Abstract Families of Abstract Categorial Languages

Makoto Kanazawa National Institute of Informatics

February 18, 2005

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.
- Why is this interesting?

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.
- Why is this interesting?
 - Not entirely obvious.

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.
- Why is this interesting?
 - Not entirely obvious.
 - An application of Curry-style type assignment system.

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.
- Why is this interesting?
 - Not entirely obvious.
 - An application of Curry-style type assignment system.
 - Hopefully useful.

- The string languages generated by ACGs (Abstract
- Categorial Grammars) form a full AFL (Abstract
- Families of Languages).
- The string languages generated by lexicalized ACGs form an AFL.
- Why is this interesting?
 - Not entirely obvious.
 - An application of Curry-style type assignment system.
 - Hopefully useful.
 - Suggests machine models for ACGs.

- union (U), concatenation (\cdot), Kleene closure (*);
- homomorphism (*h*);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$

- union (U), concatenation (\cdot), Kleene closure (*);
- homomorphism (*h*);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$
- A family of languages is an AFL if it is closed under

- union (U), concatenation (\cdot), Kleene closure (*);
- homomorphism (*h*);
- inverse homomorphism (h^{-1}) ;
- intersection with regular sets $(\cap R)$
- A family of languages is an AFL if it is closed under
 - union (U), concatenation (\cdot), positive closure ($^+$);
 - ϵ -free homomorphism (ϵ -free h);
 - inverse homomorphism (h^{-1}) ;
 - intersection with regular sets $(\cap R)$

- The following families are full AFLs.
 - regular sets, context-free languages, r.e. sets

The following families are full AFLs.

- regular sets, context-free languages, r.e. sets
- indexed languages
- linear indexed languages
- (parallel) multiple context-free languages

- The following families are full AFLs.
 - regular sets, context-free languages, r.e. sets
 - indexed languages
 - linear indexed languages
 - (parallel) multiple context-free languages
- The following families are AFLs.
 - context-sensitive languages, recursive sets
 - ϵ -free context-free languages
 - NP

- The following families are full AFLs.
 - regular sets, context-free languages, r.e. sets
 - indexed languages
 - linear indexed languages
 - (parallel) multiple context-free languages
- The following families are AFLs.
 - context-sensitive languages, recursive sets
 - ϵ -free context-free languages
 - NP

PTIME is not an AFL unless P = NP.

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $(\cup, \cdot, *)$ is easy to prove in such cases.

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $(\cup, \cdot, *)$ is easy to prove in such cases.

Fact.

A family of languages is closed under h, h^{-1} , $\cap R$ iff it is closed under finite transductions.

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $(\cup, \cdot, *)$ is easy to prove in such cases.

Fact.

A family of languages is closed under h, h^{-1} , $\cap R$ iff it is closed under finite transductions.

Theorem (Ginsburg and Greibach 1969). Full AFLs are exactly characterized by abstract families of acceptors.

The languages of ACGs form a full AFL

Closure under regular operations is easy to prove.

The languages of ACGs form a full AFL

- Closure under regular operations is easy to prove.
- We prove closure under h, h^{-1} , $\cap R$, using some technical properties of the Curry-style type assignment system $\lambda \rightarrow$.

Type assignment system $\lambda \rightarrow \Sigma$

 $\Sigma = \langle A, C, \tau \rangle$: higher-order signature

Write M, N, P, \ldots for λ -terms.

 $\vdash_{\Sigma} c : \tau(c) \qquad x : \alpha \vdash_{\Sigma} x : \alpha$

 $\frac{\Gamma, (x:\alpha)^{\circ} \vdash_{\Sigma} M:\beta}{\Gamma \vdash_{\Sigma} \lambda x.M: \alpha \to \beta} \qquad \frac{\Gamma \vdash_{\Sigma} M:\alpha \to \beta \quad \Delta \vdash_{\Sigma} N:\alpha}{\Gamma, \Delta \vdash_{\Sigma} MN:\beta}$

Type assignment system $\lambda \rightarrow_{\Sigma}$

 $\Sigma = \langle A, C, \tau \rangle$: higher-order signature

Write M, N, P, \ldots for λ -terms.

 $\vdash_{\Sigma} c : \tau(c) \qquad x : \alpha \vdash_{\Sigma} x : \alpha$

$$\frac{\Gamma, (x:\alpha)^{\circ} \vdash_{\Sigma} M:\beta}{\Gamma \vdash_{\Sigma} \lambda x.M: \alpha \to \beta} \qquad \frac{\Gamma \vdash_{\Sigma} M:\alpha \to \beta \quad \Delta \vdash_{\Sigma} N:\alpha}{\Gamma, \Delta \vdash_{\Sigma} MN:\beta}$$

 $\mathscr{L} = \langle \sigma, \theta \rangle$: lexicon from Σ_1 to Σ_2

$$\vdash_{\Sigma_2} \theta(c) : \sigma(\tau_1(c))$$

 $\theta(c)$: a closed linear λ -term built upon Σ_2 .

