
Lecture 3

Tabular Parsing Last modified 2016/05/18

Tabular parsing is an application of dynamic programming (see Cormen et al.
2009, Kleinberg and Tardos 2006) to the problems of recognition and parsing in
order to achieve polynomial time complexity. In this lecture, we first see why
polynomial-time recognition is possible in abstract terms, using the notion of an
alternating machine. Next, we useDatalog to formalize tabular deductive parsing.
To understand tabular context-free recognition/parsing, the generality of Datalog
is an overkill, but it will pay dividends when we turn to recognition/parsing for
grammar formalisms more powerful than context-free grammars. Finally, we look
at tabular recognition/parsing based on pushdown automata.1

Complexity-theoretic considerations
We start with some notations and terminology we have not introduced so far. Let
us write α ⇒

lm
β (resp. α ⇒

rm
β) when β is the result of rewriting the leftmost (resp.

rightmost) nonterminal in α according to some production in the given context-free
grammar. A derivation

α1 ⇒ α2 ⇒ · · · ⇒ αn

is a leftmost (resp. rightmost) derivation if αi ⇒lm αi+1 (resp. αi ⇒rm αi+1) for
i = 1, . . . , n − 1. A string α ∈ (N ∪ Σ )∗ is a left (resp. right) sentential form if
S ⇒

lm
∗ α (respectively, if S ⇒

rm
∗ α).

A configuration of a top-down recognizer (α, ai+1 . . . an) on inputw = a1 . . . an
(reachable from the initial configuration) corresponds to a left sentential form
a1 . . . aiα. The accepting configuration is reachable from such a configura-
tion if and only if α ⇒∗ ai+1 . . . an. Thus, we can think of a configuration

1I’m grateful to Robert Glück for helpful comments on an earlier version of this lecture.

3–1



(α, ai+1 . . . an) as representing the problem “α ⇒∗ ai+1 . . . an?” When in config-
uration (Aβ, ai+1 . . . an), what the top-down recognizer tries to do next is in effect
to reduce the problem

Aβ ⇒∗ ai+1 . . . an?
to the “subproblems”

α1 β ⇒∗ ai+1 . . . an?
...

αk β ⇒∗ ai+1 . . . an?

where A → α1, . . . , A → αk is the list of productions with A on the left-hand
side. The first problem is equivalent to the disjunction of these subproblems. The
top-down recognizer nondeterministically picks one of these subproblems and
proceeds to the next step.

The input part of a configuration (α, ai+1 . . . an) can be represented by the
integer i, which only takes O(log n) space (assuming that the entire input is
stored externally), but the stack depth |α | in an accepting computation can be as
large as n − i, even when the grammar has no ε-productions,2 so the amount of
space required to represent a configuration (α, ai+1 . . . an) is Θ(n) (i.e., roughly
proportional to n) in the worst case.3 So we have a nondeterministic algorithm
that can be implemented on a Turing machine operating in space O(n). From this
information alone, all we can say is that the deterministic simulation can be done in
exponential time. In fact, the number of left sentential forms consistent with some
prefix of the input is exponential in the worst case (even for grammars with no ε-
or unit productions), so the naive deterministic simulation must take exponential
time (Aho and Ullman 1972). The situation with the bottom-up recognizer is
completely analogous.

Exercise 3.1. Show that the backtracking top-down recognizer (with lookahead)
takes exponential time in the worst case on the following CFG:

S → a S A | a S B | #
A→ a B → b

Exercise 3.2. Show that the backtracking bottom-up recognizer takes exponential
time in the worst case on the following CFG:

S → A S a | B S b | #
A→ a B → a

2In the presence of ε-productions, the stack depth can become arbitrarily large in general.
3Here we are assuming that the length n of the input is available to the algorithm from the

beginning, so that a configuration (α, ai+1 . . . an) with |α | > n − i need not be considered by the
algorithm.
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There is a very different way of dealing with the problem “α ⇒∗ β?”, however,
which makes use of an important property of the derivation relation of context-free
grammars:

X1 . . . Xn ⇒∗ β iff X1 ⇒∗ β1 ∧ · · · ∧ Xn ⇒∗ βn
for some β1, . . . , βn such that β = β1 . . . βn.

Using this property, we can reduce the problem “S ⇒∗ a1 . . . an?” to a set of
independent problems of the form

X ⇒∗ ai+1 . . . a j?,

where 0 ≤ i ≤ j ≤ n. For example, suppose that the grammar has two rules for
expanding S:

S → AB S → CDE

Take n = 2. Then we can reduce the problem “S ⇒∗ a1a2” to the following set of
problems:

A⇒∗ ε ∧ B ⇒∗ a1a2?
A⇒∗ a1 ∧ B ⇒∗ a2?

A⇒∗ a1a2 ∧ B ⇒∗ ε?
C ⇒∗ ε ∧ D ⇒∗ ε ∧ E ⇒∗ a1a2?
C ⇒∗ ε ∧ D ⇒∗ a1 ∧ E ⇒∗ a2?

C ⇒∗ ε ∧ D ⇒∗ a1a2 ∧ E ⇒∗ ε?
C ⇒∗ a1 ∧ D ⇒∗ ε ∧ E ⇒∗ a2?
C ⇒∗ a1 ∧ D ⇒∗ a2 ∧ E ⇒∗ ε?

C ⇒∗ a1a2 ∧ D ⇒∗ ε ∧ E ⇒∗ ε?

The disjunction of these conjunctions is equivalent to “S ⇒∗ a1a2?” Each con-
junction in turn reduces to its conjuncts in the obvious way.

In general, a problem “X ⇒∗ ai+1 . . . a j?” reduces to a set of subproblems of
the same form; the original problem is equivalent to a disjuntion of conjunctions
made up of these subproblems. Thus, the dependence among different problems
can be depicted in the form of an AND/OR tree (see Nilsson 1982), as in Figure 3.1.
In a tree like this, nodes that have an arc through their outgoing edges are AND
nodes; other nodes are OR nodes.4 An AND node indicates that all its successor
nodes (i.e., children) must be established, whereas an OR node only requires one
of its successor nodes to be established.

4This usage of the terms “AND node” and “OR node” differs from Nilsson’s (1982), but seems
to be fairly standard (Simon and Lee 1971, Hall 1973). If we view an AND/OR graph as a Boolean
circuit, AND nodes and OR nodes according to this usage correspond to AND gates and OR gates.
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A⇒∗ ε ∧ B⇒∗ a1a2?

S ⇒∗ a1a2?

A⇒∗ a1 ∧ B⇒∗ a2? A⇒∗ a1a2 ∧ B⇒∗ ε? C ⇒∗ ε ∧ D⇒∗ ε ∧ E ⇒∗ a1a2?

A⇒∗ ε? B⇒∗ a1a2? A⇒∗ a1? B⇒∗ a2? A⇒∗ a1a2? B⇒∗ ε? C ⇒∗ ε? D⇒∗ ε? E ⇒∗ a1a2? C ⇒∗ ε? D⇒∗ a1? E ⇒∗ a2?

. . .

...
...

...
...

...
...

...
...

...
...

...
...

C ⇒∗ ε ∧ D⇒∗ a1 ∧ E ⇒∗ a2?

Figure 3.1: An AND/OR tree.

These considerations lead to an alternating machine approach to solving the
problem “S ⇒∗ a1 . . . an?” Alternating machines are a generalization of non-
deterministic machines. Recall that in a nondeterministic machine (e.g., finite
automaton, pushdown automaton, or Turing machine), if an accepting configu-
ration is to be reachable from a configuration having more than one successor
configuration (i.e., configuration that can be reached in a single step), it must be
reachable from at least one of those successor configurations (unless the given con-
figuration is already accepting). An alternating machine has two types of states:
existential states and universal states. Existential states are just like states of a
nondeterministic machine; if a machine’s configuration is in an existential state,
it is like the disjunction of its successor configurations. If a machine’s configu-
ration is in a universal state, in contrast, it is like the conjunction of its successor
configurations: it requires that all its successor configurations lead to acceptance.

