
Lecture 4

Tree-Adjoining Grammars and
Related Formalisms Last modified 2016/05/30

During a conversation among some participants of the Ninth International Work-
shop on Tree Adjoining Grammars and Related Formalisms (Tübingen, Germany,
June 2008), Aravind Joshi mentioned that there is a passage in Huybregts and
Riemsdijk’s 1979–1980 interviews with Chomsky where Chomsky remarks that
it would be nice if there were a grammar formalism that extends the power of
context-free grammars, but does so in a limited way, without achieving the full
power of context-sensitive grammars. The following remark (Chomsky 2004,
pages 42–43) is the closest that I have been able to find:

. . . Certainly context-free grammars represent some of the properties
of languages. This seems to me what one would expect from applied
mathematics, to see if you can find systems that capture some of the
properties of the complex system that you are working with, and to
ask whether those systems have any intrinsic mathematical interest,
and whether they are worth studying in abstraction. And that has
happened at exactly one level, the level of context-free grammar. At
any other level it has not happened. The systems that capture other
properties of language, for example transformational grammar, hold
no interest for mathematics. But I do not think that that is a necessary
truth. It could turn out that there would be richer or more appropriate
mathematical ideas that would capture other, maybe deeper properties
of language than context-free grammars do. In that case you have
another branch of applied mathematics which might have linguistic
consequences. That could be exciting.

It is not clear whether Chomsky views tree-adjoining grammars and other so-called
mildly context-sensitive grammar formalisms as capturing “deeper properties” of

4–1

natural language, but it is certainly the case that they represent another level where
grammar formalisms motivated by linguistics have some intrinsic mathematical
interest.

Tree-adjoining grammars
Recall the cross-serial dependencies in Swiss German, which we looked at in
Lecture 1:

(4.1) a. wil mer de maa em chind lönd hälffe schwüme

because we the man-ACC the child-DAT let help swim

b. wil mer em maa s chind hälfed laa schwüme

because we the man-DAT the child-ACC helped let swim

(The above example is from Huybregts 1984.) In this construction, sentences of
the form

(4.2) NP NP1 . . .NPn V1 . . .Vn V,

where the Vi are verbs like “let”, “help”, etc., have the following properties:

• (4.2) is grammatical if the case of NPi matches the type of Vi (i = 1, . . . , n),
and

• (4.2) is grammatical only if there is a permutation π of {1, . . . , n} such that
the case of NPi matches the type of Vπ(i).

It’s not clearwhat exactly the necessary and sufficient conditions for grammaticality
are, but the above properties are sufficient to establish that the set of grammatical
sentences of Swiss German is not context-free (Huybregts 1984, Shieber 1985),
as we saw in Lecture 1.

Partly motivated by facts like this, many grammar formalisms have been pro-
posed that are more powerful than context-free grammars but yet share some
desirable features of CFGs. The tree-adjoining grammar (TAG) (Joshi et al. 1975;
see Joshi and Schabes 1997 and Abeillé and Rambow 2000 for overviews) is one
of the first such formalisms. It is also our first example of a tree grammar: a TAG
primarily generates a set of trees (tree language), and secondarily a set of strings
(string language) through the yield function.

Roughly, a TAG consists of two finite sets of trees, the setI of initial trees and
the set A of auxiliary trees. Initial and auxiliary trees are called elementary trees.

4–2

More complex trees are derived from elementary trees by repeated applications of
the operations of substitution and adjunction:

• Substitution attaches a tree derived from an initial tree to a substitution node
of a derived tree.

• Adjunction “inserts” an auxiliary tree into an internal node of a derived tree.

A substitution node is a leaf node labeled by a nonterminal marked with ↓. In
an initial tree, each leaf node either is a substitution node or is labeled by a terminal
(or ε). In an auxiliary tree whose root node is labeled by A, exactly one leaf node
is labeled with A∗ and is called the foot node; the other leaf nodes must either be
substitution nodes or have terminal (or ε) labels. The operation of adjunction is
illustrated in Figure 4.1.

B

A

α

A

A∗

β

⇒

B

A

A

γ

Figure 4.1: Adjunction of tree β to tree α, resulting in tree γ.

The following illustrates how the Swiss-German cross-serial construction may
be treated in a tree-adjoining grammar:

S

S V

NP↓ VP lönd

NP[acc]↓ S∗ V

ε

NP NP[acc]

mer de maa

S

S V

NP VP hälffe

PRO NP[dat]↓ S∗ V

ε

NP[dat]

em chind

S

S V

NP VP schwüme

PRO V

ε

A formal definition of TAGs usually omits the operation of substitution, since
the expressive power and computational complexity of the formalism is the same

4–3

with or without substitution. It is also important to constrain which auxiliary tree
can be adjoined at a given node, so each node labeled by a nonterminal will carry
an adjunction constraint. Adjunction constraints come in two varieties:

• Selective Adjunction (SA(C)): only members of a set C of auxiliary trees
may be adjoined at the given node. The adjunction is not mandatory.

• Obligatory Adjunction (OA(C)): a member of a set C of auxiliary trees
must be adjoined at the given node.

A selective adjunction constraint of the form SA(∅) is called a null adjunction
constraint and is written NA. If C is the set of auxiliary trees whose root node
is labeled by a nonterminal B, a selective adjunction constraint SA(C) on a node
labeled by B is omitted, and an obligatory adjunction constraint OA(C) on a node
labeled by B is simply written OA.

Formally, we represent an adjunction constraint using a set C of positive
integers ≤ m, where m is the number of auxiliary trees in the grammar, assuming
that the auxiliary trees are arranged in a list. (Informally, we take C to be a subset
of the set of auxiliary trees.) A tree-adjoining grammar is a 4-tuple (N, Σ,I ,A),
where

1. N is a finite set of symbols, called nonterminals;
2. Σ is a finite set of symbols, called terminals, disjoint from N ;
3. I is a finite set of trees, called initial trees, characterized as follows:

• each leaf node is labeled by a terminal or ε;
• each internal node is labeled by a nonterminal and an adjunction con-
straint;

4. A is a finite (ordered) set of trees, called auxiliary trees, characterized as
follows:

• each leaf node except one, called the foot node, is labeled by a terminal
or ε;

• each internal node and the foot node are labeled by a nonterminal and
an adjunction constraint.

The foot node of an auxiliary tree is customarily distinguished by an asterisk,
but in the absence of substitution, this carries no information. Note that the above
definition does not impose the requirements that the root node of an initial tree
be labeled by a distinguished nonterminal (start symbol) and that the root and

4–4

foot nodes of an auxiliary tree be labeled by the same nonterminal, since these
requirements have little formal consequence.1

To define the operation of adjunction formally, we need a precise way of refer-
ring to nodes in a tree. We use a system of using elements of N∗+ (finite sequences
of positive integers) as node addresses.2 In writing a sequence of positive integers,
we use the dot “.” to separate consecutive integers, as in 136.187.45.174, which
represents the sequence (136, 187, 45, 174). The dot is also used to denote concate-
nation of sequences; e.g., if p = 1.4.13.2 and q = 25.1, then p.q = 1.4.13.2.25.1.
We write p 6 q to mean that p is a prefix of q, i.e., that there is some r such that
p.r = q.

