
Parsing Abstract Categorial
Grammars:

Complexity and Algorithms
Sylvain Salvati

INPL-INRIA

Parsing ACG – p. 1

Introduction

Parsing Abstract Categorial Grammars ([de Groote-2001]):

The general case

Natural language case

Grammars whose abstract language is regular (L(2,m))

Parsing ACG – p. 2

Preliminaries

Given an ACG G = 〈Σ1,Σ2,L, S〉

G is lexicalized iff for all abstract constant c, L(c)
contains at least an object constant

G is semi-lexicalized iff all abstract constant c either has
a second order type or L(c) contains at least an object
constant

Parsing ACG – p. 3

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.

Algorithm principle: try to incrementaly build the abstract
term in a top down approach.

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.
Agorithm items: 〈Γ; v;α〉

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.
Agorithm items: 〈Γ; v;α〉

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.
Agorithm items: 〈Γ; v;α〉

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.
Agorithm items: 〈Γ; v; α〉

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

The general case

Given an ACG G = 〈Σ1,Σ2,L, S〉 and a term u, question is
whether there is an abstract term t of type S so that
L(t) =βη u.
Algorithm principle: try to incrementaly build the abstract
term in a top down approach.
Agorithm items: 〈Γ; v;α〉

Γ : context which associates abstract types to variables

v : object term in β-normal η-long form

α : abstract type

the item 〈Γ; v;α〉 represents the problem of finding an
abstract term t such that:

Γ ` t : α and L(t) =βη v

Parsing ACG – p. 4

Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

To make the last rule work we need solve matching
equations (NP-complete)

Parsing ACG – p. 5

Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

with:

〈Γ;λx.v;α (β〉 →a {〈Γ, x : α; v;β〉}

To make the last rule work we need solve matching
equations (NP-complete)

Parsing ACG – p. 5

Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

with:

〈Γ;λx.v;α (β〉 →a {〈Γ, x : α; v;β〉}

〈Γ, x : α1 (. . . (αn (A;xv1 . . . vn;A〉 →a

{〈Γ1; v1;α1〉; . . . ; 〈Γn; vn;αn〉}

To make the last rule work we need solve matching
equations (NP-complete)

Parsing ACG – p. 5

Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

with:

〈Γ;λx.v;α (β〉 →a {〈Γ, x : α; v;β〉}

〈Γ, x : α1 (. . . (αn (A;xv1 . . . vn;A〉 →a

{〈Γ1; v1;α1〉; . . . ; 〈Γn; vn;αn〉}

〈Γ, v, A〉 →a {〈Γ1; t1;α1〉; . . . ; 〈Γn; tn;αn〉} if there is an
abstract constant c of type α1 (. . . (αn (A so that
L(c)t1 . . . tn =βη v

To make the last rule work we need solve matching
equations (NP-complete)

Parsing ACG – p. 5

Rules of General Algorithm

The algorithm is described by a rewriting system on sets of
items:

I →A (I\I) ∪ J if I →a J

with:

〈Γ;λx.v;α (β〉 →a {〈Γ, x : α; v;β〉}

〈Γ, x : α1 (. . . (αn (A;xv1 . . . vn;A〉 →a

{〈Γ1; v1;α1〉; . . . ; 〈Γn; vn;αn〉}

〈Γ, v, A〉 →a {〈Γ1; t1;α1〉; . . . ; 〈Γn; tn;αn〉} if there is an
abstract constant c of type α1 (. . . (αn (A so that
L(c)t1 . . . tn =βη v

To make the last rule work we need solve matching
equations (NP-complete)

Parsing ACG – p. 5

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK

exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP

exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Properties of the Algorithm

{〈·;u;S〉}
∗

→A ∅ if and only if there is an abstract term t of type
S such that L(t) =βη u

termination: No

termination in the lexicalized case : OK

the algorithm is in that case Non-deterministic Polynomial

membership problem is polynomial for LACGs of L(2, m) but this
algorithm can have an exponential behaviour.

if we tabulate intermediate results:

termination: unknown (parsing ACG is at least as hard as proving
in MELL)

termination in the semi-lexicalized case : OK
exponential even for membership problem which is in NP
exponential in the size of the grammar for ACGs coding CFGs

Parsing ACG – p. 6

Incremental algorithm

This algorithm is dedicated to the analysis of lexicalized
ACGs describing a natural language.