You can think of an alternating machine as a kind of two-person game. In
an existential state, you get to make the next move; in a universal state, it is your
opponent’s turn to make a move. The input is accepted if you have a winning
strategy in the sense that no matter how your opponent plays, you can eventually
reach an accepting configuration by following your strategy.

It is not hard to see that the problem “S ⇒∗ a1 . . . an?” is solvable by
an alternating Turing machine operating in space O(log n). Since a substring
ai+1 . . . a j of the input string can be represented by a pair (i, j) of integers in
binary, representing a problem instance X ⇒∗ ai+1 . . . a j requires only O(log n)
space. Now it is a fundamental result in computational complexity theory that
the problems solvable by alternating Turing machines operating in logarithmic
space are precisely those solvable by deterministic Turing machines operating in
polynomial time (Chandra et al. 1980; see Sipser 2012).5 Therefore, there is a
polynomial time algorithm for solving the problem.

5In general, for f (n) ≥ log n, it holds that ASPACE( f (n)) = TIME(2O( f (n))). (Here,
ASPACE( f (n)) refers to the class of problems solvable by an alternating Turing machine operat-
ing in space O( f (n)), and TIME(g(n)) refers to the class of problems solvable by a deterministic
Turing machine operating in time O(g(n)).)
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We will make use of the analysis in terms of logspace-bounded alternating
Turing machines in later lectures when we look at recognition/parsing for more
powerful grammar formalisms.

Deduction systems for parsing
Let us approach the problem of recognition/parsing on a more concrete level.
One of the keys to gaining efficiency is to represent a problem instance “X ⇒∗
ai+1 . . . a j?” by a triple (X, i, j). Let us now view grammar symbols X (nonter-
minals or terminals) as binary predicates over input positions. Thus, an atomic
formula X (i, j) holds if and only if X ⇒∗ ai+1 . . . a j , where ak is the k-th symbol
of the input. If we do this, a production of a context-free grammar like S → AB
can be expressed as a definite clause:6

S(i, k) ← A(i, j), B( j, k).

This is a logic programming way of representing the first-order formula

∀i∀ j∀k ((A(i, j) ∧ B( j, k)) → S(i, k)),

or equivalently,
∀i∀k (∃ j (A(i, j) ∧ B( j, k)) → S(i, k)).

The context-free grammar in Figure 3.2 can be represented as a logic program
(i.e., a set of definite clauses), as in Figure 3.3. Definite clauses in a program
are also called rules. In a rule P ← Q1, . . . ,Qn, the atomic formula P is called
the head of the rule, and Q1, . . . ,Qn are called the body. Since the program in
Figure 3.3 does not contain any function symbols, it belongs to the subset of logic
programming known as Datalog (see Ullman 1989b or Abiteboul et al. 1995).7
Every context-free grammar can be expressed as a Datalog program in this way.8

6A clause is a disjunction of literals, i.e., atomic formulas (positive literals) or their negations
(negative literals). A Horn clause is a clause which has at most one positive literal. A definite
clause is a clause which has exactly one positive literal. A definite clause P ∨ ¬Q1 ∨ · · · ∨ ¬Qn

is equivalent to an implication (Q1 ∧ · · · ∧ Qn) → P. A definite clause with no negative literal is
called a fact. A clause is ground if it contains no variables.
Since we treat definite clauses as syntactic objects, we use boldface italic letters for variables in

definite clauses, to distinguish them from metavariables (i.e., variables used in the metalanguage).
7In Datalog, it is usually required that the variables in the head of a rule all appear in the body.

This is not an essential restriction.
8A production A → X1 . . . Xn of a CFG G = (N, Σ, P, S), where n ≥ 1 and Xi ∈ N ∪ Σ ,

translates into the Datalog rule A(i0, in) ← X1(i0, i1), . . . , Xn(in−1, in). An ε-production A → ε
can be represented as A(i, j) ← i = j. For the sake of simplicity, we avoid using equality for the
moment, assuming that the grammar contains no ε-production.
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S→ NP VP
S→ Aux NP VP
S→ VP
NP→ Det N1
NP→ Name
NP→ Pronoun
VP→ V
VP→ V NP
VP→ V NP PP
VP→ VP PP
N1→ N
N1→ Name N1
N1→ N1 PP
PP→ P NP

Aux→ does
Det→ that | this | a | the
Name→ Houston | TWA
Pronoun→ I | she | me
V→ book | include | prefer
N→ book | flight | meal | money
P→ from | to | on

Figure 3.2: A CFG.

(As we shall see, deduction systems (Shieber et al. 1995, Sikkel 1997) for parsing
can also be expressed as Datalog programs.)

The program in Figure 3.3 is equivalent to the grammar in Figure 3.2 in the
following sense: a string a1 . . . an is generated by the grammar in Figure 3.2 if and
only if S(0, n) is derivable from the program in Figure 3.3 together with the set of
facts:

{a1(0, 1), . . . , an(n − 1, n)},
where derivability is understood in the usual sense of first-order logic. Here, “0”,
“1”, etc., are constant symbols. We assume that for each natural number, there is a
distinct constant symbol representing it. If k is a natural number, we let “k” stand
for the constant symbol representing k. For example, since the string does this
flight include a meal is generated by the grammar in Figure 3.2, S(0, 6) is derivable
from the program in Figure 3.3 together with

{does(0, 1), this(1, 2), flight(2, 3), include(3, 4), a(4, 5),meal(5, 6)}.

In the Datalog parlance, predicates that are defined in the program are called
intensional predicates, and predicates whose extension is fixed by a set of facts
external to the program (known as an extensional database) are called extensional
predicates. When a context-free grammar is expressed as a Datalog program,
nonterminals of the grammar correspond to intensional predicates, and terminals
to extensional predicates. The extensional database is determined by the input
string.
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S(i, k) ← NP(i, j), VP( j, k).
S(i, l) ← Aux(i, j), NP( j, k), VP(k, l).
S(i, j) ← VP(i, j).
NP(i, k) ← Det(i, j), N1( j, k).
NP(i, j) ← Name(i, j).
NP(i, j) ← Pronoun(i, j).
VP(i, j) ← V(i, j).
VP(i, k) ← V(i, j), NP( j, k).
VP(i, l) ← V(i, j), NP( j, k), PP(k, l).
VP(i, k) ← VP(i, j), PP( j, k).
N1(i, j) ← N(i, j).
N1(i, k) ← N1(i, j), N( j, k).
N1(i, k) ← N1(i, j), PP( j, k).
PP(i, k) ← P(i, j), NP( j, k).

Aux(i, j) ← does(i, j).
Det(i, j) ← that(i, j).
Det(i, j) ← this(i, j).
Det(i, j) ← a(i, j).
Det(i, j) ← the(i, j).
Name(i, j) ← Houston(i, j).
Name(i, j) ← TWA(i, j).
Pronoun(i, j) ← I(i, j).
Pronoun(i, j) ← she(i, j).
Pronoun(i, j) ← me(i, j).
V(i, j) ← book(i, j).
V(i, j) ← include(i, j).
V(i, j) ← prefer(i, j).
N(i, j) ← book(i, j).
N(i, j) ← flight(i, j).
N(i, j) ← meal(i, j).
N(i, j) ← money(i, j).
P(i, j) ← from(i, j).
P(i, j) ← to(i, j).
P(i, j) ← on(i, j).

Figure 3.3: The Datalog program representing a CFG.

Naive bottom-up evaluation There is a simple bottom-upmethod for computing
all ground facts derivable from a Datalog program P and an extensional database
D. This method is based on the following inference rule:

(3.1)
P ← Q1, . . . ,Qn Q1θ . . . Qnθ

Pθ

where θ is a ground substitution mapping all the variables in Q1, . . . ,Qn to con-
stants. (This rule is a restricted form of resolution.) Assuming the Datalog
convention that the variables in P all appear in Q1, . . . ,Qn, Pθ is a ground fact.
Note that an instance of this rule is uniquely determined by a ground instance
(P ← Q1, . . . ,Qn)θ of a clause in P.

