Abstract Families of Abstract Categorial Languages

Makoto Kanazawa
National Institute of Informatics

February 18, 2005

ACGs and AFLs

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

Why is this interesting?

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

Why is this interesting?

- Not entirely obvious.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

Why is this interesting?

- Not entirely obvious.
- An application of Curry-style type assignment system.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

Why is this interesting?

- Not entirely obvious.
- An application of Curry-style type assignment system.
- Hopefully useful.

ACGs and AFLs

Theorem.

The string languages generated by ACGs (Abstract Categorial Grammars) form a full AFL (Abstract Families of Languages).
The string languages generated by lexicalized ACGs form an AFL.

Why is this interesting?

- Not entirely obvious.
- An application of Curry-style type assignment system.
- Hopefully useful.
- Suggests machine models for ACGs.

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

- union (\cup), concatenation (•), Kleene closure (*);
- homomorphism (h);
- inverse homomorphism (h^{-1});
- intersection with regular sets $(\cap R)$

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

- union (\cup), concatenation (•), Kleene closure (*);
- homomorphism (h);
- inverse homomorphism (h^{-1});
- intersection with regular sets $(\cap R)$

A family of languages is an AFL if it is closed under

AFLs and full AFLs

A family of languages is a full AFL if it is closed under

- union (\cup), concatenation (•), Kleene closure (*);
- homomorphism (h);
- inverse homomorphism $\left(h^{-1}\right)$;
- intersection with regular sets $(\cap R)$

A family of languages is an AFL if it is closed under

- union (\cup), concatenation (•), positive closure $\left({ }^{+}\right)$;
- ϵ-free homomorphism (ϵ-free h);
- inverse homomorphism (h^{-1});
- intersection with regular sets $(\cap R)$

Examples of (full) AFLs

The following families are full AFLs.

- regular sets, context-free languages, r.e. sets

Examples of (full) AFLs

The following families are full AFLs.

- regular sets, context-free languages, r.e. sets
- indexed languages
- linear indexed languages
- (parallel) multiple context-free languages

Examples of (full) AFLs

The following families are full AFLs.

- regular sets, context-free languages, r.e. sets
- indexed languages
- linear indexed languages
- (parallel) multiple context-free languages

The following families are AFLs.

- context-sensitive languages, recursive sets
- ϵ-free context-free languages
- NP

Examples of (full) AFLs

The following families are full AFLs.

- regular sets, context-free languages, r.e. sets
- indexed languages
- linear indexed languages
- (parallel) multiple context-free languages

The following families are AFLs.

- context-sensitive languages, recursive sets
- ϵ-free context-free languages
- NP

PTIME is not an AFL unless $P=N P$.

AFLs and automata

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

AFLs and automata

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $\left(\cup, \cdot,{ }^{*}\right)$ is easy to prove in such cases.

AFLs and automata

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $\left(\cup, \cdot,^{*}\right)$ is easy to prove in such cases.

Fact.

A family of languages is closed under $h, h^{-1}, \cap R$ iff it is closed under finite transductions.

AFLs and automata

Many types of grammars known to generate full AFLs have a corresponding type of nondeterministic acceptor.

Closure under regular operations $\left(\cup, \cdot,^{*}\right)$ is easy to prove in such cases.

Fact.

A family of languages is closed under $h, h^{-1}, \cap R$ iff it is closed under finite transductions.

Theorem (Ginsburg and Greibach 1969).
Full AFLs are exactly characterized by abstract families of acceptors.

The languages of ACGs form a full AFL
Closure under regular operations is easy to prove.

The languages of ACGs form a full AFL

Closure under regular operations is easy to prove.
We prove closure under $h, h^{-1}, \cap R$, using some technical properties of the Curry-style type assignment system $\lambda \rightarrow$.

Type assignment system $\lambda \rightarrow_{\Sigma}$
$\Sigma=\langle A, C, \tau\rangle$: higher-order signature
Write M, N, P, \ldots for λ-terms.

$$
\begin{array}{cc}
\vdash_{\Sigma c: \tau(c)} & x: \alpha \vdash_{\Sigma x}: \alpha \\
\frac{\Gamma,(x: \alpha)^{\circ} \vdash_{\Sigma} M: \beta}{\Gamma \vdash_{\Sigma} \lambda x . M: \alpha \rightarrow \beta} & \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma, \Delta \vdash_{\Sigma} M N: \beta}
\end{array}
$$

Type assignment system $\lambda \rightarrow_{\Sigma}$
$\Sigma=\langle A, C, \tau\rangle$: higher-order signature
Write M, N, P, \ldots for λ-terms.

$$
\begin{array}{cc}
\vdash_{\Sigma c: \tau(c)} & x: \alpha \vdash_{\Sigma x}: \alpha \\
\frac{\Gamma,(x: \alpha)^{\circ} \vdash_{\Sigma} M: \beta}{\Gamma \vdash_{\Sigma} \lambda x \cdot M: \alpha \rightarrow \beta} & \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma, \Delta \vdash_{\Sigma} M N: \beta}
\end{array}
$$

$\mathscr{L}=\langle\sigma, \theta\rangle$: lexicon from Σ_{1} to Σ_{2}

$$
\vdash_{\Sigma_{2}} \theta(c): \sigma\left(\tau_{1}(c)\right)
$$

$\theta(c):$ a closed linear λ-term built upon Σ_{2}.