Based on an approach proposed by Morrill to parse in
Lambek’s Calculus [Morrill-2000] and on a way to build
proof-nets proposed by de Groote [de Groote-2000].

It handles polarized items of the form 〈t, u, Aε〉 where
ε ∈ {+;−; ◦}

Parsing ACG – p. 7

Incremental algorithm

This algorithm is dedicated to the analysis of lexicalized
ACGs describing a natural language.

Based on an approach proposed by Morrill to parse in
Lambek’s Calculus [Morrill-2000] and on a way to build
proof-nets proposed by de Groote [de Groote-2000].

It handles polarized items of the form 〈t, u, Aε〉 where
ε ∈ {+;−; ◦}

Parsing ACG – p. 7

Incremental algorithm

This algorithm is dedicated to the analysis of lexicalized
ACGs describing a natural language.

Based on an approach proposed by Morrill to parse in
Lambek’s Calculus [Morrill-2000] and on a way to build
proof-nets proposed by de Groote [de Groote-2000].

It handles polarized items of the form 〈t, u, Aε〉 where
ε ∈ {+;−; ◦}

Parsing ACG – p. 7

Incremental algorithm

The use of this algorithm necessitates to prepare the
lexicon. Each abstract constant c will be represented by a
collection of items Ic = It(c, τ(c)−) where:

It(t, (α (β)+) = It(x, α−) ∪ It(tx, β+) where x is a
fresh variable

It(t, (α (β)−) = It(X, α+) ∪ It(tX, β−) where X is a
fresh unknown

It(t, A+) = 〈t,L(t), A+〉 and It(t, A−) = 〈t,L(t), A−〉

Note: each time we use the set of items Ic, we require
freshness of the unknowns and the variables it uses.

Parsing ACG – p. 8

Incremental algorithm

The use of this algorithm necessitates to prepare the
lexicon. Each abstract constant c will be represented by a
collection of items Ic = It(c, τ(c)−) where:

It(t, (α (β)+) = It(x, α−) ∪ It(tx, β+) where x is a
fresh variable

It(t, (α (β)−) = It(X, α+) ∪ It(tX, β−) where X is a
fresh unknown

It(t, A+) = 〈t,L(t), A+〉 and It(t, A−) = 〈t,L(t), A−〉

Note: each time we use the set of items Ic, we require
freshness of the unknowns and the variables it uses.

Parsing ACG – p. 8

Incremental algorithm

The use of this algorithm necessitates to prepare the
lexicon. Each abstract constant c will be represented by a
collection of items Ic = It(c, τ(c)−) where:

It(t, (α (β)+) = It(x, α−) ∪ It(tx, β+) where x is a
fresh variable

It(t, (α (β)−) = It(X, α+) ∪ It(tX, β−) where X is a
fresh unknown

It(t, A+) = 〈t,L(t), A+〉 and It(t, A−) = 〈t,L(t), A−〉

Note: each time we use the set of items Ic, we require
freshness of the unknowns and the variables it uses.

Parsing ACG – p. 8

Incremental algorithm

The use of this algorithm necessitates to prepare the
lexicon. Each abstract constant c will be represented by a
collection of items Ic = It(c, τ(c)−) where:

It(t, (α (β)+) = It(x, α−) ∪ It(tx, β+) where x is a
fresh variable

It(t, (α (β)−) = It(X, α+) ∪ It(tX, β−) where X is a
fresh unknown

It(t, A+) = 〈t,L(t), A+〉 and It(t, A−) = 〈t,L(t), A−〉

Note: each time we use the set of items Ic, we require
freshness of the unknowns and the variables it uses.

Parsing ACG – p. 8

Handeling items

〈t,L(t), A+〉 and 〈v,L(v), A−〉 are complementary if:

t = Xx1 . . . xn and {x1; . . . ;xn} ⊆ FV (v)

λx1 . . . xn.v is their unifier and X is their unification
support

Parsing ACG – p. 9

Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.

Parsing ACG – p. 10

Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.

Parsing ACG – p. 10

Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.

Parsing ACG – p. 10

Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.

Parsing ACG – p. 10

Handling object constants

When we parse strings we put the constants it contains
into a list L. If
u = λx.a1(a2(. . . (anx) . . .)) Lu = [a1; . . . ; an].

Given an abstract constant c we associate the list of the
constants it contains to be Lc.