Given aDatalog programP and an extensional database D, we define derivation
trees (from P, D) inductively as follows:

1. If P is a fact in D, the tree with just one node labeled by P is a derivation
tree for P.

2. If P ← Q1, . . . ,Qn is a rule in P and T1, . . . ,Tn are derivation trees for
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Q1θ, . . . ,Qnθ, respectively, then

. . .
Pθ

T1 Tn
is a derivation tree for Pθ.

A ground fact is derivable from P ∪ D if and only if it has a derivation tree
from P, D. If P represents a CFG G and D represents a string a1 . . . an, then the
derivation trees from P ∪ D correspond one-to-one to the (partial) parse trees for
substrings of a1 . . . an.

The following algorithm, called naive bottom-up evaluation, finds all ground
facts derivable from P ∪ D.9

Naive(P, D)
1 D1 ← D
2 ∆1 ← D
3 i ← 1
4 while ∆i , ∅
5 do Fi+1 ← { Pθ | P ← Q1, . . . ,Qn is in P and Q1θ, . . . ,Qnθ ∈ Di }
6 ∆i+1 ← Fi+1 − Di

7 Di+1 ← Di ∪ ∆i+1

8 i ← i + 1
9 return Di

In the algorithm, Di is the set of facts derivable from P ∪ D with derivation
trees of height < i (assuming that a tree with just one node is of height 0). A ground
fact is derivable from P ∪ D if and only if it is in the output of Naive(P, D). The
algorithm runs in polynomial time in the size of D. To see this, note that the
number of iterations of the while loop is bounded by the number of ground facts,
which is O(qnr ), where q is the number of predicates in P, n is the number of
constants in D, and r is the maximal arity of the predicates. Each invocation of the
operation in line 5 can be performed in time O(pnl ), where p is the size of P and
l is the maximal number of variables in rules in P. (Note that there are at most nl

ground instances of each clause in P.) This algorithm is not particularly efficient,
however, because the same facts are generated over and over again in line 5. (Since
Di ⊇ Di−1, it is always the case that Fi+1 ⊇ Fi for i ≥ 2.)

For example, consider the program (3.3) and input database

D = {book(0, 1), the(1, 2), flight(2, 3), from(3, 4),Houston(4, 5)}.
9The pseudocode in this lecture follows the style of Cormen et al. (2001). The block structure

is indicated by indentation.
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We have

D1 = D

D2 = {N(0, 1),V(0, 1),Det(1, 2),N(2, 3),P(3, 4),Name(4, 5)} ∪ D1

D3 = {N1(0, 1),VP(0, 1),N1(2, 3),NP(4, 5)} ∪ D2

D4 = {NP(1, 3),PP(3, 5)} ∪ D3

D5 = {VP(0, 3),VP(0, 5),N1(2, 5)} ∪ D4

D6 = {S(0, 3),S(0, 5),NP(1, 5)} ∪ D5

D7 = D6

Seminaive bottom-up evaluation The following modification of naive bottom-
up evaluation avoids considering the same instance of the same clause more than
once.

Seminaive(P, D)
1 D0 ← ∅
2 D1 ← D
3 ∆1 ← D
4 i ← 1
5 while ∆i , ∅

6 do Fi+1 ←
{

Pθ
�����
P ← Q1, . . . ,Qn is in P, 1 ≤ j ≤ n, Q jθ ∈ ∆i,
Q1θ, . . . ,Q j−1θ ∈ Di, and Q j+1θ, . . . ,Qnθ ∈ Di−1

}
7 ∆i+1 ← Fi+1 − Di

8 Di+1 ← Di ∪ ∆i+1

9 i ← i + 1
10 return Di

In line 6, at least one of the atoms Q1θ, . . . ,Qnθ belongs to the set ∆i of the most
recently derived facts ( j is the greatest index such that Qiθ belongs to ∆i). This
guarantees that the ground instance (P ← Q1, . . . ,Qn)θ of P ← Q1, . . . ,Qn has
never been used at earlier stages. On the same input as before, we have

F2 = {N(0, 1),V(0, 1),Det(1, 2),N(2, 3),P(3, 4),Name(4, 5)}
F3 = {N1(0, 1),VP(0, 1),N1(2, 3),NP(4, 5)}
F4 = {NP(1, 3),PP(3, 5)}
F5 = {VP(0, 3),VP(0, 5),N1(2, 5)}
F6 = {S(0, 3),S(0, 5),VP(0, 5),NP(1, 5)}
F7 = {VP(0, 5)}
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The values of Di and ∆i are the same as before. Since {VP(0, 5)} ⊆ D6, we have
∆7 = ∅ and D7 = D6.

We can turn this algorithm into one that outputs a representation of the set of
all derivation trees from P, D:

Seminaive-parse(P, D)
1 D0 ← ∅
2 D1 ← D
3 C1 ← D
4 ∆1 ← D
5 i ← 1
6 while ∆i , ∅

7 do Fi+1 ←
{

Pθ
�����
P ← Q1, . . . ,Qn is in P, 1 ≤ j ≤ n, Q jθ ∈ ∆i,
Q1θ, . . . ,Q j−1θ ∈ Di, and Q j+1θ, . . . ,Qnθ ∈ Di−1

}
8 Ci+1 ←




(P ← Q1, . . . ,Qn)θ
�������

P ← Q1, . . . ,Qn is in P, 1 ≤ j ≤ n,
Q jθ ∈ ∆i, Q1θ, . . . ,Q j−1θ ∈ Di, and
Q j+1θ, . . . ,Qnθ ∈ Di−1



∪ Ci

9 ∆i+1 ← Fi+1 − Di

10 Di+1 ← Di ∪ ∆i+1

11 i ← i + 1
12 return Ci

In the implementation, the operations in lines 7 and 8 should be performed si-
multaneously. In this algorithm, the final value of Ci records all rule instances
(P ← Q1, . . . ,Qn)θ such that Q1θ, . . . ,Qnθ are derivable facts.

On the same input as before, we have

C1 = {book(0, 1), the(1, 2), flight(2, 3), from(3, 4), Houston(4, 5)}
C2 = {N(0, 1) ← book(0, 1), V(0, 1) ← book(0, 1), Det(1, 2) ← the(1, 2),

N(2, 3) ← flight(2, 3), P(3, 4) ← from(3, 4),
Name(4, 5) ← Houston(4, 5)} ∪ C1

C3 = {N1(0, 1) ← N(0, 1), VP(0, 1) ← V(0, 1), N1(2, 3) ← N(2, 3),
NP(4, 5) ← Name(4, 5)} ∪ C2

C4 = {NP(1, 3) ← Det(1, 2),N1(2, 3), PP(3, 5) ← P(3, 4),NP(4, 5)} ∪ C3

C5 = {VP(0, 3) ← V(0, 1),NP(1, 3), VP(0, 5) ← V(0, 1),NP(1, 3),PP(3, 5),
N1(2, 5) ← N1(2, 3),PP(3, 5)} ∪ C4

C6 = {S(0, 3) ← VP(0, 3), S(0, 5) ← VP(0, 5), VP(0, 5) ← VP(0, 3),PP(3, 5),
NP(1, 5) ← Det(1, 2),N1(2, 5)} ∪ C5

C7 = {VP(0, 5) ← V(0, 1),NP(1, 5)} ∪ C6
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Since the clauses inCi do not contain any variables, the output of this algorithm
can be regarded as a propositional Horn clause program. (Alternatively, it can be
viewed as an AND/OR graph.) The set of derivation trees from P, D is the set of
all derivation trees that can be formed from the clauses in the final value of Ci.
Given a fact P in the final value of Di, the derivation trees for P can be easily
extracted from Ci. Note that the set of derivation trees may be infinite,10 yet Ci is
of polynomial size. In the special case of context-free grammars, this is known as
a shared parse forest.