A tree domain is a non-empty subset D of N∗+ satisfying the following proper-
ties:

• p.1 ∈ D implies p ∈ D, and
• p.i ∈ D implies p. j ∈ D for all j ∈ N+ such that j < i.

Let Γ be an alphabet. A labeled ordered tree (or simply a tree) (over Γ) is a
function α from a tree domain Dα to Γ.3 The elements of Dα are the nodes of α.
The root of α is ε (the empty string), which is an element of every tree domain,
and if p.i ∈ Dα, p is the unique parent of p.i, and every p. j ∈ Dα is a child of p.
A node p ∈ Dα such that p.1 < Dα is a leaf.

Let α and β be trees. Let p be a node of α and q be a leaf of β. Then
adjoin(α, p, β, q) is defined to be the tree γ such that

Dγ = { r ∈ Dα | p
 r } ∪ { p.s | s ∈ Dβ } ∪ { p.q.r | p.r ∈ Dα },

γ(t) =




α(t) if t ∈ Dα and p
 t,
β(s) if t = p.s and s ∈ Dβ,
α(p.r) if t = p.q.r , r , ε, and p.r ∈ Dα.

Note that adjoin(α, p, β, p) = β(ε) and adjoin(α, p, β, q)(p.q) = β(q), so the
label α(p) is lost.

Suppose that α is a derived tree of a TAG G = (N, Σ,I ,A), and consider
adjoining the k-th auxiliary tree β at node p of α. This adjunction is legitimate
if for some B ∈ N and some set C of positive integers, the label at node p of α
is (B, SA(C)) or (B,OA(C)) and k ∈ C . In this case, we write α[p ← β] for
adjoin(α, p, β, q), where q is the foot node of β.

1Rogers (2003) called TAGs without the second requirement non-strict TAGs.
2These addresses are sometimes called Gorn addresses (Gorn 1967). Knuth (1997) calls this

system Dewey decimal notation.
3We have used Greek letters α, β, γ, . . . as variables for strings of terminal and nonterminal

symbols. In the context of TAGs, it is customary to denote elementary and derived trees with these
letters.

4–5

A TAG G = (N, Σ,I ,A) derives a tree γ if γ can be derived from an initial
tree by repeatedly adjoining auxiliary trees. Formally, α ⇒G α′ if there is an
auxiliary tree β ∈ A such that for some node p of α, adjunction of β at node p of
α is legitimate and α′ is the result of this adjunction, or in symbols, α′ = α[p← β].
We write⇒∗G for the reflexive transitive closure of⇒G. A tree γ is a derived tree
of G if for some initial tree α ∈ I , we have α ⇒∗G γ, and it is a derived adjunction
tree if for some auxiliary tree α ∈ A, we have α ⇒∗G γ.

The tree language generated by G is

L(G) = { γ | γ is a derived tree of G that has no node labeled with an OA constraint }.
The string language generated by G is defined as follows:

yL(G) = { y(γ) | γ ∈ L(G) },
where y(γ) is the yield of the tree γ, i.e., the concatenation of the labels of the leaf
nodes of γ, from left to right.4 A language L is a tree-adjoining language (TAL)
if L = yL(G) for some TAG G.

When we introduced CFGs, we gave two different ways of characterizing
the generated strings, namely, derivations and parse trees. Analogously, TAGs
have an alternative way of characterizing the derived trees, namely derivation
trees. Derivation trees of TAGs are like parse trees of CFGs—they correspond to
equivalence classes of derivations.

To define the set of derivation trees of a TAG G = (N, Σ,I ,A), we define
a multi-start CFG cf(G) = (N′, Σ ′, P′,S ′) corresponding to G, which is like a
CFG except that it has a finite set S ′ ⊆ N′ ∪ Σ ′ of start symbols. A derivation
tree of G is simply a parse tree of cf(G) (whose root label need not be in S ′). A
complete derivation tree of G is a parse tree of cf(G) whose root label is in S ′. If
α ∈ I ∪A , we write OA(α) and NA(α) to denote the set of OA nodes of α and
the set of NA nodes of α, respectively.

• N′ consists of nonterminals of the form

[αp1 . . . pn],

where α ∈ I ∪A , n ≥ 1, and p1, . . . , pn are nodes of α with nonterminal
labels (listed in preorder) such that

– OA(α) ⊆ {p1, . . . , pn}, and
– NA(α) ∩ {p1, . . . , pn} = ∅.

• Σ ′ = { [α] ∈ I ∪A | OA(α) = ∅ }.
4The label ε is treated as the empty string, as in the case of parse trees of context-free grammars.

4–6

• P′ consists of productions of the form

[αp1 . . . pn]→ [β1q1,1 . . . q1,m1] . . . [βnqn,1 . . . qn,mn],

where [αp1 . . . pn] ∈ N′ and for k = 1, . . . , n, it holds that
[βk qk,1 . . . qk,mk

] ∈ N ′ ∪ Σ ′ (mk ≥ 0) and the adjunction of βk at node
pk of α is legitimate.

• S ′ = { [αp1 . . . pn] ∈ N ′ | α ∈ I } ∪ { [α] ∈ Σ ′ | α ∈ I }.
Define a function dtree that maps derivation trees to derived (adjunction) trees

inductively as follows:

dtree([α]) = α, for [α] ∈ Σ ′,

dtree *.
,

[αp1 . . . pn]

τ1 τn. . .
+/
-
= α[p1 ← dtree(τ1), . . . , pn ← dtree(τn)],

where the right-hand side of the second equation means iterated adjunction5

α[pn ← dtree(τn)] . . . [p1 ← dtree(τ1)].

Then we can show

L(G) = { dtree(τ) | τ is a complete derivation tree of G }.
The class of tree-adjoining languages properly includes the class of context-free

languages. The following languages are TALs:

• COPY = { ww | w ∈ {a, b}∗ }.
• COUNT-3 = { anbncn | n ≥ 0 } and COUNT-4 = { anbncndn | n ≥ 0 }.

The language COUNT-4 is generated by a TAG G = ({S, A}, {a, b, c, d}, {α}, {β}),
where:

α =

SNA

A

ε

β =

ANA

a A

b A∗NA c

d

The associated multi-start context-free grammar is cf(G) = (N ′, Σ ′, P′,S ′),
where

N ′ = {[α 1], [β 2]},
5Recall that the nodes p1, . . . , pn are listed in preorder. This ensures that the target of adjunction

of dtree(τi) keeps the original address in α[pn ← dtree(τn)] . . . [pi+1 ← dtree(τi+1)].