Type assignment system $\lambda \rightarrow_{\Sigma}$
$\Sigma=\langle A, C, \tau\rangle$: higher-order signature
Write M, N, P, \ldots for λ-terms.

$$
\begin{array}{cc}
\vdash_{\Sigma c: \tau(c)} & x: \alpha \vdash_{\Sigma x}: \alpha \\
\frac{\Gamma,(x: \alpha)^{\circ} \vdash_{\Sigma} M: \beta}{\Gamma \vdash_{\Sigma} \lambda x . M: \alpha \rightarrow \beta} & \frac{\Gamma \vdash_{\Sigma} M: \alpha \rightarrow \beta \quad \Delta \vdash_{\Sigma} N: \alpha}{\Gamma, \Delta \vdash_{\Sigma} M N: \beta}
\end{array}
$$

$\mathscr{L}=\langle\sigma, \theta\rangle:$ lexicon from Σ_{1} to Σ_{2}

$$
\vdash_{\Sigma_{2}} \theta(c): \sigma\left(\tau_{1}(c)\right)
$$

$\theta(c):$ a closed linear λ-term built upon Σ_{2}.
Write $|M|_{\beta}$ for the β-normal form of M.

Properties of lexicons

β-reduction commutes with lexicons:

$$
M \rightarrow_{\beta} M^{\prime} \quad \text { implies } \quad \mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right) .
$$

Properties of lexicons

β-reduction commutes with lexicons:

$$
M \rightarrow_{\beta} M^{\prime} \quad \text { implies } \quad \mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right) .
$$

Typing judgments are preserved under lexicons:

$$
\Gamma \vdash_{\Sigma_{1}} M: \alpha \quad \text { implies } \quad \mathscr{L}(\Gamma) \vdash_{\Sigma_{2}} \mathscr{L}(M): \mathscr{L}(\alpha) .
$$

Properties of lexicons

β-reduction commutes with lexicons:
$M \rightarrow_{\beta} M^{\prime}$ implies $\mathscr{L}(M) \rightarrow_{\beta} \mathscr{L}\left(M^{\prime}\right)$.
Typing judgments are preserved under lexicons:

$$
\Gamma \vdash_{\Sigma_{1}} M: \alpha \quad \text { implies } \quad \mathscr{L}(\Gamma) \vdash_{\Sigma_{2}} \mathscr{L}(M): \mathscr{L}(\alpha) .
$$

If $\mathscr{L}_{1}=\left\langle\sigma_{1}, \theta_{1}\right\rangle$ is a lexicon from Σ_{1} to Σ_{2} and $\mathscr{L}_{2}=\left\langle\sigma_{2}, \theta_{2}\right\rangle$ is a lexicon from Σ_{2} to Σ_{3}, then

$$
\mathscr{L}_{2} \circ \mathscr{L}_{1}=\left\langle\sigma_{2} \circ \sigma_{1}, \theta_{2} \circ \theta_{1}\right\rangle
$$

is a lexicon from Σ_{1} to Σ_{3}.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.
Subject Expansion Theorem.
If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.
Subject Expansion Theorem.
If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M$: α. (A special case: M linear.)

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.
Subject Expansion Theorem.
If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$. (A special case: M linear.)

Uniqueness Theorem.

If M is a λ-term and $\Gamma \vdash_{\Sigma} M: \alpha$, then there is a unique $\lambda \rightarrow \Sigma$-deduction of this judgment.

Important facts about $\lambda \rightarrow_{\Sigma}$

Subject Reduction Theorem.

If $\Gamma \vdash_{\Sigma} M: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$, then $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$.
Subject Expansion Theorem.
If $\Gamma \vdash_{\Sigma} M^{\prime}: \alpha$ and $M \rightarrow_{\beta} M^{\prime}$ by non-erasing non-duplicating β-reduction, then $\Gamma \vdash_{\Sigma} M: \alpha$. (A special case: M linear.)

Uniqueness Theorem.

If M is a $\lambda /$-term and $\Gamma \vdash_{\Sigma} M: \alpha$, then there is a unique $\lambda \rightarrow \Sigma$-deduction of this judgment.

Principal Pair Theorem.
If $\Gamma \vdash M: \alpha$ then there is a most general such $\langle\Gamma, \alpha\rangle$ (called a principal pair for M).

ACGs for string languages

Let $\mathscr{G}=\left\langle\Sigma_{1}, \Sigma_{2}, \mathscr{L}, s\right\rangle$ where

$$
\begin{aligned}
\Sigma_{1} & =\left\langle A_{1}, C_{1}, \tau_{1}\right\rangle \\
\Sigma_{2} & =\left\langle\{0\}, C_{2}, \tau_{2}\right\rangle \\
s & \in A_{1}, \\
\tau_{2}(a) & =o \rightarrow o \quad \text { for all } a \in C_{2} \\
\mathscr{L} & =\langle\sigma, \theta\rangle \\
\sigma(s) & =o \rightarrow o .
\end{aligned}
$$

ACGs for string languages

Let $\mathscr{G}=\left\langle\Sigma_{1}, \Sigma_{2}, \mathscr{L}, s\right\rangle$ where

$$
\begin{aligned}
\Sigma_{1} & =\left\langle A_{1}, C_{1}, \tau_{1}\right\rangle \\
\Sigma_{2} & =\left\langle\{0\}, C_{2}, \tau_{2}\right\rangle, \\
s & \in A_{1}, \\
\tau_{2}(a) & =o \rightarrow o \quad \text { for all } a \in C_{2}, \\
\mathscr{L} & =\langle\sigma, \theta\rangle, \\
\sigma(s) & =o \rightarrow o .
\end{aligned}
$$

$o \rightarrow o$ is the type of string.