On the running example, the set of derivation trees from P, D consists of the
following trees together with all their subtrees:

S(0, 5)

VP(0, 5)

V(0, 1)

book(0, 1)

NP(1, 3)

Det(1, 2)

the(1, 2)

N1(2, 3)

N(2, 3)

flight(2, 3)

PP(3, 5)

P(3, 4)

from(3, 4)

NP(4, 5)

Name(4, 5)

Houston(4, 5)

S(0, 5)

VP(0, 5)

VP(0, 3)

V(0, 1)

book(0, 1)

NP(1, 3)

Det(1, 2)

the(1, 2)

N1(2, 3)

N(2, 3)

flight(2, 3)

PP(3, 5)

P(3, 4)

from(3, 4)

NP(4, 5)

Name(4, 5)

Houston(4, 5)

S(0, 5)

VP(0, 5)

V(0, 1)

book(0, 1)

NP(1, 5)

Det(1, 2)

the(1, 2)

N1(2, 5)

N1(2, 3)

N(2, 3)

flight(2, 3)

PP(3, 5)

P(3, 4)

from(3, 4)

NP(4, 5)

Name(4, 5)

Houston(4, 5)

N1(0, 1)

N(0, 1)

book(0, 1)

S(0, 3)

VP(0, 3)

V(0, 1)

book(0, 1)

NP(1, 3)

Det(1, 2)

the(1, 2)

N1(2, 3)

N(2, 3)

flight(2, 3)

Notice that each “tree fragment” of depth 1 corresponds to a rule instance in C7.
This correspondence is many-one; the same rule instance may appear in more than
one place.

In general Datalog query evaluation, ground facts with the same predicate
are grouped together into a relation, and each group of facts in the set Fi is
efficiently computed using relational algebra operations. In the application to
recognition/parsing, however, the number of relevant facts is usually small, so it
makes more sense to process one fact at a time. This leads to a version of the
well-known chart parsing algorithm. (See Shieber et al. 1995 and Sikkel 1998,
where a formulation of a chart parsing control algorithm is given for arbitrary
deduction systems.)

10This will be so, for instance, when the Datalog program P represents a context-free grammar
G that allows a cycle A⇒∗G A.

3–11



Seminaive-chart(P, D)
1 chart ← ∅
2 agenda← D
3 while agenda , ∅
4 do pop an element from agenda and call it trigger
5 new_chart ← chart∪ {trigger}

6 F ←



Pθ
�������

P ← Q1, . . . ,Qn is in P, 1 ≤ j ≤ n, trigger = Q jθ,
Q1θ, . . . ,Q j−1θ ∈ new_chart,
Q j+1θ, . . . ,Qnθ ∈ chart




7 chart ← new_chart
8 foreach item ∈ F − (chart∪ agenda)
9 do push item onto agenda

10 return chart

Here, the agenda is treated as a stack.
Note that in the worst case, all ground instances of rules in P are considered

in line 6, so that the running time of Seminaive-chart(P, D) may be at least
proportional to pnl , where p is the number of rules in P, l is the maximal number
of variables in the rules of P, and n is the number of constants in D. In the special
case of Datalog programs corresponding to context-free grammars in Chomsky
normal form,11 we can simplify the algorithm to the following, which is a variant
of the Cocke–Younger–Kasami (CYK) algorithm (see Aho and Ullman 1972):12

11See Problem 2.2 of Lecture 2 for the definition of Chomsky normal form.
12In some publications, this algorithm is called Cocke–Kasami–Younger or CKY. Aho and

Ullman (1972) describe Younger’s (1967) algorithm and the earlier Cocke’s (as described in
Hays 1967) as versions of the same algorithm, while calling Kasami’s (1965, 1966) “a similar
algorithm”. Younger (1967) was aware of Cocke’s algorithm through Hays 1962, but wrote that “a
parsing procedure of Kay (1963) . . . is most closely related to” his. Kay (2000) relates that Cocke
came up with his algorithm during his visit to Hays’s home in California, after he accompanied
Hays to a machine translation conference; Kay saw the Fortran code Cocke wrote “less than a year
later”. According to Kay (2005), the time of Cocke’s invention was in 1960. Kasami’s (1965,
1966) work was independent of Cocke’s or Younger’s, and relied on (quadratic) Greibach normal
form (see Problem 3.5) rather than Chomsky normal form.
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CYK(P, D)
1 � P is a Datalog program representing a CFG in CNF
2 � D = {a1(0, 1), . . . , an(n − 1, n)}
3 chart ← ∅
4 agenda← D
5 while agenda , ∅
6 do pop an element from agenda and call it trigger
7 if trigger is of the form ak (k − 1, k)
8 then F ← { A(k − 1, k) | A(x, y) ← ak (x, y) is in P }
9 if trigger is of the form C( j, k)

10 then F ←
{

A(i, k)
�����

A(x, z) ← B(x, y), C(y, z) is in P and
B(i, j) ∈ chart

}
11 chart ← chart∪ {trigger}
12 foreach item ∈ F − (chart∪ agenda)
13 do push item onto agenda
14 return chart

This algorithm derives all derivable facts of the form A(i, j) after a j ( j − 1, j)
is popped from the agenda but before a j+1( j, j + 1) is, so it is not necessary to
consider a rule of the form A(x, z) ← C(x, y), B(y, z) in line 10. The behavior
of this algorithm is close to the standard formulation of the CYK algorithm, and,
with appropriate data structures, it can be implemented to run in time O(pn3),
where p is the size of P and n is the size of the input.

Exercise 3.3. Formulate versions of Seminaive-chart and of CYK that output a
representation of the set of all derivation trees.

Chart parsing To obtain better asymptotic time complexity for general Datalog
programs, we use new inference rules instead of (3.1).

P ← Q,Q1, . . . ,Qn Qθ
(P ← Q1, . . . ,Qn)θ (n ≥ 1)

P ← Q Qθ
Pθ

We store ground facts as well as (possibly) non-ground definite clauses in the
chart. In the special case of Datalog programs representing context-free grammars
without ε-productions, these inference rules take the following form (n ≥ 2 in the
first two inference rules):

A(x0, xn) ← Y1(x0, x1), . . . ,Yn(xn−1, xn) Y1(i, j)

A(i, xn) ← Y2( j, x2), . . . ,Yn(xn−1, xn)
(3.2)
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A(i, xn) ← Y1( j, x1),Y2(x1, x2), . . . ,Yn(xn−1, xn) Y1( j, k)

A(i, xn) ← Y2(k, x2), . . . ,Yn(xn−1, xn)
(3.3)

A(x0, x1) ← Y (x0, x1) Y (i, j)

A(i, j)
(3.4)

A(i, x) ← Y ( j, x) Y ( j, k)

A(i, k)
(3.5)

The following algorithm is sometimes called the bottom-up left-corner parser
(Sikkel 1997, Ljunglöf and Wirén 2010)13 and is close to what is known as the
bottom-up chart parser (Kay 1986; see Gazdar and Mellish 1989 or Samuelsson
and Wirén 2000). We call it the bottom-up left-corner chart parser to emphasize
that it is a tabular recognition algorithm.

Bottom-up-lc-chart(P, D)
1 � P is a Datalog program representing a CFG without ε-productions
2 � D = {a1(0, 1), . . . , an(n − 1, n)}
3 chart ← ∅
4 agenda← D
5 while agenda , ∅
6 do pop an element from agenda and call it trigger
7 if trigger is a fact Q

8 then F ←
{

P
�����

R ∈ chart∪P and P follows from R and Q
by one of (3.2)–(3.5)

}
9 else F ← ∅

10 chart ← chart∪ {trigger}
11 foreach item ∈ F − (chart∪ agenda)
12 do push item onto agenda
13 return chart

With appropriate data structures, Bottom-up-lc-chart can be implemented
to run in time O(pn3).

Exercise 3.4. List the facts and clauses generated by the procedure
Bottom-up-lc-chart when run on the program in Figure 3.3 and the database
{book(0, 1), the(1, 2), flight(2, 3), from(3, 4),Houston(4, 5)}, in the order they are
popped from the agenda.