4–7

Σ ′ = {[α], [β]},
P′ = {[α 1]→ [β 2], [α 1]→ [β], [β 2]→ [β 2], [β 2]→ [β]},

S ′ = {[α 1], [α]}.

The following tree τ is a complete derivation tree of G:

[α 1]

[β 2]

[β]

A more graphical way of depicting this derivation tree would be:

SNA

A

ε

ANA

a A

b A∗NA c

d

ANA

a A

b A∗NA c

d

The corresponding derived tree dtree(τ) is

SNA

ANA

a ANA

a A

b ANA

b ANA

ε

c

c

d

d

4–8

Exercise 4.1. Write a TAG that generates COPY.

Exercise 4.2. Write a TAG that generates { wwR | w ∈ D∗1 }, where D∗1 is the Dyck
language over {a, ā}, defined by the following context-free grammar:

S → T S | ε
T → aSā

A weak pumping lemma for tree-adjoining languages
The derivation trees of a TAG constitute a local set, which is a special kind of
regular tree language. There is a pumping lemma for the regular tree languages,
which says (roughly) that every tree in a regular tree languagewhose height exceeds
a certain bound (depending on the language) has a part that can be pumped any
number of times with the resulting tree still belonging to the language. Using
this fact we can obtain a weak form of pumping lemma for the string languages
generated by tree-adjoining grammars.

Consider a TAGG = (N, Σ,I ,A), where N = {S, A, B}, Σ = {a, b, c, d, e, f},
I = {γ}, A = {α, β1, β2, β3}.

α =

ANA

a BOA

ANA

β1 =
BNA

b BNA
β2 =

BNA

AOA

c BNA d

e β3 =

BNA

AOA

c

BNA d

γ =

S

AOA

f

The associated multi-start context-free grammar is cf(G) = (N ′, Σ ′, P′,S ′),
where

N ′ = {[α 2], [β2 1], [β3 1], [γ 1]},
Σ ′ = {[β1]},
S ′ = {[γ 2]}

4–9

and P′ consists of the following productions:

[γ 1]→ [α 2]
[α 2]→ [β1]
[α 2]→ [β2 1]
[α 2]→ [β3 1]
[β2 1]→ [α 2]
[β3 1]→ [α 2]

Consider the following derivation tree:

τ =

[γ 1]

[α 2]

[β2 1]

[α 2]

[β1]

We have

dtree(τ) = γ[1← α[2← β2[1← α[2← β1]]]] =

S

A

a B

A

a B

b B

A

c B

A

f

d

e

y(dtree(τ)) = aabcfde.

4–10

The subtree
[α 2]

[β2 1]

[α 2]

[β1]

of τ can be replaced with
[α 2]

[β1]

resulting in a shorter derivation tree:

τ0 =

[γ 1]

[α 2]

[β1]

dtree(τ0) = γ[1← α[2← β1]] =

S

A

a B

b B

A

f

y(dtree(τ0)) = abf.

Conversely, the subtree
[α 2]

[β1]

of τ can be replaced with
[α 2]

[β2 1]

[α 2]

[β1]

4–11

resulting in a longer derivation tree

τ2 =

[γ 1]

[α 2]

[β2 1]

[α 2]

[β2 1]

[α 2]

[β1]

dtree(τ2) = γ[1← α[2← β2[1← α[2← β2[1← α[2← β1]]]]]]

=

S

A

a B

A

a B

A

a B

b B

A

c B

A

c B

A

f

d

d

e

e

y(dtree(τ2)) = aaabccfddee.

4–12

We see that the part
[α 2]

[β2 1]

of τ can be repeated n ≥ 0 times, resulting in a derivation tree τn. If we let 2
denote a dummy auxiliary tree with just one node (labeled by 2), then

dtree
*.....
,

[α 2]

[β2 1]

2

+/////
-

=

A

a B

�

c B

A

d

e

So repeating this part n times contributes substrings an, cn, dn, en. We see

y(dtree(τn)) = anabcnfdnen.

Consider another derivation tree

τ′ =

[γ 1]

[α 2]

[β3 1]

[α 2]

[β1]

dtree(τ′) = γ[1← α[2← β3[1← α[2← β1]]]] =

S

A

a B

A

a B

b B

A

c

B

A

f

d

4–13

y(dtree(τ′)) = aabcfd.

The subtree
[α 2]

[β3 1]

[α 2]

[β1]

of τ′ can be replaced with
[α 2]

[β1]

resulting in a shorter derivation tree:

τ′0 =

[γ 1]

[α 2]

[β1]

(= τ0)

dtree(τ′0) =

S

A

a B

b B

A

f

y(dtree(τ′0)) = abf.

Conversely, the subtree
[α 2]

[β1]

4–14

of τ can be replaced with
[α 2]

[β3 1]

[α 2]

[β1]

resulting in a longer derivation tree

τ′2 =

[γ 1]

[α 2]

[β3 1]

[α 2]

[β3 1]

[α 2]

[β1]

dtree(τ′2) = γ[1← α[2← β3[1← α[2← β3[1← α[2← β1]]]]]]

=

S

A

a B

A

a B

A

a B

b B

A

c

B

A

c

d

B

A

f

d

y(dtree(τ′2)) = aaabccdfd.

4–15

The part
[α 2]

[β3 1]

of τ′ can be repeated n + 1 times, resulting in a derivation tree τ′n+1. Note

dtree
*.....
,

[α 2]

[β3 1]

2

+/////
-

=

A

a B

�

c

B

A

d

Note that unlike in the previous case, the node labeled by 2 is not on the spine
(i.e., the path from the root node to the foot node) of the derived adjunction tree.
It is not difficult to see that repeating this part n + 1 times contributes substrings
an+1, c, (cd)n, d, and

y(dtree(τ′n+1)) = an+1abc(cd)nfd.

Note that one of the pumped strings, cd, is not a substring of the origi-
nal string z = y(dtree(τ′)) = aabcfd. Indeed, it is not possible to find
u1, v1,w1, v2, u2, v3,w3, v4, u3 such that z = u1v1w1v2u2v3w2v4u3, |v1v2v3v4 | > 0,
and

u1v
n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ yL(G) for all n ≥ 0.

The consideration so far leads to the following weak version of the pumping
lemma for tree-adjoining languages (Vijayashanker 1987, Kallmeyer 2010).

Theorem 4.1 (Weak Pumping Lemma for TALs). Let L be a TAL. Then there is
a natural number p such that for every string z ∈ L with |z | ≥ p, there are strings
u1, u2, u3, v1, v2, v3, v4,w1,w2 satisfying the following conditions:

1. |v1v2v3v4 | ≥ 1,
2. |v1v2v3v4 | + |w1w2 | ≤ p, and
3. one of the following holds:

(a) z = u1v1w1v2u2v3w2v4u3 and u1v
n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ L for all n ≥ 0;

(b) z = u1v1w1v2w2v3u2v4u3 and u1v
n+1
1 w1v2w2(v3v2v4)nv3u2v4u3 ∈ L

for all n ≥ 0; or

4–16

(c) z = u1v1u2v2w1v3w2v4u3 and u1v1u2v2(v1v3v2)nw1v3w2v
n+1
4 u3 ∈ L

for all n ≥ 0.