We note L′ ⊆ L is the multiset of constants of L′ is
included in the one of L.

L′ v L if L′ ⊆ L and the first elements of L is in L′.

If L′ ⊆ L then L\L′ is the list where we suppress the
top-most elements of L′ which are present in L.

Parsing ACG – p. 10

Rules of the algorithm

The algorithm acts on triples (I, L, u) where I is a set of
items and L is a list of object constants.

It uses the following rules:

(I, L) →Inc (I ∪ Ic, L\Lc) if Lc v L

(I ∪ {I1; I2}, L) →Inc (I[X := v] ∪ {〈v,L(v), A◦〉)}, L) if I1

and I2 are complementary and v is their unifier and X

their unification support

(〈X,X, S+〉, Lu, u)
∗
→Inc (I, [], u) with 〈t, u, S◦〉 ∈ I iff t is an

abstract term of type S and L(t) =βη u.

Parsing ACG – p. 11

Rules of the algorithm

The algorithm acts on triples (I, L, u) where I is a set of
items and L is a list of object constants.
It uses the following rules:

(I, L) →Inc (I ∪ Ic, L\Lc) if Lc v L

(I ∪ {I1; I2}, L) →Inc (I[X := v] ∪ {〈v,L(v), A◦〉)}, L) if I1

and I2 are complementary and v is their unifier and X

their unification support

(〈X,X, S+〉, Lu, u)
∗
→Inc (I, [], u) with 〈t, u, S◦〉 ∈ I iff t is an

abstract term of type S and L(t) =βη u.

Parsing ACG – p. 11

Rules of the algorithm

The algorithm acts on triples (I, L, u) where I is a set of
items and L is a list of object constants.
It uses the following rules:

(I, L) →Inc (I ∪ Ic, L\Lc) if Lc v L

(I ∪ {I1; I2}, L) →Inc (I[X := v] ∪ {〈v,L(v), A◦〉)}, L) if I1

and I2 are complementary and v is their unifier and X

their unification support

(〈X,X, S+〉, Lu, u)
∗
→Inc (I, [], u) with 〈t, u, S◦〉 ∈ I iff t is an

abstract term of type S and L(t) =βη u.

Parsing ACG – p. 11

Rules of the algorithm

The algorithm acts on triples (I, L, u) where I is a set of
items and L is a list of object constants.
It uses the following rules:

(I, L) →Inc (I ∪ Ic, L\Lc) if Lc v L

(I ∪ {I1; I2}, L) →Inc (I[X := v] ∪ {〈v,L(v), A◦〉)}, L) if I1

and I2 are complementary and v is their unifier and X

their unification support

(〈X,X, S+〉, Lu, u)
∗
→Inc (I, [], u) with 〈t, u, S◦〉 ∈ I iff t is an

abstract term of type S and L(t) =βη u.

Parsing ACG – p. 11

Example

J := λz.|John| z : NP

M := λz.|Mary| z : NP

L := λxyz.x(|loves|(y z))) : NP (NP (S

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

M := λz.|Mary| z : NP

L := λxyz.x(|loves|(y z))) : NP (NP (S

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

L := λxyz.x(|loves|(y z))) : NP (NP (S

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉 |John|
|loves|
|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉 |John|
|loves|
|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP−〉

|loves|
|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP−〉

|loves|
|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉

〈Y,Y, NP+〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉

〈Y,Y, NP+〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S−〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈X,X, S+〉

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S−〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S◦〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S◦〉

〈Z,Z, NP+〉

|Mary|

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S◦〉

〈Z,Z, NP+〉

〈M,λz.|Mary| z,NP−〉

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ Z, λz.|John|(|loves|(Z z)), S◦〉

〈Z,Z, NP+〉

〈M,λz.|Mary| z,NP−〉

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ M, λz.|John|(|loves|(|Mary| z)), S◦〉

〈M,λz.|Mary| z,NP ◦〉

Parsing ACG – p. 12

Example

〈J, λz.|John| z,NP−〉

〈M,λz.|Mary| z,NP−〉

〈LY Z, λz.Y(|loves|(Z z)), S−〉, 〈Y,Y, NP+〉,

〈Z,Z, NP+〉

λz.|John|(|loves|(|Mary| z))

〈J, λz.|John| z,NP ◦〉

〈LJ M, λz.|John|(|loves|(|Mary| z)), S◦〉

〈M,λz.|Mary| z,NP ◦〉

Parsing ACG – p. 12

Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:
If (I, L, u)

∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.