ACGs for string languages

Let $\mathscr{G}=\left\langle\Sigma_{1}, \Sigma_{2}, \mathscr{L}, s\right\rangle$ where

$$
\begin{aligned}
\Sigma_{1} & =\left\langle A_{1}, C_{1}, \tau_{1}\right\rangle \\
\Sigma_{2} & =\left\langle\{0\}, C_{2}, \tau_{2}\right\rangle \\
s & \in A_{1} \\
\tau_{2}(a) & =o \rightarrow o \quad \text { for all } a \in C_{2} \\
\mathscr{L} & =\langle\sigma, \theta\rangle \\
\sigma(s) & =o \rightarrow o .
\end{aligned}
$$

$o \rightarrow O$ is the type of string.
For $a_{1}, \ldots, a_{n} \in C_{2}, / a_{1} \ldots a_{n} /$ stands for $\lambda x \cdot a_{1}\left(\ldots\left(a_{n} x\right) \ldots\right)$.

Closure under h

Let $h: C_{2}^{*} \rightarrow C_{3}^{*}$ be a homomorphism, and define

$$
\begin{aligned}
\Sigma_{3} & =\left\langle\{o\}, C_{3}, \tau_{3}\right\rangle, \\
\tau_{3}(b) & =0 \rightarrow 0 \quad \text { for all } b \in C_{3}, \\
\mathscr{L}_{h} & =\left\langle\text { id, } \theta_{h}\right\rangle \quad \text { Iexicon from } \Sigma_{2} \text { to } \Sigma_{3}, \\
\theta_{h}(a) & =/ h(a) / \quad \text { for all } a \in C_{2} .
\end{aligned}
$$

Closure under h

Let $h: C_{2}^{*} \rightarrow C_{3}^{*}$ be a homomorphism, and define

$$
\begin{aligned}
\Sigma_{3} & =\left\langle\{0\}, C_{3}, \tau_{3}\right\rangle, \\
\tau_{3}(b) & =0 \rightarrow 0 \quad \text { for all } b \in C_{3}, \\
\mathscr{L}_{h} & =\left\langle\text { id, } \theta_{h}\right\rangle \quad \text { lexicon from } \Sigma_{2} \text { to } \Sigma_{3}, \\
\theta_{h}(a) & =/ h(a) / \quad \text { for all } a \in C_{2} .
\end{aligned}
$$

Let

$$
\mathscr{G}_{h}=\left\langle\Sigma_{1}, \Sigma_{3}, \mathscr{L}_{h} \circ \mathscr{L}, s\right\rangle .
$$

Closure under h

Let $h: C_{2}^{*} \rightarrow C_{3}^{*}$ be a homomorphism, and define

$$
\begin{aligned}
\Sigma_{3} & =\left\langle\{0\}, C_{3}, \tau_{3}\right\rangle, \\
\tau_{3}(b) & =0 \rightarrow 0 \quad \text { for all } b \in C_{3}, \\
\mathscr{L}_{h} & =\left\langle\text { id, } \theta_{h}\right\rangle \quad \text { lexicon from } \Sigma_{2} \text { to } \Sigma_{3}, \\
\theta_{h}(a) & =/ h(a) / \quad \text { for all } a \in C_{2} .
\end{aligned}
$$

Let

$$
\mathscr{G}_{h}=\left\langle\Sigma_{1}, \Sigma_{3}, \mathscr{L}_{h} \circ \mathscr{L}, s\right\rangle .
$$

Then

$$
\mathcal{O}\left(\mathscr{G}_{h}\right)=\{/ h(w) / \mid / w / \in \mathcal{O}(\mathscr{G})\} .
$$

Closure under $\cap R$

Let $M=\left\langle C_{2}, Q, \delta, q_{l},\left\{q_{F}\right\}\right\rangle$ be an NFA without ϵ-transitions with just one final state.

Closure under $\cap R$

Let $M=\left\langle C_{2}, Q, \delta, q_{l},\left\{q_{F}\right\}\right\rangle$ be an NFA without ϵ-transitions with just one final state.

Define a signature $\Sigma_{M}=\left\langle Q, C_{M}, \tau_{M}\right\rangle$ by

$$
\begin{aligned}
C_{M} & =\left\{a^{r \rightarrow q} \mid a \in C_{2} \text { and } r \in \delta(q, a)\right\}, \\
\tau_{M}\left(a^{r \rightarrow q}\right) & =r \rightarrow q \quad \text { for all } a^{r \rightarrow a} \in C_{M} .
\end{aligned}
$$

Closure under $\cap R$

Let $M=\left\langle C_{2}, Q, \delta, q_{l},\left\{q_{F}\right\}\right\rangle$ be an NFA without ϵ-transitions with just one final state.

Define a signature $\Sigma_{M}=\left\langle Q, C_{M}, \tau_{M}\right\rangle$ by

$$
C_{M}=\left\{a^{r \rightarrow q} \mid a \in C_{2} \text { and } r \in \delta(q, a)\right\}
$$

$$
\tau_{M}\left(a^{r \rightarrow q}\right)=r \rightarrow q \quad \text { for all } a^{r \rightarrow q} \in C_{M}
$$

Define a lexicon $\mathscr{L}_{2}=\left\langle\sigma_{2}, \theta_{2}\right\rangle$ from Σ_{M} to Σ_{2} by

$$
\begin{aligned}
\sigma_{2}(q)=0 & \text { for all } q \in Q \\
\theta_{2}\left(a^{r \rightarrow q}\right)=a & \text { for all } a^{r \rightarrow q} \in C_{M}
\end{aligned}
$$

Closure under $\cap R$

Let $M=\left\langle C_{2}, Q, \delta, q_{l},\left\{q_{F}\right\}\right\rangle$ be an NFA without ϵ-transitions with just one final state.

