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ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract

Categorial Grammars) form a full AFL (Abstract

Families of Languages).

The string languages generated by lexicalized ACGs

form an AFL.

Why is this interesting?

• Not entirely obvious.

• An application of Curry-style type assignment

system.

• Hopefully useful.

• Suggests machine models for ACGs.
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AFLs and full AFLs

A family of languages is a full AFL if it is closed under

• union (∪), concatenation (·), Kleene closure (∗);

• homomorphism (h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)

A family of languages is an AFL if it is closed under

• union (∪), concatenation (·), positive closure (+);

• ε-free homomorphism (ε-free h);

• inverse homomorphism (h−1);

• intersection with regular sets (∩R)
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Examples of (full) AFLs

The following families are full AFLs.

• regular sets, context-free languages, r.e. sets

• indexed languages

• linear indexed languages

• (parallel) multiple context-free languages

The following families are AFLs.

• context-sensitive languages, recursive sets

• ε-free context-free languages

• NP

PTIME is not an AFL unless P = NP.
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AFLs and automata

Many types of grammars known to generate full AFLs

have a corresponding type of nondeterministic

acceptor.

Closure under regular operations (∪, ·, ∗) is easy to

prove in such cases.

Fact.

A family of languages is closed under h, h−1, ∩R iff it

is closed under finite transductions.

Theorem (Ginsburg and Greibach 1969).

Full AFLs are exactly characterized by abstract

families of acceptors.
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The languages of ACGs form a full AFL

Closure under regular operations is easy to prove.

We prove closure under h, h−1, ∩R, using some

technical properties of the Curry-style type assignment

system λ→.
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Type assignment system λ→Σ

Σ = 〈A,C, τ〉: higher-order signature

Write M,N, P, . . . for λ-terms.

`Σ c : τ(c) x : α `Σ x : α

Γ, (x : α)◦ `Σ M : β
Γ `Σ λx.M : α→ β

Γ `Σ M : α→ β ∆ `Σ N : α
Γ,∆ `Σ MN : β

L = 〈σ, θ〉: lexicon from Σ1 to Σ2

`Σ2 θ(c) : σ(τ1(c))

θ(c): a closed linear λ-term built upon Σ2.

Write |M|β for the β-normal form of M.
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Properties of lexicons

β-reduction commutes with lexicons:

M �β M
′ implies L (M)�β L (M ′).

Typing judgments are preserved under lexicons:

Γ `Σ1 M : α implies L (Γ ) `Σ2 L (M) :L (α).

If L1 = 〈σ1, θ1〉 is a lexicon from Σ1 to Σ2 and

L2 = 〈σ2, θ2〉 is a lexicon from Σ2 to Σ3, then

L2 ◦L1 = 〈σ2 ◦ σ1, θ2 ◦ θ1〉

is a lexicon from Σ1 to Σ3.
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Important facts about λ→Σ

Subject Reduction Theorem.

If Γ `Σ M : α and M �β M ′, then Γ `Σ M ′ : α.

Subject Expansion Theorem.

If Γ `Σ M ′ : α and M �β M ′ by non-erasing

non-duplicating β-reduction, then Γ `Σ M : α.

(A special case: M linear.)

Uniqueness Theorem.

If M is a λI-term and Γ `Σ M : α, then there is a

unique λ→Σ-deduction of this judgment.

Principal Pair Theorem.

If Γ ` M : α then there is a most general such 〈Γ, α〉
(called a principal pair for M).
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ACGs for string languages

Let G = 〈Σ1,Σ2,L , s〉 where

Σ1 = 〈A1, C1, τ1〉,
Σ2 = 〈{o}, C2, τ2〉,
s ∈ A1,

τ2(a) = o→ o for all a ∈ C2,
L = 〈σ, θ〉,
σ(s) = o→ o.

o→ o is the type of string.

For a1, . . . , an ∈ C2, /a1 . . . an/ stands for

λx.a1(. . . (anx) . . . ).



Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.



Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.

Let

Gh = 〈Σ1,Σ3,Lh ◦L , s〉.



Closure under h

Let h : C∗2 → C∗3 be a homomorphism, and define

Σ3 = 〈{o}, C3, τ3〉,
τ3(b) = o→ o for all b ∈ C3,

Lh = 〈id, θh〉 lexicon from Σ2 to Σ3,

θh(a) = /h(a)/ for all a ∈ C2.

Let

Gh = 〈Σ1,Σ3,Lh ◦L , s〉.

Then

O(Gh) = { /h(w)/ | /w/ ∈ O(G ) }.
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Let M = 〈C2, Q, δ, qI, {qF}〉 be an NFA without

ε-transitions with just one final state.