Parsing ACG – p. 13

Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:
If (I, L, u)

∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.

Parsing ACG – p. 13

Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:

If (I, L, u)
∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.

Parsing ACG – p. 13

Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:
If (I, L, u)

∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.

Parsing ACG – p. 13

Properties of incremental Algorithm

Advantage : No matching equations to solve

Disadvantage : one enumerates all the abstract terms
the realization of which contains the same constants
as u

We have to take into account the structure of u:
If (I, L, u)

∗
→Inc (J , [], u) then

〈t,L(t), A−〉 ∈ I, FV (t) = {x1; . . . ;xn} implies the
equation

Xλx1 . . . xn.L(t)
?
= u

has a solution.

In order not to solve matching equations we use a

property which is verified whenever Xλx1 . . . xn.L(t)
?
= u

has a solution.
Parsing ACG – p. 13

Acceptability and incremental algorithm

As remarked by Morrill [Morrill-2000] such a technique
allows us to express the complexity of the analysis of a
sentence.

If (I1, Lu, u) →Inc . . . →Inc (In, Lu, u) is a derivation its
complexity is given by:

max
i∈[1,n]

(|Ii|
−)

where |I|− is the maximum number of negative items.
For a given analysis t of u, the complexity of t is the minimal
complexity of the derivations which prove t is an analysis of
u.
Complexity increases when parsing such phenomena as
garden path, left to right quantifier scope, centre
embedding. . . ([Morrill-2000])

Parsing ACG – p. 14

Acceptability and incremental algorithm

As remarked by Morrill [Morrill-2000] such a technique
allows us to express the complexity of the analysis of a
sentence.
If (I1, Lu, u) →Inc . . . →Inc (In, Lu, u) is a derivation its
complexity is given by:

max
i∈[1,n]

(|Ii|
−)

where |I|− is the maximum number of negative items.

For a given analysis t of u, the complexity of t is the minimal
complexity of the derivations which prove t is an analysis of
u.
Complexity increases when parsing such phenomena as
garden path, left to right quantifier scope, centre
embedding. . . ([Morrill-2000])

Parsing ACG – p. 14

Acceptability and incremental algorithm

As remarked by Morrill [Morrill-2000] such a technique
allows us to express the complexity of the analysis of a
sentence.
If (I1, Lu, u) →Inc . . . →Inc (In, Lu, u) is a derivation its
complexity is given by:

max
i∈[1,n]

(|Ii|
−)

where |I|− is the maximum number of negative items.
For a given analysis t of u, the complexity of t is the minimal
complexity of the derivations which prove t is an analysis of
u.

Complexity increases when parsing such phenomena as
garden path, left to right quantifier scope, centre
embedding. . . ([Morrill-2000])

Parsing ACG – p. 14

Acceptability and incremental algorithm

As remarked by Morrill [Morrill-2000] such a technique
allows us to express the complexity of the analysis of a
sentence.
If (I1, Lu, u) →Inc . . . →Inc (In, Lu, u) is a derivation its
complexity is given by:

max
i∈[1,n]

(|Ii|
−)

where |I|− is the maximum number of negative items.
For a given analysis t of u, the complexity of t is the minimal
complexity of the derivations which prove t is an analysis of
u.
Complexity increases when parsing such phenomena as
garden path, left to right quantifier scope, centre
embedding. . . ([Morrill-2000])

Parsing ACG – p. 14

Acceptability and incremental algorithm

In order to improve the performance of the algorithm we
bound the complexity of the analysis (i.e. we bound the
number of negative item the set can contain).

We loose completness but this loss is linguistically
motivated

we gain polynomiality for the membership problem

Parsing ACG – p. 15

Acceptability and incremental algorithm

In order to improve the performance of the algorithm we
bound the complexity of the analysis (i.e. we bound the
number of negative item the set can contain).

We loose completness but this loss is linguistically
motivated

we gain polynomiality for the membership problem

Parsing ACG – p. 15

Acceptability and incremental algorithm

In order to improve the performance of the algorithm we
bound the complexity of the analysis (i.e. we bound the
number of negative item the set can contain).

We loose completness but this loss is linguistically
motivated

we gain polynomiality for the membership problem

Parsing ACG – p. 15

Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).