Define a signature $\Sigma_{M}=\left\langle Q, C_{M}, \tau_{M}\right\rangle$ by

$$
C_{M}=\left\{a^{r \rightarrow q} \mid a \in C_{2} \text { and } r \in \delta(q, a)\right\},
$$

$$
\tau_{M}\left(a^{r \rightarrow q}\right)=r \rightarrow q \quad \text { for all } a^{r \rightarrow q} \in C_{M}
$$

Define a lexicon $\mathscr{L}_{2}=\left\langle\sigma_{2}, \theta_{2}\right\rangle$ from Σ_{M} to Σ_{2} by

$$
\begin{array}{cc}
\sigma_{2}(q)=0 & \text { for all } q \in Q \\
\theta_{2}\left(a^{r \rightarrow q}\right)=a \quad \text { for all } a^{r \rightarrow q} \in C_{M}
\end{array}
$$

We have $\vdash_{\Sigma_{M}} N: q_{F} \rightarrow q_{l}$ iff $\mathscr{L}_{2}(N)==_{\beta \eta} / w /$ for some $w \in L(M)$.

Closure under $\cap R$ (continued)

Define another signature $\Sigma_{\cap R}=\left\langle A_{\cap R}, C_{\cap R}, \tau_{\cap R}\right\rangle$ by

$$
\begin{gathered}
A_{\cap R}=\left\{p^{\beta} \mid p \in A_{1}, \beta \in \mathscr{T}(Q), \mathscr{L}_{2}(\beta)=\mathscr{L}(p)\right\} \\
C_{\cap R}=\left\{d_{\langle c, N, \beta\rangle} \mid c \in C_{1}, N \in \Lambda\left(\Sigma_{M}\right), \beta \in \mathscr{T}(Q)\right. \\
\vdash_{\Sigma_{M}} N: \beta, \mathscr{L}_{2}(N)=\mathscr{L}(c) \\
\left.\mathscr{L}_{2}(\beta)=\mathscr{L}\left(\tau_{1}(c)\right)\right\},
\end{gathered}
$$

$$
\tau_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right)=\operatorname{anti}\left(\tau_{1}(c), \beta\right)
$$

Closure under $\cap R$ (continued)

Define another signature $\Sigma_{\cap R}=\left\langle A_{\cap R}, C_{\cap R}, \tau_{\cap R}\right\rangle$ by

$$
\begin{gathered}
A_{\cap R}=\left\{p^{\beta} \mid p \in A_{1}, \beta \in \mathscr{T}(Q), \mathscr{L}_{2}(\beta)=\mathscr{L}(p)\right\} \\
C_{\cap R}=\left\{d_{\langle c, N, \beta\rangle} \mid c \in C_{1}, N \in \Lambda\left(\Sigma_{M}\right), \beta \in \mathscr{T}(Q),\right. \\
\vdash_{\Sigma_{M}} N: \beta, \mathscr{L}_{2}(N)=\mathscr{L}(c), \\
\left.\mathscr{L}_{2}(\beta)=\mathscr{L}\left(\tau_{1}(c)\right)\right\}, \\
\tau_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right)=\operatorname{anti}\left(\tau_{1}(c), \beta\right)
\end{gathered}
$$

where
$\operatorname{anti}\left(\alpha_{1} \rightarrow \alpha_{2}, \beta_{1} \rightarrow \beta_{2}\right)=\operatorname{anti}\left(\alpha_{1}, \beta_{1}\right) \rightarrow \operatorname{anti}\left(\alpha_{2}, \beta_{2}\right)$

$$
\operatorname{anti}(p, \beta)=p^{\beta}
$$

Closure under $\cap R$ (continued)

$\tau_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right)=\operatorname{anti}\left(\tau_{1}(c), \beta\right)$ is always defined and is a most specific common anti-instance of $\tau_{1}(c)$ and β.

Closure under $\cap R$ (continued)

$\tau_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right)=\operatorname{anti}\left(\tau_{1}(c), \beta\right)$ is always defined and is a most specific common anti-instance of $\tau_{1}(c)$ and β.

Define a lexicon $\mathscr{L}_{1}=\left\langle\sigma_{1}, \theta_{1}\right\rangle$ from $\Sigma_{\cap R}$ to Σ_{1} and a lexicon $\mathscr{L}_{M}=\left\langle\sigma_{M}, \theta_{M}\right\rangle$ from $\Sigma_{\cap R}$ to Σ_{M} :

$$
\begin{aligned}
\sigma_{1}\left(p^{\beta}\right)=p \quad & \text { for all } p^{\beta} \in A_{\cap R}, \\
\theta_{1}\left(d_{\langle c, N, \beta\rangle}\right) & =c \quad \text { for all } d_{\langle c, N, \beta\rangle} \in C_{\cap R}, \\
\sigma_{M}\left(p^{\beta}\right)=\beta & \text { for all } p^{\beta} \in A_{\cap R}, \\
\theta_{M}\left(d_{\langle c, N, \beta\rangle}\right)=N & \text { for all } d_{\langle c, N, \beta\rangle} \in C_{\cap R} .
\end{aligned}
$$