Vijayashanker (1987) casually remarks that the cases (b) and (c) reduce to the
case (a), but as Kallmeyer (2010) notes, he does not explain why that is so. The
above example shows that much more work is needed to prove the strong form of
the pumping lemma for TALs through analysis of derivation trees:

Theorem 4.2 (Pumping Lemma for TALs). Let L be a TAL. Then there is a
natural number p such that for every string z ∈ L with |z | ≥ p, there are strings
u1, v1,w1, v2, u2, v3,w2, v4, u3 satisfying the following conditions:

1. z = u1v1w1v2u2v3w2v4u3,
2. |v1v2v3v4 | ≥ 1,
3. |v1w1v2v3w2v4 | ≤ p, and
4. u1v

n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ L for all n ≥ 0.

We shall approach this problem through an analysis of TAG derived trees in
terms of linear indexed grammars.

Linear indexed grammars
Linear indexed grammars are a restrictive variant of indexed grammars (Aho
1968) and were introduced—but no so named—by Gazdar (1988).6 The class of
languages generated by linear indexed grammars coincides with the class of TALs
(Vijay-Shanker and Weir 1994). The following is an indexed grammar generating
COPY:

S[◦◦]→ a S[a◦◦]
S[◦◦]→ b S[b◦◦]
S[◦◦]→ T[◦◦]

T[a◦◦]→ T[◦◦] a
T[b◦◦]→ T[◦◦] b

T[]→ ε

In indexed grammar derivations, each nonterminal is followed by a string of
indices, which acts as a pushdown stack.7 If B is a nonterminal and χ is a string

6The term linear indexed grammar is apparently due to Vijayashanker (1987).
7The top of the stack is on the left. This convention from Aho’s (1968) original paper on

indexed grammars has been reversed by some people, e.g., Vijay-Shanker and Weir (1994).

4–17

of indices, we write B[χ] for B χ. Formally, a linear indexed grammar is a 5-tuple
G = (N, Σ, I, P, S), where

1. N and Σ are finite sets of nonterminals and terminals, respectively,
2. I is a finite set of indices,
3. S ∈ N , and
4. P is a finite set of productions, each having one of the following forms:

A[◦◦]→ αB[◦◦]β,
A[◦◦]→ αB[f ◦◦]β,

A[f ◦◦]→ αB[◦◦]β,
A[]→ w,

where A, B ∈ N , f ∈ I, α, β ∈ (N[] ∪ Σ)∗,w ∈ Σ ∗.
The expression ◦◦ serves as a variable for strings of indices.

For γ, δ ∈ (N I∗ ∪ Σ)∗, we write γ ⇒G δ if there are A ∈ N , χ ∈ I∗,
γ1, γ2 ∈ (N I∗ ∪ Σ)∗ such that γ = γ1 A[χ]γ2 and one of the following holds:

• A[◦◦]→ αB[◦◦]β is a production of G and δ = γ1αB[χ]βγ2;
• A[◦◦]→ αB[f ◦◦]β is a production of G and δ = γ1αB[f χ]βγ2;
• A[f ◦◦]→ αB[◦◦]β is a production of G, χ = f χ′, and δ = γ1αB[χ′]βγ2;
• A[]→ w is a production of G, χ = ε, and δ = γ1wγ2.

Here’s an example of a derivation of the above grammar for COPY:

S[]⇒ aS[a]⇒ aaS[aa]⇒ aabS[baa]⇒ aabT[baa]⇒ aabT[aa]b
⇒ aabT[a]ab⇒ aabT[]aab⇒ aabaab.

The language generated by a LIG G = (N, Σ, I, P, S) is defined as follows:

L(G) = { w ∈ Σ ∗ | S[]⇒∗G w }.

If L = L(G) for some LIG G, L is said to be a linear indexed language (LIL).
We can define derivation trees as well:

1. A tree consisting of a single node labeled by a ∈ Σ ∪ {ε} is a derivation tree
from a.

4–18

2. If A[]→ ε is a production, then

A[]

ε

is a derivation tree from A[].
3. If A[]→ a1 . . . an (n ≥ 1, ai ∈ Σ) is a production, then

A[]

a1 . . . an

is a derivation tree from A[].
4. If A[◦◦]→ X1 . . . Xi−1 B[◦◦] Xi+1 . . . Xn is a production (Xi ∈ N[]∪ Σ) and

τ1, . . . , τn are derivation trees from X1, . . . , Xi−1, B[χ], Xi+1, . . . , Xn, respec-
tively, then

A[χ]

X1

τ1

. . . Xi−1

τi−1

B[χ]

τi

Xi+1

τi+1

. . . Xn

τn

is a derivation tree from A[χ].
5. If A[◦◦] → X1 . . . Xi−1 B[f ◦◦] Xi+1 . . . Xn is a production (Xi ∈ N[] ∪ Σ)

and τ1, . . . , τn are derivation trees from X1, . . . , Xi−1, B[f χ], Xi+1, . . . , Xn,
respectively, then

A[χ]

X1

τ1

. . . Xi−1

τi−1

B[f χ]

τi

Xi+1

τi+1

. . . Xn

τn

is a derivation tree from A[χ].
6. If A[f ◦◦] → X1 . . . Xi−1 B[◦◦] Xi+1 . . . Xn is a production (Xi ∈ N[] ∪

Σ) and τ1, . . . , τn are derivation trees from X1, . . . , Xi−1, B[χ], Xi+1, . . . , Xn,

4–19

respectively, then

A[f χ]

X1

τ1

. . . Xi−1

τi−1

B[χ]

τi

Xi+1

τi+1

. . . Xn

τn

is a derivation tree from A[f χ].

The following is an example of a derivation tree of the above grammar for COPY:

S[]

a S[a]

a S[aa]

b S[baa]

T[baa]

T[aa]

T[a]

T[]

ε

a

a

b

We have

A[χ]⇒∗G w if and only if there is a derivation tree from A[χ] whose yield is w.

A complete derivation tree is a derivation tree from S[]. As a consequence,

L(G) = { y(τ) | τ is a complete derivation tree of G }.

Consider the following linear indexed grammar G:

S[◦◦]→ S[a◦◦] a
S[◦◦]→ S[b◦◦] b
S[◦◦]→ T[◦◦]

4–20

T[a◦◦]→ T[◦◦] a
T[b◦◦]→ T[◦◦] b

T[]→ ε

This grammar generates { wwR | w ∈ { a, b}∗ }, where wR denotes the reversal of
w. This language is a non-regular context-free language, but the derivation trees
of G are all purely left-branching. Gazdar (1988) suggests that this property of
linear indexed grammars may be potentially useful to analyze sentences like the
following:

(4.3) Jude is [less]b obviously [as]a nice [as]a Kim [than]b Chris is.
(4.4) You are [as]b much tall[er]a [than]a me [as]b I expected.
(4.5) This fence is [so much]c [too much]b high[er]a [than]a that one [for]b

me to even consider climbing it [that]c it’s simply incomprehensible to
me that Mary would try to get me to do it.

