
Abstract Families of Abstract Categorial

Languages

Makoto Kanazawa

National Institute of Informatics

February 18, 2005

ACGs and AFLs

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

• Not entirely obvious.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

• Not entirely obvious.

• An application of Curry-style type assignment

system.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

• Not entirely obvious.

• An application of Curry-style type assignment

system.

• Hopefully useful.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

• Not entirely obvious.

• An application of Curry-style type assignment

system.

• Hopefully useful.

• Suggests machine models for ACGs.

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

• union (∪), concatenation (·), Kleene closure (∗);

• homomorphism (h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

• union (∪), concatenation (·), Kleene closure (∗);

• homomorphism (h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)

A family of languages is an AFL if it is closed under

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

• union (∪), concatenation (·), Kleene closure (∗);

• homomorphism (h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)

A family of languages is an AFL if it is closed under

• union (∪), concatenation (·), positive closure (+);

• ε-free homomorphism (ε-free h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)

Examples of (full) AFLs

The following families are full AFLs.

• regular sets, context-free languages, r.e. sets

Examples of (full) AFLs

The following families are full AFLs.

• regular sets, context-free languages, r.e. sets

• indexed languages

• linear indexed languages

• (parallel) multiple context-free languages

Examples of (full) AFLs

The following families are full AFLs.

• regular sets, context-free languages, r.e. sets

• indexed languages

• linear indexed languages

• (parallel) multiple context-free languages

The following families are AFLs.

• context-sensitive languages, recursive sets

• ε-free context-free languages

• NP

Examples of (full) AFLs

The following families are full AFLs.

• regular sets, context-free languages, r.e. sets

• indexed languages

• linear indexed languages

• (parallel) multiple context-free languages

The following families are AFLs.

• context-sensitive languages, recursive sets

• ε-free context-free languages

• NP

PTIME is not an AFL unless P = NP.

AFLs and automata

Many types of grammars known to generate full AFLs

have a corresponding type of nondeterministic

acceptor.

AFLs and automata

Many types of grammars known to generate full AFLs

have a corresponding type of nondeterministic

acceptor.

Closure under regular operations (∪, ·, ∗) is easy to

prove in such cases.

AFLs and automata

Many types of grammars known to generate full AFLs

have a corresponding type of nondeterministic

acceptor.

Closure under regular operations (∪, ·, ∗) is easy to

prove in such cases.

Fact.

A family of languages is closed under h, h−1, ∩R iff it

is closed under finite transductions.

AFLs and automata

Many types of grammars known to generate full AFLs

have a corresponding type of nondeterministic

acceptor.

Closure under regular operations (∪, ·, ∗) is easy to

prove in such cases.

Fact.

A family of languages is closed under h, h−1, ∩R iff it

is closed under finite transductions.

Theorem (Ginsburg and Greibach 1969).

Full AFLs are exactly characterized by abstract

families of acceptors.

The languages of ACGs form a full AFL

Closure under regular operations is easy to prove.

The languages of ACGs form a full AFL

Closure under regular operations is easy to prove.

We prove closure under h, h−1, ∩R, using some

technical properties of the Curry-style type assignment

system λ→.

Type assignment system λ→Σ

Σ = 〈A,C, τ〉: higher-order signature

Write M,N, P, . . . for λ-terms.

`Σ c : τ(c) x : α `Σ x : α

Γ, (x : α)◦ `Σ M : β
Γ `Σ λx.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α
Γ,∆ `Σ MN : β

Type assignment system λ→Σ

Σ = 〈A,C, τ〉: higher-order signature

Write M,N, P, . . . for λ-terms.

`Σ c : τ(c) x : α `Σ x : α

Γ, (x : α)◦ `Σ M : β
Γ `Σ λx.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α
Γ,∆ `Σ MN : β

L = 〈σ, θ〉: lexicon from Σ1 to Σ2

`Σ2 θ(c) : σ(τ1(c))

θ(c): a closed linear λ-term built upon Σ2.