Closure under $\cap R$ (continued)

Define an ACG $\mathscr{G}_{\cap R}=\left\langle\Sigma_{\cap R}, \Sigma_{2}, S^{q_{F} \rightarrow q_{1}}, \mathscr{L}_{\cap R}\right\rangle$ by

$$
\begin{aligned}
\mathscr{L}_{\cap R} & =\left\langle\sigma_{\cap R}, \theta_{\cap R}\right\rangle \\
\sigma_{\cap R}\left(p^{\beta}\right) & =\mathscr{L}(p) \quad \text { for all } p^{\beta} \in A_{\cap R} \\
\theta_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right) & =\mathscr{L}(c) \quad \text { for all } d_{\langle c, N, \beta\rangle} \in C_{\cap R} .
\end{aligned}
$$

Closure under $\cap R$ (continued)

Define an ACG $\mathscr{G}_{\cap R}=\left\langle\Sigma_{\cap R}, \Sigma_{2}, S^{q_{F} \rightarrow q_{1}}, \mathscr{L}_{\cap R}\right\rangle$ by

$$
\begin{aligned}
\mathscr{L}_{\cap R} & =\left\langle\sigma_{\cap R}, \theta_{\cap R}\right\rangle \\
\sigma_{\cap R}\left(p^{\beta}\right) & =\mathscr{L}(p) \quad \text { for all } p^{\beta} \in A_{\cap R} \\
\theta_{\cap R}\left(d_{\langle c, N, \beta\rangle}\right) & =\mathscr{L}(c) \quad \text { for all } d_{\langle c, N, \beta\rangle} \in C_{\cap R} .
\end{aligned}
$$

Lemma.

$$
\mathscr{L}_{\cap R}=\mathscr{L} \circ \mathscr{L}_{1}, \quad \mathscr{L}_{\cap R}=\mathscr{L}_{2} \circ \mathscr{L}_{M}
$$

Closure under $\cap R$ (continued)

$$
\vdash_{\Sigma_{\Sigma_{1}} c: \tau_{1}(c) \xrightarrow{\vdash^{2}} d_{\langle c, N, \beta\rangle}}^{\vdash_{\Sigma_{2}}} \mathscr{L}_{1} \mathscr{L}(c): \mathscr{L}\left(\tau_{1}(c)\right)
$$

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}\left(\mathscr{G}_{\cap R}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\{/ w / \mid w \in L(M)\}$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}\left(\mathscr{G}_{\cap R}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\{/ w / \mid w \in L(M)\}$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$. Let $P \in \mathcal{A}\left(\mathscr{G}_{\cap R}\right)$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$. Since

$$
\begin{equation*}
\vdash_{\Sigma_{n R}} P: s^{q_{F} \rightarrow q_{1}}, \tag{1}
\end{equation*}
$$

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}\left(\mathscr{G}_{\cap R}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\{/ w / \mid w \in L(M)\}$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$. Let $P \in \mathcal{A}\left(\mathscr{G}_{\cap R}\right)$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$. Since

$$
\begin{equation*}
\vdash_{\Sigma_{n R}} P: s^{q_{F} \rightarrow q_{1}}, \tag{1}
\end{equation*}
$$

we have

$$
\vdash_{\Sigma_{1}} \mathscr{L}_{1}(P): s,
$$

so $\mathscr{L}_{1}(P) \in \mathcal{A}(\mathscr{G})$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}\left(\mathscr{G}_{\cap R}\right) \subseteq \mathcal{O}(\mathscr{G}) \cap\{/ w / \mid w \in L(M)\}$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$. Let $P \in \mathcal{A}\left(\mathscr{G}_{\cap R}\right)$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$. Since

$$
\begin{equation*}
\vdash_{\Sigma_{n R}} P: s^{q_{F} \rightarrow q_{1}}, \tag{1}
\end{equation*}
$$

we have

$$
\vdash_{\Sigma_{1}} \mathscr{L}_{1}(P): s,
$$

so $\mathscr{L}_{1}(P) \in \mathcal{A}(\mathscr{G})$.
Since $\mathscr{L}\left(\mathscr{L}_{1}(P)\right)=\mathscr{L}_{\cap R}(P), / a_{1} \ldots a_{n} / \in \mathcal{O}(\mathscr{G})$.

From (1), we also get

$$
\begin{equation*}
\vdash_{\Sigma_{M}} \mathscr{L}_{M}(P): q_{F} \rightarrow q_{l} . \tag{2}
\end{equation*}
$$

From (1), we also get

$$
\begin{equation*}
\vdash_{\Sigma_{M}} \mathscr{L}_{M}(P): q_{F} \rightarrow q_{1} \tag{2}
\end{equation*}
$$

Since $\mathscr{L}_{2}\left(\mathscr{L}_{M}(P)\right)=\mathscr{L}_{\cap R}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$, it follows that $\mathscr{L}_{2}\left(\left|\mathscr{L}_{M}(P)\right|_{\beta}\right)=/ a_{1} \ldots a_{n} /$.

From (1), we also get

$$
\begin{equation*}
\vdash_{\Sigma_{M}} \mathscr{L}_{M}(P): q_{F} \rightarrow q_{I} . \tag{2}
\end{equation*}
$$

Since $\mathscr{L}_{2}\left(\mathscr{L}_{M}(P)\right)=\mathscr{L}_{\cap R}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$, it follows that $\mathscr{L}_{2}\left(\left|\mathscr{L}_{M}(P)\right|_{\beta}\right)=/ a_{1} \ldots a_{n} /$.