The first two of these sentences are originally due to Klein (1981) and the third
to Bowers (1975). These constructions exhibit nested dependency, but it seems
reasonable to assume that their tree structures are predominantly left-branching.

Exercise 4.3. Write a LIG that generates { wwR | w ∈ D∗1 } (cf. Exercise 4.2). Can
you make the derivation trees purely left-branching?

From tree-adjoining grammars to linear indexed
grammars
Given a TAG G = (N, Σ,I ,A), we construct a LIG G′ = (N ′, Σ, I′, P′, S′) such
that yL(G) = L(G′). Assume that the foot node of every auxiliary tree has an NA
constraint. (If not, add a new NA node under the foot node, making it the new foot
node.) The spine of an auxiliary tree is the path from its root to its foot node.

1. N ′ = { (α, q) | α ∈ I ∪A and q is a node of α } ∪ {S′};
2. I′ = { (α, q) | α ∈ I ∪A and q is an internal node of α labeled by

OA(C) or SA(C) for some C , ∅ };
3. P′ is constructed as follows:

(a) for every α ∈ I , P′ contains the production

S′[◦◦]→ (α, ε)[◦◦].

4–21

(b) for every α ∈ I ∪A , if p is an internal node of α that does not have
an OA constraint, then P′ contains the production

(α, p)[◦◦]→
(α, p.1)[] . . . (α, p.(k − 1))[] (α, p.k)[◦◦] (α, p.(k + 1))[] . . . (α, p.n)[],

where n is the number of children of p in α, and if p is on the spine of
α, then p.k is on the spine of α, and otherwise k = 1;

(c) for every α ∈ I ∪ A , if p is a leaf node of α labeled by some
a ∈ Σ ∪ {ε}, then P′ contains the production

(α, p)[]→ a.

(d) for every α ∈ I ∪A and β ∈ A , if p is an internal node of α labeled
by OA(C) or SA(C) for some C such that β ∈ C , then P′ contains the
productions

(α, p)[◦◦]→ (β, ε)[(α, p)◦◦],
(β, q)[(α, p)◦◦]→
(α, p.1)[] . . . (α, p.(k − 1))[] (α, p.k)[◦◦] (α, p.(k + 1))[] . . . (α, p.n)[],

where q is the foot node of β, n is the number of children of p in α,
and if p is on the spine of α, p.k is on the spine of α and otherwise
k = 1.

If G′ is the LIG constructed from a TAG G by the above procedure, the
derivation trees of G′ have almost the same shape as the derived trees of G, and it
can be proved that yL(G) = L(G′).

Theorem 4.3. Every TAL is a LIL.

Proof. Let G be a TAG such that the foot node of every auxiliary tree has an NA
constraint, and let G′ be the LIG constructed from G by the above method. Let
G′′ be the LIG which is just like G′ except that G′′ contains (b) productions for
all internal nodes of α, including those with an OA constraint. By a derivation
tree fragment of G′′, we mean a tree just like a derivation tree of G′′ except that
it may have a leaf node with a label of the form (β, q)[], where β is an auxiliary
tree of G and q is its foot node (it may have at most one such leaf and all the other
leaves must be labeled by terminals). Each elementary tree α of G corresponds to
a derivation tree fragment τα of G′′ constructed with only (b) and (c) productions,
in an obvious way.

Let τ be a derivation tree fragment of G′′. We call a node r in τ a push node if
r is labeled with (α, p)[χ] and the only child of r is labeled with (β, ε)[(α, p) χ].
We modify τ by deleting some nodes and relabeling others, as follows.

4–22

• Any node r in τ labeled by S′[] is deleted.
• If a node r in τ is labeled by (α, p)[χ] and the first component of α(p) is a
nonterminal, then r is relabeled with α(p), except when r is a push node, in
which case r is deleted.

• If a node r in τ is labeled by (α, p)[] and α(p) is a terminal, then r is deleted.
• Any node in τ labeled by a ∈ Σ ∪ {ε} is unchanged.

We denote the resulting tree by φ(τ).

Claim 1. If τ is a derivation tree fragment of G′′ whose root node is labeled with
(δ, ε)[], then δ ⇒∗G φ(τ).

We prove Claim 1 by induction on the number of push nodes in τ. If τ has
no push node, it is easy to see that τ = τδ and φ(τ) = δ. Otherwise, let r be one
of the lowest push nodes of τ. Let the labels of r and its only child be (α, p)[χ]
and (β, ε)[(α, p) χ], respectively. There must be a descendant s of r labeled by
(β, q)[(α, p) χ] with a child labeled by (α, p.k)[χ], where q is the foot node of β
and p.k is a child of p in α. The nodes on the path from r to s all have labels of
the form (β, t)[(α, p) χ]. (Note that none of them are push nodes.) Let τ′ be the
result of removing from τ all descendants of r except those that are descendants
of s, making the children of s new children of r . Then τ′ is a derivation tree
fragment of G′′, and the removed nodes will constitute a derivation tree fragment
υ if we change the labels of the nodes that were on the path from r to s from
(β, t)[(α, p) χ] to (β, t)[]. By induction hypothesis, δ ⇒∗G φ(τ′). It is easy to see
that υ = τβ, φ(υ) = β, and φ(τ) = φ(τ′)[u ← β], where u is the node of φ(τ′)
that r gets mapped to. (Since push nodes above r are removed, u is a scattered
substring of r , i.e., u is obtained from r by skipping some integers.) This proves
Claim 1.

Claim 2. If δ is an elementary tree of G and δ ⇒∗G γ, then there is a derivation
tree fragment τ of G′′ whose root node is labeled with (δ, ε)[] such that γ = φ(τ).

If γ = δ, then we can take τ = τδ. Suppose δ ⇒∗G δ′ and γ = δ′[u ← β]
for some β ∈ A . By induction hypothesis, there is a derivation tree fragment τ′
of G′′ such that φ(τ′) = δ′. Let r be the node of τ′ that is mapped to u by φ.
Since u does not have an NA constraint, it originates as an internal node (α, p) of
some elementary tree of G. In particular, p is not the foot node of α. Since r is
not removed by φ, it is not a push node, so the label of r must be (α, p)[χ] for
some χ ∈ I∗ and the labels of the children of r must be (α, p.1)[], . . . , (α, p.(k −
1))[], (α, p.k)[χ], (α, p.(k + 1))[], . . . , (α, p.n), where n is the number of children
of p in α and p.k is on the spine of α if p is. Let υ be the tree that results from τβ by
changing all labels (β, t)[] such that t is on the spine of β to (β, t)[(α, p) χ]. Let τ

4–23

be the result of ‘inserting’ υ immediately below r in τ′. (This insertion operation
is different from adjunction in that all nodes of τ′ are present in the resulting tree.)
Clearly, τ is a derivation tree fragment of G′′, and φ(τ) = γ. This proves Claim 2.