Parsing ACG – p. 16

Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).

Parsing ACG – p. 16

Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).

Parsing ACG – p. 16

Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).

Parsing ACG – p. 16

Parsing in L(2, m)

Universal membership problem is NP-complete for
grammars of L(2, p) whenever p ≥ 2.

Membership problem is polynomial in L(2,m).

We show here ideas which enables the construction of
an efficient paring algorithm of grammars of L(2,m).

This algorithm parses CFGs the same way as Earley
algorithm and TAG in O(n6).

In order to remain simple we restrict ouselves to the
case where the object signature is of the second order
(object terms are trees).

Parsing ACG – p. 16

Syntactic descriptions

Syntactic descriptions are the mathematic abstraction
guiding the algorithm:

D ::= {T : T(} | D (D

[[d]] is the semantics of d:

[[{t : α}]] = {v | · ` v : α ∧ v =βη t}

[[d1 (d2]] = {v | ∀w ∈ [[d1]].(vw) ∈ [[d2]]}

a description d is complete if:

d = {t : α} and t is in β-normal η-long form and α is
atomic

d = d1 (d2 and d1 and d2 are complete

Parsing ACG – p. 17

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

Parsing ACG – p. 18

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

(|ak . . . an| (|aj . . . an|) ((|al . . . an| (|ai . . . an|)

|ap . . . an| = {ap(. . . (ane) . . .) : ∗}

Parsing ACG – p. 18

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

(|ak . . . an| (|aj . . . an|)
︸ ︷︷ ︸

aj ...ak

((|al . . . an| (|ai . . . an|)

|ap . . . an| = {ap(. . . (ane) . . .) : ∗}

Parsing ACG – p. 18

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

(|ak . . . an| (|aj . . . an|)
︸ ︷︷ ︸

aj ...ak

((|al . . . an| (|ai . . . an|)
︸ ︷︷ ︸

ai...al

|ap . . . an| = {ap(. . . (ane) . . .) : ∗}

Parsing ACG – p. 18

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

(|ak . . . an| (|aj . . . an|)
︸ ︷︷ ︸

aj ...ak

((|al . . . an| (|ai . . . an|)
︸ ︷︷ ︸

ai...al

|ap . . . an| = {ap(. . . (ane) . . .) : ∗}

represents the context

a1 . . . ai . . . aj . . . ak . . . al . . . an

Parsing ACG – p. 18

Syntactic descriptions: examples

Syntactic descriptions enables to model higher-order contexts:
Given a string a1(. . . (an(e)) . . .), the description:

{aj(. . . (ane) . . .) : ∗} ({ai(. . . (ane) . . .) : ∗}

represents the substring λx.ai(. . . (ajx) . . .)

The description:

(|ak . . . an| (|aj . . . an|)
︸ ︷︷ ︸

aj ...ak

((|al . . . an| (|ai . . . an|)
︸ ︷︷ ︸

ai...al

|ap . . . an| = {ap(. . . (ane) . . .) : ∗}

represents the context

a1 . . . ai . . . aj . . . ak . . . al . . . an

Descriptions model the indices involved in Earley parsing
Parsing ACG – p. 18

Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19

Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19

Sequent for parsing

For parsing we use sequent of the form: Γ; ∆ `D t : d

where:

Γ is a context which assigns atomic abstract type to
variables

∆ is a context which associates descriptions to variable

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := t1; . . . ;xn := tn; y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 19

Formal system for parsing

· `L t : α

· `A {t : α} : Type

· `A d1 : Type · `A d2 : Type

· `A d1 (d2 : Type

· `A d : Type

·; x : d `A x : d

Γ1; ∆1 `A t1 : {v1 : α (β} Γ2; ∆2 `A t2 : {v2 : α}

Γ1, Γ2; ∆1, ∆2 `A t1t2{v1v2 : β}

x1 : A1, . . . , xn : An; · `A t : d λx1 . . . xn.t ∈ LA1(...(An(A

x : A; · ` x : d

Γ; ∆, x : d1 `A t : d2

Γ; ∆ `A λx.t : d1 (d2

Γ1; ∆1 `A t1 : d1 (d2 Γ2; ∆2 `A t2 : d1

Γ1, Γ2; ∆1, ∆2 `A t1t2 : d2

Parsing ACG – p. 20

Property of the system

If t has an atomic type and is in β-normal η-long form and
all the descriptions are complete, then the sequent

x1 : A1, . . . , xn : An; y1 : d1, . . . , yn : dn `A t : {u : ∗}

is derivable iff:
there are abstract terms (ti)i∈[1,n] such that ti has type Ai

for all terms (vi)i∈[1,n] such that vi ∈ [[di]],

t[x1 := L(t1); . . . ;xn := L(tn); y1 := v1; . . . yn := vn] ∈ [[{u : ∗}]]