Type assignment system $\lambda \rightarrow_{\Sigma}$

 $\Sigma = \langle A, C, \tau \rangle$: higher-order signature

Write M, N, P, \ldots for λ -terms.

 $\vdash_{\Sigma} c : \tau(c) \qquad x : \alpha \vdash_{\Sigma} x : \alpha$

$$\frac{\Gamma, (x:\alpha)^{\circ} \vdash_{\Sigma} M:\beta}{\Gamma \vdash_{\Sigma} \lambda x.M: \alpha \to \beta} \qquad \frac{\Gamma \vdash_{\Sigma} M:\alpha \to \beta \quad \Delta \vdash_{\Sigma} N:\alpha}{\Gamma, \Delta \vdash_{\Sigma} MN:\beta}$$

 $\mathscr{L} = \langle \sigma, \theta \rangle$: lexicon from Σ_1 to Σ_2

$$\vdash_{\Sigma_2} \theta(c) : \sigma(\tau_1(c))$$

 $\theta(c)$: a closed linear λ -term built upon Σ_2 . Write $|M|_{\beta}$ for the β -normal form of M.

Properties of lexicons

 β -reduction commutes with lexicons:

 $M \twoheadrightarrow_{\beta} M'$ implies $\mathscr{L}(M) \twoheadrightarrow_{\beta} \mathscr{L}(M')$.

Properties of lexicons

 β -reduction commutes with lexicons:

 $M \twoheadrightarrow_{\beta} M'$ implies $\mathscr{L}(M) \twoheadrightarrow_{\beta} \mathscr{L}(M')$.

Typing judgments are preserved under lexicons:

 $\Gamma \vdash_{\Sigma_1} M : \alpha$ implies $\mathscr{L}(\Gamma) \vdash_{\Sigma_2} \mathscr{L}(M) : \mathscr{L}(\alpha)$.

Properties of lexicons

 β -reduction commutes with lexicons:

 $M \twoheadrightarrow_{\beta} M'$ implies $\mathscr{L}(M) \twoheadrightarrow_{\beta} \mathscr{L}(M')$.

Typing judgments are preserved under lexicons:

$$\Gamma \vdash_{\Sigma_1} M : \alpha \quad \text{implies} \quad \mathscr{L}(\Gamma) \vdash_{\Sigma_2} \mathscr{L}(M) : \mathscr{L}(\alpha).$$

If $\mathscr{L}_1 = \langle \sigma_1, \theta_1 \rangle$ is a lexicon from Σ_1 to Σ_2 and $\mathscr{L}_2 = \langle \sigma_2, \theta_2 \rangle$ is a lexicon from Σ_2 to Σ_3 , then

$$\mathscr{L}_2 \circ \mathscr{L}_1 = \langle \sigma_2 \circ \sigma_1, \theta_2 \circ \theta_1 \rangle$$

is a lexicon from Σ_1 to Σ_3 .

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Reduction Theorem. If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem. If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$.

Subject Reduction Theorem. If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$. **Subject Expansion Theorem.** If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$. (A special case: *M* linear.)

Subject Reduction Theorem. If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem. If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$. (A special case: *M* linear.)

Uniqueness Theorem.

If *M* is a λ *l*-term and $\Gamma \vdash_{\Sigma} M : \alpha$, then there is a unique $\lambda \rightarrow_{\Sigma}$ -deduction of this judgment.

Subject Reduction Theorem. If $\Gamma \vdash_{\Sigma} M : \alpha$ and $M \twoheadrightarrow_{\beta} M'$, then $\Gamma \vdash_{\Sigma} M' : \alpha$.

Subject Expansion Theorem. If $\Gamma \vdash_{\Sigma} M' : \alpha$ and $M \twoheadrightarrow_{\beta} M'$ by non-erasing non-duplicating β -reduction, then $\Gamma \vdash_{\Sigma} M : \alpha$. (A special case: *M* linear.)

Uniqueness Theorem.

If *M* is a λ *l*-term and $\Gamma \vdash_{\Sigma} M : \alpha$, then there is a unique $\lambda \rightarrow_{\Sigma}$ -deduction of this judgment.

Principal Pair Theorem.

If $\Gamma \vdash M : \alpha$ then there is a most general such $\langle \Gamma, \alpha \rangle$ (called a principal pair for M).

ACGs for string languages

Let $\mathscr{G} = \langle \Sigma_1, \Sigma_2, \mathscr{L}, s \rangle$ where $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ $\Sigma_2 = \langle \{o\}, C_2, \tau_2 \rangle,$ $s \in A_1$, $au_2(a) = o \rightarrow o$ for all $a \in C_2$, $\mathscr{L} = \langle \sigma, \theta \rangle$ $\sigma(s) = o \rightarrow o$.

ACGs for string languages

Let $\mathscr{G} = \langle \Sigma_1, \Sigma_2, \mathscr{L}, s \rangle$ where $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ $\Sigma_2 = \langle \{o\}, C_2, \tau_2 \rangle,$ $s \in A_1$. $\tau_2(a) = o \rightarrow o$ for all $a \in C_2$, $\mathscr{L} = \langle \sigma, \theta \rangle$ $\sigma(s) = o \rightarrow o$.