Now we can show

(†) L(G) = { φ(τ) | τ is a complete derivation tree of G′ }.

It immediately follows from this that yL(G) = L(G′).
To prove (†), suppose first that τ is a complete derivation tree of G′. Then its

unique immediate subtree is a derivation tree of G′′ whose root node is labeled
with (δ, ε) for some δ ∈ I . By Claim 1, δ ⇒∗G φ(τ). Now suppose (α, p) labels
a node r of τ, where the node p of α has an OA constraint. Then by the restriction
on (b) productions of G′, r must be a push node, so r is removed by φ. This means
that φ(τ) has no node with an OA constraint, and hence φ(τ) ∈ L(G).

Conversely, suppose γ ∈ L(G). Then there is a δ ∈ I such that δ ⇒∗G γ. By
Claim 2, there is a derivation tree υ of G′′ whose root node is labeled with (δ, ε)[]
such that γ = φ(υ). Since γ contains no OA node, it is clear that υ is a derivation
tree of G′. Let τ be a complete derivation tree of G′ with υ as its unique immediate
subtree. We have φ(τ) = φ(υ) = γ.

This shows (†), completing the proof of the theorem. �

Exercise 4.4. Take the example TAG that was used above to illustrate the weak
pumping lemma for tree-adjoining languages and convert it to a LIG.

The pumping lemma for linear indexed languages
Consider a derivation tree τ for a LIG G. If q is an internal node of τ sanctioned
by a production of one of the following types:

A[◦◦]→ αB[◦◦]β,
A[◦◦]→ αB[f ◦◦]β,

A[f ◦◦]→ αB[◦◦]β,

where |α | = k (note α ∈ (N ∪ Σ)∗), then the (k + 1)st child of q is called its head
child. Suppose that a path q1, . . . , qn in τ satisfies the following properties:

• q1 is not the head child of any node,
• for i = 1, . . . , n − 1, qi+1 is the head child of qi, and
• qn does not have a head child.

4–24

Then we call q1, . . . , qn a spine. Every spine starts with a node labeled by A[] for
some A ∈ N and ends in a node labeled by B[] for some B ∈ N whose children
are all leaves. Every internal node of a derivation tree is on a unique spine.8

Theorem 4.4 (Pumping Lemma for LILs). Let L be a linear indexed language.
Then there is a natural number p such that for every string z ∈ L with |z | ≥ p,
there exist strings u1, v1,w1, v2, u2, v3,w2, v4, u3 satisfying the following conditions:

1. z = u1v1w1v2u2v3w2v4u3,
2. |v1v2v3v4 | ≥ 1, and
3. u1v

n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ L for all n ≥ 0.

Proof. Let G = (N, Σ, I, P, S) be a LIG generating L. Let s =
∑|N |2

n=0 |I |n, the
number of strings of indices whose length does not exceed |N |2. Let l be the
maximal length of the right-hand side of productions in P, and let p = l |N |·s + 1.

Suppose z ∈ L(G) and |z | ≥ p. Let τ be one of the smallest complete
derivation trees such that y(τ) = z. Since |z | ≥ p, there must be a path from the
root node of τ leading to a leaf that contains at least h = |N | · s + 1 internal nodes.
Let q1, . . . , qh be the lowest h internal nodes on this path, and for i = 1, . . . , h, let
Ai[χi] be the label of qi.

Case 1. For all i = 1, . . . , h, | χi | ≤ |N |2. Then there must be i, j such that
i < j ≤ h and Ai[χi] = A j[χ j]. The derivation tree τ looks like the following:

S[]

Ai[χi]

Ai[χi]

u1 x1 u2 x2 u3

The three regions of this derivation represent derivations

S[]⇒∗G u1 Ai[χi]u3,

Ai[χi]⇒∗G x1 Ai[χi]x2,

Ai[χi]⇒∗G u2,

8This is not strictly true, because the same internal node may be sanctioned by more than one
production. We assume that we are given an assignment of a unique production to each internal
node.

4–25

where z = u1x1u2x2u3. Combining these three derivations, it is clear that we have

S[]⇒∗G u1 Ai[χi]u3

⇒∗G u1xn
1 Ai[χi]xn

2u3

⇒∗G u1xn
1u2xn

2u3 ∈ L

for every n ≥ 0. If x1 = x2 = ε, then z = u1u2u3 has the following smaller
derivation tree:

S[]

Ai[χi]

u1

u2

u3

This contradicts the assumption that τ is oen of the smallest derivation trees for
z. Therefore, |x1x2 | ≥ 1. We obtain the desired conditions by putting v1 = x1,
w1 = v2 = v3 = w2 = ε, and v4 = x2.

Case 2. For some m, | χm | > |N |2. Let r1, . . . , rn̂ be the spine that qm is on,
and let rm̂ = qm. Let the label of ri be Bi[ζi]. Define

Q = { (i, j) | 1 ≤ i < m̂ < j ≤ n̂, ζi = ζ j , and for all k such that i < k < j, |ζk | > |ζi | }.

It is easy to see that for each k < | χm |, there is exactly one pair (i, j) in Q such
that |ζi | = k, so Q has exactly | χm | elements. Since | χm | > |N |2, there are pairs
(i, j), (i′, j′) ∈ Q such that i < i′ < j′ < j and

Bi = Bi′ = C, B j = B j ′ = D.

Then ζi = ζ j = η and ζi′ = ζ j ′ = θη for some η, θ ∈ I∗. The derivation tree τ

4–26

looks like the following:

S[]

C[η]

C[θη]

D[θη]

D[η]

u1 v1 w1 v2 u2 v3 w2 v4 u3

The five regions of this derivation tree represent derivations

S[]⇒∗G u1C[η]u3,

C[η]⇒∗G v1C[θη]v4,

C[θη]⇒∗G w1D[θη]w2,

D[θη]⇒∗G v2D[η]v3,

D[η]⇒∗G u2,

where z = u1v1w1v2u2v3w2v4u3. By the definition of Q, we must have

C[ξ]⇒∗G v1C[θξ]v4,

C[ξ]⇒∗G w1D[ξ]w2,

D[θξ]⇒∗G v2D[ξ]v3

for every ξ ∈ I∗, and this implies for every n ≥ 0,

C[θnη]⇒∗G v1C[θn+1η]v4,

C[θn+1η]⇒∗G w1D[θn+1η]w2,

D[θn+1η]⇒∗G v2D[θnη]v3.

