◦ should have as its first daughter the second
daughter of the node labelled ⊕
All other edges are the same
χ0,0

0 (x , y) = y , x 6= ◦ ∧ edge0(x , y)
∨ edge(x , ◦) ∧ edge0(◦, y)
∨ x = ◦ ∧ edge2(⊕, y)
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A MSO transduction for moving subtrees down

C[◦1(D[⊕2(q, r)], s)] C[D[•2(q, •1(r , s))]]

Positioning ◦
The parent of ◦ should instead be connected to its left
daughter.
The node ◦ should be the second daughter of the node
labelled ⊕
The node ◦ should have as its first daughter the second
daughter of the node labelled ⊕
All other edges are the same
χ0,0

1 (x , y) = x , y 6= ◦,⊕ ∧ edge1(x , y)
∨ x = ⊕ ∧ y = ◦
∨ edge(x , ◦) ∧ edge0(◦, y)
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Generalizing to arbitrarily many subtrees

Assume that we know which subtree should be adjoined
where (R)

This relation should respect dominance (if xRy then x
should dominate y )
This relation should be defined only on nodes labelled ◦
This relation should be an injective function!
(multiple adjunction to the same XP is treated instead as
adjunction to the unique adjunct (to the unique adjunct . . . )
adjoining to XP)

Then we can simply replace talk of ◦ and ⊕ with talk of x
and y such that xRy
Adding R to our trees essentially gives us a DAG where
nodes have at most two parents.
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Representing R in a tree

We can code R into our trees, preserving regularity:
introduce a new symbol ⊗(1)

⊗ can be a child of ⊗ or of adjoin
at an adjoin node, the length of the ⊗ string it dominates
indicates which of the possible adjunction sites it adjoins to
(if there aren’t enough adjunction sites, take the last one).

However, MSO cannot ‘walk’ simultaneously along two
branches (otherwise it could define isomorphic(·, ·))
We could do this in FOL-DTC(2). . .
. . . but we don’t have a characterization of the FOL-DTC(2)
definable tree transductions

On the automaton side, FOL-DTC(i) corresponds to pebble
automata with i heads
single headed pebble tree to tree transducers with k
pebbles correspond to k + 1 MTTs (Engelfriet & Maneth)
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Taking Stock

The substitution required by late adjunction is easy to do. . .
if we know where to do it!
Naively encoding this information into the tree is not
MSO-usable,. . .
and one logic that can deal with it seems like it would be
beyond the IO-hierarchy!
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Conclusion

Late operations are formally natural
. . . and linguists like them
Adding late adjunction to MGs, we see that the relation
between parse trees and derived tree is not an MSOTT.
But if we include information about where each late
adjoined element is supposed to appear, we have an MSO
definable graph to tree transduction.
Courcelle has shown that every MSO transduction on a
graph of bounded treewidth results in a language of some
hyperedge replacement grammar. Do the graphs we are
using here have bounded treewidth? If yes, then

as our transduction gives trees,
and the sets of yields of CFHG definable sets of trees are
always MCFLs
MGs with late adjunction would be MCFL
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Thank you!
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