 $o \rightarrow o$ is the type of string.

ACGs for string languages

Let $\mathscr{G} = \langle \Sigma_1, \Sigma_2, \mathscr{L}, s \rangle$ where $\Sigma_1 = \langle A_1, C_1, \tau_1 \rangle$ $\Sigma_2 = \langle \{o\}, C_2, \tau_2 \rangle,$ $s \in A_1$. $\tau_2(a) = o \rightarrow o$ for all $a \in C_2$, $\mathscr{L} = \langle \sigma, \theta \rangle$ $\sigma(s) = o \rightarrow o$.

 $o \rightarrow o$ is the type of string.

For $a_1, ..., a_n \in C_2$, $/a_1 ... a_n /$ stands for $\lambda x.a_1(...(a_n x)...)$.

Closure under *h*

Let $h: C_2^* \to C_3^*$ be a homomorphism, and define $\Sigma_3 = \langle \{o\}, C_3, \tau_3 \rangle,$ $\tau_3(b) = o \to o$ for all $b \in C_3,$ $\mathscr{L}_h = \langle \operatorname{id}, \theta_h \rangle$ lexicon from Σ_2 to $\Sigma_3,$ $\theta_h(a) = /h(a)/$ for all $a \in C_2.$

Closure under *h*

Let $h: C_2^* \to C_3^*$ be a homomorphism, and define $\Sigma_3 = \langle \{o\}, C_3, \tau_3 \rangle,$ $\tau_3(b) = o \to o$ for all $b \in C_3,$ $\mathscr{L}_h = \langle \operatorname{id}, \theta_h \rangle$ lexicon from Σ_2 to $\Sigma_3,$ $\theta_h(a) = /h(a)/$ for all $a \in C_2.$

Let

$$\mathscr{G}_h = \langle \Sigma_1, \Sigma_3, \mathscr{L}_h \circ \mathscr{L}, s \rangle.$$

Closure under h

Let $h: C_2^* \to C_3^*$ be a homomorphism, and define $\Sigma_3 = \langle \{o\}, C_3, \tau_3 \rangle,$ $\tau_3(b) = o \to o$ for all $b \in C_3,$ $\mathscr{L}_h = \langle \operatorname{id}, \theta_h \rangle$ lexicon from Σ_2 to $\Sigma_3,$ $\theta_h(a) = /h(a)/$ for all $a \in C_2.$

Let

$$\mathscr{G}_h = \langle \Sigma_1, \Sigma_3, \mathscr{L}_h \circ \mathscr{L}, s \rangle.$$

Then

$$\mathcal{O}(\mathscr{G}_h) = \{ /h(w) / | /w / \in \mathcal{O}(\mathscr{G}) \}.$$

Let $M = \langle C_2, Q, \delta, q_I, \{q_F\} \rangle$ be an NFA without ϵ -transitions with just one final state.

Let $M = \langle C_2, Q, \delta, q_I, \{q_F\} \rangle$ be an NFA without ϵ -transitions with just one final state.

Define a signature $\Sigma_M = \langle Q, C_M, \tau_M \rangle$ by

 $C_M = \{ a^{r \to q} \mid a \in C_2 \text{ and } r \in \delta(q, a) \},$ $\tau_M(a^{r \to q}) = r \to q \quad \text{for all } a^{r \to q} \in C_M.$

Let $M = \langle C_2, Q, \delta, q_I, \{q_F\} \rangle$ be an NFA without ϵ -transitions with just one final state.

Define a signature $\Sigma_M = \langle Q, C_M, \tau_M \rangle$ by

$$C_M = \{ a^{r o q} \mid a \in C_2 \text{ and } r \in \delta(q, a) \},$$

 $au_M(a^{r o q}) = r o q \quad \text{for all } a^{r o q} \in C_M.$

Define a lexicon $\mathscr{L}_2 = \langle \sigma_2, \theta_2 \rangle$ from Σ_M to Σ_2 by

$$\sigma_2(q) = o$$
 for all $q \in Q$,
 $\theta_2(a^{r \to q}) = a$ for all $a^{r \to q} \in C_M$.

Let $M = \langle C_2, Q, \delta, q_I, \{q_F\} \rangle$ be an NFA without ϵ -transitions with just one final state.

Define a signature $\Sigma_M = \langle Q, C_M, \tau_M \rangle$ by

$$C_M = \{ a^{r o q} \mid a \in C_2 \text{ and } r \in \delta(q, a) \},$$

 $T_M(a^{r o q}) = r o q \quad \text{for all } a^{r o q} \in C_M.$

Define a lexicon $\mathscr{L}_2 = \langle \sigma_2, \theta_2 \rangle$ from Σ_M to Σ_2 by

$$\sigma_2(q) = o$$
 for all $q \in Q$,
 $\theta_2(a^{r \to q}) = a$ for all $a^{r \to q} \in C_M$.