Type assignment system λ→Σ

Σ = 〈A,C, τ〉: higher-order signature

Write M,N, P, . . . for λ-terms.

`Σ c : τ(c) x : α `Σ x : α

Γ, (x : α)◦ `Σ M : β
Γ `Σ λx.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α
Γ,∆ `Σ MN : β

L = 〈σ, θ〉: lexicon from Σ1 to Σ2

`Σ2 θ(c) : σ(τ1(c))

θ(c): a closed linear λ-term built upon Σ2.

Write |M|β for the β-normal form of M.

Properties of lexicons

β-reduction commutes with lexicons:

M �β M
′ implies L (M)�β L (M ′).

Properties of lexicons

β-reduction commutes with lexicons:

M �β M
′ implies L (M)�β L (M ′).

Typing judgments are preserved under lexicons:

Γ `Σ1 M : α implies L (Γ) `Σ2 L (M) :L (α).

Properties of lexicons

β-reduction commutes with lexicons:

M �β M
′ implies L (M)�β L (M ′).

Typing judgments are preserved under lexicons:

Γ `Σ1 M : α implies L (Γ) `Σ2 L (M) :L (α).

If L1 = 〈σ1, θ1〉 is a lexicon from Σ1 to Σ2 and

L2 = 〈σ2, θ2〉 is a lexicon from Σ2 to Σ3, then

L2 ◦L1 = 〈σ2 ◦ σ1, θ2 ◦ θ1〉

is a lexicon from Σ1 to Σ3.

Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Subject Expansion Theorem.

If Γ `Σ M ′ : α and M �β M ′ by non-erasing

non-duplicating β-reduction, then Γ `Σ M : α.

Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Subject Expansion Theorem.

If Γ `Σ M ′ : α and M �β M ′ by non-erasing

non-duplicating β-reduction, then Γ `Σ M : α.

(A special case: M linear.)

Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Subject Expansion Theorem.

If Γ `Σ M ′ : α and M �β M ′ by non-erasing

non-duplicating β-reduction, then Γ `Σ M : α.

(A special case: M linear.)

Uniqueness Theorem.

If M is a λI-term and Γ `Σ M : α, then there is a

unique λ→Σ-deduction of this judgment.

Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Subject Expansion Theorem.

If Γ `Σ M ′ : α and M �β M ′ by non-erasing

non-duplicating β-reduction, then Γ `Σ M : α.

(A special case: M linear.)

Uniqueness Theorem.

If M is a λI-term and Γ `Σ M : α, then there is a

unique λ→Σ-deduction of this judgment.

Principal Pair Theorem.

If Γ ` M : α then there is a most general such 〈Γ, α〉
(called a principal pair for M).

ACGs for string languages

Let G = 〈Σ1,Σ2,L , s〉 where

Σ1 = 〈A1, C1, τ1〉,
Σ2 = 〈{o}, C2, τ2〉,
s ∈ A1,

τ2(a) = o→ o for all a ∈ C2,
L = 〈σ, θ〉,
σ(s) = o→ o.

ACGs for string languages

Let G = 〈Σ1,Σ2,L , s〉 where

Σ1 = 〈A1, C1, τ1〉,
Σ2 = 〈{o}, C2, τ2〉,
s ∈ A1,

τ2(a) = o→ o for all a ∈ C2,
L = 〈σ, θ〉,
σ(s) = o→ o.

o→ o is the type of string.

ACGs for string languages

Let G = 〈Σ1,Σ2,L , s〉 where

Σ1 = 〈A1, C1, τ1〉,
Σ2 = 〈{o}, C2, τ2〉,
s ∈ A1,

τ2(a) = o→ o for all a ∈ C2,
L = 〈σ, θ〉,
σ(s) = o→ o.

o→ o is the type of string.

For a1, . . . , an ∈ C2, /a1 . . . an/ stands for

λx.a1(. . . (anx) . . .).

Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.

Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.