13The bottom-up left-corner chart parser was first proposed as an improvement over Earley’s
(1970) algorithm (see Leiss 1990).
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If A(x0, xn) ← Y1(x0, x1), . . . ,Yn(xn−1, xn) is a clause representing a context-
free production A→ Y1 . . .Yn, a derived clause

A(i, xn) ← Yl ( j, xl ), . . . ,Yn(xn−1, xn)

corresponds to what is usually called an item

(A→ Y1 . . .Yl−1 • Yl . . .Yn, i, j)

where A→ Y1 . . .Yl−1•Yl . . .Yn is a dotted production, i.e., a production in the CFG
with a dot inserted somewhere in the middle of the right-hand side. (Remember
that the free variables in a derived clause are implicitly universally quantified.) We
may treat dotted productions as binary predicates. If we do this, items are nothing
but facts:

[A→ Y1 . . .Yl−1 • Yl . . .Yn](i, j).

Inference rules (3.2), (3.3), (3.5) can now be reformulated as definite clauses, i.e.,
Datalog rules (n ≥ 2 and 2 ≤ l ≤ n − 1):

[A→ Y1 • Y2 . . .Yn](x, y) ← Y1(x, y).(3.6)

[A→ Y1 . . .Yl • Yl+1 . . .Yn](x, z) ← [A→ Y1 . . .Yl−1 • Yl . . .Yn](x, y), Yl (y, z).
(3.7)

A(x, z) ← [A→ Y1 . . .Yn−1 • Yn](x, y), Yn(y, z).(3.8)

Note that the remaining inference rule (3.4) is just a special case of (3.1). Given
a Datalog program representing a CFG without ε-productions, if we rewrite each
rule A(x0, xn) ← Y1(x0, x1), . . . ,Yn(xn−1, xn) with n ≥ 2 into n rules using (3.6)–
(3.8), leaving rules of the form A(x0, x1) ← Y (x0, x1) intact, the result is a
program where each clause hast at most two atoms in the body. For example, the
program in Figure 3.3 is transformed into the one in Figure 3.4 by this procedure.
(Note that this program represents a CFG whose productions all have right-hand
sides of length 1 or 2 and which is equivalent to the original CFG.) We can run
(a simplified version of) the procedure Seminaive-chart14 against such programs
with the running time O(pn3).

In general, we can express a tabular recognition (parsing) algorithm by specify-
ing a method of transforming a Datalog program directly representing a grammar
(“original program”) into another Datalog program (“transformed program”), ab-
stracting away the control algorithm for generating facts (e.g., a canonical chart
parsing algorithm like Seminaive-chart) that is used in conjunction with the
transformed program. When we do this, the transformed program is called a de-
duction system (Shieber et al. 1995), and the method of conversion from the CFG

14In line 6, n is either 1 or 2, and j can be set to n due to the absence of the ε-productions.
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[S→ NP • VP](i, j) ← NP(i, j).
S(i, k) ← [S→ NP • VP](i, j), VP( j, k).
[S→ Aux • NP VP](i, j) ← Aux(i, j).
[S→ Aux NP • VP](i, k) ←

[S→ Aux • NP VP](i, j), Aux( j, k).
S(i, l) ← [S→ Aux NP • VP](i, k), VP(k, l).
S(i, j) ← VP(i, j).
[NP→ Det • N1](i, j) ← Det(i, j).
NP(i, k) ← [NP→ Det • N1](i, j), N1( j, k).
NP(i, j) ← Name(i, j).
NP(i, j) ← Pronoun(i, j).
VP(i, j) ← V(i, j).
[VP→ V • NP](i, j) ← V(i, j).
VP(i, k) ← [VP→ V • NP](i, j), NP( j, k).
[VP→ V • NP PP](i, j) ← V(i, j).
[VP→ V NP • PP](i, k) ←

[VP→ V • NP PP](i, j), NP( j, k).
VP(i, l) ← [VP→ V NP • PP](i, k), PP(k, l).
[VP→ VP • PP](i, j) ← VP(i, j).
VP(i, k) ← [VP→ VP • PP](i, j), PP( j, k).
N1(i, j) ← N(i, j).
[N1→ N1 • N](i, j) ← N1(i, j).
N1(i, k) ← [N1→ N1 • N](i, j), N( j, k).
[N1→ N1 • PP](i, j) ← N1(i, j).
N1(i, k) ← [N1→ N1 • PP](i, j), PP( j, k).
[PP→ P • NP](i, j) ← P(i, j).
PP(i, k) ← [PP→ P • NP](i, j), NP( j, k).

Aux(i, j) ← does(i, j).
Det(i, j) ← that(i, j).
Det(i, j) ← this(i, j).
Det(i, j) ← a(i, j).
Name(i, j) ← Houston(i, j).
Name(i, j) ← TWA(i, j).
Pronoun(i, j) ← I(i, j).
Pronoun(i, j) ← she(i, j).
Pronoun(i, j) ← me(i, j).
V(i, j) ← book(i, j).
V(i, j) ← include(i, j).
V(i, j) ← prefer(i, j).
N(i, j) ← book(i, j).
N(i, j) ← flight(i, j).
N(i, j) ← meal(i, j).
N(i, j) ← money(i, j).
P(i, j) ← from(i, j).
P(i, j) ← to(i, j).
P(i, j) ← on(i, j).

Figure 3.4: A transformed Datalog program for bottom-up chart parsing.

to the transformed Datalog program is called a parsing schema (Sikkel 1997).
In other words, a tabular recognition/parsing algorithm can be presented as the
combination of a parsing schema and a control algorithm:

tabular parsing

parsing schema
(CFG→ Datalog)

control algorithm

Earley’s algorithm Earley’s (1970) algorithm (or, more precisely, a variant
thereof) can be viewed as a refinement of the bottom-up left-corner chart parser
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that allows partial reduction of parse forest by “top-down filtering”. With a slight
modification of the control algorithm, the algorithm can be made to satisfy the
correct prefix property.

The way to obtain (a variant of) Earley’s algorithm from bottom-up chart
parsing is to add predicates that express top-down prediction. For an intensional
predicate A(i, j) (corresponding to a nonterminal), we use ∼A(i) as a unary
predicate expressing the prediction that nonterminal A may start at position i.
The fact ∼A(i) will be derivable if and only if there is a leftmost derivation
S ⇒∗G a1 . . . ai Aα where a1 . . . ai is the prefix of the input string of length i,
or equivalently, if and only if the top-down stack-based recognizer can reach the
configuration (Aα, ai+1 . . . an) starting with (S, a1 . . . an), for some α ∈ (N ∪ Σ )∗.

Let P be the deduction system for bottom-up chart parsing obtained from
a program representing a CFG. The deduction system P′ for Earley parsing is
obtained from P in the following way:

1. Each rule of the form
A(i, j) ← X (i, j)

in P where A is a nonterminal will be replaced by

A(i, j) ← ∼A(i), X (i, j)

in P′.
2. Each rule of the form

[A→ Y1 • Y2 . . .Yn](i, j) ← Y1(i, j)

in P will be replaced by

[A→ Y1 • Y2 . . .Yn](i, j) ← ∼A(i), Y1(i, j)

in P′.
3. For each rule

A(i, j) ← B(i, j)

in P such that A and B are nonterminals, there will be a new rule

∼B(i) ← ∼A(i)

in P′.
4. For each rule

[A→ Y1 • Y2 . . .Yn](i, j) ← Y1(i, j)

in P such that Y1 is a nonterminal, there will be a new rule

∼Y1(i) ← ∼A(i)

in P′.
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5. For each rule of the form

A(i, k) ← B(i, j), C( j, k)

in P, where C is a nonterminal, P′ will have a new rule

∼C( j) ← B(i, j).

For example, from the deduction system in Figure 3.4, we obtain the one in
Figure 3.5. In addition to these rules, we need the “seed fact”:

∼S(0).

We include this fact in the input database.
It is easy to see that whenever A(i, j) is derivable from the Earley deduction

system (together with the input database), we have the following:

• ∼A(i) is derivable from the Earley deduction system (together with the input
database), and

• A(i, j) is derivable from the deduction system for bottom-up chart parsing
(together with the input database).