We have $\vdash_{\Sigma_M} N : q_F \to q_I$ iff $\mathscr{L}_2(N) =_{\beta\eta} / w /$ for some $w \in L(M)$.

Define another signature $\Sigma_{\cap R} = \langle A_{\cap R}, C_{\cap R}, \tau_{\cap R} \rangle$ by

 $A_{\cap R} = \{ p^{\beta} \mid p \in A_1, \beta \in \mathscr{T}(Q), \mathscr{L}_2(\beta) = \mathscr{L}(p) \},\$

 $C_{\cap R} = \{ d_{\langle c, N, \beta \rangle} \mid c \in C_1, N \in \Lambda(\Sigma_M), \beta \in \mathscr{T}(Q), \\ \vdash_{\Sigma_M} N : \beta, \mathscr{L}_2(N) = \mathscr{L}(c), \\ \mathscr{L}_2(\beta) = \mathscr{L}(\tau_1(c)) \},$

 $au_{\cap R}(d_{\langle c, N, \beta \rangle}) = \operatorname{anti}(au_1(c), \beta)$

Define another signature $\Sigma_{\cap R} = \langle A_{\cap R}, C_{\cap R}, \tau_{\cap R} \rangle$ by

 $A_{\cap R} = \{ p^{\beta} \mid p \in A_1, \beta \in \mathscr{T}(Q), \mathscr{L}_2(\beta) = \mathscr{L}(p) \},\$

 $C_{\cap R} = \{ d_{\langle c, N, \beta \rangle} \mid c \in C_1, N \in \Lambda(\Sigma_M), \beta \in \mathscr{T}(Q), \\ \vdash_{\Sigma_M} N : \beta, \mathscr{L}_2(N) = \mathscr{L}(c), \\ \mathscr{L}_2(\beta) = \mathscr{L}(\tau_1(c)) \}, \\ \tau_{\cap R}(d_{\langle c, N, \beta \rangle}) = \operatorname{anti}(\tau_1(c), \beta)$

where

 $anti(\alpha_1 \to \alpha_2, \beta_1 \to \beta_2) = anti(\alpha_1, \beta_1) \to anti(\alpha_2, \beta_2)$ $anti(p, \beta) = p^{\beta}$

 $\tau_{\cap R}(d_{\langle c,N,\beta\rangle}) = \operatorname{anti}(\tau_1(c),\beta)$ is always defined and is a most specific common anti-instance of $\tau_1(c)$ and β .

 $\tau_{\cap R}(d_{\langle c,N,\beta\rangle}) = \operatorname{anti}(\tau_1(c),\beta)$ is always defined and is a most specific common anti-instance of $\tau_1(c)$ and β .

Define a lexicon $\mathscr{L}_1 = \langle \sigma_1, \theta_1 \rangle$ from $\Sigma_{\cap R}$ to Σ_1 and a lexicon $\mathscr{L}_M = \langle \sigma_M, \theta_M \rangle$ from $\Sigma_{\cap R}$ to Σ_M :

$$\begin{aligned} \sigma_1(p^{\beta}) &= p \quad \text{for all } p^{\beta} \in A_{\cap R}, \\ \theta_1(d_{\langle c, N, \beta \rangle}) &= c \quad \text{for all } d_{\langle c, N, \beta \rangle} \in C_{\cap R}, \\ \sigma_M(p^{\beta}) &= \beta \quad \text{for all } p^{\beta} \in A_{\cap R}, \\ \theta_M(d_{\langle c, N, \beta \rangle}) &= N \quad \text{for all } d_{\langle c, N, \beta \rangle} \in C_{\cap R}. \end{aligned}$$

Define an ACG $\mathscr{G}_{\cap R} = \langle \Sigma_{\cap R}, \Sigma_2, s^{q_F \to q_I}, \mathscr{L}_{\cap R} \rangle$ by

 $\mathscr{L}_{\cap R} = \langle \sigma_{\cap R}, \theta_{\cap R} \rangle,$ $\sigma_{\cap R}(p^{\beta}) = \mathscr{L}(p) \quad \text{for all } p^{\beta} \in A_{\cap R},$ $\theta_{\cap R}(d_{\langle c, N, \beta \rangle}) = \mathscr{L}(c) \quad \text{for all } d_{\langle c, N, \beta \rangle} \in C_{\cap R}.$

Define an ACG $\mathscr{G}_{\cap R} = \langle \Sigma_{\cap R}, \Sigma_2, s^{q_F \to q_I}, \mathscr{L}_{\cap R} \rangle$ by