Let

Gh = 〈Σ1,Σ3,Lh ◦L , s〉.

Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.

Let

Gh = 〈Σ1,Σ3,Lh ◦L , s〉.

Then

O(Gh) = { /h(w)/ | /w/ ∈ O(G) }.

Closure under ∩R

Let M = 〈C2, Q, δ, qI, {qF}〉 be an NFA without

ε-transitions with just one final state.

Closure under ∩R

Let M = 〈C2, Q, δ, qI, {qF}〉 be an NFA without

ε-transitions with just one final state.

Define a signature ΣM = 〈Q,CM, τM〉 by

CM = { ar→q | a ∈ C2 and r ∈ δ(q, a) },
τM(a

r→q) = r → q for all ar→q ∈ CM.

Closure under ∩R

Let M = 〈C2, Q, δ, qI, {qF}〉 be an NFA without

ε-transitions with just one final state.

Define a signature ΣM = 〈Q,CM, τM〉 by

CM = { ar→q | a ∈ C2 and r ∈ δ(q, a) },
τM(a

r→q) = r → q for all ar→q ∈ CM.

Define a lexicon L2 = 〈σ2, θ2〉 from ΣM to Σ2 by

σ2(q) = o for all q ∈ Q,

θ2(a
r→q) = a for all ar→q ∈ CM.

Closure under ∩R

Let M = 〈C2, Q, δ, qI, {qF}〉 be an NFA without

ε-transitions with just one final state.

Define a signature ΣM = 〈Q,CM, τM〉 by

CM = { ar→q | a ∈ C2 and r ∈ δ(q, a) },
τM(a

r→q) = r → q for all ar→q ∈ CM.

Define a lexicon L2 = 〈σ2, θ2〉 from ΣM to Σ2 by

σ2(q) = o for all q ∈ Q,

θ2(a
r→q) = a for all ar→q ∈ CM.

We have `ΣM N : qF → qI iff L2(N) =βη /w/ for some

w ∈ L(M).

Closure under ∩R (continued)

Define another signature Σ∩R = 〈A∩R, C∩R, τ∩R〉 by

A∩R = { pβ | p ∈ A1, β ∈ T (Q),L2(β) =L (p) },

C∩R = { d〈c,N,β〉 | c ∈ C1, N ∈ Λ(ΣM), β ∈ T (Q),

`ΣM N : β,L2(N) =L (c),

L2(β) =L (τ1(c)) },
τ∩R(d〈c,N,β〉) = anti(τ1(c), β)

Closure under ∩R (continued)

Define another signature Σ∩R = 〈A∩R, C∩R, τ∩R〉 by

A∩R = { pβ | p ∈ A1, β ∈ T (Q),L2(β) =L (p) },

C∩R = { d〈c,N,β〉 | c ∈ C1, N ∈ Λ(ΣM), β ∈ T (Q),

`ΣM N : β,L2(N) =L (c),

L2(β) =L (τ1(c)) },
τ∩R(d〈c,N,β〉) = anti(τ1(c), β)

where

anti(α1→ α2, β1→ β2) = anti(α1, β1)→ anti(α2, β2)

anti(p, β) = pβ

Closure under ∩R (continued)

τ∩R(d〈c,N,β〉) = anti(τ1(c), β) is always defined and is a

most specific common anti-instance of τ1(c) and β.

Closure under ∩R (continued)

τ∩R(d〈c,N,β〉) = anti(τ1(c), β) is always defined and is a

most specific common anti-instance of τ1(c) and β.

Define a lexicon L1 = 〈σ1, θ1〉 from Σ∩R to Σ1 and a

lexicon LM = 〈σM, θM〉 from Σ∩R to ΣM:

σ1(p
β) = p for all pβ ∈ A∩R,

θ1(d〈c,N,β〉) = c for all d〈c,N,β〉 ∈ C∩R,

σM(p
β) = β for all pβ ∈ A∩R,

θM(d〈c,N,β〉) = N for all d〈c,N,β〉 ∈ C∩R.

