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Introduction

Parsing Abstract Categorial Grammars ([de Groote-2001]):

The general case

Natural language case

Grammars whose abstract language is regular (L(2,m))
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Preliminaries

Given an ACG G = 〈Σ1,Σ2,L, S〉

G is lexicalized iff for all abstract constant c, L(c)
contains at least an object constant

G is semi-lexicalized iff all abstract constant c either has
a second order type or L(c) contains at least an object
constant
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The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.

Algorithm principle: try to incrementaly build the abstract
term in a top down approach.

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v
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Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

To make the last rule work we need solve matching
equations (NP-complete)
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Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs
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Incremental algorithm

This algorithm is dedicated to the analysis of lexicalized
ACGs describing a natural language.

Based on an approach proposed by Morrill to parse in
Lambek’s Calculus [Morrill-2000] and on a way to build
proof-nets proposed by de Groote [de Groote-2000].

It handles polarized items of the form 〈t, u, Aε〉 where
ε ∈ {+;−; ◦}
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Incremental algorithm

The use of this algorithm necessitates to prepare the
lexicon. Each abstract constant c will be represented by a
collection of items Ic = It(c, τ(c)−) where:

It(t, (α ( β)+) = It(x, α−) ∪ It(tx, β+) where x is a
fresh variable

It(t, (α ( β)−) = It(X, α+) ∪ It(tX, β−) where X is a
fresh unknown

It(t, A+) = 〈t,L(t), A+〉 and It(t, A−) = 〈t,L(t), A−〉

Note: each time we use the set of items Ic, we require
freshness of the unknowns and the variables it uses.
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Handeling items

〈t,L(t), A+〉 and 〈v,L(v), A−〉 are complementary if:

t = Xx1 . . . xn and {x1; . . . ;xn} ⊆ FV (v)

λx1 . . . xn.v is their unifier and X is their unification
support
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Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.
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Rules of the algorithm

The algorithm acts on triples (I, L, u) where I is a set of
items and L is a list of object constants.

It uses the following rules:

(I, L) →Inc (I ∪ Ic, L\Lc) if Lc v L

(I ∪ {I1; I2}, L) →Inc (I[X := v] ∪ {〈v,L(v), A◦〉)}, L) if I1

and I2 are complementary and v is their unifier and X

their unification support

(〈X,X, S+〉, Lu, u)
∗
→Inc (I, [], u) with 〈t, u, S◦〉 ∈ I iff t is an

abstract term of type S and L(t) =βη u.
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Example
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M := λz.|Mary| z : NP

L := λxyz.x(|loves|(y z))) : NP ( NP ( S
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Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:
If (I, L, u)

∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.
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Acceptability and incremental algorithm

As remarked by Morrill [Morrill-2000] such a technique
allows us to express the complexity of the analysis of a
sentence.

If (I1, Lu, u) →Inc . . . →Inc (In, Lu, u) is a derivation its
complexity is given by:

max
i∈[1,n]

(|Ii|
−)

where |I|− is the maximum number of negative items.
For a given analysis t of u, the complexity of t is the minimal
complexity of the derivations which prove t is an analysis of
u.
Complexity increases when parsing such phenomena as
garden path, left to right quantifier scope, centre
embedding. . . ([Morrill-2000])
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Acceptability and incremental algorithm

In order to improve the performance of the algorithm we
bound the complexity of the analysis (i.e. we bound the
number of negative item the set can contain).

We loose completness but this loss is linguistically
motivated

we gain polynomiality for the membership problem
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Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).
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Syntactic descriptions

Syntactic descriptions are the mathematic abstraction
guiding the algorithm:

D ::= {T : T(} | D ( D

[[d]] is the semantics of d:

[[{t : α}]] = {v | · ` v : α ∧ v =βη t}

[[d1 ( d2]] = {v | ∀w ∈ [[d1]].(vw) ∈ [[d2]]}

a description d is complete if:

d = {t : α} and t is in β-normal η-long form and α is
atomic

d = d1 ( d2 and d1 and d2 are complete
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Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ( {ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:
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Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19



Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19



Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19



Formal system for parsing

· `L t : α

· `A {t : α} : Type

· `A d1 : Type · `A d2 : Type

· `A d1 ( d2 : Type

· `A d : Type

·; x : d `A x : d

Γ1; ∆1 `A t1 : {v1 : α ( β} Γ2; ∆2 `A t2 : {v2 : α}

Γ1, Γ2; ∆1, ∆2 `A t1t2{v1v2 : β}

x1 : A1, . . . , xn : An; · `A t : d λx1 . . . xn.t ∈ LA1(...(An(A

x : A; · ` x : d

Γ; ∆, x : d1 `A t : d2

Γ; ∆ `A λx.t : d1 ( d2

Γ1; ∆1 `A t1 : d1 ( d2 Γ2; ∆2 `A t2 : d1

Γ1, Γ2; ∆1, ∆2 `A t1t2 : d2
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Property of the system

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := L(t1); . . . ;xn := L(tn); y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]
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Parsing principle

To obtain the algorithm we use:

a chart of items

the items which represent sequents Γ; ∆ `A t : {v : o}
where t is the subterm of a lexical entry

rules which emulate the formal system

N.B: this algorithm can easily be extended all the grammars
of L(2,m)
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Conclusion

there is a semi-algorithm which can parse any ACG.
But it is not efficient

incremental parsing suits well to natural language

efficient parsing of grammars of L(2,m) is possible

try to shift the technology of description for parsing any
ACG (proving and matching collaborate to parsing)
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