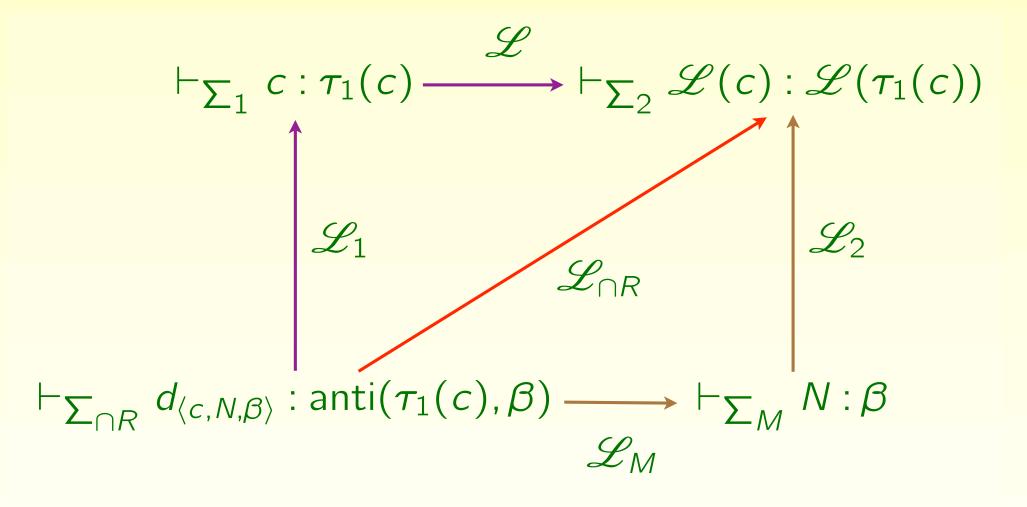
$$\mathscr{L}_{\cap R} = \langle \sigma_{\cap R}, \theta_{\cap R} \rangle,$$

$$\sigma_{\cap R}(p^{\beta}) = \mathscr{L}(p) \quad \text{for all } p^{\beta} \in A_{\cap R},$$

$$\theta_{\cap R}(d_{\langle c, N, \beta \rangle}) = \mathscr{L}(c) \quad \text{for all } d_{\langle c, N, \beta \rangle} \in C_{\cap R}.$$

Lemma.

$$\mathscr{L}_{\cap R} = \mathscr{L} \circ \mathscr{L}_1, \qquad \mathscr{L}_{\cap R} = \mathscr{L}_2 \circ \mathscr{L}_M.$$



Lemma. $\mathcal{O}(\mathscr{G}_{\cap R}) \subseteq \mathcal{O}(\mathscr{G}) \cap \{/w/ | w \in L(M)\}.$

- Lemma. $\mathcal{O}(\mathcal{G}_{\cap R}) \subseteq \mathcal{O}(\mathcal{G}) \cap \{/w/ | w \in L(M)\}.$ Proof.
- Suppose $|a_1 \dots a_n| \in \mathcal{O}(\mathscr{G}_{\cap R})$. Let $P \in \mathcal{A}(\mathscr{G}_{\cap R})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} |a_1 \dots a_n|$. Since

$$\vdash_{\Sigma_{\cap R}} P: s^{q_F \to q_I}, \tag{1}$$

- Lemma. $\mathcal{O}(\mathcal{G}_{\cap R}) \subseteq \mathcal{O}(\mathcal{G}) \cap \{/w/ | w \in L(M)\}.$ Proof.
- Suppose $|a_1 \dots a_n| \in \mathcal{O}(\mathscr{G}_{\cap R})$. Let $P \in \mathcal{A}(\mathscr{G}_{\cap R})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} |a_1 \dots a_n|$. Since

$$\vdash_{\Sigma_{\cap R}} P: s^{q_F \to q_I}, \tag{1}$$

we have

$$\vdash_{\Sigma_1} \mathscr{L}_1(P)$$
 : s,

so $\mathscr{L}_1(P) \in \mathcal{A}(\mathscr{G})$.

- Lemma. $\mathcal{O}(\mathscr{G}_{\cap R}) \subseteq \mathcal{O}(\mathscr{G}) \cap \{/w/ | w \in L(M)\}.$ Proof.
- Suppose $|a_1 \dots a_n| \in \mathcal{O}(\mathscr{G}_{\cap R})$. Let $P \in \mathcal{A}(\mathscr{G}_{\cap R})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} |a_1 \dots a_n|$. Since

$$\vdash_{\Sigma_{\cap R}} P: s^{q_F \to q_I}, \tag{1}$$

we have

$$\vdash_{\Sigma_1} \mathscr{L}_1(P)$$
 : *s*,

so $\mathscr{L}_1(P) \in \mathcal{A}(\mathscr{G}).$

Since $\mathscr{L}(\mathscr{L}_1(P)) = \mathscr{L}_{\cap R}(P), \ /a_1 \dots a_n / \in \mathcal{O}(\mathscr{G}).$

$$\vdash_{\Sigma_M} \mathscr{L}_M(P) : q_F \to q_I.$$
 (2)

$$\vdash_{\Sigma_M} \mathscr{L}_M(P) : q_F \to q_I.$$
 (2)

Since $\mathscr{L}_2(\mathscr{L}_M(P)) = \mathscr{L}_{\cap R}(P) \twoheadrightarrow_\beta / a_1 \dots a_n /$, it follows that $\mathscr{L}_2(|\mathscr{L}_M(P)|_\beta) = /a_1 \dots a_n /$.

$$-_{\Sigma_M} \mathscr{L}_M(P) : q_F \to q_I.$$
⁽²⁾

Since $\mathscr{L}_2(\mathscr{L}_M(P)) = \mathscr{L}_{\cap R}(P) \twoheadrightarrow_\beta / a_1 \dots a_n /$, it follows that $\mathscr{L}_2(|\mathscr{L}_M(P)|_\beta) = /a_1 \dots a_n /$.