Closure under ∩R (continued)

Define an ACG G∩R = 〈Σ∩R,Σ2, sqF→qI ,L∩R〉 by

L∩R = 〈σ∩R, θ∩R〉,

σ∩R(p
β) =L (p) for all pβ ∈ A∩R,

θ∩R(d〈c,N,β〉) =L (c) for all d〈c,N,β〉 ∈ C∩R.

Closure under ∩R (continued)

Define an ACG G∩R = 〈Σ∩R,Σ2, sqF→qI ,L∩R〉 by

L∩R = 〈σ∩R, θ∩R〉,

σ∩R(p
β) =L (p) for all pβ ∈ A∩R,

θ∩R(d〈c,N,β〉) =L (c) for all d〈c,N,β〉 ∈ C∩R.

Lemma.

L∩R =L ◦L1, L∩R =L2 ◦LM.

Closure under ∩R (continued)Closure under ∩R (continued)

"Σ1 c : τ1(c)
L

"Σ2 L (c) :L (τ1(c))

L1
L∩R

L2

"Σ∩R d〈c,N,β〉 : anti(τ1(c),β)
LM

"ΣM N : β

Closure under ∩R (continued)

Lemma. O(G∩R) ⊆ O(G) ∩ { /w/ | w ∈ L(M) }.

Closure under ∩R (continued)

Lemma. O(G∩R) ⊆ O(G) ∩ { /w/ | w ∈ L(M) }.

Proof.

Suppose /a1 . . . an/ ∈ O(G∩R). Let P ∈ A(G∩R) be

such that L (P)�β /a1 . . . an/. Since

`Σ∩R P : s
qF→qI , (1)

Closure under ∩R (continued)

Lemma. O(G∩R) ⊆ O(G) ∩ { /w/ | w ∈ L(M) }.

Proof.

Suppose /a1 . . . an/ ∈ O(G∩R). Let P ∈ A(G∩R) be

such that L (P)�β /a1 . . . an/. Since

`Σ∩R P : s
qF→qI , (1)

we have

`Σ1 L1(P) : s,

so L1(P) ∈ A(G).

Closure under ∩R (continued)

Lemma. O(G∩R) ⊆ O(G) ∩ { /w/ | w ∈ L(M) }.

Proof.

Suppose /a1 . . . an/ ∈ O(G∩R). Let P ∈ A(G∩R) be

such that L (P)�β /a1 . . . an/. Since

`Σ∩R P : s
qF→qI , (1)

we have

`Σ1 L1(P) : s,

so L1(P) ∈ A(G).

Since L (L1(P)) =L∩R(P), /a1 . . . an/ ∈ O(G).

From (1), we also get

`ΣM LM(P) : qF → qI. (2)

From (1), we also get

`ΣM LM(P) : qF → qI. (2)

Since L2(LM(P)) =L∩R(P)�β /a1 . . . an/, it follows

that L2(|LM(P)|β) = /a1 . . . an/.

From (1), we also get

`ΣM LM(P) : qF → qI. (2)

Since L2(LM(P)) =L∩R(P)�β /a1 . . . an/, it follows

that L2(|LM(P)|β) = /a1 . . . an/.

Hence |LM(P)|β must be of the form

λz.ar1→q11 (. . . (arn→qnn z) . . .). From (2), by the Subject

Reduction Theorem, we obtain

`ΣM λz.a
r1→q1
1 (. . . (arn→qnn z) . . .) : qF → qI.

From (1), we also get

`ΣM LM(P) : qF → qI. (2)

Since L2(LM(P)) =L∩R(P)�β /a1 . . . an/, it follows

that L2(|LM(P)|β) = /a1 . . . an/.

Hence |LM(P)|β must be of the form

λz.ar1→q11 (. . . (arn→qnn z) . . .). From (2), by the Subject

Reduction Theorem, we obtain

`ΣM λz.a
r1→q1
1 (. . . (arn→qnn z) . . .) : qF → qI.