Therefore, for every n ≥ 0,

S[]⇒∗G u1C[η]u3

4–27

⇒∗G u1v
n
1C[θnη]vn

4u3

⇒∗G u1v
n
1w1D[θnη]w2v

n
4u3

⇒∗G u1v
n
1w1v

n
2 D[η]vn

3w2v
n
4u3

⇒∗G u1v
n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ L.

If v1 = v2 = v3 = v4 = ε, then z = u1w1u2w2u3 has the following smaller
derivation tree:

S[]

C[η]

D[η]

u1

w1

u2

w2

u3

This contradicts the assumption that τ is one of the smallest derivation trees for z.
Therefore, |v1v2v3v4 | ≥ 1.

This completes the proof. �

Since every TAL is a LIL, Theorem 4.4 applies to every TAL.

Exercise 4.5. Show that the following languages are not TALs (or LILs):

• COUNT-5 = { anbncndnen | n ≥ 0 }.
• COPY-2 = { www | w ∈ {a, b}∗ }.
Palis and Shende (1995) proved an analogue of Ogden’s (1968) lemma for

each level of the control language hierarchy introduced by Weir (1988, 1992).
The first level of this hierarchy is the class of CFLs, and the second level coincides
with the class of TALs (LILs). Palis and Shende’s (1995) proof is essentially a
generalization of the proof for LILs we have given above.9

9Essentially the same proof also appears in Shamir 2013.

4–28

From Linear Indexed Grammars to Tree-Adjoining
Grammars
It is known that the converse of Theorem 4.3 also holds: every LIL is a TAL. In
fact, we can prove a stronger statement: for every LIG G, there is a TAG G′ such
that L(G′) consists precisely of the stripped complete derivation trees of G, where
a stripped complete derivation tree is the result of removing the stack portion of
the node labels from a complete derivation tree.

Let G = (N, Σ, I, P, S) be a LIG. For the sake of simplicity, let us suppose that
each production in P has one of the following forms:

A[◦◦]→ B1[] . . . Bi−1[] Bi[◦◦] Bi+1[] . . . Bn[]
A[◦◦]→ B1[] . . . Bi−1[] Bi[f ◦◦] Bi+1[] . . . Bn[]

A[f ◦◦]→ B1[] . . . Bi−1[] Bi[◦◦] Bi+1[] . . . Bn[]
A[]→ w

In other words, terminals and nonterminals never appear mixed in the right-hand
side of any production. (It is not difficult to lift this restriction.)

We construct a tree-adjoining grammar G′ = (N ′, Σ,I ,A) corresponding to
G. Define

N ′ = N ∪ { [AB] | A, B ∈ N }.
We assume that the symbols in N are always used with the NA constraint, whereas
a symbol of the form [AB] is always used with the constraint OA(CA,B), where
CA,B refers to the set of auxiliary trees whose root is labeled by A and whose foot
node is labeled either by B or by a nonterminal of the form [DB].

The set I of initial trees of G′ is defined as follows:

• If
S[◦◦]→ B1[] . . . Bi−1[] Bi[◦◦] Bi+1[] . . . Bn[]

Cj[]→ w j (j = 1, . . . , n)

are productions in P, then the following tree is in I :

S

[BnCn]

wn

. . .[Bi+1Ci+1]

wi+1

[BiCi]

wi

[Bi−1Ci−1]

wi−1

. . .[B1C1]

w1

4–29

• If
S[◦◦]→ B1[] . . . Bi−1[] Bi[f ◦◦] Bi+1[] . . . Bn[]

Cj[]→ w j (j = 1, . . . , i − 1, i + 1, . . . , n)
D[f ◦◦]→ E1[] . . . Ek−1[] Ek[◦◦] Ek+1[] . . . Ep[]

Fl[]→ zl (l = 1, . . . , p)

are productions in P, then the following tree is in I :

S

[BnCn]

wn

. . .[Bi+1Ci+1]

wi+1

[Bi D]

[EpFp]

zp

. . .[Ek+1Fk+1]

zk+1

[Ek Fk]

zk

[Ek−1Fk−1]

zk−1

. . .[E1F1]

z1

[Bi−1Ci−1]

wi−1

. . .[B1C1]

w1

• If
S[]→ w

is a production in P, then the following tree is in I :

S

w

The set A of auxiliary trees of G′ is defined as follows:

• If
A[◦◦]→ B1[] . . . Bi−1[] Bi[◦◦] Bi+1[] . . . Bn[]

Cj[]→ w j (j = 1, . . . , i − 1, i + 1, . . . , n)

are productions in P and C is a nonterminal in N , then the following tree is
in A :

A

[BnCn]

wn

. . .[Bi+1Ci+1]

wi+1

[BiC][Bi−1Ci−1]

wi−1

. . .[B1C1]

w1

• If
A[◦◦]→ B1[] . . . Bi−1[] Bi[f ◦◦] Bi+1[] . . . Bn[]

Cj[]→ w j (j = 1, . . . , i − 1, i + 1, . . . , n)
D[f ◦◦]→ E1[] . . . Ek−1[] Ek[◦◦] Ek+1[] . . . Ep[]

Fl[]→ zl (l = 1, . . . , k − 1, k + 1, . . . , p)

4–30

are productions in P, then the following tree is in A :

A

[BnCn]

wn

. . .[Bi+1Ci+1]

wi+1

[Bi D]

[EpFp]

zp

. . .[Ek+1Fk+1]

zk+1

[Ek Fk][Ek−1Fk−1]

zk−1

. . .[E1F1]

z1

[Bi−1Ci−1]

wi−1

. . .[B1C1]

w1

• For each A ∈ N , the following tree is in A :

A

(This is the tree consisting of a single node labeled by A and can be adjoined
into a node labeled by [AA].)

As before, by a derivation tree fragment of G, we mean a tree that is just like
a derivation tree of G except that it has a unique leaf with a label of the form B[],
where B is a nonterminal. If τ is a derivation tree or a derivation tree fragment,
we write τ for the result of removing all occurrences of indices in τ. The main
spine of a derivation tree (context) refers to the spine that contains the root. We
can prove the following:

(a) If τ is a complete derivation tree of G, then τ ∈ L(G′).
(b) If τ is a derivation tree fragment of G whose root is labeled by A[] and

which has a leaf labeled by B[] on the main spine, then υ ⇒∗G′ τ for some
υ ∈ CA,B.

Conversely, we can show

(c) If τ′ ∈ L(G′), then there is a complete derivation tree τ inG such that τ′ = τ.
(d) If υ ⇒∗G′ τ′ for some υ ∈ CA,B and τ′ contains no label of the form [CD],

then there is a derivation tree fragment τ of G such that the root of τ is
labeled by A[], τ has a leaf labeled by B[] on the main spine, and τ = τ′.

Theorem 4.5. For every LIG G, there is a TAG G′ such that L(G′) = { τ |
τ is a complete derivation tree of G }.
Corollary 4.6. Every LIL is a TAL.