Hence $|\mathscr{L}_M(P)|_{\beta}$ must be of the form $\lambda z.a_1^{r_1 \to q_1}(\ldots(a_n^{r_n \to q_n}z)\ldots)$. From (2), by the Subject Reduction Theorem, we obtain

$$\vdash_{\Sigma_M} \lambda z . a_1^{r_1 \to q_1} (\dots (a_n^{r_n \to q_n} z) \dots) : q_F \to q_I.$$

$$-_{\Sigma_M} \mathscr{L}_M(P) : q_F \to q_I.$$
⁽²⁾

Since $\mathscr{L}_2(\mathscr{L}_M(P)) = \mathscr{L}_{\cap R}(P) \twoheadrightarrow_\beta / a_1 \dots a_n /$, it follows that $\mathscr{L}_2(|\mathscr{L}_M(P)|_\beta) = /a_1 \dots a_n /$.

Hence $|\mathscr{L}_M(P)|_{\beta}$ must be of the form $\lambda z.a_1^{r_1 \to q_1}(\ldots(a_n^{r_n \to q_n}z)\ldots)$. From (2), by the Subject Reduction Theorem, we obtain

$$\vdash_{\Sigma_M} \lambda z. a_1^{r_1 \to q_1} (\dots (a_n^{r_n \to q_n} z) \dots) : q_F \to q_I.$$

This can only be if $q_1 = q_I$, $r_n = q_F$, and $r_i = q_{i+1}$ for $1 \le i \le n-1$. Since $r_i \in \delta(q_i, a_i)$, this implies that $a_1 \ldots a_n \in L(M)$.

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G}_{\cap R}).$

- **Lemma.** $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G}_{\cap R}).$
- Proof.
- Suppose $a_1 \ldots a_n \in \mathcal{O}(\mathcal{G})$ and $a_1 \ldots a_n \in L(M)$.

- Closure under $\cap R$ (continued)
- **Lemma.** $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G}_{\cap R}).$

Proof.

- Suppose $a_1 \ldots a_n \in \mathcal{O}(\mathcal{G})$ and $a_1 \ldots a_n \in L(M)$.
- Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} / a_1 \dots a_n / .$

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G}_{\cap R}).$

Proof.

- Suppose $a_1 \ldots a_n \in \mathcal{O}(\mathcal{G})$ and $a_1 \ldots a_n \in L(M)$.
- Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} / a_1 \dots a_n / .$
- Let $q_1, q_2, ..., q_{n+1}$ be such that $q_1 = q_i, q_{n+1} = q_F$, and $q_{i+1} \in \delta(q_i, a_i)$ for $1 \le i \le n$.

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G}_{\cap R}).$

Proof.

- Suppose $a_1 \ldots a_n \in \mathcal{O}(\mathscr{G})$ and $a_1 \ldots a_n \in L(M)$.
- Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \twoheadrightarrow_{\beta} / a_1 \dots a_n / .$
- Let $q_1, q_2, ..., q_{n+1}$ be such that $q_1 = q_i, q_{n+1} = q_F$, and $q_{i+1} \in \delta(q_i, a_i)$ for $1 \le i \le n$.
- Let $P'[y_1, \ldots, y_m]$ be a constant-free linear λ -term such that $P'[c_1, \ldots, c_m] = P$, where $c_1, \ldots, c_m \in C_1$.

For $1 \le i \le m$, let N'_i be a constant-free linear λ -term with $FV(N'_i) \subseteq \{x_1, \ldots, x_n\}$ such that

$$N'_{i}[a_{1}/x_{1},\ldots,a_{n}/x_{n}] = \mathscr{L}(c_{i}) \text{ for } 1 \leq i \leq n,$$
$$P'[N'_{1},\ldots,N'_{m}] \twoheadrightarrow_{\beta} \lambda z.x_{1}(\ldots(x_{n}z)\ldots).$$

For $1 \le i \le m$, let N'_i be a constant-free linear λ -term with $FV(N'_i) \subseteq \{x_1, \ldots, x_n\}$ such that

$$N'_i[a_1/x_1,\ldots,a_n/x_n] = \mathscr{L}(c_i) \text{ for } 1 \leq i \leq n,$$

 $P'[N'_1,\ldots,N'_m] \twoheadrightarrow_{\beta} \lambda z.x_1(\ldots(x_nz)\ldots).$