Hence $\left|\mathscr{L}_{M}(P)\right|_{\beta}$ must be of the form
$\lambda z . a_{1}^{r_{1} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{r_{n} \rightarrow q_{n}} z\right) \ldots\right)$. From (2), by the Subject Reduction Theorem, we obtain

$$
\vdash_{\Sigma_{M}} \lambda z \cdot a_{1}^{r_{1} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{r_{n} \rightarrow q_{n}} z\right) \ldots\right): q_{F} \rightarrow q_{l} .
$$

From (1), we also get

$$
\begin{equation*}
\vdash_{\Sigma_{M}} \mathscr{L}_{M}(P): q_{F} \rightarrow q_{l} \tag{2}
\end{equation*}
$$

Since $\mathscr{L}_{2}\left(\mathscr{L}_{M}(P)\right)=\mathscr{L}_{\cap R}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$, it follows that $\mathscr{L}_{2}\left(\left|\mathscr{L}_{M}(P)\right|_{\beta}\right)=/ a_{1} \ldots a_{n} /$.

Hence $\left|\mathscr{L}_{M}(P)\right|_{\beta}$ must be of the form
$\lambda z . a_{1}^{r_{1} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{r_{n} \rightarrow q_{n}} z\right) \ldots\right)$. From (2), by the Subject Reduction Theorem, we obtain

$$
\vdash_{\Sigma_{M}} \lambda z \cdot a_{1}^{r_{1} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{r_{n} \rightarrow q_{n}} z\right) \ldots\right): q_{F} \rightarrow q_{l} .
$$

This can only be if $q_{1}=q_{l}, r_{n}=q_{F}$, and $r_{i}=q_{i+1}$ for $1 \leq i \leq n-1$. Since $r_{i} \in \delta\left(q_{i}, a_{i}\right)$, this implies that $a_{1} \ldots a_{n} \in L(M)$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}(\mathscr{G})$ and $a_{1} \ldots a_{n} \in L(M)$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}(\mathscr{G})$ and $a_{1} \ldots a_{n} \in L(M)$.
Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G} \cap R)$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}(\mathscr{G})$ and $a_{1} \ldots a_{n} \in L(M)$.
Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$.
Let $q_{1}, q_{2}, \ldots, q_{n+1}$ be such that $q_{1}=q_{l}, q_{n+1}=q_{F}$, and $q_{i+1} \in \delta\left(q_{i}, a_{i}\right)$ for $1 \leq i \leq n$.

Closure under $\cap R$ (continued)

Lemma. $\mathcal{O}(\mathscr{G}) \cap L(M) \subseteq \mathcal{O}(\mathscr{G} \cap R)$.

Proof.

Suppose $/ a_{1} \ldots a_{n} / \in \mathcal{O}(\mathscr{G})$ and $a_{1} \ldots a_{n} \in L(M)$. Let $P \in \mathcal{A}(\mathscr{G})$ be such that $\mathscr{L}(P) \rightarrow_{\beta} / a_{1} \ldots a_{n} /$.

Let $q_{1}, q_{2}, \ldots, q_{n+1}$ be such that $q_{1}=q_{l}, q_{n+1}=q_{F}$, and $q_{i+1} \in \delta\left(q_{i}, a_{i}\right)$ for $1 \leq i \leq n$.

Let $P^{\prime}\left[y_{1}, \ldots, y_{m}\right]$ be a constant-free linear λ-term such that $P^{\prime}\left[c_{1}, \ldots, c_{m}\right]=P$, where $c_{1}, \ldots, c_{m} \in C_{1}$.

For $1 \leq i \leq m$, let N_{i}^{\prime} be a constant-free linear λ-term with $\mathrm{FV}\left(N_{i}^{\prime}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\begin{aligned}
N_{i}^{\prime}\left[a_{1} / x_{1}, \ldots, a_{n} / x_{n}\right] & =\mathscr{L}\left(c_{i}\right) \quad \text { for } 1 \leq i \leq n \\
P^{\prime}\left[N_{1}^{\prime}, \ldots, N_{m}^{\prime}\right] & \rightarrow_{\beta} \lambda z \cdot x_{1}\left(\ldots\left(x_{n} z\right) \ldots\right) .
\end{aligned}
$$

For $1 \leq i \leq m$, let N_{i}^{\prime} be a constant-free linear λ-term with $\mathrm{FV}\left(N_{i}^{\prime}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\begin{aligned}
N_{i}^{\prime}\left[a_{1} / x_{1}, \ldots, a_{n} / x_{n}\right] & =\mathscr{L}\left(c_{i}\right) \quad \text { for } 1 \leq i \leq n \\
P^{\prime}\left[N_{1}^{\prime}, \ldots, N_{m}^{\prime}\right] & \rightarrow_{\beta} \lambda z \cdot x_{1}\left(\ldots\left(x_{n} z\right) \ldots\right) .
\end{aligned}
$$

For $1 \leq i \leq n$, let $N_{i}=N_{i}^{\prime}\left[a_{1}^{q_{2} \rightarrow q_{1}} / x_{1}, \ldots, a_{n}^{q_{n+1} \rightarrow q_{n}} / x_{n}\right]$, so that

$$
\begin{equation*}
\mathscr{L}_{2}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) \tag{3}
\end{equation*}
$$