The correct prefix property refers to the following condition:15

• On input a1 . . . an, the algorithm reports failure before scanning the (i+1)-st
symbol of the input whenever a1 . . . ai is not a prefix of any element of the
language.

In the case of tabular parsing algorithms of the kind we are considering, “scanning
the (i + 1)-st symbol of the input” means popping ai+1(i, i + 1) from the agenda.

On the assumption that the grammar is “reduced” in the sense that every
nonterminal derives some string, the correct prefix property can be achieved
by coupling the Earley deduction system with the following modification of the
Seminaive-chart control algorithm:16

15The term was originally used to refer to the following property of stack-based parsers (Sippu
and Soisalon-Soininen 1990): if a configuration (α, ε) is reachable from (γ, x) where γ is the
initial stack content, then x is a prefix of some element of the language.

16See footnote 14.
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Seminaive-chart(P, D)
1 chart ← ∅
2 agenda← D
3 while agenda , ∅
4 do pop an element from agenda and call it trigger
5 new_chart ← chart∪ {trigger}

6 F ←




Pθ1 . . . θn

������������

P ← Q1, . . . ,Qn is in P, 1 ≤ j ≤ n,
trigger = Q jθ j ,
Q1θ1, . . . ,Q j−1θ j−1 ∈ new_chart,
Q j+1θ j+1, . . . ,Qnθn ∈ chart, and
θ1, . . . , θn are compatible




7 if trigger is of the form ai+1(i, i + 1) and F = ∅
8 then reject
9 chart ← new_chart

10 foreach item ∈ F − (chart∪ agenda)
11 do push item onto agenda
12 return chart

The composition of the parsing schema for bottom-up left-corner chart parsing
and the above transformation is the parsing schema for Earley parsing. It is an
instance of a technique in Datalog known as generalized supplementary magic-sets
rewriting (Beeri and Ramakrishnan 1991; see Ullman 1989a,b or Abiteboul et al.
1995).

Exercise 3.5. List the facts generated by the procedure Seminaive-chart
when run on the program in Figure 3.5 and the database
{∼S(0), book(0, 1), the(1, 2), flight(2, 3), from(3, 4),Houston(4, 5)}, in the or-
der they are popped from the agenda.

From pushdown automata to context-free grammars
There are tabular, dynamic programming algorithms for determining whether an
input string is accepted by a pushdown automaton (and if so, computing the set
of accepting transition sequences on the input). Therefore, it is always possible to
turn a nondeterministic stack-based recognition/parsing algorithm for context-free
grammars into a polynomial-time deterministic one, after all. Since these tabular
algorithms are closely related to methods of converting pushdown automata into
equivalent context-free grammars, let us first look at how this conversion can be
done.
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∼NP(i) ← ∼S(i).
∼VP( j) ← [S→ NP • VP](i, j).
∼Aux(i) ← ∼S(i).
∼NP( j) ← [S→ Aux • NP VP](i, j).
∼VP(k) ← [S→ Aux NP • VP](i, k).
∼VP(i) ← ∼S(i).
∼Det(i) ← ∼NP(i).
∼N1( j) ← [NP→ Det • N1](i, j).
∼Name(i) ← ∼NP(i).
∼Pronoun(i) ← ∼NP(i).

∼V(i) ← ∼VP(i).
∼NP( j) ← [VP→ V • NP](i, j).
∼NP( j) ← [VP→ V • NP PP](i, j).
∼PP(k) ← [VP→ V NP • PP](i, k).
∼PP(k) ← [VP→ VP • PP](i, k).
∼N(i) ← ∼N1(i).
∼N( j) ← [N1→ N1 • N](i, j).
∼PP( j) ← [N1→ N1 • PP](i, j).
∼P(i) ← ∼PP(i).
∼NP( j) ← [PP→ P • NP](i, j).

[S→ NP • VP](i, j) ← ∼S(i), NP(i, j).
S(i, k) ← [S→ NP • VP](i, j), VP( j, k).
[S→ Aux • NP VP](i, j) ← ∼S(i), Aux(i, j).
[S→ Aux NP • VP](i, k) ←

[S→ Aux • NP VP](i, j), NP( j, k).
S(i, l) ← [S→ Aux NP • VP](i, k), VP(k, l).
S(i, j) ← ∼S(i), VP(i, j).
[NP→ Det • N1](i, j) ← ∼NP(i), Det(i, j).
NP(i, k) ← [NP→ Det • N1](i, j), N1( j, k).
NP(i, j) ← ∼NP(i), Name(i, j).
NP(i, j) ← ∼NP(i), Pronoun(i, j).
VP(i, j) ← ∼VP(i), V(i, j).
[VP→ V • NP](i, j) ← ∼VP(i), V(i, j).
VP(i, k) ← [VP→ V • NP](i, j), NP( j, k).
[VP→ V • NP PP](i, j) ← ∼VP(i), V(i, j).
[VP→ V NP • PP](i, k) ←

[VP→ V • NP PP](i, j), NP( j, k).
VP(i, l) ← [VP→ V NP • PP](i, k), PP(k, l).
[VP→ VP • PP](i, j) ← ∼VP(i), VP(i, j).
VP(i, k) ← [VP→ VP • PP](i, j), PP( j, k).
N1(i, j) ← ∼N1(i), N(i, j).
[N1→ N1 • N](i, j) ← ∼N1(i), N1(i, j).
N1(i, k) ← [N1→ N1 • N](i, j), N( j, k).
[N1→ N1 • PP](i, j) ← ∼N1(i), N1(i, j).
N1(i, k) ← [N1→ N1 • PP](i, j), PP( j, k).
[PP→ P • NP](i, j) ← ∼PP(i), P(i, j).
PP(i, k) ← [PP→ P • NP](i, j), NP( j, k).

Aux(i, j) ← ∼Aux(i), does(i, j).
Det(i, j) ← ∼Det(i), that(i, j).
Det(i, j) ← ∼Det(i), this(i, j).
Det(i, j) ← ∼Det(i), a(i, j).
Name(i, j) ← ∼Name(i), Houston(i, j).
Name(i, j) ← ∼Name(i), TWA(i, j).
Pronoun(i, j) ← ∼Pronoun(i), I(i, j).
Pronoun(i, j) ← ∼Pronoun(i), she(i, j).
Pronoun(i, j) ← ∼Pronoun(i), me(i, j).
V(i, j) ← ∼V(i), book(i, j).
V(i, j) ← ∼V(i), include(i, j).
V(i, j) ← ∼V(i), prefer(i, j).
N(i, j) ← ∼N(i), book(i, j).
N(i, j) ← ∼N(i), flight(i, j).
N(i, j) ← ∼N(i), meal(i, j).
N(i, j) ← ∼N(i), money(i, j).
P(i, j) ← ∼P(i), from(i, j).
P(i, j) ← ∼P(i), to(i, j).
P(i, j) ← ∼P(i), on(i, j).

Figure 3.5: A transformed Datalog program for Earley parsing.
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We begin with formal definitions of pushdown automata. A pushdown au-
tomaton (PDA) is an 8-tuple M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ), where17

1. Q is a finite set of states,
2. Σ is a finite set called the input alphabet,
3. Γ is a finite set called the stack alphabet,
4. δ is a finite subset of Q × (Γ ∪ {ε}) × (Σ ∪ {ε}) ×Q × Γ∗, called the set of

transitions,
5. qI ∈ Q is the initial state,
6. ZI ∈ Γ ∪ {ε} is the initial stack content, and
7. QF ⊆ Q is the set of final states,
8. ZF ∈ Γ ∪ {ε} is the final stack content.

We denote an element (q, Z, a, r, γ) of δ by

(q, Z )
a7→ (r, γ).