For $1 \le i \le n$, let $N_i = N'_i [a_1^{q_2 \to q_1} / x_1, \dots, a_n^{q_{n+1} \to q_n} / x_n]$, so that

$$\mathscr{L}_2(N_i) = \mathscr{L}(c_i). \tag{3}$$

For $1 \le i \le m$, let N'_i be a constant-free linear λ -term with $FV(N'_i) \subseteq \{x_1, \ldots, x_n\}$ such that

$$N'_i[a_1/x_1,\ldots,a_n/x_n] = \mathscr{L}(c_i) \text{ for } 1 \leq i \leq n,$$

 $P'[N'_1,\ldots,N'_m] \twoheadrightarrow_{\beta} \lambda z.x_1(\ldots(x_nz)\ldots).$

For $1 \le i \le n$, let $N_i = N'_i [a_1^{q_2 \to q_1} / x_1, \dots, a_n^{q_{n+1} \to q_n} / x_n]$, so that

$$\mathscr{L}_2(N_i) = \mathscr{L}(c_i). \tag{3}$$

Then

$$P'[N_1,\ldots,N_m] \twoheadrightarrow_{\beta} \lambda z.a_1^{q_2 \to q_1}(\ldots(a_n^{q_{n+1} \to q_n}z)\ldots)$$

by a non-erasing non-duplicating β -reduction.

Since

$$\vdash_{\Sigma_M} \lambda z. a_1^{q_2 \to q_1} (\dots (a_n^{q_{n+1} \to q_n} z) \dots) : q_F \to q_I,$$

we get

$$\vdash_{\Sigma_M} P'[N_1,\ldots,N_m]:q_F\to q_I$$

by the Subject Expansion Theorem.

Since

$$\vdash_{\Sigma_M} \lambda z. a_1^{q_2 \to q_1} (\dots (a_n^{q_{n+1} \to q_n} z) \dots) : q_F \to q_I,$$

we get

$$\vdash_{\Sigma_M} P'[N_1,\ldots,N_m]:q_F\to q_I$$

by the Subject Expansion Theorem.

Let Δ be the unique $\lambda \rightarrow_{\Sigma_M}$ -deduction of this judgment. Δ contains a subdeduction Δ_i of

$$-\sum_{M} N_{i} : \beta_{i}$$
 (4)

for some $\beta_i \in \mathscr{T}(A_M)$, for $1 \leq i \leq m$.

It is easy to see that applying the lexicon \mathscr{L}_2 to each step of Δ gives a $\lambda \rightarrow_{\Sigma_2}$ -deduction Δ' of

 $\vdash_{\Sigma_2} P'[\mathscr{L}(c_1),\ldots,\mathscr{L}(c_m)]: o \to o.$

It is easy to see that applying the lexicon \mathscr{L}_2 to each step of Δ gives a $\lambda \rightarrow_{\Sigma_2}$ -deduction Δ' of

$$\vdash_{\Sigma_2} P'[\mathscr{L}(c_1),\ldots,\mathscr{L}(c_m)]: o \to o.$$

Since $P'[\mathscr{L}(c_1), \ldots, \mathscr{L}(c_m)] = \mathscr{L}(P)$, we see that \mathscr{L}_2 maps Δ_i to the unique $\lambda \rightarrow_{\Sigma_2}$ -deduction of

$$\vdash_{\Sigma_2} \mathscr{L}(c_i) : \mathscr{L}(\tau_1(c_i)).$$

It is easy to see that applying the lexicon \mathscr{L}_2 to each step of Δ gives a $\lambda \rightarrow_{\Sigma_2}$ -deduction Δ' of

$$\vdash_{\Sigma_2} P'[\mathscr{L}(c_1),\ldots,\mathscr{L}(c_m)]: o \to o.$$

Since $P'[\mathscr{L}(c_1), \ldots, \mathscr{L}(c_m)] = \mathscr{L}(P)$, we see that \mathscr{L}_2 maps Δ_i to the unique $\lambda \rightarrow_{\Sigma_2}$ -deduction of

$$\vdash_{\Sigma_2} \mathscr{L}(c_i) : \mathscr{L}(\tau_1(c_i)).$$

It follows that

$$\mathscr{L}_2(\beta_i) = \mathscr{L}(\tau_1(c_i)).$$
 (5)

It is easy to see that applying the lexicon \mathscr{L}_2 to each step of Δ gives a $\lambda \rightarrow_{\Sigma_2}$ -deduction Δ' of

$$\vdash_{\Sigma_2} P'[\mathscr{L}(c_1),\ldots,\mathscr{L}(c_m)]: o \to o.$$

Since $P'[\mathscr{L}(c_1), \ldots, \mathscr{L}(c_m)] = \mathscr{L}(P)$, we see that \mathscr{L}_2 maps Δ_i to the unique $\lambda \rightarrow_{\Sigma_2}$ -deduction of

$$\vdash_{\Sigma_2} \mathscr{L}(c_i) : \mathscr{L}(\tau_1(c_i)).$$

It follows that

$$\mathscr{L}_2(\beta_i) = \mathscr{L}(\tau_1(c_i)).$$
 (5)