For $1 \leq i \leq m$, let N_{i}^{\prime} be a constant-free linear λ-term with $\mathrm{FV}\left(N_{i}^{\prime}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ such that

$$
\begin{aligned}
N_{i}^{\prime}\left[a_{1} / x_{1}, \ldots, a_{n} / x_{n}\right] & =\mathscr{L}\left(c_{i}\right) \quad \text { for } 1 \leq i \leq n, \\
P^{\prime}\left[N_{1}^{\prime}, \ldots, N_{m}^{\prime}\right] & \mapsto_{\beta} \lambda z \cdot x_{1}\left(\ldots\left(x_{n} z\right) \ldots\right) .
\end{aligned}
$$

For $1 \leq i \leq n$, let $N_{i}=N_{i}^{\prime}\left[a_{1}^{q_{2} \rightarrow q_{1}} / x_{1}, \ldots, a_{n}^{q_{n+1} \rightarrow q_{n}} / x_{n}\right]$, so that

$$
\begin{equation*}
\mathscr{L}_{2}\left(N_{i}\right)=\mathscr{L}\left(c_{i}\right) . \tag{3}
\end{equation*}
$$

Then

$$
P^{\prime}\left[N_{1}, \ldots, N_{m}\right] \rightarrow_{\beta} \lambda z \cdot a_{1}^{q_{2} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{q_{n+1} \rightarrow q_{n}} z\right) \ldots\right)
$$

by a non-erasing non-duplicating β-reduction.

Since

$$
\vdash_{\Sigma_{M}} \lambda z \cdot a_{1}^{q_{2} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{q_{n+1} \rightarrow q_{n}} z\right) \ldots\right): q_{F} \rightarrow q_{l}
$$

we get

$$
\vdash_{\Sigma_{M}} P^{\prime}\left[N_{1}, \ldots, N_{m}\right]: q_{F} \rightarrow q_{l}
$$

by the Subject Expansion Theorem.

Since

$$
\vdash_{\Sigma_{M}} \lambda z \cdot a_{1}^{q_{2} \rightarrow q_{1}}\left(\ldots\left(a_{n}^{q_{n+1} \rightarrow q_{n}} z\right) \ldots\right): q_{F} \rightarrow q_{l}
$$

we get

$$
\vdash_{\Sigma_{M}} P^{\prime}\left[N_{1}, \ldots, N_{m}\right]: q_{F} \rightarrow q_{l}
$$

by the Subject Expansion Theorem.
Let Δ be the unique $\lambda \rightarrow \Sigma_{M}$-deduction of this judgment. Δ contains a subdeduction Δ_{i} of

$$
\begin{equation*}
\vdash_{\Sigma_{M}} N_{i}: \beta_{i} \tag{4}
\end{equation*}
$$

for some $\beta_{i} \in \mathscr{T}\left(A_{M}\right)$, for $1 \leq i \leq m$.

It is easy to see that applying the lexicon \mathscr{L}_{2} to each step of Δ gives a $\lambda \rightarrow_{\Sigma_{2}}$-deduction Δ^{\prime} of

$$
\vdash_{\Sigma_{2}} P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: o \rightarrow 0 .
$$

It is easy to see that applying the lexicon \mathscr{L}_{2} to each step of Δ gives a $\lambda \rightarrow_{\Sigma_{2}}$-deduction Δ^{\prime} of

$$
\vdash_{\Sigma_{2}} P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: o \rightarrow 0 .
$$

Since $P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]=\mathscr{L}(P)$, we see that \mathscr{L}_{2} maps Δ_{i} to the unique $\lambda \rightarrow \Sigma_{2}$-deduction of

$$
\vdash_{\Sigma_{2}} \mathscr{L}\left(c_{i}\right): \mathscr{L}\left(\tau_{1}\left(c_{i}\right)\right)
$$

It is easy to see that applying the lexicon \mathscr{L}_{2} to each step of Δ gives a $\lambda \rightarrow \Sigma_{2}$-deduction Δ^{\prime} of

$$
\vdash_{\Sigma_{2}} P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: o \rightarrow 0
$$

Since $P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]=\mathscr{L}(P)$, we see that \mathscr{L}_{2} maps Δ_{i} to the unique $\lambda \rightarrow \Sigma_{2}$-deduction of

$$
\vdash_{\Sigma_{2}} \mathscr{L}\left(c_{i}\right): \mathscr{L}\left(\tau_{1}\left(c_{i}\right)\right)
$$

It follows that

$$
\begin{equation*}
\mathscr{L}_{2}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{1}\left(c_{i}\right)\right) \tag{5}
\end{equation*}
$$

It is easy to see that applying the lexicon \mathscr{L}_{2} to each step of Δ gives a $\lambda \rightarrow \Sigma_{2}$-deduction Δ^{\prime} of

$$
\vdash_{\Sigma_{2}} P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]: o \rightarrow 0 .
$$

Since $P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right]=\mathscr{L}(P)$, we see that \mathscr{L}_{2} maps Δ_{i} to the unique $\lambda \rightarrow_{\Sigma_{2}}$-deduction of

$$
\vdash_{\Sigma_{2}} \mathscr{L}\left(c_{i}\right): \mathscr{L}\left(\tau_{1}\left(c_{i}\right)\right)
$$

It follows that

$$
\begin{equation*}
\mathscr{L}_{2}\left(\beta_{i}\right)=\mathscr{L}\left(\tau_{1}\left(c_{i}\right)\right) \tag{5}
\end{equation*}
$$