Define a signature ΣM = 〈Q,CM, τM〉 by

CM = { ar→q | a ∈ C2 and r ∈ δ(q, a) },
τM(a

r→q) = r → q for all ar→q ∈ CM.

Define a lexicon L2 = 〈σ2, θ2〉 from ΣM to Σ2 by

σ2(q) = o for all q ∈ Q,

θ2(a
r→q) = a for all ar→q ∈ CM.

We have `ΣM N : qF → qI iff L2(N) =βη /w/ for some

w ∈ L(M).
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Define another signature Σ∩R = 〈A∩R, C∩R, τ∩R〉 by

A∩R = { pβ | p ∈ A1, β ∈ T (Q),L2(β) =L (p) },

C∩R = { d〈c,N,β〉 | c ∈ C1, N ∈ Λ(ΣM), β ∈ T (Q),

`ΣM N : β,L2(N) =L (c),

L2(β) =L (τ1(c)) },
τ∩R(d〈c,N,β〉) = anti(τ1(c), β)

where

anti(α1→ α2, β1→ β2) = anti(α1, β1)→ anti(α2, β2)

anti(p, β) = pβ
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Closure under ∩R (continued)

τ∩R(d〈c,N,β〉) = anti(τ1(c), β) is always defined and is a

most specific common anti-instance of τ1(c) and β.

Define a lexicon L1 = 〈σ1, θ1〉 from Σ∩R to Σ1 and a

lexicon LM = 〈σM, θM〉 from Σ∩R to ΣM:

σ1(p
β) = p for all pβ ∈ A∩R,

θ1(d〈c,N,β〉) = c for all d〈c,N,β〉 ∈ C∩R,

σM(p
β) = β for all pβ ∈ A∩R,

θM(d〈c,N,β〉) = N for all d〈c,N,β〉 ∈ C∩R.
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L∩R = 〈σ∩R, θ∩R〉,

σ∩R(p
β) =L (p) for all pβ ∈ A∩R,

θ∩R(d〈c,N,β〉) =L (c) for all d〈c,N,β〉 ∈ C∩R.



Closure under ∩R (continued)

Define an ACG G∩R = 〈Σ∩R,Σ2, sqF→qI ,L∩R〉 by

L∩R = 〈σ∩R, θ∩R〉,

σ∩R(p
β) =L (p) for all pβ ∈ A∩R,

θ∩R(d〈c,N,β〉) =L (c) for all d〈c,N,β〉 ∈ C∩R.

Lemma.

L∩R =L ◦L1, L∩R =L2 ◦LM.
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"Σ1 c : τ1(c)
L

"Σ2 L (c) :L (τ1(c))

L1
L∩R

L2

"Σ∩R d〈c,N,β〉 : anti(τ1(c),β)
LM

"ΣM N : β
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Lemma. O(G∩R) ⊆ O(G ) ∩ { /w/ | w ∈ L(M) }.

Proof.

Suppose /a1 . . . an/ ∈ O(G∩R). Let P ∈ A(G∩R) be

such that L (P )�β /a1 . . . an/. Since

`Σ∩R P : s
qF→qI , (1)

we have

`Σ1 L1(P ) : s,

so L1(P ) ∈ A(G ).

Since L (L1(P )) =L∩R(P ), /a1 . . . an/ ∈ O(G ).
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From (1), we also get

`ΣM LM(P ) : qF → qI. (2)

Since L2(LM(P )) =L∩R(P )�β /a1 . . . an/, it follows

that L2(|LM(P )|β) = /a1 . . . an/.

Hence |LM(P )|β must be of the form

λz.ar1→q11 (. . . (arn→qnn z) . . . ). From (2), by the Subject

Reduction Theorem, we obtain

`ΣM λz.a
r1→q1
1 (. . . (arn→qnn z) . . . ) : qF → qI.

This can only be if q1 = qI, rn = qF , and ri = qi+1 for

1 ≤ i ≤ n − 1. Since ri ∈ δ(qi , ai), this implies that

a1 . . . an ∈ L(M).
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Lemma. O(G ) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G ) and a1 . . . an ∈ L(M).

Let P ∈ A(G ) be such that L (P )�β /a1 . . . an/.
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Suppose /a1 . . . an/ ∈ O(G ) and a1 . . . an ∈ L(M).

Let P ∈ A(G ) be such that L (P )�β /a1 . . . an/.

Let q1, q2, . . . , qn+1 be such that q1 = qI, qn+1 = qF ,

and qi+1 ∈ δ(qi , ai) for 1 ≤ i ≤ n.



Closure under ∩R (continued)

Lemma. O(G ) ∩ L(M) ⊆ O(G∩R).

Proof.