By (3), (4), and (5),

 $d_{\langle c_i, N_i, \beta_i \rangle} \in C_{\cap R}.$

We have

$\{y_1:\beta_1,\ldots,y_m:\beta_m\} \vdash P':q_F \to q_I,$ $\{y_1:\tau_1(c_1),\ldots,y_m:\tau_1(c_m)\} \vdash P':s.$

We have

$$\{y_1:\beta_1,\ldots,y_m:\beta_m\} \vdash P':q_F \to q_I,$$
$$\{y_1:\tau_1(c_1),\ldots,y_m:\tau_1(c_m)\} \vdash P':s.$$

Let $\tau_{\cap R}(d_{\langle c_i, N_i, \beta_i \rangle}) = \gamma_i$ for i = 1, ..., m. By the definition of $\tau_{\cap R}$,

$$\langle \boldsymbol{\gamma}_1, \ldots, \boldsymbol{\gamma}_m, s^{q_F
ightarrow q_I}
angle$$

is a most specific common anti-instance of

 $\langle \beta_1,\ldots,\beta_m,q_F \to q_I \rangle$ and $\langle \tau_1(c_1),\ldots,\tau_1(c_m),s \rangle$.

By the Principal Pair Theorem, it follows that $\{y_1: \gamma_1, \ldots, y_m: \gamma_m\} \vdash P': s^{q_F \rightarrow q_I}$

and hence

$$\vdash_{\Sigma_{\cap R}} P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \ldots, d_{\langle c_m, N_m, \beta_m \rangle}]: s^{q_F \to q_I}.$$

By the Principal Pair Theorem, it follows that $\{y_1: \gamma_1, \ldots, y_m: \gamma_m\} \vdash P': s^{q_F \rightarrow q_I}$

and hence

$$\vdash_{\Sigma_{\cap R}} P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \dots, d_{\langle c_m, N_m, \beta_m \rangle}] : s^{q_F \to q_I}.$$

Therefore, $P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \dots, d_{\langle c_m, N_m, \beta_m \rangle}] \in \mathcal{A}(\mathscr{G}_{\cap R}).$

By the Principal Pair Theorem, it follows that $\{y_1: \gamma_1, \ldots, y_m: \gamma_m\} \vdash P': s^{q_F \rightarrow q_I}$

and hence

$$\vdash_{\Sigma_{\cap R}} P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \dots, d_{\langle c_m, N_m, \beta_m \rangle}] : s^{q_F \to q_I}.$$
Therefore, $P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \dots, d_{\langle c_m, N_m, \beta_m \rangle}] \in \mathcal{A}(\mathscr{G}_{\cap R}).$

$$\mathscr{L}_{\cap R}(P'[d_{\langle c_1, N_1, \beta_1 \rangle}, \dots, d_{\langle c_m, N_m, \beta_m \rangle}])$$

$$= P'[\mathscr{L}_{\cap R}(d_{\langle c_1, N_1, \beta_1 \rangle}), \dots, \mathscr{L}_{\cap R}(d_{\langle c_m, N_m, \beta_m \rangle})]$$

$$= P'[\mathscr{L}(c_1), \dots, \mathscr{L}(c_m)]$$

$$= \mathscr{L}(P)$$

$$\rightarrow_{\beta} /a_1 \dots a_n /.$$

This proves $|a_1 \dots a_n| \in \mathcal{O}(\mathscr{G}_{\cap R})$.

This proves $/a_1 \dots a_n / \in \mathcal{O}(\mathscr{G}_{\cap R})$. **Theorem.** $\mathcal{O}(\mathscr{G}_{\cap R}) = \mathcal{O}(\mathscr{G}) \cap \{/w/ | w \in L(M)\}.$

Closure under h^{-1}

Lemma.

The string languages of ACGs are closed under substitution.

 $a \mapsto \mathcal{O}(\mathscr{G})$

Closure under h^{-1}

Lemma.

The string languages of ACGs are closed under substitution.

$$a\mapsto \mathcal{O}(\mathscr{G})$$

Fact.

If a family of languages includes the regular sets and is closed under substitution and $\cap R$, then it is closed under h^{-1} .

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.

Theorem.

The string languages of ACGs in G(m, n) $(m \ge 2)$ form a full AFL.

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ -free languages includes the ϵ -free regular sets and is closed under substitution, $\cap R$, and *k*-limited erasing, then it is closed under h^{-1} .

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ -free languages includes the ϵ -free regular sets and is closed under substitution, $\cap R$, and *k*-limited erasing, then it is closed under h^{-1} .

Lemma.

The string languages of lexicalized ACGs are closed under k-limited erasing.

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ -free languages includes the ϵ -free regular sets and is closed under substitution, $\cap R$, and *k*-limited erasing, then it is closed under h^{-1} .

Lemma.

The string languages of lexicalized ACGs are closed under k-limited erasing.

Theorem.

The string languages of lexicalized ACGs form an AFL.