A configuration of a PDA M is a triple (q, α, x) ∈ Q × Γ∗ × Σ ∗. The initial
configuration on an input x ∈ Σ ∗ is (qI, ZI, x), and an accepting configuration
is (q, ZF, ε), where q ∈ QF . Given a PDA M , we define the binary relation `M
between configurations as follows:

`M = { ((q, Zα, ax), (q′, γα, x)) | (q, Z )
a7→ (q′, γ) ∈ δ }

A PDA M accepts an input string x ∈ Σ ∗ if and only if (qI, ZI, x) `∗M (q, ZF, ε)
for some q ∈ QF . We say that M accepts a language L ⊆ Σ ∗ if L = { x ∈ Σ ∗ |
M accepts x }. We write L(M) for the language M accepts.

A PDA M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ) is said to be stateless if |Q | = 1. (This
implies that Q = QF = {qI }, ignoring the uninteresting case of QF = ∅.) A
stateless PDA can be thought of as a 5-tuple (Σ, Γ, δ, ZI, ZF ), where δ is a finite
subset of (Γ∪ {ε})× (Σ ∪ {ε})×Γ∗. In this case, an element of δ can be written in
the form Z

a7→ γ, and configurations can be represented by pairs (α, x) ∈ Γ∗ × Σ ∗.
An extended PDA M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ) (Aho and Ullman 1972) is

like a PDA except that δ is a finite subset of Q × Γ∗ × (Σ ∪ {ε}) × Q × Γ∗. The
definition of `M and of acceptance is the same as with PDAs.

17The exact definition of PDA varies. Transitions of the form (q, ε, a, r, γ) are often not allowed
(Aho and Ullman 1972, Hopcroft and Ullman 1979, Kozen 1997). The last component ZF is
usually not part of the definition of PDAs but rather of the definition of acceptance. It is actually
too restrictive to require specification of a single final stack content; whenwe consider deterministic
PDAs, we must allow acceptance by arbitrary final stack.
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The top-down recognizer we looked at in Lecture 2 constructed from a CFG
is an example of a stateless PDA. The bottom-up stack-based recognizer is an
example of a stateless extended PDA.

Theorem 3.1. Given any extended PDA M , one can construct a PDA M′ such that
L(M) = L(M′).

Proof. Let M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ) be an extended PDA. We construct a
PDA M′ = (Q′, Σ, Γ, δ′, qI, ZI,QF, ZF ) as follows. Let Q′ contain all states of Q,
and let δ′ contain all transitions in δ of the form (q, γ)

a7→ (r, γ′), where |γ | ≤ 1.
For each transition in δ of the form (q, X1 . . . Xm)

a7→ (r, γ) with m ≥ 2, add new
states q1, . . . , qm−1 to Q′, and add the following transitions to δ′:

(q, X1)
a7→ (q1, ε),

(q1, X2)
ε7→ (q2, ε),
...

(qm−2, Xm−1)
ε7→ (qm−1, ε),

(qm−1, Xm)
ε7→ (r, γ).

It is easy to see that the computations of M and M′ on the same input are in
one-to-one correspondence and L(M) = L(M′). �

We call a PDA M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ) standard if ZI ∈ Γ, ZF = ε,
and δ is a finite subset of Q × Γ × (Σ ∪ {ε}) ×Q × Γ∗.
Theorem 3.2. Given any PDA M , one can construct a standard PDA M′ such that
L(M) = L(M′).

Exercise 3.6. Prove Theorem 3.2.

Theorem 3.3. Given any standard PDA M , one can construct a stateless standard
PDA M′ such that L(M) = L(M′).

Proof (sketch). Let M = (Q, Σ, Γ, δ, qI, ZI,QF, ε) be a standard PDA. We define
a stateless PDA M′ = (Σ, Γ′, δ′, Z′I, ε) as follows. Let

Γ′ = { [qXr] | q, r ∈ Q, X ∈ Γ } ∪ {Z′I },
where Z′I is a new stack symbol. Let δ′ contain the following transitions:

• for each transition (q, X )
a7→ (r,Y1 . . .Yn) ∈ δ with n ≥ 1, all

transitions of the form [qX sn]
a7→ [rY1s1][s1Y2s2] . . . [sn−1Ynsn], where

[qX sn], [rY1s1], [s1Y2s2], . . . , [sn−1Ynsn] ∈ Γ′,
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• for each transition (q, X )
a7→ (r, ε) ∈ δ, the transition [qXr]

a7→ ε,

• for each q ∈ QF , the transition Z′I
ε7→ [qI ZI q].

We can show that (q, X, y) `∗M (r, ε, ε) if and only if ([qXr], y) `∗M ′ (ε, ε) and that
there is a one-to-one correspondence between the accepting computations of M
and M′ on the same input. �

PDA-to-CFG conversion, method 1 Let M = (Σ, Γ, δ, ZI, ε) be a stateless
standard PDA. We assume that Σ ∩ Γ = ∅. Define a context-free grammar
G = (N, Σ, P, S) by

N = Γ,

P = { X → aY1 . . .Yn | X
a7→ Y1 . . .Yn ∈ δ },

S = ZI .

Let x ∈ Σ ∗, and let α = yα′ be a left sentential form of G such that x = yz and α′
does not begin with a terminal. Define hx (α) = (α′, z). Then, for every leftmost
derivation

S = α0 ⇒lm α1 ⇒lm . . . ⇒
lm
αn = x ∈ Σ ∗

of G,
hx (α0) ` hx (α1) ` · · · ` hx (αn)

is an accepting computation of M on input x, and moreover, every accepting
computation of M on input x is obtained in this way. Note that the top-down
recognizer for G, as defined in Lecture 2, is almost the same as M .

Theorem 3.4 (Chomsky). For every PDA M , there is a context-free grammar G
such that L(M) = L(G).

The above theoremwas first obtained by Chomsky (1962) by a slightly different
method. The proof given here follows many textbooks (Aho and Ullman 1972,
Harrison 1978, Hopcroft and Ullman 1979, Kozen 1997, among others).

The left-corner transform Let us define a stateless standard PDA which is
equivalent to the (arc-eager) left-corner recognizer we defined in Lecture 2. Let
G = (N, Σ, P, S) be a CFG without ε-productions. Define a stateless PDA M =
(Σ, Γ, δ, ZI ) by

Γ = { ∼X | X ∈ N ∪ Σ } ∪ { [X ∼Y ] | X ∈ N ∪ Σ,Y ∈ N },
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δ = { ∼X
a7→ [a ∼X] | X ∈ N, a ∈ Σ } ∪

{ ∼a
a7→ ε | a ∈ Σ } ∪

{ [Y1 ∼Z]
ε7→ ∼Y2 . . .∼Yn[X ∼Z] | X → Y1 . . .Yn ∈ P } ∪

{ [Y1 ∼X]
ε7→ ∼Y2 . . .∼Yn | X → Y1 . . .Yn ∈ P },

ZI = ∼S.

Then the CFG G′ = (N ′, Σ, P′, S′) obtained from M by the above method is

N′ = Γ,
P′ = { ∼X → a [a ∼X] | X ∈ N, a ∈ Σ } ∪

{ ∼a → a | a ∈ Σ } ∪
{ [Y1 ∼Z]→ ∼Y2 . . .∼Yn[X ∼Z] | X → Y1 . . .Yn ∈ P } ∪
{ [Y1 ∼X]→ ∼Y2 . . .∼Yn | X → Y1 . . .Yn ∈ P },

S′ = ∼S.

The conversion from G to G′ is a variant of what is known as the left-corner
transform (Rosenkrantz and Lewis 1970). The accepting computations of the
(arc-eager) left-corner recognizer for G correspond one-to-one to the accepting
computations of the top-down recognizer for G′.

Exercise 3.7. Apply the left-corner transform as defined above to the CFG in
Figure 3.2.

Tabulation of pushdown automata
Once we have a method of converting a pushdown automaton to an equivalent
CFG, we can apply any tabular recognition algorithm for CFGs to obtain a tabular
recognition algorithm for pushdown automata. For example, using the method
of the preceding section, it is easy to obtain a tabular version of the (arc-eager)
left-corner recognizer.

Exercise 3.8. Obtain a deduction system for bottom-up left-corner chart parsing
from the result of Exercise 3.7.