By (3), (4), and (5),

$$
d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle} \in C_{\cap R} .
$$

We have

$$
\begin{aligned}
&\left\{y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m}\right\} \vdash P^{\prime}: q_{F} \\
& \rightarrow q_{l}, \\
&\left\{y_{1}: \tau_{1}\left(c_{1}\right), \ldots, y_{m}: \tau_{1}\left(c_{m}\right)\right\} \vdash P^{\prime}: s .
\end{aligned}
$$

We have

$$
\begin{aligned}
\left\{y_{1}: \beta_{1}, \ldots, y_{m}: \beta_{m}\right\} & \vdash P^{\prime}: q_{F} \rightarrow q_{l}, \\
\left\{y_{1}: \tau_{1}\left(c_{1}\right), \ldots, y_{m}: \tau_{1}\left(c_{m}\right)\right\} & \vdash P^{\prime}: s .
\end{aligned}
$$

Let $\tau_{\cap R}\left(d_{\left\langle c_{i}, N_{i}, \beta_{i}\right\rangle}\right)=\gamma_{i}$ for $i=1, \ldots, m$. By the definition of $\tau_{\cap R}$,

$$
\left\langle\gamma_{1}, \ldots, \gamma_{m}, s^{q_{F} \rightarrow q_{I}}\right\rangle
$$

is a most specific common anti-instance of
$\left\langle\beta_{1}, \ldots, \beta_{m}, q_{F} \rightarrow q_{l}\right\rangle \quad$ and $\quad\left\langle\tau_{1}\left(c_{1}\right), \ldots, \tau_{1}\left(c_{m}\right), s\right\rangle$.

By the Principal Pair Theorem, it follows that

$$
\left\{y_{1}: \gamma_{1}, \ldots, y_{m}: \gamma_{m}\right\} \vdash P^{\prime}: s^{q_{F} \rightarrow q_{l}}
$$

and hence

$$
\vdash_{\Sigma_{n R}} P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right]: s^{q_{F} \rightarrow q_{1}} .
$$

By the Principal Pair Theorem, it follows that

$$
\left\{y_{1}: \gamma_{1}, \ldots, y_{m}: \gamma_{m}\right\} \vdash P^{\prime}: s^{q_{F} \rightarrow q_{1}}
$$

and hence

$$
\vdash_{\Sigma_{n R}} P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right]: s^{q_{F} \rightarrow q_{l}} .
$$

Therefore, $P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right] \in \mathcal{A}\left(\mathscr{G}_{\cap R}\right)$.

By the Principal Pair Theorem, it follows that

$$
\left\{y_{1}: \gamma_{1}, \ldots, y_{m}: \gamma_{m}\right\} \vdash P^{\prime}: s^{q_{F} \rightarrow q_{l}}
$$

and hence

$$
\vdash_{\Sigma_{n R}} P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right]: s^{q_{F} \rightarrow q_{1}} .
$$

Therefore, $P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right] \in \mathcal{A}\left(\mathscr{G}_{\cap R}\right)$.

$$
\begin{aligned}
\mathscr{L}_{\cap R} & \left(P^{\prime}\left[d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}, \ldots, d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right]\right) \\
& =P^{\prime}\left[\mathscr{L}_{\cap R}\left(d_{\left\langle c_{1}, N_{1}, \beta_{1}\right\rangle}\right), \ldots, \mathscr{L}_{\cap R}\left(d_{\left\langle c_{m}, N_{m}, \beta_{m}\right\rangle}\right)\right] \\
& =P^{\prime}\left[\mathscr{L}\left(c_{1}\right), \ldots, \mathscr{L}\left(c_{m}\right)\right] \\
& =\mathscr{L}(P) \\
& \rightarrow \beta / a_{1} \ldots a_{n} / .
\end{aligned}
$$

This proves $/ a_{1} \ldots a_{n} / \in \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$.

This proves $/ a_{1} \ldots a_{n} / \in \mathcal{O}\left(\mathscr{G}_{\cap R}\right)$. Theorem. $\mathcal{O}\left(\mathscr{G}_{\cap R}\right)=\mathcal{O}(\mathscr{G}) \cap\{/ w / \mid w \in L(M)\}$.

Closure under h^{-1}

Lemma.

The string languages of ACGs are closed under substitution.

$$
a \mapsto \mathcal{O}(\mathscr{G})
$$

Closure under h^{-1}

Lemma.

The string languages of ACGs are closed under substitution.

$$
a \mapsto \mathcal{O}(\mathscr{G})
$$

Fact.

If a family of languages includes the regular sets and is closed under substitution and $\cap R$, then it is closed under h^{-1}.

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.

ACGs give rise to full AFLs

Theorem.

The string languages of ACGs form a full AFL.
Theorem.
The string languages of ACGs in $\mathbf{G}(m, n)(m \geq 2)$ form a full AFL.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ-free languages includes the ϵ-free regular sets and is closed under substitution, $\cap R$, and k-limited erasing, then it is closed under h^{-1}.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ-free languages includes the ϵ-free regular sets and is closed under substitution, $\cap R$, and k-limited erasing, then it is closed under h^{-1}.

Lemma.

The string languages of lexicalized ACGs are closed under k-limited erasing.

Lexicalized ACGs

Lemma.

The string languages of lexicalized ACGs are closed under substitution.

Fact.

If a family of ϵ-free languages includes the ϵ-free regular sets and is closed under substitution, $\cap R$, and k-limited erasing, then it is closed under h^{-1}.

Lemma.

The string languages of lexicalized ACGs are closed under k-limited erasing.

Theorem.

The string languages of lexicalized ACGs form an AFL.