This can only be if q1 = qI, rn = qF , and ri = qi+1 for

1 ≤ i ≤ n − 1. Since ri ∈ δ(qi , ai), this implies that

a1 . . . an ∈ L(M).

Closure under ∩R (continued)

Lemma. O(G) ∩ L(M) ⊆ O(G∩R).

Closure under ∩R (continued)

Lemma. O(G) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G) and a1 . . . an ∈ L(M).

Closure under ∩R (continued)

Lemma. O(G) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G) and a1 . . . an ∈ L(M).

Let P ∈ A(G) be such that L (P)�β /a1 . . . an/.

Closure under ∩R (continued)

Lemma. O(G) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G) and a1 . . . an ∈ L(M).

Let P ∈ A(G) be such that L (P)�β /a1 . . . an/.

Let q1, q2, . . . , qn+1 be such that q1 = qI, qn+1 = qF ,

and qi+1 ∈ δ(qi , ai) for 1 ≤ i ≤ n.

Closure under ∩R (continued)

Lemma. O(G) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G) and a1 . . . an ∈ L(M).

Let P ∈ A(G) be such that L (P)�β /a1 . . . an/.

Let q1, q2, . . . , qn+1 be such that q1 = qI, qn+1 = qF ,

and qi+1 ∈ δ(qi , ai) for 1 ≤ i ≤ n.

Let P ′[y1, . . . , ym] be a constant-free linear λ-term

such that P ′[c1, . . . , cm] = P , where c1, . . . , cm ∈ C1.

For 1 ≤ i ≤ m, let N ′i be a constant-free linear λ-term

with FV(N ′i) ⊆ {x1, . . . , xn} such that

N ′i [a1/x1, . . . , an/xn] =L (ci) for 1 ≤ i ≤ n,
P ′[N ′1, . . . , N

′
m]�β λz.x1(. . . (xnz) . . .).

For 1 ≤ i ≤ m, let N ′i be a constant-free linear λ-term

with FV(N ′i) ⊆ {x1, . . . , xn} such that

N ′i [a1/x1, . . . , an/xn] =L (ci) for 1 ≤ i ≤ n,
P ′[N ′1, . . . , N

′
m]�β λz.x1(. . . (xnz) . . .).

For 1 ≤ i ≤ n, let Ni = N
′
i [a
q2→q1
1 /x1, . . . , a

qn+1→qn
n /xn],

so that

L2(Ni) =L (ci). (3)

For 1 ≤ i ≤ m, let N ′i be a constant-free linear λ-term

with FV(N ′i) ⊆ {x1, . . . , xn} such that

N ′i [a1/x1, . . . , an/xn] =L (ci) for 1 ≤ i ≤ n,
P ′[N ′1, . . . , N

′
m]�β λz.x1(. . . (xnz) . . .).

For 1 ≤ i ≤ n, let Ni = N
′
i [a
q2→q1
1 /x1, . . . , a

qn+1→qn
n /xn],

so that

L2(Ni) =L (ci). (3)

Then

P ′[N1, . . . , Nm]�β λz.a
q2→q1
1 (. . . (aqn+1→qnn z) . . .)

by a non-erasing non-duplicating β-reduction.

Since

`ΣM λz.a
q2→q1
1 (. . . (aqn+1→qnn z) . . .) : qF → qI,

we get

`ΣM P
′[N1, . . . , Nm] : qF → qI

by the Subject Expansion Theorem.

Since

`ΣM λz.a
q2→q1
1 (. . . (aqn+1→qnn z) . . .) : qF → qI,

we get

`ΣM P
′[N1, . . . , Nm] : qF → qI

by the Subject Expansion Theorem.

Let ∆ be the unique λ→ΣM -deduction of this

judgment. ∆ contains a subdeduction ∆i of

`ΣM Ni : βi (4)

for some βi ∈ T (AM), for 1 ≤ i ≤ m.

It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.

It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.