PDA-to-CFG conversion, method 2 Here is another common method for con-
verting PDAs to CFGs. This applies to a restricted kind of pushdown automaton
we call normal. A PDA M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ) is normal if ZI = ZF = ε
and each transition in δ is of one of the following two types:

(q, X )
a7→ (r, ε),
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(q, ε)
a7→ (r, X ),

where X ∈ Γ. Transitions of the first type are called pop transitions, and transitions
of the second type are called push transitions. Let M be a normal PDA. A pair
(p, q) of states of M is called a realizable pair if

(p, ε, x) `∗M (q, ε, ε)

for some x ∈ Σ ∗. The context-free grammar G we construct out of M has
nonterminals of the form [pq], where (p, q) is a realizable pair, in addition to the
start symbol S. G will contain productions of the following forms:

[pt]→ a [qr] b [st] if δ contains (p, ε)
a7→ (q, X ) and (r, X )

b7→ (s, ε) for some X ∈ Γ,
[pp]→ ε,

S → [qI q] for each q ∈ QF .

This is closer to Chomsky’s (1962) original proof, and variants of this method are
found in some textbooks (Floyd and Beigel 1994, Sipser 2012).
Exercise 3.9. Extend the method of PDA-to-CFG conversion based on realizable
pairs to PDAs having, in addition to pop and push transitions, transitions of the
form

(q, ε)
a7→ (r, ε).

Exercise 3.10. Show that every PDA can be converted to an equivalent normal
PDA.

PDA-to-CFG conversion, method 3 Here is yet another method, based on the
work of Aho et al. (1968).18 This applies to pushdown automata each of whose
transitions is of one of the following forms:

(p, X )
a7→ (q, ε)

(p, X )
a7→ (q,Y X )

The productions of the CFG are

[pXq]→ a for (p, X )
a7→ (q, ε),

[pX s]→ a [qYr] [r X s] for (p, X )
a7→ (q,Y X ),

in addition to the bookkeeping productions concerning the start symbol.19
18Aho et al. (1968) present an agenda-driven (!) dynamic programming algorithm without

relating it to PDA-to-CFG conversion. However, the connection is obvious. Cook (1971) presents
a construction using realizable pairs, calling it a “generalization” of Aho et al.’s (1968) argument,
while Ruzzo (1980) calls Cook’s (1971) construction one that “generalizes the classic proof that
PDAs accept only context-free languages”.

19Assuming ZF = ε, we need a production S → [qI ZIq] for each q ∈ F.
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Lang’s tabular recognition algorithm for PDAs The influential tabular recog-
nition algorithm of Lang (1974) can be seen as a refinement of the reverse of Aho
et al’s (1968) construction. Lang’s (1974) method applies to pushdown automata
whose transitions are of the forms:

(q, ε)
a7→ (r, ε),

(q, X )
a7→ (r, ε),

(q, ε)
a7→ (r, X ),

(q, X )
a7→ (r,Y ).

Nonterminals of the CFG are of the form [pXqY ] and correspond to partial com-
putations of the form

(p, X, ax) ` (r, Z X, x) `∗ (q,Y X, ε)

where the configurations appearing between (r, Z X, x) and (q,Y X ) all have stack
height ≥ 2. Similarly to Aho et al.’s (1968) method, we obtain the CFG produc-
tions:

[pXrY ]→ [pXqY ] a for (q, ε)
a7→ (r, ε),

[qXrY ]→ a for (q, ε)
a7→ (r,Y ),

[pX sY ]→ [pXqY ] [qYr Z] a for (r, Z )
a7→ (s, ε),

[pXrY ]→ [pXqZ] a for (q, Z )
a7→ (r,Y ).

A slight modification of the Datalog representation of the above productions gives
Lang’s (1974) deduction system:

[pXrY ](i, k) ← [pXqY ](i, j), a( j, k) for (q, ε)
a7→ (r, ε),

[qXrY ]( j, k) ← [pZqX](i, j), a( j, k) for (q, ε)
a7→ (r,Y ),

[pX sY ](i, l) ← [pXqY ](i, j), [qYr Z]( j, k), a(k, l) for (r, Z )
a7→ (s, ε),

[pXrY ](i, k) ← [pXqZ](i, j), a( j, k) for (q, Z )
a7→ (r,Y ),

where ε(i, j) should be read as i = j. Note the additional goal [pZqX](i, j) in
the second class of rules.20

Note that different methods of converting PDAs to CFGs will similarly lead to
tabular recognition algorithms for PDAs, given that a CFG is directly amenable to
tabular recognition through its Datalog representation.

20Lang (1974) adds a special seed fact [qI$qI$](0, 0) to get the process going.
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Nederhof and Satta (2004) present a simplified version of Lang’s (1974) algo-
rithm for a restricted type of stateless extended PDA and show that many tabular
parsing algorithms can be obtained from appropriate PDAs using this method.
Nederhof and Satta (2004) call mappings from CFGs to PDAs parsing strategies.
Thus, parsing schemata for tabular parsing can be viewed as the composition of
parsing strategies and PDA tabulation techniques:

tabular parsing

parsing schema

parsing strategy
(CFG→ PDA)

PDA tabulation
(PDA→ Datalog)

control algorithm

This is supposed to offer a more modular approach to tabular parsing.
Trying to view every parsing schema through the lens of PDAs may get awk-

ward at times. It is also restrictive since it does not generalize to grammar
formalisms beyond CFGs that have no good automata models. In contrast, under-
standing parsing schemata in terms of Datalog program transformations such as
generalized supplementary magic-sets rewriting offers a general point of view that
applies to all sorts of grammar formalisms that can be represented by Datalog, as
we will demonstrate in later lectures.

Problems
3.1. Modify the Bottom-up-lc-chart procedure so that it will work with CFGs
with ε-productions.

3.2. Let G = (N, Σ, P, S) be a CFG generating L ⊆ Σ ∗, and let PG be the Datalog
program directly representing it. Let M = (Q, Σ, δ, qI, F) be a DFA recognizing
R ⊆ Σ ∗. Define a database DM by

DM = { a(q, r) | δ(q, a) = r },
using states of M as database constants. Show that the following conditions are
equivalent:

(i) PG ∪ DM ` S(qI, q) for some q ∈ F.

(ii) L ∩ R , ∅.

3.3. Let P be the deduction system (Datalog program) for Earley’s algorithm
obtained from a CFG G = (N, Σ, P, S). Let M = (Σ, N ∪ Σ, δ, S, ε) be the
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stateless standard PDA representing the top-down recognizer for G. Let A ∈
N , a1 . . . an ∈ Σ ∗, and D = { ∼S(0), a1(0, 1), . . . , an(n − 1, n)}. Show that the
following are equivalent:

(i) P ∪ D ` ∼A(i).
(ii) (S, a1 . . . an) `∗M (Aα, ai+1 . . . an) for some α ∈ (N ∪ Σ )∗.

3.4. Give a version of the left-corner transform on the basis of the arc-standard left-
corner recognizer defined in Lecture 2. What is the relation with the left-corner
transform defined in the text?

3.5. Let G be a CFG in Chomsky normal form, and consider the left-corner
tranform G′ of G. Show that G′ can easily be converted to an equivalent CFG G′′
in quadratic Greibach normal form, where each production is of the form

A→ aB1 . . . Bn

where a is a terminal, B1, . . . , Bn are nonterminals, and n ≤ 2.

3.6. Try to define the “bottom-up transform”. That is, give a transformation
of CFGs that yields an equivalent CFG on which the behavior of the top-down
recognizer corresponds to the behavior of the bottom-up recognizer on the original
CFG.

3.7. For a PDA M = (Q, Σ, Γ, δ, qI, ZI,QF, ZF ), define the set T (M) of accepting
transition sequences of M by

T (M) = { τ1 . . . τn ∈ δ∗ | M has an accepting computation C0 `M · · · `M Cn
such that for each i = 1, . . . , n, τi sends Ci−1 to Ci }.

T (M) is a deterministic context-free language over the alphabet consisting of the
transitions in δ. Give a context-free grammar G such that L(G) = T (M).
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