Suppose /a1 . . . an/ ∈ O(G ) and a1 . . . an ∈ L(M).

Let P ∈ A(G ) be such that L (P )�β /a1 . . . an/.

Let q1, q2, . . . , qn+1 be such that q1 = qI, qn+1 = qF ,

and qi+1 ∈ δ(qi , ai) for 1 ≤ i ≤ n.

Let P ′[y1, . . . , ym] be a constant-free linear λ-term

such that P ′[c1, . . . , cm] = P , where c1, . . . , cm ∈ C1.
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with FV(N ′i ) ⊆ {x1, . . . , xn} such that
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For 1 ≤ i ≤ m, let N ′i be a constant-free linear λ-term

with FV(N ′i ) ⊆ {x1, . . . , xn} such that

N ′i [a1/x1, . . . , an/xn] =L (ci) for 1 ≤ i ≤ n,
P ′[N ′1, . . . , N

′
m]�β λz.x1(. . . (xnz) . . . ).

For 1 ≤ i ≤ n, let Ni = N
′
i [a
q2→q1
1 /x1, . . . , a

qn+1→qn
n /xn],

so that

L2(Ni) =L (ci). (3)

Then

P ′[N1, . . . , Nm]�β λz.a
q2→q1
1 (. . . (aqn+1→qnn z) . . . )

by a non-erasing non-duplicating β-reduction.
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Since

`ΣM λz.a
q2→q1
1 (. . . (aqn+1→qnn z) . . . ) : qF → qI,

we get

`ΣM P
′[N1, . . . , Nm] : qF → qI

by the Subject Expansion Theorem.

Let ∆ be the unique λ→ΣM -deduction of this

judgment. ∆ contains a subdeduction ∆i of

`ΣM Ni : βi (4)

for some βi ∈ T (AM), for 1 ≤ i ≤ m.



It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.



It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of
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It is easy to see that applying the lexicon L2 to each

step of ∆ gives a λ→Σ2-deduction ∆′ of

`Σ2 P
′[L (c1), . . . ,L (cm)] : o→ o.

Since P ′[L (c1), . . . ,L (cm)] =L (P ), we see that L2

maps ∆i to the unique λ→Σ2-deduction of

`Σ2 L (ci) :L (τ1(ci)).

It follows that

L2(βi) =L (τ1(ci)). (5)

By (3), (4), and (5),

d〈ci ,Ni ,βi 〉 ∈ C∩R.
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{y1 : β1, . . . , ym : βm} ` P ′ : qF → qI,
{y1 : τ1(c1), . . . , ym : τ1(cm)} ` P ′ : s.



We have

{y1 : β1, . . . , ym : βm} ` P ′ : qF → qI,
{y1 : τ1(c1), . . . , ym : τ1(cm)} ` P ′ : s.

Let τ∩R(d〈ci ,Ni ,βi 〉) = γi for i = 1, . . . , m. By the

definition of τ∩R,

〈γ1, . . . , γm, sqF→qI〉

is a most specific common anti-instance of

〈β1, . . . , βm, qF → qI〉 and 〈τ1(c1), . . . , τ1(cm), s〉.
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By the Principal Pair Theorem, it follows that

{y1 : γ1, . . . , ym : γm} ` P ′ : sqF→qI

and hence

`Σ∩R P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] : s

qF→qI .

Therefore, P ′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉] ∈ A(G∩R).

L∩R(P
′[d〈c1,N1,β1〉, . . . , d〈cm,Nm,βm〉])

= P ′[L∩R(d〈c1,N1,β1〉), . . . ,L∩R(d〈cm,Nm,βm〉)]

= P ′[L (c1), . . . ,L (cm)]

=L (P )

�β /a1 . . . an/.



This proves /a1 . . . an/ ∈ O(G∩R).



This proves /a1 . . . an/ ∈ O(G∩R).

Theorem. O(G∩R) = O(G ) ∩ { /w/ | w ∈ L(M) }.
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Closure under h−1

Lemma.

The string languages of ACGs are closed under

substitution.

a 7→ O(G )

Fact.

If a family of languages includes the regular sets and is

closed under substitution and ∩R, then it is closed

under h−1.
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Theorem.

The string languages of ACGs form a full AFL.

Theorem.

The string languages of ACGs in G(m, n) (m ≥ 2)
form a full AFL.
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Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed

under substitution.

Fact.

If a family of ε-free languages includes the ε-free

regular sets and is closed under substitution, ∩R, and

k-limited erasing, then it is closed under h−1.

Lemma.

The string languages of lexicalized ACGs are closed

under k-limited erasing.

Theorem.

The string languages of lexicalized ACGs form an AFL.