Parsing ACG – p. 21

Parsing principle

To obtain the algorithm we use:

a chart of items

the items which represent sequents Γ; ∆ `A t : {v : o}
where t is the subterm of a lexical entry

rules which emulate the formal system

N.B: this algorithm can easily be extended all the grammars
of L(2,m)

Parsing ACG – p. 22

Conclusion

there is a semi-algorithm which can parse any ACG.
But it is not efficient

incremental parsing suits well to natural language

efficient parsing of grammars of L(2,m) is possible

try to shift the technology of description for parsing any
ACG (proving and matching collaborate to parsing)

Parsing ACG – p. 23

Conclusion

there is a semi-algorithm which can parse any ACG.
But it is not efficient

incremental parsing suits well to natural language

efficient parsing of grammars of L(2,m) is possible

try to shift the technology of description for parsing any
ACG (proving and matching collaborate to parsing)

Parsing ACG – p. 23

Conclusion

there is a semi-algorithm which can parse any ACG.
But it is not efficient

incremental parsing suits well to natural language

efficient parsing of grammars of L(2,m) is possible

try to shift the technology of description for parsing any
ACG (proving and matching collaborate to parsing)

Parsing ACG – p. 23

Conclusion

there is a semi-algorithm which can parse any ACG.
But it is not efficient

incremental parsing suits well to natural language

efficient parsing of grammars of L(2,m) is possible

try to shift the technology of description for parsing any
ACG (proving and matching collaborate to parsing)

Parsing ACG – p. 23

Bibliography

References

[Morrill-2000] Glyn Morrill, Incremental Processing and
Acceptability, Computational Linguistics, 2000, 26,
3, 319-338.

[de Groote-2000] Philippe de Groote Proof-Search in
Implicative Linear Logic as a Matching Problem.
LPAR, 2000, 257-274.

[de Groote-2001] Philippe de Groote, Towards Abstract
Categorial Grammars, ACL, 2001, 148-155.

Parsing ACG – p. 24

	Introduction
	Preliminaries
	The general case
	The general case
	The general case
	The general case
	The general case
	The general case
	The general case

	Rules of General Algorithm
	Rules of General Algorithm
	Rules of General Algorithm
	Rules of General Algorithm
	Rules of General Algorithm

	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm
	Properties of the Algorithm

	Incremental algorithm
	Incremental algorithm
	Incremental algorithm

	Incremental algorithm
	Incremental algorithm
	Incremental algorithm
	Incremental algorithm

	Handeling items
	Handling object constants
	Handling object constants
	Handling object constants
	Handling object constants
	Handling object constants

	Rules of the algorithm
	Rules of the algorithm
	Rules of the algorithm
	Rules of the algorithm

	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Properties of incremental Algorithm
	Properties of incremental Algorithm
	Properties of incremental Algorithm
	Properties of incremental Algorithm
	Properties of incremental Algorithm

	Acceptability and incremental algorithm
	Acceptability and incremental algorithm
	Acceptability and incremental algorithm
	Acceptability and incremental algorithm

	Acceptability and incremental algorithm
	Acceptability and incremental algorithm
	Acceptability and incremental algorithm

	Parsing in $mathcal {L}(2,m)$
	Parsing in $mathcal {L}(2,m)$
	Parsing in $mathcal {L}(2,m)$
	Parsing in $mathcal {L}(2,m)$
	Parsing in $mathcal {L}(2,m)$

	Syntactic descriptions
	Syntactic descriptions: examples
	Syntactic descriptions: examples
	Syntactic descriptions: examples
	Syntactic descriptions: examples
	Syntactic descriptions: examples
	Syntactic descriptions: examples

	Sequent for parsing
	Sequent for parsing
	Sequent for parsing

	Formal system for parsing
	Property of the system
	Parsing principle
	Conclusion
	Conclusion
	Conclusion
	Conclusion

	Bibliography