4–31

Problems
4.1. Prove that the two definitions of L(G) for TAGs are equivalent:

L(G) = { γ | ∃α ∈ I (α ⇒∗G γ ∧ γ has no OA node) }
L(G) = { dtree(τ) | τ is a complete derivation tree of G }

4.2. Prove that the class of LILs is closed under intersectionwith regular languages.

4.3. Call a production A→ α of a LIG left-linear if α ∈ (N[(Σ∪{ε})◦◦]∪{ε})Σ ∗.
A left-linear LIG is a LIG all of whose productions are left-linear. Show that the
left-linear LIGs generate exactly the context-free languages. (See Gazdar 1988,
Michaelis and Wartena 1997, 1998.)

4.4. Try to modify the definition of the LIG G′ corresponding to a given TAG G in
such a way that derived trees of G are obtained from derivation trees of G′ simply
by relabeling, without deleting any nodes.

4.5. Prove Theorem 4.4 with the condition |v1w1v2v3w2v4 | ≤ p.

4.6. Prove the followingweak formofOgden’s lemma for linear indexed grammars:

Let G = (N, Σ, I, P, S) be a LIG. There is a natural number p such that for
every string z ∈ L(G) and J ⊆ [1, |z |], if |J | ≥ p, then z can be written as
z = u1v1w1v2u2v3w2v4u3 so that

1. at least one of the following sets is non-empty:

J ∩ [|u1 | + 1, |u1v1 |],
J ∩ [|u1v1w1 | + 1, |u1v1w1v2 |],
J ∩ [|u1v1w1v2u2 | + 1, |u1v1w1v2u2v3 |],
J ∩ [|u1v1w1v2u2v3w2 | + 1, |u1v1w1v2u2v3w2v4 |],

2. for some C, D ∈ N and η, θ ∈ I∗, we have

S[]⇒∗G u1C[η]u3,

C[]⇒∗G v1C[θ]v4,

C[]⇒∗G w1D[]w2,

D[θ]⇒∗G v2D[]v3,

D[η]⇒∗G u2.

(As a consequence, u1v
n
1w1v

n
2u2v

n
3w2v

n
4u3 ∈ L(G) for all n ≥ 0.)

4–32

(See Palis and Shende 1995 for an analogue of Ogden’s lemma for the control
language hierarchy.)

4.7. Let L = { ambmcmdmen | m, n ≥ 0 } ∪ { ambncndnen | m, n ≥ 0 }.
1. Show that L is a LIL.

2. Show that every LIG G such that L = L(G) has two distinct derivation trees
for some string of the form anbncndnen.

4.8. Complete the proof of Theorem 4.5. (To prove (c) and (d), use induction on
derivation trees of G′.)

References
Abeillé, Anne and Owen Rambow. 2000. Tree adjoining grammar: An overview.
In A. Abeillé and O. Rambow, eds., Tree Adjoining Grammars: Formalisms,
Linguistic Analysis and Processing, pages 1–68. Stanford, Calif.: CSLI Publi-
cations.

Aho, Alfred V. 1968. Indexed grammars—an extension of context-free grammars.
Journal of the Association for Computing Machinery 15:647–671.

Bowers, JohnS. 1975. Adjectives and adverbs inEnglish. Foundations of Language
13:529–662.

Chomsky, Noam. 2004. Generative Enterprise Revisited. Berlin: Mouton de
Gruyter.

Gazdar, Gerald. 1988. Applicability of indexed grammars to natural languages. In
U. Reyle andC. Rohrer, eds.,Natural Language Parsing and Linguistic Theories,
pages 69–94. Dordrecht: Reidel.

Gorn, Saul. 1967. Explicit definitions and linguistic dominoes. In J. F. Hart
and S. Takasu, eds., Systems and computer science, pages 77–115. Universit of
Toronto Press in association with the University of Western Ontario.

Huybregts, Riny. 1984. The weak inadequacy of context free phrase structure
grammars. In G. J. de Haan, M. Trommelen, and W. Zonneveld, eds., Van
Periferie naar Kern, pages 81–90. Dordrecht: Foris Publications.

Joshi, Aravind K., Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct
grammars. Journal of Computer and System Sciences 10:136–163.

4–33

Joshi, AravindK. andYves Schabes. 1997. Tree-adjoining grammars. In G. Rozen-
berg and A. Salomaa, eds., Handbook of Formal Languages, Vol. 3: Beyond
Words, pages 69–123. Berlin: Springer.

Kallmeyer, Laura. 2010. Parsing Beyond Context-Free Grammars. Berlin:
Springer.

Klein, Ewan. 1981. The syntax and semantics of nominal comparatives. In
M. Moneglia, ed., Atti de Seminario su Tempo e Verbale Strutture Quantificate
in Forma Logica. Florence: Presso l’Accademia della Crusca.

Knuth, Donald E. 1997. The Art of Computer Programming. Volume 1: Funda-
mental Algorithms. Third Edition. Reading, Massachusetts: Addison-Wesley.

Michaelis, Jens and Christian Wartena. 1997. How linguistic constraints on move-
ment conspire to yield languages analyzable with a restricted form of LIGs. In
G.-J. M. Kruijff, G. V. Morrill, and R. T. Oehrle, eds., Formal Grammar 1997:
Linguistic Aspects of Logical and Computational Perspectives on Language,
pages 158–168.

Michaelis, Jens andChristianWartena. 1998. Unidirectional inheritance of indices:
A weakly context free facet of LIGs. In G. Bouma, G.-J. M. Kruijff, and
R. T. Oehrle, eds., Proceedings of the FHCG’98: Joint Conference on Formal
Grammar, Head-Driven Phrase Structure Grammar and Categorial Grammar,
pages 258–267.

Ogden, William. 1968. A helpful result for proving inherent ambiguity. Mathe-
matical Systems Theory 2(3):191–194.

Palis, M. A. and S. M. Shende. 1995. Pumping lemmas for the control language
hierarchy. Mathematical Systems Theory 28(3):199–213.

Rogers, James. 2003. Syntactic structures as multidimensional trees. Research on
Language and Computation 1:265–305.

Shamir, Eli. 2013. Pumping, shrinking and pronouns: Fromcontext-free to indexed
grammars. In A.-H. Dediu, C. Martín-Vide, and B. Truthe, eds., Language
and Automata Theory and Applications, LATA 2013, pages 516–522. Berlin:
Springer.

Shieber, StuartM. 1985. Evidence against the context-freeness of natural language.
Linguistics and Philosophy 8(3):333–343.

Vijay-Shanker, K. and D. J. Weir. 1994. The equivalence of four extensions of
context-free grammars. Mathematical Systems Theory 27:511–546.

4–34

Vijayashanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis,
University of Pennsylvania.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar For-
malisms. Ph.D. thesis, University of Pennsylvania.

Weir, David J. 1992. A geometric hierarchy beyond context-free languages. The-
oretical Computer Science 104(2):235–261.

4–35

	Tree-Adjoining Grammars and Related FormalismsLast modified 2016/05/30