Since P ′[L (c1), . . . ,L (cm)] =L (P), we see that L2

maps ∆i to the unique λ→Σ2-deduction of

`Σ2 L (ci) :L (τ1(ci)).

It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.

Since P ′[L (c1), . . . ,L (cm)] =L (P), we see that L2

maps ∆i to the unique λ→Σ2-deduction of

`Σ2 L (ci) :L (τ1(ci)).

It follows that

L2(βi) =L (τ1(ci)). (5)

It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.

Since P ′[L (c1), . . . ,L (cm)] =L (P), we see that L2

maps ∆i to the unique λ→Σ2-deduction of

`Σ2 L (ci) :L (τ1(ci)).

It follows that

L2(βi) =L (τ1(ci)). (5)

By (3), (4), and (5),

d〈ci ,Ni ,βi 〉 ∈ C∩R.

We have

{y1 : β1, . . . , ym : βm} ` P ′ : qF → qI,
{y1 : τ1(c1), . . . , ym : τ1(cm)} ` P ′ : s.

We have

{y1 : β1, . . . , ym : βm} ` P ′ : qF → qI,
{y1 : τ1(c1), . . . , ym : τ1(cm)} ` P ′ : s.

Let τ∩R(d〈ci ,Ni ,βi 〉) = γi for i = 1, . . . , m. By the

definition of τ∩R,

〈γ1, . . . , γm, sqF→qI〉

is a most specific common anti-instance of

〈β1, . . . , βm, qF → qI〉 and 〈τ1(c1), . . . , τ1(cm), s〉.

By the Principal Pair Theorem, it follows that

{y1 : γ1, . . . , ym : γm} ` P ′ : sqF→qI

and hence

`Σ∩R P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] : s

qF→qI .

By the Principal Pair Theorem, it follows that

{y1 : γ1, . . . , ym : γm} ` P ′ : sqF→qI

and hence

`Σ∩R P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] : s

qF→qI .

Therefore, P ′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] ∈ A(G∩R).

By the Principal Pair Theorem, it follows that

{y1 : γ1, . . . , ym : γm} ` P ′ : sqF→qI

and hence

`Σ∩R P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] : s

qF→qI .

Therefore, P ′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] ∈ A(G∩R).

L∩R(P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉])

= P ′[L∩R(d〈c1,N1,β1〉), . . . ,L∩R(d〈cm,Nm,βm〉)]

= P ′[L (c1), . . . ,L (cm)]

=L (P)

�β /a1 . . . an/.

This proves /a1 . . . an/ ∈ O(G∩R).

This proves /a1 . . . an/ ∈ O(G∩R).

Theorem. O(G∩R) = O(G) ∩ { /w/ | w ∈ L(M) }.

Closure under h−1

Lemma.

The string languages of ACGs are closed under

substitution.

a 7→ O(G)

Closure under h−1

Lemma.

The string languages of ACGs are closed under

substitution.

a 7→ O(G)

Fact.

If a family of languages includes the regular sets and is

closed under substitution and ∩R, then it is closed

under h−1.

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.

Theorem.

The string languages of ACGs in G(m, n) (m ≥ 2)
form a full AFL.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed

under substitution.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed

under substitution.

Fact.

If a family of ε-free languages includes the ε-free

regular sets and is closed under substitution, ∩R, and

k-limited erasing, then it is closed under h−1.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed

under substitution.

Fact.

If a family of ε-free languages includes the ε-free

regular sets and is closed under substitution, ∩R, and

k-limited erasing, then it is closed under h−1.

Lemma.

The string languages of lexicalized ACGs are closed

under k-limited erasing.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed

under substitution.

Fact.

If a family of ε-free languages includes the ε-free

regular sets and is closed under substitution, ∩R, and

k-limited erasing, then it is closed under h−1.

Lemma.

The string languages of lexicalized ACGs are closed

under k-limited erasing.

Theorem.

The string languages of lexicalized ACGs form an AFL.

